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Tensor network (TN) methods, in particular the matrix product states (MPS) ansatz, have proven to be a
useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much
better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the
possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach,
however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit
the notorious sign problem in MC simulations. This makes it prospective for dealing with the nonzero
chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this
paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature
to show the feasibility of this approach also at finite temperature. This is an important step on the way to
deal with the sign problem of QCD. We analyze in detail the chiral symmetry breaking in the massless and
massive cases and show that the method works very well and gives good control over a broad range of
temperatures, essentially from zero to infinite temperature.
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I. INTRODUCTION

Investigations of gauge field theories within the
Hamiltonian approach have progressed substantially in
the last years with the help of tensor network (TN)
techniques [1–3]. Taking the example of the Schwinger
model, numerical calculations have been performed to
investigate ground state properties [4–9], to demonstrate
real-time dynamics [10,11] and to address the phenomenon
of string breaking [12,13], which has also been explored in
non-Abelian models [14]. In Refs. [15–17], thermal proper-
ties of the Schwinger model were studied for massless
fermions. From a more conceptual point of view, TN have
been developed that incorporate the gauge symmetry by
construction, and constitute ground states of gauge invari-
ant lattice models [18–21]. Yet a different line of work is
the study of potential quantum simulations of these models,
using ultracold atoms, see Refs. [22–24] for a review. Also
in this field, TN techniques can play a determinant role to
study the feasibility of the proposals [25].
The last numerical developments go beyond standard

Markov Chain Monte Carlo (MC-MC) methods. At zero
temperature, the Hamiltonian approach allows us to go
substantially closer to the continuum limit and reach a
much improved accuracy compared to MC-MC. When

temperature is switched on, a broad and very large set of
nonzero temperature points can be evaluated, ranging from
very high to almost zero temperature. In the string breaking
calculation, a nice picture of the string breaking phenome-
non and the emergence of the hadron states can be
demonstrated. Finally, real-time simulations are not even
possible in principle with MC-MC methods.
The key to this success is the employment of tensor

network states and, in the case of one spatial dimension,
as for the Schwinger model, the matrix product states
(MPS). In this approach, which is closely linked to the
density matrix renormalization group (DMRG) [26], the
problem, which has an exponentially large dimension in
terms of the system size, is reduced to an—admittedly—
sophisticated variational solution which can be encoded
in substantially smaller D ×D matrices. The ansatz can
represent arbitrary states in the Hilbert space if D is large
enough (exponential in the system size). Instead in
numerical applications, usually an approximation is found
to the desired state within the set of MPS with fixed D.
By varying D, an extrapolation of results to D → ∞ can
be performed allowing us to thus reach the solution of
the real system under consideration. A different approach
also using tensor network techniques was applied to the
Schwinger model with a topological θ-term in
Refs. [27,28], where the exact partition function on the
lattice was expressed as a two dimensional tensor net-
work and approximately contracted using the tensor
renormalization group (TRG).
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The application of the MPS technique discussed in the
present paper is concerned with nonzero temperature
properties of the Schwinger model. In Refs. [15–17], we
have for the first time investigated the thermal evolution of
the chiral condensate in the Schwinger model. In the first
paper, where we only studied the massless case, we could
demonstrate that the MPS technique can be successfully
used to compute such a thermal evolution from very high to
almost zero temperature. For massless fermions, the results
from our MPS calculation could be confronted with the
analytical solution of Ref. [29] and a very nice agreement
was found demonstrating the correctness and the power of
the MPS approach.
In the present paper, we will extend our calculations of

the thermal evolution of the chiral condensate to the case of
nonvanishing fermion masses. Here, no exact results exist
anymore, but only approximate solutions are available [30]
which can be tested against our results. For our work at zero
fermion mass, we also introduced a truncation of the charge
sector [15] which was necessary to obtain precise results at
high temperature. Here, we will employ this truncation
method, too.
It needs to be stressed that the calculations with MPS, as

performed here, have a number of systematic uncertainties
which are very important to control. This concerns in
particular:

(i) an estimate of results for infinite bond dimension1;
(ii) an extrapolation to zero step size in the thermal

evolution process;
(iii) a study of the truncation in the charge sector of

the model;
(iv) an infinite volume extrapolation;
(v) and a careful analysis of the continuum limit employ-

ing various extrapolation functions with different
orders in the lattice spacing.

Controlling these systematic effects renders the calcu-
lations with MPS demanding, but it is absolutely necessary
to obtain precise and trustworthy results. We have therefore
made a significant effort to perform the above extrapola-
tions and we will provide various examples in this paper for
the studies of systematic effects carried through here.

II. THE SCHWINGER MODEL AND CHIRAL
SYMMETRY BREAKING

The one-flavor Schwinger model [32], i.e. quantum
electrodynamics in 1þ 1 dimensions, is one of the simplest
gauge theories and a toy model allowing for studies of new
lattice techniques before employing them to real theories of
interest, like quantum chromodynamics (QCD). Despite its
apparent simplicity, it has a nonperturbatively generated

mass gap and shares some features with QCD, such as
confinement and chiral symmetry breaking, although the
mechanism of the latter is different than in QCD—it is not
spontaneous, but results from the chiral anomaly.
We start with the Hamiltonian of the Schwinger model in

the staggered discretization, derived and discussed in
Ref. [33]:

H ¼ x
XN−2

n¼0

½σþn σ−nþ1 þ σ−nσ
þ
nþ1� þ

μ

2

XN−1

n¼0

½1þ ð−1Þnσzn�

þ
XN−2

n¼0

½LðnÞ�2

≡Hhop þHm þHg; ð2:1Þ

where n is the site index, x ¼ 1=g2a2, a is the lattice
spacing, g is the coupling, and μ ¼ 2m=g2a with m
denoting the fermion mass and N the number of lattice
sites. We use open boundary conditions (OBC). The gauge
field, LðnÞ, can be integrated out using the Gauss law:

Lðnþ 1Þ − LðnÞ ¼ 1

2
½ð−1Þnþ1 þ σznþ1�: ð2:2Þ

Thus, only LðnÞ at one of the boundaries is an independent
parameter and we take Lð0Þ ¼ 0, i.e. no background
electric field.
We work with the following basis for our numerical

computations: js0s1 � � �i [6], where sn ¼ f↓;↑g is the spin
state at site n and all the gauge degrees of freedom have
been integrated out.
In this paper, we are interested in the chiral symmetry

breaking (χSB) in the Schwinger model, both at zero and
nonzero temperature. The order parameter of χSB is the
chiral condensate Σ ¼ hψ̄ψi, which can be written in terms

of spin operators as Σ ¼ g
ffiffi
x

p
N

P
nð−1Þn 1þσzn

2
. The ground

state and thermal expectation values of the chiral con-
densate diverge logarithmically in the continuum limit
for nonzero fermion mass [34–36]. This divergence is
present even in the noninteracting case, where the theory
is exactly solvable and the Hamiltonian (2.1) reduces to
the XY spin model in a staggered magnetic field. The
ground state energy of this model (with OBC) reads:
E0

g ¼ μ
2
N −

PN=2
q¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 4x2cos2 qπ

Nþ1

q
. The ground state

expectation value of Σ can then be computed from the
derivative dE0

dμ :

Σfreeðμ; x; NÞ ¼ g
ffiffiffi
x

p
N

XN=2

q¼1

μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 4x2cos2 qπ

Nþ1

q : ð2:3Þ

The free condensate value computed from this formula can
be used to subtract the divergence in the interacting case at

1For a given system size, N, exact results would actually be
attained with finite bond dimension, D ¼ 2N=2 [31], which is
many orders of magnitude larger than the largest one we use in
the simulations.
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a finite lattice size N, a finite lattice spacing 1=
ffiffiffi
x

p
and a

given fermion mass m=g. However, one can exactly
evaluate the infinite volume limit of the free condensate
first, yielding:

Σfreeðm=g; xÞ ¼ m
π

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

g2x

q K

�
1

1þ m2

g2x

�
; ð2:4Þ

where KðuÞ is the complete elliptic integral of the first kind
[37]. Note that by expanding this expression in the limit
x → ∞, the divergent logarithmic term 1

2π
m
g log x is indeed

seen already in the free case. In this way, we can extrapolate
our lattice interacting condensate Σðm=g; x; NÞ first to
infinite volume limit, Σðm=g; xÞ, at a finite x and a given
m=g and then subtract the infinite volume free condensate
(Σfreeðm=g; xÞ) given by Eq. (2.4):

Σsubtrðm=g; xÞ ¼ Σðm=g; xÞ − Σfreeðm=g; xÞ; ð2:5Þ

obtaining finally the subtracted condensate Σsubtrðm=g; xÞ,
which can then be extrapolated to the continuum limit
x → ∞. Note that a nonzero temperature does not bring
any further divergence, hence the above renormalization
scheme, subtracting the zero temperature free condensate in
the infinite volume limit, can be applied for any T. Actually,
one can equivalently subtract the free condensate at any
finite T. This defines an alternative renormalization scheme
that we can also implement. Both options would lead to
the correct value at T ¼ 0, i.e. compatible with the one
directly obtained from the ground state calculations, but in
order to compare to other results in the literature, we adopt
in the following the T ¼ 0 renormalization scheme for all
temperatures.
In the massless case, the temperature dependence of the

chiral condensate was computed analytically by Sachs and
Wipf [29]:

hψ̄ψi ¼ mγ

2π
eγe2Iðmγ=TÞ ¼

� mγ

2π e
γ for T → 0

2Te−πT=mγ for T → ∞;

ð2:6Þ

where IðxÞ ¼ R∞
0

dt
1−ex coshðtÞ, γ ≈ 0.577216 is the Euler-

Mascheroni constant and mγ ¼ g=
ffiffiffi
π

p
is the nonperturba-

tively generated mass of the lowest lying boson (the vector
boson). According to the above formula, chiral symmetry is
broken at any finite temperature (zero or nonzero) and it
gets restored (Σ ¼ 0) only at infinite temperature. There is
no phase transition, i.e. chiral symmetry restoration is
smooth.
In the massive case, there is no analytical formula

describing the temperature dependence of the condensate.
However, the massive model was treated by Hosotani and
Rodriguez with a generalized Hartree-Fock approach in

Ref. [30], yielding an approximate thermal dependence
of Σ. In the following, we will confront our results with
ones from this approximation and thus conclude about its
validity.

III. TENSOR NETWORK APPROACH

In this work, we make use of two different applications
of tensor network ansatzes. In order to obtain the results at
zero temperature, we approximate variationally the ground
state of the Schwinger model Hamiltonian (2.1) on a finite
lattice using a MPS. For the temperature dependence, we
employ the matrix product operator (MPO) to describe the
thermal equilibrium states at finite temperatures.
Although the details of these ansatzes and the basic

algorithms involved can be found in the literature, for
completeness we compile in this section the fundamental
ideas of both approaches, with special emphasis on the
particularities associated to the problem at hand.
Given a system of N sites, a MPS [31,38,39] is a state of

the form

jΨi ¼
Xd−1

i0;…iN−1¼0

trðAi0
0 …AiN−1

N−1Þji0…iN−1i; ð3:1Þ

where d is the dimension of the local Hilbert space for
each site. For two-level quantum systems, as in the case we
are studying, d ¼ 2. The state is parametrized by the dN
matrices, Ai

k, which have dimension D ×D, except for the
ones at the edges, Ai

0 and Ai
N−1, which, for the open

boundary conditions we consider, are D-dimensional vec-
tors. The parameter D is called the bond dimension, and
determines the number of variational parameters in the
ansatz. The MPS can efficiently approximate ground states
of local gapped Hamiltonians in one spatial dimension, and
the ansatz lies at the basis of the success of the density
matrix renormalization group (DMRG) method [26,39]. In
practice, they have been successfully applied to much more
general problems, including long range interactions and
two dimensional systems.
Different algorithms exist to find a MPS approximation

to the ground state of a certain Hamiltonian. We use a
variational search [31,39], in which the energy is mini-
mized over the set of MPS with a given bond dimension,D,
by successively optimizing over one of the tensors, while
keeping the rest fixed. The procedure is repeated, while
sweeping over all the tensors, until convergence is attained
in the value of the energy, to a certain relative precision, εtol,
ultimately limited by machine precision. The computa-
tional cost of this procedure scales as OðdD3Þ with the
dimensions of the tensors. The effect of running the
algorithm with a limited bond dimension is to suffer a
truncation error. By running the algorithm with increasing
values ofD, we can estimate the magnitude of this error and
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extrapolate to the 1=D → 0 limit, as discussed in detail
in Sec. IV.
Our previous works [6,7] demonstrated that the MPS

ansatz provides very good approximations to the ground
state and lower lying excited states of the Schwinger model.
The MPS ansatz can be extended to the description of

operators, and in particular density matrices [40–42]. A
matrix product operator (MPO) is thus of the form

ρ ¼
X
fik;jkg

TrðM½0�i0j0 � � �M½N − 1�iN−1jN−1Þji0…iN−1i

× hj0…jN−1j: ð3:2Þ

While any MPS (3.1) can represent a valid physical state,
as far as it is normalized, in order to describe a physical
density operator, the MPO needs in addition to be positive.
This condition cannot be guaranteed locally for generic
tensorsM½k�. However, it is possible to ensure the positivity
of a MPO using the purification ansatz [40,43], in which
each tensor of the MPO has the form M½k�ij~l ~r

¼P
pA

ip
l0r0

�Ajp
lr. This corresponds to a (pure state) MPS

ansatz for an extended chain, with one ancillary system
per site, such that ρ is the reduced state for the original
system, obtained by tracing out the ancillas. It has been
shown that thermal equilibrium states of local Hamiltonians
can be well approximated by this kind of ansatz [44,45] in
arbitrary dimensions.
In the case of finite temperature, a MPO approximation

can be constructed for the Gibbs state via imaginary time
evolution of the identity operator [40], ρðβÞ ∝ e−βH ¼
e−

β
2
H1e−

β
2
H, where β≡ 1=T is the inverse temperature.

To achieve this, we apply a second order Suzuki-Trotter
expansion [46,47] to the exponential, and approximate
every step of width δ ¼ β=M by a product of five terms,

e−βH ≈ ½e−δ
2
Hee−

δ
2
Hze−δHoe−

δ
2
Hze−

δ
2
He �M; ð3:3Þ

where Hz ¼ Hm þHg is diagonal in the z basis, and the
hopping term is split in two sums Hhop ¼ He þHo, with
theHe (Ho) term containing the two-body terms that act on
each even-odd (odd-even) pair of sites. If each of the
exponential terms can be exactly computed, the error of
this approximation scales as Oðδ2Þ. The exponentials
of He and Ho have indeed an exact MPO expression
with constant bond dimension 4. The term Hz contains
long range interactions, but its structure allows us to also
write it exactly as a MPO, with bond dimension
(N þ 1), as detailed in Ref. [15]. The only nonvanishing
elements of the tensors specifying the MPO are
ðMii

n ÞLn−1Ln
¼ e−δhn , for Ln ¼ Ln−1 þ 1

2
½ð−1Þn þ ðσznÞii�,

where hn ¼ μ
2
½1þ ð−1Þnσzn� þ L2

n for n < N − 1, and
hN−1 ¼ μ

2
½1þ ð−1ÞN−1σzN−1�. The virtual bond then carries

the information about the electric flux on each link, which

can assume values Ln ∈ ½−N=2; N=2�. Instead of working
with the exact exponential of Hz, which has a bond
dimension N þ 1, we find it convenient, given the large
system sizes we want to study, to truncate the dimension of
the MPO, by defining a maximum value the virtual bond
can attain, jLnj ≤ Lcut. This is equivalent to truncating the
physical space to those states where the electric flux on a
link cannot exceed Lcut and is thus related to approaches
where one explicitly truncates the maximum allowed
occupation number of the bosonic gauge degrees of
freedom [10].
Starting with the identity operator, ρð0Þ, which has a

trivial expression as a MPO with bond dimension one, we
successively apply steps of the evolution, using the
approximation above, and approximate the result by a
MPO with the desired maximum bond dimension. This is
achieved with the help of a Choi isomorphism [48],
jiihjj → jii ⊗ jji, to vectorize the density operators, such
that the MPO is transformed in a MPS, with physical
dimension per site d2, on which the evolution steps act
linearly. The approximated effect of the evolution is then
found by minimizing the Euclidean distance between the
original and final MPS. The procedure can be repeated until
inverse temperature β=2 is reached. Then we construct
ρðβÞ ∝ ρðβ=2Þ†ρðβ=2Þ (up to normalization) such that the
purification ansatz is realized and we ensure a positive
thermal equilibrium state. The computational cost of this
calculation is the same as that of time evolution of a MPS
state, with the increased physical dimension, i.e. it scales
as Oðd2D3Þ.
Using the MPO ansatz with limited bond dimension

induces also a truncation error in the T > 0 case, which is
not equivalent to the one described for T ¼ 0. First of all,
different ansatzes are used for both cases, and while the
MPS truncation in the pure state case can be related to the
entanglement in the state, the same is not true for the MPO
ansatz in the case of mixed states.2 Moreover, the distinct
numerical algorithms used in both cases also mean that
errors are introduced in different ways. In the thermal
algorithm, each application of one of the exponential
factors in (3.3) potentially increases the bond dimension
of the resulting MPO. Hence, after every step, the ansatz
needs to be truncated to the maximum desired value of the
bond dimension. In practice, this is achieved by minimizing
a cost function that corresponds to the Frobenius norm of
the difference to the true evolved operator. As in the ground
state search, this optimization is done by an alternating least
squares (ALS) scheme, in which all tensors but one are
fixed, and repeated sweeping is performed over the chain.
Also in this case, we use a tolerance parameter, εtol, to
decide about the convergence of the iteration, but now the

2In the case of operators one should instead talk about operator
space entanglement entropy, a measure related to truncation error
in the MPO that was introduced in Ref. [49].
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value bounds the relative change in the cost function during
the sweeping that follows the application of each single
exponential factor. This procedure leads to errors accumu-
lating along the thermal evolution, and while at β ¼ 0 the
state can be exactly written as a MPO with D ¼ 1, the
largest truncation errors will occur for the lowest temper-
atures. Thus, recovering zero temperature results from such
a procedure is a nontrivial check that the method is working
correctly. The T ¼ 0 calculation, in contrast, does not
suffer from this effect, as it directly targets the ground
state variationally.
Additionally, the Suzuki-Trotter expansion (3.3) intro-

duces another systematic error in the thermal evolution, by
using a finite step width δ, which we need to extrapolate to
δ → 0, and another one in the form of the truncation of the
physical subspace to a maximum Lcut, described above. All
these factors need to be taken into account when perform-
ing the extrapolations required to extract the continuum
values of the observables under study (see Sec. IV for
details).

IV. RESULTS

A. Zero temperature

We begin with our results for the ground state chiral
condensate for various fermion masses. For the massless
case, an analytical result can be obtained, Σ=g¼ eγ=2π3=2≈
0.159929. We are able to reproduce this number with great
accuracy and also obtain results in the massive case, where
no analytical results exist.
Our numerical procedure consists in computing several

sets of data points corresponding to different values of (D,
N, x) and extrapolating in the way described below. Infinite
bond dimension (D → ∞) extrapolation. We use several
values of D ∈ ½40; 160� to check the effects from changing
the bond dimension. Our final value is taken as the
condensate corresponding to the largest computed value
ofD ¼ 160 and its error as the difference between the value

for D ¼ 160 and D ¼ 140. The lower values of D serve to
ensure that the two highest bond dimensions are large
enough, such that it can be argued that the difference
between D ¼ ∞ and D ¼ 160 is smaller than the one
between D ¼ 160 and D ¼ 140, which makes our error
estimate valid.
A typical example of such extrapolation is shown in

Fig. 1 for x ¼ 200 and in Fig. 2 for x ¼ 10, at
m=g ¼ 0.125. In both cases, we observe very good con-
vergence toward the 1=D ¼ 0 limit, with the above defined
error from this step being of Oð10−9Þ for the former and
Oð10−12Þ for the latter. This error is represented by a red
band. Note that despite going to D ¼ 160, the convergence
in bond dimension is so good that actually even with
D ¼ 40 we would already obtain the result with an out-
standing precision, of Oð10−8Þ for x ¼ 200 (i.e. only an
order of magnitude worse than with D ¼ 160) or even of
Oð10−12Þ for x ¼ 10 (i.e. the same as with D ¼ 160). The
x ¼ 10 case illustrates that in some cases the convergence
inD is so good that our uncertainty comes from issues with
the numerical precision. The MPS optimization procedure
is considered to be converged when the relative change in
the ground state energy in subsequent sweeps falls below a
certain tolerance parameter, taken to be εtol ¼ 10−12 in our
case. Notice, however, that this precision refers to the
ground state energy, which typically converges better than
other observables, so it will correspond to a somewhat
worse precision in the chiral condensate, which we estimate
to be in the 10−11 − 10−10 region. In the x ¼ 10 case, the
variation of Σ=g values for different D becomes smaller
than this, which explains the irregular behavior of the
D-dependence for this case (left plot of Fig. 2), compared to
the apparently regular convergence for the case x ¼ 200.
We account for this bias (that happens only for our smallest
x values) in our next step, the infinite volume extrapolation.
We emphasize that this is definitely not a drawback of the
method, but even better precision could be attained for
certain parameter ranges with the same D values, by

 0.3458
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 0.3461
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FIG. 1. Examples of the D-dependence of the ground state chiral condensate for m=g ¼ 0.125, x ¼ 200 and five system sizes (left).
The right plot shows a zoom into the region D ∈ ½80; 160� for N ¼ 368. The red band represents the uncertainty related to the bond
dimension, taken as explained in the text.
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adopting a more demanding convergence criterion. On the
other hand, since the ultimate limit of machine precision,
which we label by ϵnum, affects the optimization of
individual tensors, so that after one sweep over the whole
chain, it may affect the value of the energy in OðNϵnumÞ.
This means that for chains of hundreds of sites, as required
for the largest values of x we explore, εtol ¼ 10−12 is the
best allowed by double precision numerics.
Infinite volume (N → ∞) extrapolation. The results

corresponding to our estimates of the D → ∞ limit can
then be extrapolated to infinite volume by using a linear
fitting ansatz:

Σðm=g; x; NÞ ¼ Σðm=g; xÞ þ αðm=g; xÞ
N

; ð4:1Þ

where Σðm=g; x; NÞ is the infinite-D condensate for a
fixed fermion mass, volume and lattice spacing. The fitting
parameters are Σðm=g; xÞ (infinite volume condensate at a
given lattice spacing and fermion mass) and the mass
and lattice spacing-dependent slope of the finite volume
1=N correction, αðm=g; xÞ. We show an example of such

extrapolation in Fig. 3, again for x ¼ 10 (left) and x ¼ 200
(right), at m=g ¼ 0.125. We always choose the volumes to
be large enough, such that the above linear fitting ansatz
yields a good description of data. We have found that this
holds when the volumes used are scaled proportionally toffiffiffi
x

p
and we take N ¼ f22 ffiffiffi

x
p

; 26
ffiffiffi
x

p
; 30

ffiffiffi
x

p
; 32

ffiffiffi
x

p
; 34

ffiffiffi
x

p g.
Indeed, in all cases where no issues with machine precision
are observed, this leads to very good fits. The resulting
error of the fitting coefficient Σðm=g; xÞ is the propagated
error from the D-extrapolation. For very small values of x
(lower than approx. 30), we need to deal with the numerical
precision bias. The errors from the D-extrapolation are in
such case underestimated, since they do not take into
account the finite numerical precision. This leads to χ2=dof
values ofOð10–100Þ. However, we know from the analysis
for large values of x that the linear fitting ansatz (4.1) yields
an excellent description of data, with χ2=dof usually much
smaller than 1. Hence, we account for the bias by inflating
theD-extrapolation errors to such levels that χ2=dof ¼ 1 by
construction. In this way, the final error after the infinite
volume extrapolation step is properly rescaled and becomes
comparable to the one at larger x (e.g. approx. 8.2×10−10

 0.31

 0.3101

 0.3102

 0.3103

 0.3104

 0.3105

 0.3106

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014

Σ/
g

1/D

m/g=0.125, T=0, x=10

N=70
N=84

N=96
N=102

N=108

0.3102898752090

0.3102898752095

0.3102898752100

0.3102898752105

0.3102898752110

0.3102898752115

0.3102898752120

 0  0.002 0.004 0.006 0.008  0.01  0.012

Σ/
g

1/D

m/g=0.125, T=0, x=10, N=84

FIG. 2. Examples of theD-dependence of the ground state chiral condensate form=g ¼ 0.125, x ¼ 10 and five system sizes (left). The
right plot shows a zoom into the regionD ∈ ½80; 160� for N ¼ 84. See comments in the text about the irregular approach to the 1=D ¼ 0
limit. The red band represents the uncertainty related to the bond dimension, taken as explained in the text.
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for x ¼ 10 and 6.3 × 10−9 for x ¼ 200). In the end, all our
errors of infinite volume condensates, Σðm=g; xÞ, differ by
less than an order of magnitude in the whole considered
range of x and for all fermion masses. For the cases where
machine precision issues entered, we also tried to use the
minimum value of the condensate over the considered
range of D instead of taking D ¼ 160. This gave compat-
ible results but could not overcome the machine precision
issue, since the latter basically adds random noise on top of
the well-converged result from MPS.
Continuum limit (x → ∞) extrapolation. Finally, the

infinite volume results Σðm=g; xÞ can be extrapolated to
the continuum limit. First, we subtract the infinite volume
free condensate according to Eq. (2.5), obtaining the
subtracted condensate Σsubtrðm=g; xÞ. Then, we apply the
following fitting ansatz:

Σsubtrðm=g; xÞ ¼ Σsubtrðm=gÞ þ aðm=gÞffiffiffi
x

p logðxÞ

þ bðm=gÞffiffiffi
x

p þ cðm=gÞ
x

; ð4:2Þ

with fitting parameters Σsubtrðm=gÞ (the continuum con-
densate for a given fermion mass), aðm=gÞ, bðm=gÞ and
cðm=gÞ. This is a fitting ansatz quadratic in the lattice
spacing (the role of the lattice spacing is played by 1=

ffiffiffi
x

p
),

with logarithmic corrections. The latter appear already in
the free theory, where their presence can be shown
analytically (see Sec. II). Note that the final result obtained
from this procedure will, to some extent, depend on the
fitting range in 1=

ffiffiffi
x

p
. To quote final values independent

from such choices, we adopt a systematic procedure
analogous to the one we used in our spectrum investigation
in the Schwinger model, described in detail in the appendix
of Ref. [6]. In short, this consists of performing fits in
different possible fitting ranges by varying the minimal and
maximal values of x entering the fits. The number of fits
that we obtain in this way is of Oð100Þ and allows us to
build a distribution of the continuum values, weighted with
expð−χ2=dofÞ of the fits. The final value that we quote is
the median of the distribution and the systematic error from
the choice of the fitting range comes from the 68.3% con-
fidence interval (such that in the limit of infinite number
of fits it corresponds to the width of a resulting Gaussian
distribution). This error is then combined in quadrature
with our propagated error from D- and N-extrapolations,
which we take as the error of one selected fit, taken to be the
one in the interval x ∈ ½20; 600�.
Our continuum limit extrapolations are shown in Fig. 4

for all fermion masses that we considered. We show in
these plots the fit from which we estimated our propagated
error from earlier extrapolations (x ∈ ½20; 600�), i.e. one of
the fits that enter the distribution built to assess our final
values and their uncertainties. The final values for each
fermion mass are summarized in Table I. We compare to the

result of a similar calculation in Ref. [11] and to the exact
result in the massless case or the approximation of
Ref. [30]. For the former, we observe perfect agreement,
which is quite remarkable given the precision of both
results being at the Oð0.01% − 0.001%Þ level. Similarly
good is the agreement with the analytical result at m ¼ 0.
We will comment more on the agreement with Ref. [30] in
the next subsection.

B. Thermal evolution

In our previous papers [15–17], we showed results for
the temperature dependence of the chiral condensate in
the massless case. We employed a method without any
truncations in the gauge sector and found that it is numeri-
cally very demanding to achieve lattice spacings small
enough to reliably extrapolate to the continuum at high
temperatures. This led us to the method of introducing a
finite cutoff, Lcut, in the gauge sector and we showed that
this method works very well in the massless case, allowing
for good precision of results for the whole range of
temperatures. In the present paper, we test the method,
explained in detail in Sec. III, in the massive case. Although
this method is different from the one used for T ¼ 0, the
analysis procedure at a given temperature is rather similar
to the one described in the previous subsection. We begin
by shortly outlying the new parts of the analysis in the
thermal case. In the following, we typically express the
temperature with its inverse, β≡ 1=T.
There are two new parameters with respect to T ¼ 0

computations, apart from the bond dimension, D, the
system size, N, and the inverse coupling, x—the Lcut
parameter describing the cutoff in the gauge sector and
the step width, δ. Thus, our sequence of extrapolations
follows the order given below.
Infinite bond dimension (D → ∞) extrapolation. This

extrapolation is done as in the T ¼ 0 case and we again take
the result at our largest D as the central value and the
difference between this value and one at (D − 20) as the
estimate of the uncertainty from the finite bond dimension.
Examples of such extrapolations are shown in Figs. 5 and 6,
for x ¼ 9 and x ¼ 1024, respectively (both at m=g ¼ 0.25,
gβ ¼ 0.5, Lcut ¼ 10). They illustrate a general feature in the
D-dependence of the chiral condensate—the convergence
becomes worse toward the continuum limit. However, this
convergence is in all cases good—the difference between
our two largest bond dimensions (140 and 160) is of
Oð10−9Þ at x ¼ 9 and of Oð5 × 10−5Þ at x ¼ 1024. This
difference also depends on the temperature—since lower
temperatures are reached by increasing gβ, the error from
the finite bond dimension also increases at increasing gβ,
approximately linearly. Note that in the thermal case, the
convergence in D is somewhat worse than at T ¼ 0 and we
do not observe issues with insufficient machine precision
(cf. Sec. IVA and the comments about double precision as
not enough for certain parameter ranges). Finally, there is
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little dependence on the value of δ, the volume and on the
fermion mass.
Zero step width (δ → 0) extrapolation. We denote the

results from the previous step as Σðm=g; x; N; δÞ and they
differ from the δ ¼ 0 limit byOðδ2Þ. Hence, we extrapolate
to δ ¼ 0 with:

Σðm=g; x; N; δÞ ¼ Σðm=g; x; NÞ þ rðm=g; x; NÞδ2; ð4:3Þ

with the fitting parameters Σðm=g; x; NÞ and rðm=g; x; NÞ.
We always use three values of δ for each ðm=g; x; NÞ, which
allows us to verify that a fitting ansatz linear in δ2 is proper.

Since we want to access inverse temperatures gβ ∈ ½0; 8�
with a step of Δgβ ¼ 0.1, we use values of δ small enough
such that this is possible. Examples are shown in the lower
right plots of Figs. 5 and 6, for x ¼ 9 and x ¼ 1024,
respectively (again at m=g ¼ 0.25, gβ ¼ 0.5, Lcut ¼ 10),
and three volumes that are later used for infinite volume
extrapolation. Since the resulting errors are the propagated
errors from the D-extrapolation, one again observes similar
parameter dependences for the error obtained at this step.
We also note that the linear ansatz (4.3) works very well.
Infinite volume (N → ∞) extrapolation. The results

corresponding to our estimates of the D → ∞ and δ → 0

 0.16

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 0  0.05  0.1  0.15  0.2  0.25  0.3

Σ/
g

1/√⎯

√⎯

x

m/g=0, T=0

data
fit of Eq. (4.2), 1/ x ∈ [0, 0.23]

 0.11

 0.115

 0.12

 0.125

 0.13

 0.135

 0.14

 0.145

 0.15

 0.155

 0  0.05  0.1  0.15  0.2  0.25  0.3

Σ/
g

1/√⎯x

m/g=0.0625, T=0

data
fit of Eq. (4.2), 1/√⎯x ∈ [0, 0.23]

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 0  0.05  0.1  0.15  0.2  0.25  0.3

Σ/
g

1/√⎯x

m/g=0.125, T=0

data
fit of Eq. (4.2), 1/√⎯x ∈ [0, 0.23]

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0  0.05  0.1  0.15  0.2  0.25  0.3

Σ/
g

1/√⎯x

m/g=0.25, T=0

data
fit of Eq. (4.2), 1/√⎯x ∈ [0, 0.23]

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0  0.05  0.1  0.15  0.2  0.25  0.3

Σ/
g

1/√⎯x

m/g=0.5, T=0

data
fit of Eq. (4.2), 1/√⎯x ∈ [0, 0.23]

 0.024

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 0.038

 0.04

 0  0.05  0.1  0.15  0.2  0.25  0.3

Σ/
g

1/√⎯x

m/g=1.0, T=0

data
fit of Eq. (4.2), 1/√⎯x ∈ [0, 0.23]

FIG. 4. Continuum limit extrapolations of the T ¼ 0 chiral condensate for all our fermion masses. Shown are the data for the
subtracted infinite volume condensate and the fits of Eq. (4.2) in the interval 1=

ffiffiffi
x

p
∈ ½0; 0.23� (x ∈ ½20; 600�, i.e. left of the dashed line).

These fits are example fits that enter our procedure of extraction of the systematic uncertainty related to the choice of the fitting range.
Note that the rightmost two points are not included in the fit, but are still rather well described by it.
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limits are extrapolated to infinite volume by using the same
kind of linear fitting ansatz as in the T ¼ 0 case, i.e.
Eq. (4.1), and volumes N ¼ f16 ffiffiffi

x
p

; 20
ffiffiffi
x

p
; 24

ffiffiffi
x

p g. An
example extrapolation is shown in Fig. 7, for m=g ¼ 0.25,
Lcut ¼ 10, five values of the lattice spacing and two
temperatures: gβ ¼ 0.5 (left) and gβ ¼ 4 (right). As in
the T ¼ 0 case, we observe that the fitting ansatz gives very
good description of our data.

Removing the Lcut cutoff (Lcut → ∞ extrapolation).
The physical results have to be independent of the used
gauge sector cutoff. We found empirically that for all
ranges of our parameters, Lcut ¼ 10 always yields results
compatible with Lcut ¼ 8 and Lcut ¼ 12. Hence, this value
of Lcut is effectively Lcut ¼ ∞ and no explicit extrapolation
is needed (see also Ref. [15]).
Continuum limit (x → ∞) extrapolation. As our final step,

we perform the continuum limit extrapolation of the infinite
volume results Σðm=g; xÞ. Before this is done, we subtract
the infinite volume free condensate according to Eq. (2.5)
and obtain the subtracted condensate Σsubtrðm=g;xÞ. We
consider the following three fitting ansatzes:

Σsubtrðm=g; xÞ ¼ Σð1Þ
subtrðm=gÞ þ að1Þðm=gÞffiffiffi

x
p logðxÞ

þ bð1Þðm=gÞffiffiffi
x

p ; ð4:4Þ

Σsubtrðm=g; xÞ ¼ Σð2Þ
subtrðm=gÞ þ að2Þðm=gÞffiffiffi

x
p logðxÞ

þ bð2Þðm=gÞffiffiffi
x

p þ cð2Þðm=gÞ
x

; ð4:5Þ
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FIG. 5. Examples of the D-dependence of the chiral condensate for m=g ¼ 0.25, gβ ¼ 0.5, Lcut ¼ 10, x ¼ 9, N ¼ 60 and δ ¼
0.0020833 (upper left), δ ¼ 0.0041667 (upper right) and δ ¼ 0.0083333 (lower left). The red bands represent the uncertainty related to
the bond dimension, taken as explained in the text. Example of a δ-extrapolation for m=g ¼ 0.25, gβ ¼ 0.5, Lcut ¼ 10, x ¼ 9 and three
values of N ¼ 48, 60, 72 (lower right). Lines are fits of Eq. (4.3). The data points have error bars, but they are too small to be seen.

TABLE I. Final continuum values of the T ¼ 0 chiral con-
densate (in units of g) for the used fermion masses. We compare
with results from Ref. [11] and with the analytical result in the
massless case or the approximated result from Ref. [30] in the
massive case.

Subtracted condensate

m=g Our result Ref. [11] Exact (m ¼ 0)

or Ref. [30] (m > 0)
0 0.159929(7) 0.159929(1) 0.159929
0.0625 0.1139657(8) – 0.1314
0.125 0.0920205(5) 0.092019(2) 0.1088
0.25 0.0666457(3) 0.066647(4) 0.0775
0.5 0.0423492(20) 0.042349(2) 0.0464
1.0 0.0238535(28) 0.023851(8) 0.0247
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Σsubtrðm=g; xÞ ¼ Σð3Þ
subtrðm=gÞ þ að3Þðm=gÞffiffiffi

x
p logðxÞ

þ bð3Þðm=gÞffiffiffi
x

p þ cð3Þðm=gÞ
x

þ dð3Þðm=gÞ
x3=2

;

ð4:6Þ

which differ by the order of the polynomial in 1=
ffiffiffi
x

p
.We refer

to them as linear þ log, quadraticþ log and cubicþ log,
respectively. We observe that the discretization effects are
very different at different temperatures, in particular these
effects become very strong at high temperatures and a
polynomial cubic in 1=

ffiffiffi
x

p
is needed to obtain a good

description of data. We adopt a modified procedure to obtain
the systematic error fromthechoice of the fitting rangeand the
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FIG. 6. Examples of the D-dependence of the chiral condensate for m=g ¼ 0.25, gβ ¼ 0.5, Lcut ¼ 10, x ¼ 1024, N ¼ 640 and
δ ¼ 0.00019531 (upper left), δ ¼ 0.00039063 (upper right) and δ ¼ 0.00078125 (lower left). The red bands represent the uncertainty
related to the bond dimension, taken as explained in the text. Example of a δ-extrapolation for m=g ¼ 0.25, gβ ¼ 0.5, Lcut ¼ 10,
x ¼ 1024 and three values ofN ¼ 512, 640, 768 (lower right). Lines are fits of Eq. (4.3). The data points have error bars, but they are too
small to be seen.
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with Lcut ¼ 10. Lines are fits of Eq. (4.1).

BAÑULS, CICHY, JANSEN, and SAITO PHYSICAL REVIEW D 93, 094512 (2016)

094512-10



fitting ansatz. The procedure used to analyze theT ¼ 0 data is
inappropriate here, because of the large dependence of the
uncertainty from the D-extrapolation on the lattice spacing.
This uncertainty at a fine lattice spacing (x ¼ 100–500) is up
to four orders ofmagnitude larger than theone for our coarsest
lattice spacings. Hence, the analogue of the weighted histo-
gram built at T ¼ 0 is no longer reliable, as it contains fits
with very large uncertainties. This does not happen at T ¼ 0,
where the fine lattice spacings have only slightly larger
uncertainties from theD andN-extrapolations than the coarse
lattice spacings. This reflects the difference in strategies used
to approximate thermal and ground states as tensor networks.
In practice, it translates into a somewhat different manner the
truncation errors are accumulated in the thermal evolution
with respect to the T ¼ 0 algorithm. At large gβ, i.e. after
several steps of imaginary time evolution, the truncation
errors are much larger than in the ground state. As a
consequence, the T ¼ 0 procedure of obtaining the system-
atic error does not make sense in the T > 0 case, since only
one or two fits dominate the weighted histogram.
For this reason, the procedure to extract the fitting range/

ansatz uncertainty is the following. It is performed sepa-
rately for each temperature gβ at a given fermion massm=g.
We fix the maximum x entering each fit to be the one
corresponding to the finest lattice spacing. Then, we build
all possible fits of Eqs. (4.4)–(4.6) changing only the

minimal entering x (xmin). We take as the central value

ΣðiÞ
subtrðm=gÞ that corresponds to the smallest uncertainty

propagated throughD, δ and N-extrapolations, but one that
satisfies the condition χ2=dof ≤ 1 and has all its fitting
coefficients statistically significant. We denote it by
Σsubtrðm=gÞ and its error by ΔΣsubtrðm=gÞ. We combine
this uncertainty quadratically with the uncertainty from the
choice of the fitting interval, ΔintervalΣsubtrðm=gÞ, and from
the choice of the fitting ansatz, ΔansatzΣsubtrðm=gÞ. The
former is defined as the difference between Σsubtrðm=gÞ and
the most outlying ΣðiÞ

subtrðm=gÞ [corresponding to the same
ðiÞ, i.e. the same functional form of the fitting ansatz] which
has still all the fitting coefficients statistically significant.
The latter is taken to be the difference between Σsubtrðm=gÞ
and the most outlying ΣðjÞ

subtrðm=gÞ (where ðjÞ ≠ ðiÞ, i.e.
from another fitting ansatz) which has again statistically
significant fitting coefficients.
Below, we illustrate this procedure with a few examples

at the fermion mass m=g ¼ 0.25 (Fig. 8). We start with a
low temperature, gβ ¼ 6, effectively corresponding to
T ¼ 0 (after a certain m-dependent gβ, the continuum
result does not change any more—in the case of
m=g¼0.25, zero temperature is reached around gβ ¼ 6).
Here, taking the linear þ log fitting ansatz and xmin ¼ 9

yields a good fit, with χ2=dof ≈ 0.07. It can be compared to
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FIG. 8. Examples of the continuum limit extrapolations of the chiral condensate for m=g ¼ 0.25 and temperatures gβ ¼ 6.0 (upper
left), gβ ¼ 2.0 (upper right), gβ ¼ 0.4 (lower left) and gβ ¼ 0.2 (lower right).
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only two other fits, both of them linear þ log, with
xmin ¼ 16 and xmin ¼ 25. Increasing xmin further or chang-
ing the fit form to quadraticþ log or cubicþ log leads to at
least one of the fitting coefficients becoming statistically
insignificant. Hence, our final result for this temperature
and fermion mass is ΣsubtrðΔÞðΔintervalÞðΔansatzÞ ¼
0.0657ð3Þð43Þð0Þ and is dominated by the uncertainty
from the choice of the fitting interval. The error from
the choice of the fitting ansatz is zero, since no quadraticþ
log or cubicþ log fit produces a significant result. Since
gβ ¼ 6 is effectively T ¼ 0, this result can be compared to
our T ¼ 0 result at this fermion mass in Table I. We observe
full consistency, although the precision of the thermal
computation is four orders of magnitude worse than of

the ground state one. This is hardly surprising, as thermal
evolution is definitely not the best method to investigate
ground state properties.
Another example continuum extrapolation is shown

for gβ ¼ 2 (upper right plot of Fig. 8). In this case, the
central value comes from a linear þ log fit with xmin ¼ 16
and it is compared to the same functional form of the fit
with xmin ¼ 49 as well as to a quadraticþ log fit with
xmin ¼ 16. Finally, we get ΣsubtrðΔÞðΔintervalÞðΔansatzÞ ¼
−0.0078ð0.3Þð36Þð38Þ. Toward higher temperatures, cutoff
effects become increasingly important, in the sense that one
needs higher order polynomials in 1=

ffiffiffi
x

p
. For gβ ¼ 0.4

(lower left of Fig. 8), the central value that we take comes
from a quadraticþ log fit with xmin ¼ 25, compared to
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FIG. 9. Inverse temperature dependence of the continuum limit extrapolated chiral condensate for all our fermion masses. Shown is
also the result obtained at T ¼ 0 and the result of the approximation of Ref. [30].
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xmin ¼ 121 and a cubicþ log fit with xmin ¼ 81. This leads
to ΣsubtrðΔÞðΔintervalÞðΔansatzÞ ¼ −0.229ð0.05Þð6Þð11Þ.
Our final example is gβ ¼ 0.2 (lower right of Fig. 8).
Here, the central value comes from a cubicþ log fit with
xmin ¼ 64, compared to xmin ¼ 144 and a quadraticþ log
fit with xmin ¼ 144. We get ΣsubtrðΔÞðΔintervalÞðΔansatzÞ ¼
−0.297ð0.14Þð3Þð7Þ. In all these cases, the error is domi-
nated by the uncertainty from the choice of the fitting
interval and ansatz. Nevertheless, with the adopted sys-
tematic error estimation procedure, one can have these
uncertainties reliably under control.
We repeat the analysis steps for all our fermion masses

and we summarize the continuum limit results in Fig. 9,
where we show results up to gβ ¼ 8 (m=g ¼ 0.0625 and
0.25) or gβ ¼ 6 (m=g ¼ 0.125, 0.5, 1). The most important
feature confirming the validity of our results is that we
always reproduce the T ¼ 0 result within our errors—
actually the difference between our central values at large
enough gβ and the T ¼ 0 MPS result is much smaller than
our errors, suggesting that the error estimation procedure is
rather conservative. We also note that our systematic error
procedure makes the final errors strongly dependent on
temperature—with sometimes irregular jumps of the error
caused by some other fitting interval or fitting ansatz
entering the procedure at certain gβ values.3 Apart from
the agreement with the T ¼ 0 result, we observe that the
approach to this result is faster for higher fermion masses—
for m=g ¼ 1, gβ ¼ 3 is already effectively zero temper-
ature, while for our lowest mass, m=g ¼ 0.0625, we have
small changes of the central value even above gβ ¼ 6.
Concerning the agreement with the approximation of
Ref. [30] (referred to as “Hosotani HF” in the plot), the
latter provides good qualitative description of the temper-
ature dependence of the chiral condensate. However, the
quantitative agreement is not perfect, with typical devia-
tions of 10%-20%. It is known that the approximation
becomes exact in the massless limit and indeed, e.g.
Hosotani’s T ¼ 0 result at m=g ¼ 0.0625 is relatively
closer to the MPS result than the one at m=g ¼ 0.125.
On the other hand, the approximation of Ref. [30] also
approaches the analytical result of zero at infinite fermion
mass and T ¼ 0—hence one also expects an increasing
agreement in this regime. Indeed, the relative difference at
m=g ¼ 1 is the smallest from among all our considered
masses. However, when we consider the slope of the gβ-
dependence, we clearly observe that the agreement between
Hosotani HF and our computation becomes better toward
small fermion masses, with both curves being almost
parallel for m=g ¼ 0.0625.

V. SUMMARY AND PROSPECTS

In this paper, we have performed a study of the temper-
ature dependence of the chiral condensate for the one-
flavour Schwinger model using a Hamiltonian approach.
We emphasize that while for zero temperature we employ a
matrix product state (MPS) ansatz, for nonvanishing
temperature we use a matrix product operator (MPO)
ansatz. In addition, for the nonzero temperature calculation,
we have to perform a thermal evolution by starting from a
well-defined infinite temperature state and evolve the
system in incremental inverse temperature steps towards
zero temperature using a density operator.
Thus, nonzero temperature calculations within the

Hamiltonian approach are rather different from the so far
carried out zero temperature ones and hence nonzero
temperature computations for gauge theories are novel
and need to be tested. While in Ref. [15] we have initiated
such nonzero temperature computations for massless fer-
mions, in this paper we went substantially beyond this work
by studying the system at various fermion masses. In
addition, we employed consistently a truncation of the
gauge sector. This allowed us to reach very large system
sizes and, keeping the physical extent of the model fixed,
very small values of the lattice spacing.
Within our calculation of the chiral condensate, we

carried out a substantial and challenging effort to control
the systematic effects. To this end, we performed extrap-
olations to zero thermal evolution step size, infinite bond
dimension, infinite volume and zero lattice spacing. In
addition, we tested that our cut parameter for the gauge
sector truncation has been sufficiently large. The final
nontrivial check of the validity of our approach has been to
recover the zero temperature result of the chiral condensate
after the long thermal evolution performed.
As a result of our work, we could compute the chiral

condensate over a broad temperature range from infinite
to almost zero temperature with controlled errors. This
has been done for zero, light and heavy fermion masses.
For zero fermion mass, we found excellent agreement
with the analytical results of Ref. [29]. Moving to non-
zero fermion masses, a comparison to Ref. [30] did not
lead to a clear conclusion, see Fig. 9. Although qualita-
tively the temperature dependence of the chiral conden-
sate shows a comparable behaviour between the
analytical result of Ref. [30] and our data, there does
not seem to be an agreement on the quantitative level.
This is presumably due to the fact that the approximations
made in Ref. [30] are too rough to reach a satisfactory
quantitative agreement.
We consider the here performed work, besides of the

clear interest in its own, as a necessary step toward
investigating the Schwinger model when adding a chemical
potential. This setup leads to the infamous sign problem
and it would be very reassuring to see whether the here
used MPS and MPO approaches can lead to a successful

3For example, at m=g ¼ 0.25 all the quadraticþ log fits
have at least one fitting coefficient statistically insignificant
above gβ ¼ 3.5 and at this temperature and higher (smaller
gβ), quadraticþ log fits become statistically significant and thus
enlarge our error.
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application for this very hard problem, which is very
difficult, if not impossible to solve by standard Markov
chain Monte Carlo methods.
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