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ABSTRACT

The production and decay of supersymmetric particles is presented in this thesis. The search

for light mixing top squarks and neutralinos/charginos will be a major task at the upgraded

Tevatron and the LHC as well as at a future e+e− linear collider. The dependence of the

hadro-production cross section for weakly and strongly interacting particles on the renormal-

ization and factorization scales is found to be weak in next-to-leading order supersymmetric

QCD. This yields an improvement of derived mass bounds or the measurement of the masses,

respectively, of neutralinos/charginos and stops at the Tevatron and at the LHC. Moreover, the

next-to-leading order corrections increase the predicted neutralino/chargino cross section by

+20% to +40%, nearly independent of the mass of the particles. The consistent treatment as

well as the phenomenological implications of scalar top mixing are presented. The corrections

to strong and weak coupling induced decays of stops, gluinos, and heavy neutralinos [including

mixing stop particles] are strongly dependent on the parameters chosen. The decay widths are

defined in a renormalization scheme for the mixing angle, which maintains the symmetry between

the two stop states to all orders. The correction to the stop production cross sections, depending

on the fraction of incoming quarks and gluons, varies between –10% to +40% for an increasing

fraction of incoming gluons. The dependence of the cross section on all parameters, except for

the masses of the produced particles, is in contrast to the light-flavor squark case negligible. The

calculation of the stop production cross section was applicable to the Tevatron search for particles

which could be responsible for the HERA anomaly.

ZUSAMMENFASSUNG

In dieser Arbeit wird die Produktion und der Zerfall supersymmetrischer Teilchen betrachtet. Die

Suche nach leichten mischenden top–Squarks und Neutralinos/Charginos ist eine der wichtigsten

Aufgaben am Tevatron und LHC ebenso wie an einem zukünftigen e+e−–Linearbeschleuniger.

Die Abhängigkeit der Wirkungsquerschnitte für die Produktion stark und schwach koppelnder

Teilchen von der Renormierungs– und Faktorisierungsskala ist in nächstführender Ordnung re-

duziert. Dies erlaubt verbesserte Massenschranken oder eine verbesserte Massenbestimmung für

Neutralinos/Charginos und Stops am Tevatron und am LHC. Darüber hinaus vergrößern die Kor-

rekturen den vorhergesagten Wirkungsquerschnitt für Neutralinos/Charginos um +20% bis +40%,

nahezu unabhängig von der Masse der produzierten Teilchen. Weiterhin wird eine konsistente

Behandlung der Stop–Mischung vorgestellt und deren phänomenologische Konsequenzen unter-

sucht. Die Korrekturen zu starken und schwachen Zerfällen von top–Squarks, Gluinos und schw-

eren Neutralinos — insofern sie top–Squarks enthalten — hängen signifikant von den gewählten

Parametern ab. Die Zerfallsbreiten enthalten die Definition des Stop–Mischungswinkels, welche

die Symmetrie zwischen den beiden Stop–Zuständen in beliebiger Ordnung Störungstheorie

erhält. Die Korrekturen zu den Wirkungsquerschnitten für Stop–Produktion variieren zwischen –

10% und +40% und wachsen mit dem Anteil einlaufender Gluonen gegenüber Quarks. Im Gegen-

satz zur Produktion massenentarteter Squarks ist die Abhängigkeit von Parametern über die Stop–

Masse hinaus vernachlässigbar. Die Berechnung des Wirkungsquerschitts für die Stop–Produktion

konnte am Tevatron auf die Suche nach Teilchen, die für die HERA–Anomalie verantwortlich sein

könnten, angewandt werden.
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INTRODUCTION

A fundamental element of particle physics are symmetry principles. The electroweak as well as

the strong interaction, combined to the Standard Model, are based on the gauge symmetry group

SU(3)×SU(2)×U(1). The extension [1] of this concept to a theory incorporating global or local su-

persymmetry is a well-motivated step for several reasons:

The Standard Model has been well-established by the discovery of the gluon and the weak gauge

bosons, and by precision measurements at LEP and at the Tevatron, as well as at HERA. Currently,

there is no experimental compulsion to modify the Standard Model at energy scales accessible to these

colliders, provided the predicted Higgs boson will be found at LEP or at a future hadron or electron

collider. However, a set of conceptual problems cannot be solved in the Standard Model framework: The

mass of the only fundamental scalar particle, the Higgs boson, is not stable under quantum fluctuations,

i.e. loop contributions to the Higgs mass term become large at high scales and have to be absorbed

into the counter terms for the physical Higgs mass. This hierarchy problem leads to fine tuning of the

parameters in the Higgs potential, to avoid the breakdown of perturbative weak symmetry breaking.

Possible grand unification scenarios are based on a gauge group at some high unification scale, which

contains the different Standard Model gauge groups. Simple unification groups are the SU(5) [2] or

SO(10) [3], the latter favored in scenarios with massive neutrinos. Non-minimal scenarios may yield

intermediate symmetries and threshold effects, but as long as they include a simple unifying gauge group,

the three running Standard Model couplings have to meet in one point at the unification scale. The

requirement of one unification point and additional bounds from the non-observation of the proton decay

lead to difficulties in the Standard Model, when it is embedded into a grand desert scenario, and most

likely restrict the validity of the Standard Model to scales around the weak scale.

In supersymmetric extensions of the Standard Model the masses of scalar particles remain stable even

for very large scales, as required by grand unification scenarios. Quantum fluctuations due to fermions

and bosons cancel each other; the leading singularities also vanish in softly broken supersymmetric

theories. The hierarchy problem does therefore not occur in the extended supersymmetric Higgs sector.

Including an intermediate supersymmetry breaking scale, the minimal supersymmetric extension of the

Standard Model may be valid up to a grand unification scale without any fine tuning, being compatible

with grand desert unification scenarios. Given the strong and the Fermi coupling constant at low scales,

it predicts the weak mixing angle in very good agreement with the measured value [4]. For a large top

quark mass the renormalization group evolution can drive the electroweak symmetry breaking at low

scales. The minimal supersymmetric Higgs sector consists of two doublets, in order to give masses to up

and down type quarks while preserving supersymmetry and gauge invariance. Hence, after breaking the

weak gauge symmetry, five physical Higgs bosons occur. The non-diagonal CP even current eigenstates

yield a light scalar Higgs boson with a strong theoretical upper bound on its mass. In some regimes of the

supersymmetric parameter space this particle is accessible to LEP2, and the dependence of the theoretical

mass bound on low-energy supersymmetry parameters can be used to constrain the fundamental mixing

parameter tan β.



2

In supersymmetric R parity conserving models the lightest supersymmetric particle is stable. This

LSP, which in many scenarios turns out to be the lightest neutralino, is a possible candidate for cosmo-

logical cold dark matter.

In analogy to the gauge symmetries one may extend the global to a local supersymmetry. This

invariance gives rise to higher spin states in the Lagrangean: a massless spin-2 graviton field and its

spin-3/2 gravitino partner appear [5]. The general Einstein-gravitation is implemented into a theory of

the strong and electroweak interaction. The so-obtained Kähler potential can in simple cases be derived

by superstring compactification [6].

The breaking of exact supersymmetry is reflected in the observed mass difference between the Stan-

dard Model particles and their partners. Due to the current mass limits, this mass difference is, in case

of strongly interacting particles, much larger than the typical mass scale of the Standard Model particles.

Assuming no mixing for light-flavor squarks, there are stringent mass limits on the squarks and gluinos

from the direct search at the Tevatron [7, 8]. Due to large Yukawa couplings, the partners of the third gen-

eration Standard Model particles may mix. Since more parameters of the supersymmetric Lagrangean

enter through the non-diagonal mass matrices and the couplings, the mass limits for these third genera-

tion sfermions are weakened. Moreover, all supersymmetric partners of the electroweak gauge bosons

and the extended Higgs boson degrees of freedom mix. The search for these weakly interacting particles,

neutralinos and charginos, at hadron colliders [7] has not reached its limitations and will complete the

limits obtained from the search at LEP2 [9]. The search for strongly interacting and also for light weakly

interacting supersymmetric particles is one major task for the upgraded Tevatron and the LHC. The in-

vestigation of mixing effects in the strong and weak coupling sector requires precision measurements at

hadron as well as at lepton colliders.

The reconstruction of supersymmetric particles from detector data is difficult in R parity conserving

theories, since two LSPs leave the detector unobserved. Moreover, hadron colliders do not have an in-

coming partonic state with well-defined kinematics, but the partonic cross sections have to be convoluted

with parton density functions. The derivation of mass bounds or the mass determination, respectively,

has to be performed by measuring the total hadronic cross section, if rather specific final state cascades

cannot be used to determine the mass. Especially for strongly interacting final state particles, the cross

sections depend on the factorization and renormalization scales through the parton densities and the run-

ning QCD coupling. The scale dependences lead to considerable uncertainties in the determination of

mass bounds. The next-to-leading order cross sections will improve the mass bounds not only by their

accuracy but also by their size. These hadronic cross sections for mixing supersymmetric particles at the

upgraded Tevatron as well as at the LHC will be given in this thesis.

Similarly to light-flavor squarks and gluinos, the search for top squarks with a non-zero mixing angle

will lead to stringent mass bounds, which are essentially independent of the mixing parameters and the

masses of other supersymmetric particles. However, it will most likely be impossible to measure the

mixing angle at hadron colliders directly, since the cross sections for the production of a mixed stop pair

are strongly suppressed. The analysis of mixing effects in the stop sector will be completed by the direct

measurement of the mixing angle in e+e− collisions [10].

Regarding certain decay channels the direct search for gauginos and higgsinos at hadron colliders

resembles the search for weak gauge bosons. Although in most supergravity inspired scenarios not all

gauginos and higgsinos are light enough to be found at the upgraded Tevatron, the search for light neutral

and charged gauginos is promising and could improve the LEP2 results at the upgraded Tevatron and at
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the LHC. Even if the leading order cross sections are independent of the QCD coupling, they depend

on the factorization scale through the parton densities. The next-to-leading order predictions will again

considerably improve the bounds derived for masses and couplings.

However, all search strategies for supersymmetric particles depend on cascade decays leading to

leptons, jets, and LSPs in the final state, the latter provided R parity is conserved. As long as the masses

of the particles under consideration are not known, the analysis of these multiple decay channels does

not give strong limits, e.g. on mixing parameters involved. But for a sufficiently large sample of events

including supersymmetric particles, the whole variety of possible decays and couplings will help to

determine the mass and mixing parameters of the supersymmetric extension of the Standard Model. The

measurement of low energy parameters can then be used to search for universal parameters, predicted by

grand unification or supergravity inspired scenarios.

Outline of the Thesis

Since the supersymmetric observables presented in the following analyses can, from a phenomenological

point of view, be treated independently, technical features are covered with their first appearance.

The general physics background is described in the first chapter. A short introduction into supersym-

metric extensions of the Standard Model is complemented by the discussion of special aspects concerning

mixing particles; the next-to-leading order treatment of the mixing angle [11] in the CP conserving stop

sector is presented, and the regularization prescriptions used for supersymmetric gauge theories are sum-

marized. The supersymmetric Feynman rules and a complete set of formulae considered useful for the

detailed understanding of the calculations are given in the appendices.

The production cross sections for neutralinos and charginos at hadron colliders are treated in chap-

ter 2. They include the virtual and real next-to-leading order corrections, the latter calculated using the

dipole subtraction method. The treatment of on-shell singularities is described in detail. The possible

improvement of the current analysis by using the next-to-leading order cross section is pointed out.

In chapter 3 the decay widths including mixing stop particles in next-to-leading order supersymmetric

QCD [11] are given. They include weak and strong coupling stop decays as well as gluino and heavy

neutralino decays to a light stop. The treatment of the mixing angle follows the theoretical description in

chapter 1. The complete analytical results for the next-to-leading order stop decay width is presented in

the appendix.

The study of scalar top quarks is continued in chapter 4, where the production cross section at hadron

colliders is given for both of the mass eigenstates in next-to-leading order supersymmetric QCD [12].

One crucial point is the influence of the mixing angle and supersymmetric parameters, which are present

in the virtual corrections, on the experimental analysis and on the mass bounds. The real gluon emission

is calculated using the cut-off method.

For a light stop the production cross section at hadron colliders can be adapted to R parity violating

scenarios [14]. The resonance cross section for the production of R parity violating squarks in ep colli-

sions is calculated in next-to-leading order [13], and the search results for these particles at HERA and

at the Tevatron are combined. The influence of other search strategies for R parity violating squarks is

reviewed.

The analytical calculations have been performed using the symbolic manipulation program

FORM [15], for the numerical integration routine VEGAS [16] was chosen, and the parton cross sections

have been calculated using the CTEQ4 [17] parton densities in leading and next-to-leading order.



1. SUPERSYMMETRY

1.1. Supersymmetric Extensions of the Standard Model

Global supersymmetry is a possible extension of the set of symmetries appearing in flat space-time gauge

theories. The most general extension of a Poincaré invariant theory would be an N -extended super-

Poincaré Algebra containing central charges [18, 1]. The supersymmetry generators Qi [i = 1, ...,N ]

and their complex conjugate Q
i

transform fermionic into bosonic fields and vice versa, therefore obey-

ing an anticommutation relation. These anticommutators lead to a Z2 graded Lie algebra, containing the

supersymmetry as well as the Poincaré group generators and circumventing the No-Go theorem [19]1.

The dimension of the extension N determines the maximum spin present in the particle spectrum of

the theory. Renormalizability requires a maximum spin of one for global supersymmetry, which is

equivalent to N ≤ 4. Including the graviton results a maximum spin two for local supersymmetry,

supergravity, and renders N ≤ 8. For N = 1 this super-Poincaré algebra becomes particularly simple,

since the central charges vanish and the generators Q,Q anticommute with themselves. Extended super-

symmetric theories have some remarkable features: for N = 2 the particle spectrum can be calculated

non-perturbatively [20], N = 4 leads to a completely finite theory, and N ≥ 5 contains gravitation.

However, the observed low energy particle spectrum and CP violation are only compatible with (N=1)

global supersymmetry. We will make use of the incorporation of global supersymmetry into local super-

gravity only by assuming certain characteristics of the mass spectrum at high scales, where unification is

required.

Since supersymmetric theories by definition contain scalar particles not only in the Higgs sector, the

behavior of scalar masses is of importance: In the Standard Model the scalar Higgs boson mass suffers

from UV divergent radiative corrections, proportional to g2Λ2 where g is a gauge coupling and Λ is an

UV cut-off parameter. This cut-off parameter could be fixed by some scale where new physics appears.

Assuming the Standard Model not being an effective theory for mass scales around the weak gauge boson

mass, e.g. leads to a physical scalar mass of the order of the weak scale and higher order loop contribu-

tions of the order of the cut-off, which could be the Planck scale. These corrections have to be absorbed,

using fine-tuning of mass and coupling counter terms in the Lagrangean. The large corrections in the

Standard Model originate from gauge boson and top quark loops. In supersymmetric extensions addi-

tional corrections arising from the supersymmetric partners enter with a minus sign and weaken the UV

degree of divergence to a logarithmic behavior [δm/m ∝ log Λ2]. For broken supersymmetry another

term proportional to the mass difference between the Standard Model loop particles and their supersym-

metric partners arises. Assuming e.g. a grand desert SU(5) scenario2 the natural shift of the scalar masses

1Any Lie group containing the Poincaré group and a compact inner symmetry group factorizes, i.e. the generators of the

Poincaré group and the inner symmetry group commute with each other. The extended Lie algebra becomes trivial.
2Though not all matter fields can be unified in one SU(5) multiplet. A more generic GUT model would be supersymmetric

SO(10), directly broken to the Standard Model gauge group. In contrast to SU(5), SO(10) unification with non-zero neutrino

masses may lead to the observed baryon asymmetry [21]. The numerical analyses e.g. of gauge coupling unification in grand

desert SU(5) and SO(10) scenarios are similar.
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Figure 1.1: The renormalization group evolution of the three Standard Model gauge couplings, assuming

a simple SU(5) GUT gauge group and a grand desert [22].

between the weak and the unification scale is limited to less than one order of magnitude [22].

Assuming a supersymmetric extension of the Standard Model, the evolution of the gauge couplings

can be evaluated, based on different scenarios. Embedding the Standard Model into a simple GUT gauge

group does neither fix the gauge group nor possible intermediate scenarios, i.e. SU(5) unification with a

grand desert is only one possibility. The evolution of the gauge couplings depends on threshold effects

and masses in intermediate unification models. However, it can be shown, that, using supersymmetry,

the gauge couplings unify up to a certain accuracy, Fig. 1.1. The unification of the three Standard Model

gauge couplings determines one of the three parameters involved [α, s2w ≡ sin2 θw, αs] theoretically.

This prediction has to be compared to the measured value e.g. for the weak mixing angle in the MS
scheme. In contrast to the Standard Model, which for reasons described above will hardly be valid up to

a large unification scale, the predicted value for the minimal supersymmetric extension of the Standard

Model s2w(mZ) = 0.2334 ± 0.005 agrees very well with the measured value of 0.2316 ± 0.0003 [4].

Any specific GUT scenario fixes the renormalization group evolution of all the masses and couplings.

The determination of αs(mZ) from α and s2w again reflects the improvement of the Standard Model one-

scale GUT, which gives αs(mZ) = 0.073 ± 0.002, to the supersymmetric one-scale GUT, which yields

αs(mZ) = 0.129 ± 0.010. However, the measured value of αs(mZ) = 0.118 ± 0.004 indicates, that the

minimal supersymmetric GUT prefers a slightly larger value; threshold effects may be responsible for

the difference. Very light gauginos and very heavy squarks might even for the SU(5) GUT model lead to

the measured value of αs [22].

1.2. The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model [MSSM] adds a minimal set of supersymmetric partner

fields to the Standard Model [SM]. These fields contain scalar partners – sleptons and squarks – of all

chiral eigenstates of the Dirac fermions, incorporated into chiral supermultiplets. Absorbing Standard

Model gauge fields into vector supermultiplets leaves Majorana fermion3 partners of the neutral U(1),

3Majorana fermions are defined as their own anti-particles, i.e. the Majorana spinor is constructed by combining two Weyl

spinors. Some arbitrariness may arise from the different treatment of electric and color charge, which leads to Majorana
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SU(2), SU(3) gauge fields and Dirac fermion partners of the charged SU(2) gauge fields, called gauginos.

The SU(3) ghost fields are defined by re-writing the Fadeev-Popov determinant; therefore they do not

receive supersymmetric partners, which enter by requiring the original Lagrangean being invariant under

a global supersymmetry transformation.

For reasons described later in this chapter the supersymmetric scalar potential cannot include conju-

gate fields. Hence, at least two different complex Higgs doublets have to be introduced to give masses

to up and down type quarks. They form five physical Higgs particles after breaking SU(2)×U(1) in-

variance. This extension of the Higgs sector is not generically supersymmetric. However these scalar

Higgs degrees of freedom have to develop partner fields. This yields neutral and charged Majorana/Dirac

fermions with the same quantum numbers as the SU(2) gauginos.

The supersymmetric Lagrangean in superspace can be constructed by extending the integration over

the Lagrange density from space-time to a superspace integration, i.e. by adding two Grassmann di-

mensions {θ, θ̄}. All superfields can be written as a finite power series in these Grassmann variables,

containing the component fields in the coefficients. Only two elements enter the supersymmetric La-

grangean: (i) the so-called F term of a chiral supermultiplet, denoted as Φθ2 in the expansion of the

superfield in the Grassmann variable θ; (ii) the D term of a vector multiplet Vθ2θ̄2 [1]. The kinetic

real vector supermultiplet is defined as the product of a chiral supermultiplet and its conjugate ΦjΦj ,

its D terms contain the F components of the chiral multiplets F ∗
j Fj , which is absorbed into the scalar

potential.

The most general ansatz for a superpotential formed by chiral supermultiplets relies on the fact, that

the product of two chiral supermultiplet is again chiral:

W({Φ}) = mijΦiΦj + λijkΦiΦjΦk (1.1)

Higher orders in the polynomial would give mass dimensions bigger than four and therefore spoil renor-

malizability. The superpotential occurs in the Lagrangean as (W + W). The scalar potential in the

component-field Lagrangean4 contains, after integration over the Grassmann variables, the non-Yukawa

terms arising from the superpotential W; it is defined as

V = −
(

F ∗
j Fj +

∂W(A)

∂Aj
Fj +

∂W(A)

∂Aj
F ∗
j

)

(1.2)

The Euler-Lagrange equations yield F ∗
j = −∂W(A)/∂Aj where Aj are the sfermion fields in the su-

permultiplet. This fixes the most general scalar potential including chiral supermultiplets in the matter

sector of the Lagrangean:

V =
∑

j

|Fj |2 (1.3)

Including the gauge sector for a non-abelian gauge group leads to vector multiplets containing the

gauge fields and their partners. The scalar potential will also contain the D auxiliary component field

neutralinos and gluinos, but Dirac charginos. But it is just a name for the particles. Dirac charginos also yield fermion number

violating vertices.
4A product of a chiral superfield and a conjugate is not a chiral but a vector multiplet, as the kinetic superfield. The su-

perpotential therefore does not contain conjugate superfields and neither does the scalar potential contain conjugate component

Higgs fields.
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terms of the gauge multiplet5

V =
∑

j

|Fj |2 +
1

2

∑

a

(Da)2 =
∑

j

|Fj |2 +
g2

2

∑

a

(S∗T aS)2 (1.4)

The D term is written for a general non-abelian SU(N) gauge group. S are the scalar fields transforming

under the fundamental representation of the corresponding gauge group, and T a the generators of the

underlying gauge group.

1.2.1. R Parity

The most general superpotential as given in eq.(1.1) contains trilinear couplings of chiral matter super-

multiplets, like the Higgs, the quark, and the lepton supermultiplet. Couplings between the different

Higgs fields or between the Higgs field and corresponding lepton or quark supermultiplets are needed

to construct the two doublet Higgs sector in the scalar potential. Although these vertices conserve the

over-all fermion number, they may violate the baryon and lepton number and would lead to the same

effects as leptoquarks, e.g. proton decay [23]. In extensions of the Standard Model these operators are

forbidden by gauge invariance, as long as their dimension is less than six. The MSSM either needs to

suppress the different couplings or remove the whole set by applying a new Z2 symmetry which changes

the sign of the Grassmann variables in the Lagrangean. The corresponding conserved charge is defined

as

R = (−1)3B+L+2S (1.5)

whereB is the baryon number, L the lepton number, and S the spin of the particle. This number is chosen

to give (+) for Standard Model particles and (−) for supersymmetric partners. The Higgs particles in

the two doublet model are all described by R = +1. Accounting for R symmetry in the supersymmetric

Lagrangean removes trilinear chiral supermultiplet vertices containing no Higgs superfield. The general

superpotential eq.(1.1) can be separated into anR parity conserving and anR parity violating part, which

read for one generation of quarks and leptons

W = WR + W/R

WR = λEEHj
1L

j + λDDHj
1Q

j + λUUHj
2Q

j − µHj
1H

j
2

W/R =
1

2
λLjLjE + λ′LjQjD +

1

2
λ′′U DD (1.6)

The contraction of two indices is defined by the antisymmetric (2 × 2) matrix ǫij; L,Q are electron and

quark doublet superfields, E,D,U are the singlet superfields for the electron, d and u type quark; λE,D,U

are the Yukawa coupling matrices, and µ is the Higgs mass parameter, which also defines the higgsino

mass [see appendix A]. The Yukawa couplings λ, λ′ violate lepton number, λ′′ violates baryon number.

The combination (λ′ · λ′′) leads to proton decay via an s channel d type leptoquark and therefore has

to be strongly suppressed. The conservation of R is therefore a sufficient condition for the stability of the

proton. However, this symmetry has been introduced ad hoc for weak scale supersymmetry as a less rigid

substitute for the conservation of some combination of B and L. The exact vanishing of (λ′ · λ′′) is not

5 The supermultiplet constructed from the gauge vector multiplet and including the field strength component field is chiral.

But its F term contains the D component fields of the vector gauge multiplet.
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a necessary condition for a stable proton; i.e. if W/R is not removed by hand by demanding R symmetry

in the supersymmetry Lagrangean, then many different constraints can be imposed on combinations of

couplings and masses in theR parity violating sector. The limits from direct production at HERA as well

as from rare decays generically determine λ · λ/m2, dependent on the flavor of the squark considered.

The same holds for atomic parity violation. The bounds from neutral meson mixing influence λ · λ/m,

and the direct searches at hadron colliders and LEP are only sensitive to the mass, except for the analysis

of specific decay channels [24, 25].

Phenomenologically, exact R parity conservation leads to the existence of a stable lightest super-

symmetric particle (LSP), and allows for the production of supersymmetric particles only in pairs. For

cosmological reasons this LSP has to be charge and color neutral, which restricts the choices in the

MSSM framework to the lightest neutralino or the sneutrino. In GUT models exact R parity conserva-

tion is not necessary to obtain low-energy R parity conservation. For broken R parity the unstable ’LSP’

could therefore be long-living and charged, allowing for charginos, sleptons and even stops, as long as

the lifetime is small enough to circumvent the cosmological constraints.

1.2.2. Soft Breaking

If supersymmetry would be exact, the squarks and sleptons were mass degenerate with the Standard

Model particles. Since the gauge couplings have to respect supersymmetry in order to cancel the

quadratic divergences, breaking supersymmetry means enforcing a mass difference between Standard

Model particles and their supersymmetric partners. The mechanism of introducing mass terms by soft

breaking [26] at a given scale has to respect gauge symmetry, weak-scale R parity, stability of scalar

masses, and experimental bounds e.g. on FCNC. Soft breaking terms can be added to the superpotential

eq.(1.1) at any given scale. They exhibit the generic form

Lsoft = −
(

m2
0

)

ij
C∗
i Cj −

1

2

[

(

m1/2

)

j
λjλj + h.c.

]

−
[

1

6
AijkCiCjCk +BµH1H2 + h.c.

]

(1.7)

The component fields involved are generic scalars C , Majorana fermions λ and the Higgs fields H1,H2,

which are again contracted using ǫij . The possible set of parameters consists of:

– Scalar mass matrices (m2
0)ij [i, j = 1, ...n] for squarks and sleptons with n generations. The

diagonal masses can be chosen real, since (W + W) enters the Lagrangean.

– Three real gaugino masses (m1/2)j [j = 1, 2, 3].

– 27 complex trilinear couplings Aijk[i, j, k = 1, 2, 3] which conserve the R charge.

– Two masses for the Higgs scalars and a complex Higgs mass parameter µBHj
1H

j
2 .

Evolving soft breaking mass terms by means of the renormalization group equations can lead to breaking

of the U(1)×SU(2) symmetry by driving one mass squared negative. This generalization of the Coleman-

Weinberg mechanism [27] links the large top Yukawa coupling to electroweak symmetry breaking.

1.2.3. Supersymmetric QCD

Particle Content

The search for directly produced supersymmetric particles at hadron colliders is dominated by strongly

interacting final states. In these production processes the quantum corrections in next-to-leading order
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are expected to be significant. Moreover, the corrections to the production of weakly interacting particles

at hadron colliders are dominated by strong coupling effects. Although the parton picture and thereby the

incoming state is not affected by the heavy supersymmetric partners of quarks and gluons, a consistent

description of virtual particle effects requires the inclusion of these particles.

The supersymmetric extension of the QCD part of the Standard Model is straightforward, since the

SU(3) invariance is unbroken. One chiral mass superfield Q contains the left handed quark doublets

(uL, dL) and their squark partners (ũL, d̃L). Two more superfields U,D connect the quark singlet fields

(ucR, d
c
R) to their partners (ũ∗R, d̃

∗
R). The SU(3)C × SU(2)L × U(1)Y quantum numbers for quarks and

squarks are identical. Whereas the q̃L is a SU(3) triplet, the q̃R is an anti-triplet and couples with (−T a)
to the quark and gluino, as can be seen in Fig. A.2. The gluon vector superfield mirrors the gluons to

gluinos (g̃), which are real Majorana fermions and therefore carry two degrees of freedom6. The number

of generations is not restricted by supersymmetry. The CKM matrix for the quarks will in the following

be assumed to be the unity matrix. The same holds for the squark CKM matrix, which is not fixed by

first principles to be either diagonal or equal to the quark matrix.

The general mass matrix for up-type squarks is given by

M2 =

(

m2
Q+m2

q+
(

1
2 − 2

3s
2
w

)

m2
Z cos(2β) −mq (Aq + µ cot β)

−mq (Aq + µ cot β) m2
U+m2

q+
2
3s

2
wm

2
Z cos(2β)

)

(1.8)

For down type squarks cot β in the off-diagonal element has to be replaced by tan β. The entries

mQ,mU , Aq are the soft breaking masses. In the diagonal elements the quark mass still appears, as

in exact supersymmetry. The mZ contributions arise from the different SU(2) quantum numbers of the

scalar partners of left and right-handed quarks. For light-flavor squarks this matrix can be assumed being

diagonal, since the chirality flip Yukawa interactions are suppressed. For the top flavor these off-diagonal

elements cannot be disregarded. Taking into consideration bottom-tau unification the ratio of the Higgs

vacuum expectation values tan β has to be either smaller than ∼2.5 or larger than ∼40. In the second

case, a large value for tan β compensates for the small bottom quark mass and yields a strongly mixing

sbottom scenario. The results for the stop mixing may be generalized to the sbottom case.

Neglecting additional mixing from a CKM like matrix, the chiral squark eigenstates are equal to the

mass eigenstates for the light flavors. If we furthermore assume the soft breaking mass being dominant

and invariant under SU(2), then the light-flavor mass matrix is proportional to the unity matrix, i.e. the

masses of the ten light flavor squarks are equal. As long as only strong coupling processes are considered,

we will have to deal with ten identical particles. This will not be the case for the scalar top sector as will

be shown in section 1.2.4.

1.2.4. Mixing Stop Particles

Diagonalization of Mass Matrices

For scalar top quarks the off-diagonal elements of the squark mass matrix eq.(1.8) are large. Any real

symmetric mass matrix of the form

M2 =

(

M2
LL M2

LR

M2
LR M2

RR

)

(1.9)

6The matching of the degrees of freedom is a subtlety in dimensional regularization, see section 1.5.
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t̃
j

t̃
i

g

t

g̃

Figure 1.2: Feynman diagrams for the stop self energy in NLO, including mixing in the second and third

diagram, the top-gluino loop and the pure squark tadpole.

can be diagonalized by a real orthogonal transformation, i.e. a uniquely defined real rotation matrix. The

eigenvalues are

m2
12

=
1

2

[

Tr(M2) ∓
[

Tr2(M2) − 4Det(M2)
]1/2

]

(1.10)

The cosine of the mixing angle can be chosen positive −π/4 < θ < π/4:

cos(2θ) =

∣

∣M2
LL −M2

RR

∣

∣

√

Tr2(M2) − 4Det(M2)
sin(2θ) =

2M2
LR

√

Tr2(M2) − 4Det(M2)
(1.11)

There is no flat limit from different to equal mass eigenvalues for this diagonalization procedure, since the

diagonalized matrix would be proportional to the unity matrix and therefore commute with any rotational

matrix.

Stop Mixing

In the scalar top sector the unrenormalized chiral eigenstates are t̃L0, t̃R0. The chirality-flip Yukawa

interactions give rise to off-diagonal elements in the mass matrix eq.(1.8) i.e. the bare mass eigenstates

t̃10 and t̃20 are obtained by a leading-order rotation, as described above.

(

t̃10
t̃20

)

=

(

cos θ̃0 sin θ̃0
− sin θ̃0 cos θ̃0

)(

t̃L0

t̃R0

)

(1.12)

The mass eigenvalues and the leading-order rotation angle θ̃0 can be expressed by the elements of the

mass matrix. However, SUSY-QCD corrections, involving the stop and gluino besides the usual particles

of the Standard Model, modify the stop mass matrix and the stop fields. The Feynman diagrams are given

in Fig. 1.2. As described in appendix A, the coupling to a quark and a gluino as well as the coupling

between four squarks can switch the chirality state and therefore contribute not only to the diagonal but

also to the off-diagonal matrix elements7. This gives rise to the renormalization of the masses and of

the wave functions [t̃i0 = Z
1/2
ij t̃j]. Any leading-order observables concerning the mixing top squarks

are linked by a re-rotation of π/2, denoted by P12, eq.(A.2). In next-to-leading order this symmetry

is broken by the mixing stop self energy. In order to restore this symmetry in any order perturbation

theory8, we choose a real wave-function renormalization matrix Z1/2, which is defined to split into a

7It can be shown that a correction to the mass matrix renders the NLO mass matrix complex symmetric and not hermitian,

as long as CP is conserved, i.e. only imaginary parts from the absorptive scalar integrals arise.
8Any observable containing only one kind of external stop particles can be transformed by exchanging the stop masses

and adding (-) signs to sin(2θ̃) and cos(2θ̃). This prescription P12 will be used for stop decay widths and for the hadronic

production cross section in LO and NLO later and is defined in eq.(A.2).
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real orthogonal matrix R(δθ̃) and a diagonal matrix Z
1/2
diag, i.e. Z1/2 = R(δθ̃)Z

1/2
diag. The rotational part

can be reinterpreted as a shift in the mixing angle [11, 28], given by θ̃0 − δθ̃ ≡ θ̃:

(

t̃1
t̃2

)

=

(

Z
−1/2
diag, 11 0

0 Z
−1/2
diag, 22

)

(

cos θ̃ sin θ̃

− sin θ̃ cos θ̃

)(

t̃L0

t̃R0

)

(1.13)

This counterterm for the mixing angle allows the diagonalization of the real part of the inverse stop

propagator matrix in any fixed-order perturbation theory.

Re
[

D−1
ren(p2)

]

=
(

Z1/2
)T [

p2 1−M2 + Re Σ(p2)
] (

Z1/2
)

=
(

Z
1/2
diag

)T
[

p2 1 −R(δθ̃)−1
(

M2 + Re Σ(p2)
)

R(δθ̃)
]

(

Z
1/2
diag

)

=
(

Z
1/2
diag

)

ReD−1
diag(p

2)
(

Z
1/2
diag

)

(1.14)

This holds as long as the real part of the unrenormalized stop self-energy matrix ReΣ(p2) and thereby

the whole next-to-leading order mass matrix is symmetric9. The mixing angle depends on the scale of

the self energy matrix

tan
(

2δθ̃(p2)
)

=
2Re Σ12(p

2)

m2
t̃1
−m2

t̃2
+ Re Σ22(p2) − ReΣ11(p2)

=
2Re Σ12(p

2)

m2
t̃1
−m2

t̃2

+ O(g2) (1.16)

We fix the renormalization constants by imposing the following two conditions on the renormalized stop

propagator matrix: (i) the diagonal elements should approach the form 1/Dren, jj(p
2) → p2 − m2

t̃j
+

imt̃j
Γt̃j for p2 → m2

t̃j
, with mt̃j

denoting the pole masses; (ii) the renormalized (real) mixing angle θ̃

is defined by requiring the real part of the off-diagonal elements Dren, 12(p
2) and Dren, 21(p

2) to vanish.

The three relevant counter terms for external scalar particles are

δm2
t̃j

= Re Σjj(m
2
t̃j

) δZjj = −Re Σ̇jj(m
2
t̃j

) δθ̃(p2) = − Re Σ12(p
2)

m2
t̃2
−m2

t̃1

(1.17)

Thus, for the fixed scale p2 the real particles t̃1 and t̃2 propagate independently of each other and do not

oscillate.

The so-obtained (running) mixing angle depends on the renormalization point Q, which we will indi-

cate by writing θ̃(Q2). The appropriate choice of Q depends on the characteristic scale of the observable

that is analyzed. The real shift connecting two different values of the renormalization point is given by

the renormalization group, leading to a finite shift at next-to-leading order SUSY-QCD

θ̃(Q2
1) − θ̃(Q2

2) =
CFαsmg̃mt cos(2θ̃)

π(m2
t̃2
−m2

t̃1
)

Re[ B(Q2;mg̃,mt)−B(Q1;mg̃,mt) ] (1.18)

9The next-to-leading order SUSY-QCD correction to the stop mass matrix is

Σ12(p
2) = −2πCF αs

[

s
4θ̃A(mt̃2

) − s
4θ̃A(mt̃1

) + 8mg̃mtc2θ̃B(p; mg̃, mt)
]

= Σ21(p
2)

Σ11(p
2) = −4πCF αs

[

(1 + c2

2θ̃
)A(mt̃1

) + s2

2θ̃
A(mt̃2

) − 2A(mg̃) − 2A(mt)

− 2(p2 + m2

t̃1
)B(p;λ, mt̃1

) + 2(p2
− m2

g̃ − m2
t + 2mg̃mts2θ̃)B(p; mg̃, mt)

]

= P
−1

12 Σ22(p
2)

Σ̇ij(p
2) ≡ ∂Σij(p

2)/∂p2
(1.15)
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Figure 1.3: The dependence of θ̃(Q2) on the renormalization scale Q. The input mass values are:

m1/2 = 150GeV, m0 = 800GeV, A0 = 200GeV, µ > 0, for which the leading-order mixing angle

is given by 1.24 rad. The minimum of the correction corresponds to the threshold Q = mg̃ +mt in the

scalar integral.

This shift is independent of the regularization. In the limit of large scales the difference behaves as

log(Q2/Q′2). A numerical example is presented in Fig 1.3. As a noteworthy consequence of the running-

mixing-angle scheme, we mention that some LO symmetries of the Lagrangean are retained in the NLO

observables. For instance, if for only one kind of external stop particle one chooses Q = mt̃, the results

for the other stop particle can be derived by the simple operation P12, eq.(A.2), which then also acts on

the argument of the mixing angle.

Considering virtual stop states with arbitrary p2, the off-diagonal elements of the propagator matrix

can be absorbed into a redefinition of the mixing of the stop fields, described by an effective (complex)

running mixing angle θ̃eff(p2) ≡ θ̃0 − δθ̃eff (p2). This generalization amounts to a diagonalization of

the complex symmetric stop propagator matrix Dren, including the full self-energy Σ(p2), by a complex

orthogonal matrix R(δθ̃eff )10 exactly in analogy to eq.(1.14). The so-defined effective running mixing

angle is given by

θ̃eff(p2) = θ̃0 −
1

2
arctan

[

2Σ12(p
2)

m2
t̃1
−m2

t̃2
+ Σ22(p2) − Σ11(p2)

]

NLO→ θ̃(p2) +
ImΣ12(p

2)

m2
t̃2
−m2

t̃1

(1.19)

The complex argument of the trigonometric functions leads to hyperbolic functions. From this point

of view the use of a diagonal Breit–Wigner propagator matrix is straightforward. For instance, in the

toy process tg̃ → tg̃ all NLO stop-mixing contributions to the virtual stop exchange can be absorbed

by introducing the effective mixing angle in the LO matrix elements. The argument of this effective

mixing angle is given by the virtuality of the stop particles in the s channel. This procedure also applies

10Any real symmetric matrix can be diagonalized by a real orthogonal transformation OT AO where O−1 = OT . One

generalization is the complex unitary diagonalization of a complex symmetric matrix UT AU with U† = U−1, where the

diagonal matrix is real and positive. Another one is the complex orthogonal diagonalization of a complex symmetric matrix

OT AO, O−1 = OT where the diagonalized matrix is still complex. Note that a hermitian matrix can only be diagonalized by

a unitary transformation U−1AU .
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to multi-scale processes like qq̄ → tt̃ig̃ or e+e− → t̃1
¯̃t2, where the effective gt̃1t̃2/γt̃1t̃2 couplings

become non-zero due to the different scales of the redefined stop fields.

There exist other renormalization schemes for the stop mixing angle, either fixing the scale of the

running mixing angle at some appropriate scale or absorbing certain diagrams e.g. contributing to the

production process e+e− → t̃1
¯̃t2 [29]. Any of these schemes can be regarded as a prescription to mea-

sure the mixing angle, either in the mixed production at e+e− linear colliders or in decay modes or

quantum corrections. The mixed production induced scheme however has the disadvantage of introduc-

ing the Zt̃1t̃2 weak coupling constants into the QCD counter terms. The measured values of the mixing

angle can be translated from one scheme into another by comparing the counter terms. In Fig. 1.3 the

numerical effect of the finite renormalization can be seen to be small; the same holds for the different

renormalization schemes, which are numerically almost equivalent.

When fixing the counter term for the stop mixing angle θ̃, one can express the angle in terms of

the parameters appearing in the mass matrix eq.(1.8). The counter term δ(sin(2θ̃)) can be linked to the

counter terms of these parameters:

s2θ̃ =
2mt(At + µcotβ)

m2
t̃1
−m2

t̃2

δs2θ̃
s2θ̃

= −
δ(m2

t̃1
−m2

t̃2
)

m2
t̃1
−m2

t̃2

+
δmt

mt
+
δ(At + µcotβ)

At + µcotβ
(1.20)

where δx denotes the counter term of the parameter x. Since µ and β appear in the scalar potential

only in the weakly interacting sector, they will not be renormalized in next-to-leading order SUSY-QCD.

However, δAt can be calculated from the mass and mixing angle counter terms. This reflects the fact,

that the system of observables used in the Feynman rules is non-minimal, i.e. the on-shell scheme for the

masses and the running mixing angle determine the renormalization of the couplings t̃1t̃2G
0 and t̃1t̃2A

0,

where At appears explicitly [30].

1.3. GUT inspired Mass Spectrum

Next-to-leading order calculations in the framework of light-flavor SUSY-QCD [8] only incorporate a

few free parameters: the Standard Model set and the gluino and the light-flavor squark mass. Including

mixing stops and the mixing neutralinos/charginos the number of low-energy parameters becomes large.

Hence, for a rough phenomenological analysis we will use a simplifying scenario, which could be a

SUSY-GUT scenario, either supergravity [5] or gauge mediation [31] inspired.

SUSY-GUT Scenario

Inspired by the unification of the three Standard Model gauge couplings in supersymmetric GUT models

we will assume a relation between these couplings and the gaugino masses. Independent of the actual

form of the simple gauge group and the connected GUT scenario, the three Standard Model gauge groups

are embedded into, and independent of intermediate scale particles and thresholds, we can assume gauge

coupling unification.

M1(Q)

α1(Q)
=
M2(Q)

α2(Q)
=
M3(Q)

α3(Q)
=

m1/2(MX)

αGUT(MX)
(1.21)
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where m1/2 is the mass entry in the scalar potential, defined at the unification scale MX . There the three

gauge couplings unify to αGUT ≃ 1/26. For the masses at the weak scale this leads to [33]

mB̃ ≃M1(mZ) ≃ 0.4 m1/2

mW̃ ≃M2(mZ) ≃ 0.8 m1/2

mg̃ ≃M3(mZ) ∼ 2.6 m1/2 (1.22)

However, the gluino mass is strongly dependent on the scale which can lead to a difference of 30%
between the pole mass mg̃ and the running mass M3(M3) [33]. For the derivation of these mass relations

it is only necessary to assume a simple unification gauge group arising at a scale MX ∼ 2 · 1016 GeV.

The gaugino mass unification can be tested experimentally at the LHC [32] as well as at a future linear

collider [10].

Mass Unification

In a supergravity inspired MSSM [mSUGRA] the scalar masses and the trilinear couplings are assumed

to be universal at the unification scale MX
11. In simple supergravity models they depend on the gravitino

mass scale m3/2 and on the cosmological constant [5]. The universal parameters at the unification scale

MX will be refered to as m0 and A0. The parameter µB occuring in the Higgs sector of the scalar

potential [section 1.2.2] will be fixed by the choice of m1/2,m0, A0, tan β and the Standard Model

parameters, and by the requirement of electroweak symmetry breaking, up to its sign. The light-flavor

squark masses can be expressed in terms of the universal scalar and gaugino masses, the other parameters

only enter the off-diagonal elements of the mass matrix eq.(1.8) and can be neglected

m2
q̃L ≃ m2

0 + 6.3m2
1/2 + 0.35D m2

q̃R ≃ m2
0 + 5.8m2

1/2 + 0.16D (1.23)

where D = m2
Z cos(2β) < 0. For mSUGRA scenarios a general prediction for the light-flavor squark

mass can be given [33]

mq̃ & 0.85mg̃ (1.24)

Approximate Solution

The stop masses can be expressed in terms of the top Yukawa coupling Yt = h2
t/(4π). For small tan β

they approximately read

m2
t̃L

≃ m2
0

(

1 − Yt

2Y IR
t

)

+m2
1/2

(

6.3 − 7Yt

3Y IR
t

−
(

Yt

Y IR
t

)2
)

+ 0.35D

m2
t̃R

≃ m2
0

(

1 − Yt

Y IR
t

)

+m2
1/2

(

5.8 − 14Yt

3Y IR
t

−
(

2Yt

Y IR
t

)2
)

+ 0.16D

At ≃
(

1 − Yt

Y IR
t

)

− 2m1/2

mt =
vsβ√

2
ht (1.25)

11Several unification scales may arise as the gauge coupling unification scale and the string scale only few orders below the

Planck scale. Numerically the variation of the scale MX between these physical scales leads to a small effect only.
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Figure 1.4: Some relevant masses in the approximate mSUGRA scenario for A0 = 300GeV, tan β =
4, µ > 0;m0 andm1/2 are varied between 50 and 400GeV.

The IR fixed point of the top mass is Y IR
t ≃ 8α3/9 and Yt/Y

IR
t varies from 0.75 to 1 dependent on

tan β, becoming unity for tan β = 1. In this limit the universal scalar mass does not influence the lighter

right handed stop mass. If the doublet soft breaking mass is larger than the right handed soft breaking

mass, the t̃1, defined as the light stop, will be mostly right-handed and the angle will prefer values around

π/2.

The higgsino mass parameter in this limit will be given as

µ2 +
m2
Z

2
= −m2

0 −
1

2
m2

1/2 + terms including
Yt

Y IR
t

(1.26)

The analyses in the following chapters are carried out using this approximate mSUGRA renormalization

group solution12. If not explicitly stated otherwise we will vary the high-scale parameters around one

central point:

m1/2 =150GeV m0 =100GeV A0 =300GeV tan β =4 µ >0

µ =277GeV M2 =122GeV At =355GeV

mχ̃0
1

=55GeV mχ̃0
2

=103GeV mχ̃0
3

=283GeV mχ̃0
4

=309GeV

mχ̃+

1

=100GeV mχ̃+

2

=307GeV

mg̃ =401GeV mq̃ =352GeV mt̃1
=198GeV mt̃2

=427GeV sin(2θ̃) = − 0.97 (1.27)

In Fig. 1.4 some relevant low energy mass parameters are given as a function of m0 and m1/2 to illustrate

the qualitative behavior described above. Typical features are the large mass difference between the stop

mass eigenstates, nearly independent of the value A0, and the clustered neutralino masses, where the

12This is implemented in the initialization routine of SPYHTIA [34]. Some comments concerning the 5.7 version can be

found in the bibliography.
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two light states are gaugino-type and the two heavy states are higgsino-type. The latter results from

the large value for µ in the mSUGRA scenario. The lightest Higgs mass in this scenario in the given

approximation is larger than 100 GeV and will not be excluded by LEP2.

1.4. Mass Spectrum and Experimental Limits

Neutralinos and Charginos

Searches for neutralinos and charginos have been carried out at the Tevatron [7] as well as at LEP [9].

Due to low energy R parity conservation they can only be produced in pairs χ̃0
i χ̃

0
j , χ̃

+
i χ̃

+
j , and χ̃+

i χ̃
0
j .

If the lightest neutralino is the LSP, then the heavier particles have to decay via a cascade into the LSP.

However the two and three parton decay channels are strongly dependent on the mass spectrum:

χ̃0
j −→ Z∗χ̃0

1, h
∗χ̃0

1 −→ ℓ+ℓ−χ̃0
1, qq̄χ̃

0
1

χ̃0
j −→ ℓℓ̃, ν̃ν · · ·

χ̃+
j −→ W+∗

χ̃0
1, H

+∗
χ̃0

1 · · ·
χ̃+
j −→ ℓ̃ν, ν̃ℓ · · · (1.28)

The decay χ̃0
j → q̃q will be dominant if kinematically allowed, but in a SUGRA inspired mass scenario

this will be only the case for the two heavy neutralinos. Besides, the chargino can enter the neutralino

decay chain via χ̃0
j → χ̃+

i H
−, χ̃+

i W
−. One very promising final state for the mixed neutralino/chargino

production is the trilepton event

pp/pp̄ −→ χ̃+
1 χ̃0

2 −→ ℓνχ̃0
1 ℓℓχ̃

0
1 −→ ℓℓℓ+ /ET (1.29)

where three charged leptons are present in the final state and the missing transverse energy /ET is based on

three invisible particles. The exclusion plot is given in Fig. 1.5. The cross section for chargino/neutralino

production times the branching ratio into the trilepton channel is given for different squark masses, the

gluino mass is fixed by the neutralino/chargino mass and the gaugino mass unification. The mass limits

for χ̃+
1 can be read off the axis, they vary between 60 and 80GeV.

Squarks and Gluinos

The gluino will in general be assumed heavy, as suggested by SUSY-GUT scenarios. The experimental

exclusion limits from the direct search for squarks and gluinos are given in the mass plane in Fig. 1.5.

The absolute lower limit on the gluino mass is mg̃ > 180GeV [7]. The decay channels considered for

the light-flavor squarks and for the gluinos are

q̃ −→ qχ̃0
j , q

′χ̃+
j −→ jets + /ET + · · ·

g̃ −→ qq̄χ̃0
j , q

′q̄χ̃+
j −→ jets + /ET + · · ·

g̃ −→ q′q̄χ̃+
j −→ jets + /ET + ℓℓ · · ·

g̃ −→ t̃1t̄ −→ bχ̃+
j t̄ · · · (1.30)

The final state neutralino/chargino decays via a cascade to the lightest neutralino, which is assumed to

be the LSP. Products in this decay chain are denoted by the dots. If it is not kinematically forbidden, the

gluino can first decay into a squark and a quark, and vice versa. This leads to one more jet in the final
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Figure 1.5: Left: The CDF limits on σ ·BR for the χ̃0
2χ̃

+
1 production from the search for trilepton events,

eq.(1.29); Right: The CDF limits on the squark and gluino mass including the (jets+ /ET ) and the like-

sign lepton signal for the gluino pair production [7]. In part of the parameter space the NLO cross

sections have been used [8].

state. The stop decay channel of the gluino leads to a higher multiplicity of Standard model particles and

bottom jets. A typical signature for the Majorana gluinos arises from the decay via a chargino. Since the

gluino is a singlet under the electro-weak gauge group, it decays to χ̃+
j and χ̃−

j with the same probability,

leading to like-sign leptons in the final state of gluino pair production. A considerable Standard Model

background is not present for this signature.

Since supergravity inspired SUSY-GUT relations are used for the experimental search at hadron

colliders, there are no strong limits on the squark mass if the gluino mass exceeds 550GeV, see Fig. 1.5.

The supergravity inspired GUT scenarios as described in section 1.3 do not allow for a gluino mass being

much larger than the light-flavor squark mass. In this region of the (mq̃ − mg̃) plane only the general

unification of the gaugino masses can be kept. The mass of the lightest neutralino, assumed to be the

LSP, grows with the gluino mass and becomes large enough for the squark to decay into an LSP almost

at rest. The missing transverse momentum would then become too small to be measured.

The limits on the neutralino/chargino mass from the search at LEP could be translated into limits

on the gluino mass, using the gauge coupling unification eq.(1.22). Those are much stricter than the

Tevatron limits but model dependent.

Stops

The limits on the stop mass arise from a search for stop pairs decaying into t̃1 → cχ̃0
1 and are therefore

strongly dependent on the mass of the lightest neutralino. For a light stop mass this decay mode will be

dominant. In this mass regime the light stop can be produced at LEP e+e− → t̃1
¯̃t1, Fig. 1.6 [9]. The

production cross section depends on the mixing angle, arising from the t̃1t̃1Z coupling, and thereby also

the mass bound. As will be shown in chapter 4, the hadroproduction cross section is independent of the
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Figure 1.6: Mass limits from the t̃1 pair production at D0 and LEP followed by the decay t̃1 → cχ̃0
1. The

dependence on the mixing angle enters through the coupling t̃1t̃1Z at LEP.

mixing angle, and both analyses, at LEP and at the Tevatron, yield a mass bound on the lightest stop mt̃1
around 79GeV [9, 7]. However, these limits are only valid as long as the χ̃0

1 is light enough and the

decay channel t̃1 → cχ̃0
1 is dominant. Additional limits arising from the search for the decay t → t̃1χ̃

0
1

are strongly dependent on the branching ratio of this decay mode and therefore weaker than those from

the direct search. The different stop decay modes are described in chapter 3, and the direct search at

hadron colliders is investigated in chapter 4.

1.5. Regularization and Supersymmetric Ward Identities

Dimensional Regularization and Reduction

The MS renormalization scheme is by definition related to the regularization of infrared and ultravio-

let divergences in dimensional regularization (DREG) [35]. This regularization scheme respects gauge

symmetry and therefore the gauge symmetry Ward identities13 . It is less well-suited for supersymmet-

ric theories, since all Lorentz indices are evaluated in n dimensions, whereas the spinors are still four

dimensional. This leads to a mismatch between the degrees of freedom carried e.g. by a physical gluon

(n−2) and a gluino (2). A modified dimensional reduction scheme (DRED) has been introduced to cope

with this problem [37]. The number of space-time dimensions is compactified from four to n dimen-

sions, leaving the number of gauge fields invariant i.e. the gauge fields carry the n dimensional Lorentz

indices. The remaining (4 − n) dimensions form the ǫ scalars. These particles render the γ algebra four

dimensional. The gauge bosons and the gauginos carry the same number of 4 degrees of freedom. The

DRED scheme will be used to illustrate the modified MS scheme. Except for the unsolved problem of

mass factorization in DRED [38, 8] it can be shown that both dimension based schemes are consistent

for calculations in the framework of supersymmetric gauge theories.

13We will not focus on the problem of the chiral projector matrix γ5, since consistent schemes have been developed [35, 36] to

deal with γ traces in n dimensions. In one-loop order a naive scheme can be used, however for neutralino/chargino production

it has explicitly been checked that the ambiguous scheme dependent terms do not contribute [35].
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Starting with a Lagrangean L[W a
µ , λ

a,D] for a non-abelian supersymmetric gauge theory in the

Wess-Zumino gauge one can show that the supersymmetric variation δS of the Lagrangean only vanishes

in the limit of (n→ 4) dimensions, up to a total derivative [39]

δSL[W a
µ , λ

a,D]
n→4−→ 0 (1.31)

The component fields W indicate the gauge fields, and λ the [Majorana] gauginos. This leads to the

Ward identity including the ghost and gauge fixing term LG, where in n dimensions the variation δSL
has to be kept.

0 = 〈
∫

dnx [Jµ δSWµ + j̄ δSλ+ j̄D δSD + δSLG + δSL] 〉

〈X〉 ≡
∫

d{Wµ}d{λ}d{D}X ei
∫

dnx[L+LG+JµWµ+j̄λ+j̄DD] (1.32)

Although DREG and thereby the MS scheme cannot be shown being inconsistent with supersym-

metry, they do not respect supersymmetry on the level of naively used Feynman rules. The problem is

similar to applying DRED to gauge theories: Evanescent couplings renormalize in a manner different

from the physical couplings . In NLO-DREG this results in a finite renormalization of Feynman diagrams

which restores supersymmetry explicitly. At higher orders these additional counter terms even include

poles in ǫ.

Finite Renormalization

Explicit calculations show that Green’s functions calculated from the MSSM Lagrangean using di-

mensional regularization may not respect supersymmetry. The supersymmetry transformation mirrors

e.g. the gauge coupling g(qqg) to the gauge coupling g(q̃q̃g) and the Yukawa coupling ĝ(qq̃g̃). In reg-

ularization schemes which respect supersymmetry, like dimensional reduction14, the supersymmetric

limits of these couplings are identical in any order perturbation theory. In DREG the supersymmetric

limit of the Yukawa coupling differs from the gauge couplings at one loop level [40]

ĝ = g

[

1 +
g2

32π2

(

4

3
C(G) − C(r)

)]

(1.33)

The Casimir invariants C are defined for the Dirac fermions in the fundamental (r), and for the gauge

boson and the Majorana gauge fermions in the adjoint (G) representation15 . This difference has to be

compensated to render the calculation supersymmetric. Since the Standard Model quark-gluon coupling

g(qqg) is by definition the measured quantity, the Yukawa coupling will be shifted ĝ → g in the ex-

pression for the final observable. This finite shift is not a finite field theoretical renormalization of any

measured parameter and it is not only present for gauge vs. Yukawa couplings. It is an artifact arising

from the supersymmetry violation of naive dimensional regularization.

14The difference between DREG and DRED are ǫ terms arising from DREG Dirac traces including gauge fields. They

combine with a pole 1/ǫ in a scalar integral, leading to a finite contribution. These terms are exactly those leading to the

difference e.g. in eq.(1.34).
15The SU(3) coupling qqg yields C(r) = CF and C(G) = CA = N .
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Supersymmetry relates the weak Higgs Yukawa coupling Y (qqh) to the vertices Y (q̃q̃h) and Y (gq̃h̃).
The three couplings Y in the supersymmetric limit and calculated in DREG are not identical in NLO

Y (qqh) = Y (q̃q̃h)

[

1 +
g2

16π2
C(r)

]

= Y (qq̃h̃)

[

1 +
3g2

32π2
C(r)

]

(1.34)

where in the case of weak coupling only C(r) occurs. These two finite differences ∝ αs in couplings

mediated by GF have to be compensated to make dimensional regularization compatible with supersym-

metry.

The usual parameterization of the Yukawa coupling constant is Y = mg, where g is defined in the

MS scheme and m is the pole mass, i.e. renormalized in the on-shell scheme. However, the pole mass

has to be calculated in the DREG scheme, and the mass appearing in the different couplings eq.(1.34) is

— in the supersymmetric limit — only numerically the same. In fact, the scalar mass set to m and the

fermion mass set to m behave differently in next-to-leading order, since the counter term for the scalar

and the fermion on-shell mass in DREG is not the same.

mq =

[

1 +
g2

16π2
C(r)

]

mq̃ (1.35)

This behavior breaks supersymmetry explicitly and has therefore be removed. The mass shift is respon-

sible for the difference between Y (qqh) and Y (q̃q̃h), and it renders the difference to Y (qq̃h̃) compatible

with the general difference between the gauge and Yukawa coupling as given in eq.(1.33):

g(qqh) = g(q̃q̃h) = g(qq̃h̃)

[

1 +
g2

32π2
C(r)

]

(1.36)

The observable coupling is again defined as in the Standard Model value Y (qqh).



2. PRODUCTION OF NEUTRALINOS AND CHARGINOS

2.1. Born Cross Sections

Partonic Cross Sections

Neutralinos and Charginos can be produced at hadron colliders in several combinations, all starting from

a pure quark incoming state

q q̄ −→ χ̃0
i χ̃

0
j

q q̄ −→ χ̃+
i χ̃

−
j

u d̄ −→ χ̃+
i χ̃

0
j

d ū −→ χ̃−
i χ̃

0
j (2.1)

The first two processes are possible for a general quark-antiquark pair. For the latter, charge conservation

requires u and d type quarks in the initial state [41].

Two generic Born Feynman diagrams contribute [Fig. 2.1]: an s channel gauge boson (γ,W,Z)

Drell-Yan like and (t, u) channel squark exchange diagrams. Two final state neutralinos are produced

by the first diagram purely as higgsino-type. Final state charginos can couple to the s channel gauge

boson as gauginos and as higgsinos. For mixed neutralino/chargino production the s channel diagram

contributes to all current eigenstates as well. In the given approximation of a trivial squark CKM matrix,

the t, u channel squark couples flavor conserving to the incoming quark and will therefore be regarded

as light-flavored; the incoming quark originates in the parton density of the proton, and will consistently

be assumed massless. This makes the higgsino Yukawa coupling vanish for all possible final states. For

the gaugino-like charginos this coupling also vanishes in case of q̃R, since the qq̃χ̃ coupling respects the

helicity eigenstates.

The LO partonic cross section σ̂, which is proportional to the matrix element squared in the limit of

(n→ 4) dimensions can for all possible final states be written as [The n dimensional Born cross section

q

Z
χ̃

i
o

χ̃
j
o

q̃

Figure 2.1: Generic Born diagrams for neutralino/chargino production
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is required for the NLO contribution.]

dσ̂ij
dt

=
2πα2

Ns2

[

2mimj

tq̃

(

ALiA
∗
LjCT2 +ARiA

∗
RjCT4

)

+
2titj
stq̃

(

ALiA
∗
LjCT1 +ARiA

∗
RjCT3

)

− 2mimj

uq̃
(AcLjA

c∗
LiCT1 +AcRjA

c∗
RiCT3) −

2uiuj
suq̃

(AcLjA
c∗
LiCT2 +AcRjA

c∗
RiCT4)

+
titj + uiuj

s2
CS1 +

mimj

s
CS2 +

2(u1u2 − t1t2)

s(s−M2)
CS3

− 8smimj

tq̃uq̃
(ALjA

∗
LiA

c
LjA

c∗
Li +ARjA

∗
RiA

c
RjA

c∗
Ri)

+
8titj
t2q̃

(

ALiA
∗
LiALjA

∗
Lj +ARiA

∗
RiARjA

∗
Rj

)

+
2mimj

tq̃
(ALjA

∗
LiC

∗
T2 +ARjA

∗
RiC

∗
T4) +

2titj
stq̃

(ALjA
∗
LiC

∗
T1 +ARjA

∗
RiC

∗
T3)

− 8smimj

tq̃uq̃

(

ALiA
∗
LjA

c
LiA

c∗
Lj +ARiA

∗
RjA

c
RiA

c∗
Rj

)

+
8titj
u2
q̃

(

AcLiA
c∗
LiA

c
LjA

c∗
Lj +AcRiA

c∗
RiA

c
RjA

c∗
Rj

)

+
2mimj

uq̃

(

AcLiA
c∗
LjC

∗
T1 +AcRiA

c∗
RjC

∗
T3

)

+
2titj
suq̃

(

AcLiA
c∗
LjC

∗
T2 +AcRiA

c∗
RjC

∗
T4

)

]

where tq̃ = t−m2
q̃ uq̃ = u−m2

q̃ (2.2)

M is the W or Z mass of the s channel gauge boson. The coupling parameters A correspond to the

t, u channel couplings for the outgoing particles i, j and are defined in Tab. A.5. The charge conjugate

coupling Ac is identical to A for the neutralinos. In the chargino case Aj is the coupling for outgoing

χ̃−
j containing the mixing matrix U , and Acj for an outgoing χ̃+

j containing V . The typical couplings

CS , CT follow from the Feynman rules Fig. 2.1:

CS1 = X2
c −

Xcs

2(s −M2)
Re [(ℓ+ r)(L+R)] +

s2

4(s −M2)2
(|ℓ|2 + |r|2) (|L|2 + |R|2)

CS2 = X2
c −

Xcs

2(s −M2)
Re [(ℓ+ r)(L+R)] +

s2

2(s −M2)2
(|ℓ|2 + |r|2) Re [|L||R|]

CS3 =
Xc

4
Re [(ℓ− r)(L−R)] +

s

8(s−M2)
(|ℓ|2 − |r|2) (|L|2 − |R|2)

CT1 = Xc +
s

s−M2
ℓR CT2 = Xc +

s

s−M2
ℓL

CT3 = Xc +
s

s−M2
rL CT4 = Xc +

s

s−M2
rR

Xc = −Q only for χ̃−
j χ̃

+
j (2.3)

The gauge boson-quark couplings r, ℓ are given in Tab. A.2, the neutralino-chargino couplings in

Tab. A.4. Final state charginos require one subtlety in the matrix elements: either the t or the u chan-

nel diagrams contribute to the amplitude with a fixed quark flavor, except for the pure neutralino case.

For two final state charginos, A only couples to u type, Ac to d type quarks. In the mixed production

processes the couplings A and Ac have to be arranged making use of charge conservation.
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The factor of CS3 in the Born cross section eq.(2.2) originates from the contraction of two CP odd

Dirac traces Tr(γ5γ
µ/k1γ

ν/k2)Tr(γ5γ
µ/p1γ

ν/p2), where the definition of the momenta is given in ap-

pendix B.1. Using a naive γ5 scheme, this term cannot be fixed consistently. We therefore keep this

kind of structure in the Born, real gluon and virtual gluon contributions. The different choices for the γ5

scheme result in O(ǫ) corrections and do not contribute to the final expression, since the corresponding

diagrams are finite. The calculation performed in the consistent ’t Hooft-Veltman scheme [35] agrees

with the naive calculation.

Hadronic Cross Section

The hadronic cross section for pp/pp̄ collisions is given by a convolution of the partonic cross section

with the parton densities for the quarks in the proton, e.g. for two hadrons H1H2

σ(S,Q2) =
∑

partons ij

∫ 1

τ0

dxi

∫ 1

τ0
xi

dxj

[

fH1

i (xi, Q
2) fH2

j (xj, Q
2) + (H1 ↔ H2)

]

σ̂ij(xixjS,Q
2)

(2.4)

where k1 and k2 are the incoming parton momenta, S = (k1 + k2)
2 is the hadronic cm energy; mj are

the masses of the final state particles, and τ0 = (m1 + m2)
2/S is the kinematical limit. f

Hj

i are the

parton densities, forming the convoluted hadronic luminosity

σ(S,Q2) =
∑

partons ij

∫ 1

τ0

dτ
dLij
dτ

(τ,Q2) σ̂ij(τS,Q
2)

dLij
dτ

(τ,Q2) = [fi ⊗ fj] (τ,Q
2) + [fj ⊗ fi] (τ,Q

2)

[f ⊗ g] (τ,Q2) ≡
∫ 1

τ

dx

x
f(x,Q2) g

(τ

x
,Q2

)

(2.5)

where the hadrons H1,H2 are implicitly fixed by the order of the convolution of the parton densities. For

identical incoming gluons a factor 1/2 has to be incorporated.

2.2. Next-to-leading Order Cross Sections

2.2.1. Virtual and Real Gluon Emission

The NLO cross section includes the radiation of real quarks and gluons and virtual gluons and gluinos.

The generic diagrams are given in Fig. 2.2 for the qq̄ incoming state. The additional qg and gq̄ diagrams

are obtained by crossing one quark to the final and the gluon to the initial state. The virtual contributions

are regularized by dimensional regularization. Therefore a finite shift of the couplings eq.(1.34) has to

be applied to restore supersymmetry. The divergences appear as poles in ǫ, as shown in appendix B.3.

The UV poles require renormalization; the only parameter in the Born term eq.(2.2) which undergo

the renormalization procedure is the squark mass, defined as the pole mass, i.e. in the on-shell scheme.

The soft gluon poles cancel with the real gluon emission. The phase space integration for the real

gluon emission is given in appendix B.1. These matrix elements have been computed using phase space

subtraction, i.e. the additional gluon phase space is integrated numerically. After subtracting the dipole

terms the remaining divergences are of collinear type and removed by mass factorization, appearing in

the subtraction term, see appendix 26.
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:

:

Figure 2.2: Generic NLO diagrams for neutralino/chargino production, the self energy contributions are

not shown.

2.2.2. Mass Factorization

The parton densities eq.(2.5) form observable structure functions [e.g. F2], which contain divergences in

next-to-leading order QCD [54]. These divergences arise from the collinear radiation of gluons and have

a universal structure which is fixed by the Q2 evolution. They have to be absorbed into the definition of

the parton densities to render the physical structure function finite. In analogy to a UV renormalization

procedure it is possible to absorb additional finite parts into the re-definition. The minimal set is the MS
scheme, and it leaves the next-to-leading order contribution to the measured structure function with a

non-zero finite term. This minimal choice respects the required sum rules naively.

Due to the factorization theorem, the universal form of the partonic cross section in the collinear limit

is independent of the order of perturbation theory.

s2
d2σ̂ij
dt2ds4

=

∫ 1

0

dxi
xi

∫ 1

0

dxj
xj

Γli(xi, Q
2) Γmj(xj , Q

2)

(

s2
d2σ̂red

lm

dt2ds4

)

xiki,xjkj

Γij(x,Q
2) = δij δ(1 − x) − αs

2πǫ

Γ(1 − ǫ)

Γ(1 − 2ǫ)

(

4πQ2

Q2
F

)ǫ

Pij(x) (2.6)

Γij is called splitting function and describes the splitting of a parton i to a parton j in the collinear limit.

It is evaluated perturbatively and consists of the trivial LO term and a divergent NLO contribution. The

appearance of the Altarelli-Parisi kernels Pij fixes the Q2 evolution, they are given in eq.(B.23). Other

non-minimal schemes lead to a finite renormalization Γij → Γij + fij . The reduced cross section σ̂red is

finite and, as well as the splitting function, depends on the factorization scale QF . This scale dependence

should flatten after adding higher order perturbative contributions, since it is a perturbative artifact.
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Figure 2.3: Feynman diagrams for crossed channel production of neutralinos/charginos including on-

shell intermediate states, which have to be subtracted.

The renormalization of the parton densities has to cancel the remaining collinear poles in the matrix

elements and leave the final expression finite. The counter term which has to be added to the bare cross

section to obtain the reduced one in the MS scheme can be read off eq.(2.6)

s2
d2σ̂MF

ij

dt2ds4
=

αs
2πǫ

Γ(1−ǫ)
Γ(1−2ǫ)

(

4πQ2

Q2
F

)ǫ ∫ 1

0

dx

x



Pli(x)

(

s2
d2σ̂Blj
dt2ds4

)

xkl

+ Pmj(x)

(

s2
d2σ̂Bim
dt2ds4

)

xkm





(2.7)

2.2.3. On-Shell Subtraction

Apart from the UV and IR divergences another kind of divergences can occur, due to on-shell inter-

mediate particles. After crossing the NLO production matrix elements, different incoming states may

contribute to the (χχ+jet) inclusive final state

qg −→ χiχjq

gq̄ −→ χiχj q̄ (2.8)

As depicted in Fig. 2.3, these can proceed via an on-shell squark. A natural way of solving the prob-

lem would be introducing finite widths for all particles under consideration. However, a finite squark

width would spoil gauge invariance. In addition, it would yield a strong dependence of the next-to-

leading order production cross section on the physical widths of intermediate states. This dependence

would only vanish after including the decays into the calculation. Therefore we instead differentiate

between off-shell and on-shell particle contributions, the latter regarded as final states in the set of super-

symmetric production cross sections.

Considering an analysis of all production processes for two MSSM particles at hadron colliders this

differentiation removes a double counting of the on-shell contributions of the squark, as it would occur

in the case of general finite widths:

gq → q̃∗χi → qχjχi neutralino pair production

gq → q̃χi · BR(q̃ → qχj) squark neutralino production (2.9)

The on-shell squark contribution is subtracted from the crossed χiχj production matrix element, leaving

it as a contribution to direct χq̃ production, eq.(2.9). The off-shell contribution is kept for the first

of the processes under consideration. To distinguish these contributions numerically, one regularizes the

possibly divergent propagator by introducing the Breit-Wigner propagator (p2−m2) → (p2−m2+imΓ).
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Since this width can be regarded not as a physical property of the final state particle, but as a mathematical

cut-off, the matrix element can be evaluated in the narrow width approximation, regarding the final state

particles as quasi-stable.

Assuming an on-shell divergence in the variable M2, the hard production cross section in the narrow

width approximation reads

dσ

dM2
= σ (gq → q̃χi)

mq̃Γq̃/π

(M2 −m2
q̃)

2 +m2
q̃Γ

2
q̃

BR(q̃ → qχj) + O
(

1

M2 −m2
q̃

)

−→ σ (gq → q̃χi) BR (q̃ → qχj) δ(M
2 −m2

q̃) + O
(

1

M2 −m2
q̃

)

(2.10)

In case of the neutralino/chargino production M2 = s3 + m2
1 and M2 = s4 + m2

2 are relevant for

the on-shell squarks, the extended set of Mandelstam variables is defined in appendix B. The leading

divergence is subtracted from the crossed channel matrix element, as described before. The complete

crossed channel matrix element can be written as |M|2 = f(M2)/[(M2 − m2
q̃)

2 + m2
q̃Γ

2
q̃]; then the

subtraction for an intermediate squark is defined as

f(M2)

(M2 −m2
q̃)

2 +m2
q̃Γ

2
q̃

−
f(m2

q̃)

(M2 −m2
q̃)

2 +m2
q̃Γ

2
q̃

Θ(ŝ− (mq̃ +mi)
2)Θ(mq̃ −mj) (2.11)

Since an over-all factor δ(M2 −m2
q̃) is absent in the subtracted term, the Breit-Wigner propagator has

to be integrated over the phase space variable M2. The matrix element, including the remaining phase

space integration is evaluated for M2 = m2
q̃ .
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Figure 2.4: The renormalization/factorization scale dependence of the total cross section for χ̃0
2χ̃

+
1 pro-

duction at the upgraded Tevatron and the LHC. There is no maximum in either of the next-to-leading

order curves, and the LO and NLO do not meet for a scale around the average mass. The SUSY scenario

determining the masses is given in eq.(1.27).
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The remaining non-leading divergences, arising from interference between finite and divergent Feyn-

man diagrams, are integrable and well-defined using a principal-value integration. Numerically this

principal value can be implemented by introducing a small imaginary part (M2 → M2 − iε). Since the

matrix element squared may contain subtractions in more than one variable this imaginary part may lead

to finite contributions and has therefore to be taken into account.

2.3. Results

Scale Dependence

Since the leading order hadro-production cross section for neutralinos and charginos does not contain

the QCD coupling constant, it only depends on the factorization scale through the parton densities. This

renders the leading order scale dependence smaller than ∼ 30%. The variation of the cross section with

the scale is therefore not a good measure for the theoretical uncertainty. In next-to-leading order, this

factorization scale dependence becomes weaker; however, an additional dependence on the renormaliza-

tion scale arises. For µ = µF = µR this yields a generally weak scale dependence of . 20% at the

upgraded Tevatron and . 5% at the LHC. As can be seen from the leading order curves in Fig. 2.4, the

combination of factorization and renormalization scale dependence leads to a different behavior at the

Tevatron and at the LHC, due to different momentum fractions x contributing; in contrast to the strong

coupling induced processes a maximum cross section for some small scale does not occur, Fig. 2.4.

χ̃0
i χ̃

0
j KLHC χ̃0

i χ̃
+
j KLHC χ̃0

i χ̃
−

j KLHC χ̃+
i χ̃

−

j KLHC

χ̃0
1χ̃

0
1 1.51 χ̃0

1χ̃
+
1 1.35 χ̃0

1χ̃
−

1 1.37 χ̃+
1 χ̃

−

1 1.33

χ̃0
1χ̃

0
2 1.50 χ̃0

2χ̃
+
1 1.33 χ̃0

2χ̃
−

1 1.34 χ̃+
1 χ̃

−

2 1.44

χ̃0
1χ̃

0
3 1.35 χ̃0

3χ̃
+
1 1.35 χ̃0

3χ̃
−

1 1.33 χ̃+
2 χ̃

−

1 1.41

χ̃0
1χ̃

0
4 1.39 χ̃0

4χ̃
+
1 1.90 χ̃0

4χ̃
−

1 1.98 χ̃+
2 χ̃

−

2 1.32

χ̃0
2χ̃

0
2 1.44 χ̃0

1χ̃
+
2 1.38 χ̃0

1χ̃
−

2 1.40

χ̃0
2χ̃

0
3 1.35 χ̃0

2χ̃
+
2 2.51 χ̃0

2χ̃
−

2 2.65

χ̃0
2χ̃

0
4 1.45 χ̃0

3χ̃
+
2 1.35 χ̃0

3χ̃
−

2 1.34

χ̃0
3χ̃

0
3 1.30 χ̃0

4χ̃
+
2 1.31 χ̃0

4χ̃
−

2 1.32

χ̃0
3χ̃

0
4 1.33

χ̃0
4χ̃

0
4 1.38

Table 2.1: A complete set of K factors for neutralino and chargino production at the LHC. The masses

are chosen according to the default SUGRA inspired scenario, eq.(1.27). The renormalization and fac-

torization scales are set to the average final state mass. Although the K factors are of a similar size

1.3 · · · 1.5 for each diagram contributing, large cancelations lead to huge corrections for the scenario

under consideration.
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Numerical Results

The production of neutralinos and charginos can be probed at the upgraded Tevatron, a pp̄ collider with a

center-of-mass energy of 2 TeV, and at the future LHC, a pp collider with an energy of 14 TeV. The cross

section for several combinations of light neutralinos and charginos, which turn out to be gaugino-like in

the considered scenario, are given in Fig. 2.5. The size of the cross sections strongly depends on the

mixing matrix elements associated with the different couplings. This yields e.g. a larger cross section for

χ̃0
2χ̃

+
1 pairs compared to χ̃0

1χ̃
+
1 production. In general, the processes containing no final state chargino

are suppressed, independent of the masses, which are almost the same for χ̃0
2 and χ̃+

1 . Whereas the cross

section for the production of positively and negatively charged mixed pairs are identical at the Tevatron,

they differ significantly at the LHC, due to non-symmetric parton luminosities. The dependence on

SUSY masses and parameters, which are not contained in the leading order cross section, like the gluino

mass, is weak in next-to-leading order. The virtual corrections are generically small [. 10%] compared

to the real gluon emission; however, they are not universal and even do not have a unique sign for the

different gaugino and higgsino-type outgoing particles.

The next-to-leading orderK factor is consistently defined asK = σNLO/σLO. It is dominated by the

gluon emission off the incoming partons and therefore similar for all considered processes and a constant

function of the masses, Tab. 2.1. Although the real gluon corrections to any diagram contributing to the

production process are of the order 1.3 · · · 1.5, large cancelations give rise to huge K factors. The same

effect occurs for the virtual corrections, which grow up to 50% e.g. for the χ̃0
2χ̃

±
2 or the χ̃0

4χ̃
±
1 channel.

Varying the common gaugino mass m1/2 reduces the K factor to values expected by regarding the other

channels.

With an integrated luminosity of
∫

L = 20fb−1 in run II, the upgraded Tevatron will have a maximal

reach for the mass of the produced particles when probing the χ̃0
2χ̃

+
1 channel. For masses smaller than

150 GeV, 103 to 105 events could there be accumulated. Although the χ̃+
1 χ̃

−
1 cross section is compatible

with the mixed neutralino/chargino channel for a fixed value of the common gaugino mass, the particle

masses, which can be probed, stay below 80 GeV in the considered SUGRA inspired scenario. The

same holds for the LHC, where for typical masses of the χ̃+
1 and χ̃0

2 below 300 GeV and an integrated

luminosity of
∫

L = 300fb−1 a sample of 104 to 106 events can be accumulated. In the given scenario

the higgsino type neutralinos and charginos are strongly suppressed compared with the lighter gauginos.
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Figure 2.5: Some total cross sections for pairs of neutralinos and charginos at the Tevatron and at the

LHC as a function of m1/2. The different masses of the particles involved are given on secondary axis.

The strongly suppressed heavy higgsino cross sections are not given. The χ̃0
2χ̃

+
1 and χ̃0

2χ̃
−
1 cross sections

are different due to the non-symmetric parton luminosities.



3. SCALAR TOP QUARK DECAYS

Scalar top quarks can decay into two or three on-shell particles via the strong or electroweak cou-

pling [42]. The possible two body decays are — kinematically allowed for an increasing stop mass

in typical mass scenarios:

t̃j −→ cχ̃0
1, bχ̃+

i , tχ̃0
i , [ Zt̃1, ht̃1, W+b̃, H+b̃, tg̃ ]

t̃j −→ W+bχ̃0
1, H+bχ̃0

1 · · · (3.1)

The channels in brackets are possible only for the heavier stop, since the t̃1 is assumed to be the lightest

scalar quark. The decay into a charm jet is induced by a one-loop amplitude, and will therefore be

suppressed, if any other tree-level two or three body decay channel is open. In the intermediate mass

range, when the bχ̃+
i channel is still closed, the three particle decay into Wbχ̃0

1 is dominant. For a heavy

t̃2 the strong decay mode including a final state gluino will be the leading one, as will be shown later in

this chapter.

3.1. Strong Decays

3.1.1. Born Decay Widths

Since the Yukawa qq̃g̃ couplings are flavor diagonal, any decay involving a scalar top quark

t̃j −→ t+ g̃
[

mt̃j
> mt +mg̃

]

g̃ −→ t̄+ t̃j and c.c.
[

mg̃ > mt +mt̃j

]

(3.2)

includes a top quark in the final state, i.e. the strong decays will only be possible for large mass scenarios.

For the light stop t̃1 the weak decays in eq.(3.1) will be the only kinematically allowed.

The calculation including the stop mixing and a massive top quark is a generalization of the light-

flavor decay width [43]. To lowest order the partial widths for the stop and gluino decay, eq.(3.2), are

given by by1

Γ(t̃1,2 → t g̃) =
2αs

Nm3
t̃1,2

Λ1/2(m2
t̃1,2
,m2

t ,m
2
g̃)
[

m2
t̃1,2

−m2
t −m2

g̃ ± 2mtmg̃ sin(2θ̃)
]

Γ(g̃ → t̄ t̃1,2) = − αs
(N2 − 1)m3

g̃

Λ1/2(m2
t̃1,2
,m2

t ,m
2
g̃)
[

m2
t̃1,2

−m2
t −m2

g̃ ± 2mtmg̃ sin(2θ̃)
]

(3.3)

The different factors in front are due to the color and spin averaging of the decaying particle, and the

crossing of a fermion line. Interchanging t̃1 and t̃2 in the two leading-order decay widths corresponds to

the symmetry operation P12 in the Lagrangean, as described in section 1.2.4.

1Λ(x, y, z) = x2 + y2 + z2
− 2(xy + xz + yz)
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Figure 3.1: (a) Born diagrams for stop and gluino decays; (b) vertex corrections; (c) real gluon emission.

The correction to the gluino decay can be obtained by crossing the diagrams

3.1.2. Next-to-leading Order SUSY-QCD Corrections

Massive Gluon Emission

The NLO corrections [11] include the emission of an on-shell gluon, Fig. 3.1c. This gluon leads to IR

singularities which are regularized using a small gluon mass λ, subsequently appearing in logarithms

log λ2. The massive gluon scheme breaks gauge invariance for the non-abelian SU(3) symmetry. Hence

the scheme has to be extended by new counter terms if a non-abelian contribution arises from a three or

four gluon vertex, otherwise the SU(3) Ward identities would not be satisfied anymore. This is not the

case for the stop decays Fig. 3.1. The gluon behaves like a photon and its mass can be regarded as a

mathematical cut-off parameter. After integration over the whole phase space the small mass parameter

drops out and yields a finite sum of virtual and real gluon matrix elements. However, these massive

gluon matrix elements must not be interpreted as exclusive cross sections, since gauge invariance is only

restored for inclusive observables, i.e. the gluon integrated out.

In the considered process the logarithms of the gluon mass arise from the integration over the soft

and collinear divergent three particle phase space, eq.(B.7). The same kind of logarithms enter through

the virtual gluon contributions, e.g. the scalar three point function eq.(B.44) and cancel analytically.

Virtual Corrections

The virtual gluon corrections, including self energy diagrams for all external particles and vertex cor-

rections Fig. 3.1c, are also regularized using the massive gluon scheme. The additional UV divergences

have to be regularized dimensionally. The poles 1/ǫ are absorbed into the renormalization of the masses,

the strong coupling, and the mixing angle, which are the parameters appearing in the Born decay width

eq.(3.3). The counter terms for mass renormalization in the on-shell scheme and the renormalization of

αs in MS can be found in appendix B.4. The mixing angle is renormalized by introducing the running

mixing angle and absorbing the mixing stop self energy contributions. This scheme restores the (t̃1 ↔ t̃2)
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Figure 3.2: Left: Renormalization scale dependence of the gluino decay width for the same SUGRA

inspired scenario as chosen in Fig. 3.3: mt̃1
= 449GeV,mt̃2

= 847GeV, sin(2θ̃) = −0.59, and
mg̃ = 637GeV. The renormalization scale is varied as a fraction of the mass of the decaying gluino;

Right: mixing angle dependence of this gluino decay, where the stop mixing has been varied over the

whole range, independent of the other low energy parameters.

symmetry P12 in NLO. The dependence on the mixing angle in NLO can be described by a constant K
factor, Fig. 3.2, possibly large contributions from the gluino-top loop are absorbed into the definition of

the mixing angle. Renormalizing the strong coupling in the MS scheme breaks supersymmetry; adding

a finite counter term, derived in eq.(1.33), restores supersymmetry.

The Born decay widths are proportional to Λ1/2, i.e. the relative momentum of the produced particles.

One of the vertex correction diagrams is constructed by exchanging a virtual gluon between outgoing

color charged particles. Near threshold the exchange of a gluon between two slowly moving particles

picks up a factor Λ−1/2, the Coulomb singularity, which cancels against the phase space suppression

factor in the virtual correction matrix element. The NLO decay width therefore does not vanish at

threshold. The narrow divergence can be removed by resummation of the contributions near threshold.

Moreover, the screening due to a non-zero life time of the final state particles reduces the Coulomb effect

considerably.

The complete analytical expression for the stop decay width is given in appendix C. The numerical

results are shown together with the weak decays in Fig. 3.3.

3.2. Weak Decays

The possible weak decay modes including a stop will be dominant once the strong channels are kinemat-

ically forbidden. Although this region is not preferred by the mSUGRA scenario even the crossed top

decay could be possible, which leads to experimental limits on the branching ratio of this decay mode
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and thereby on the masses involved [7]

t̃j −→ t+ χ̃0
j

[

mt̃j
> mt +mχ̃j

]

t̃j −→ b+ χ̃+
j

[

mt̃j
> mb +mχ̃j

]

t −→ t̃1 + χ̃0
j

[

mt > mt̃1
+mχ̃j

]

(3.4)

The Born decay width for the t̃1 decay to a neutralino reads2

Γ(t̃1 → t χ̃0
j) =

2α

Nm3
t̃1

Λ1/2(m2
t̃1
,m2

t ,m
2
χ̃j

)
[(

m2
t̃1
−m2

t −m2
χ̃j

)

(C2
L + C2

R) + 4mtmχ̃j
CLCR

]

CL = AL cos θ̃ +BL sin θ̃

CL = BR cos θ̃ −AR sin θ̃ (3.5)

The couplings A and B are given in Tab. A.5 for the neutralino involved. The t̃2 decay can be derived

using the P12 operation. The decay channel producing a bottom quark and a chargino can be read off

using Tab. A.5 by setting the mixing angle to zero, as long as sbottom mixing is neglected. The NLO

calculation is performed exactly as for the strong decay channel, whereby some virtual and real correction

diagrams in Fig. 3.1 vanish for a Majorana particle without color charge. Again the finite shift eq.(1.34)

has to be added to the weak coupling vertex, no matter if a gaugino or a higgsino is involved.

3.3. Results

In the calculation the renormalization scale of the process is fixed to the mass of the decaying particle.

Since the scale dependence should vanish after adding all orders of perturbation theory one expects the

variation of the width with the scale to be weaker in NLO than in LO. This is shown in Fig. 3.2 for the

strong coupling gluino decay.

The numerical results for the strong decay channels can be seen in Fig. 3.3. Assuming for illustration

a SUGRA inspired mass spectrum the light stop t̃1 can decay only via the weakly interacting channels.

The strong decays are possible for the gluino and for the heavy stop. With increasing m1/2 the gluino

becomes heavier compared with the stop masses, i.e. the decay into the gluino vanishes and the gluino

decay channel g̃ → ¯̃t1t + t̃1t̄ opens. A kink in the NLO t̃2 decay widths occurs at the production

threshold g̃ → tt̃1, where the gluino self energy exhibits a large discontinuity. It can be smoothed out by

introducing a finite width of the gluino. The Coulomb singularity is present in both of the strong decay

channels. However, it can be seen only in the stop decay, since the kink in the gluino self energy and the

Coulombic vertex contribution to the NLO decay width cancel each other numerically near threshold.

Since each of the large contributions is narrow, the phenomenological consequences are negligible.

The large difference in the size of the virtual corrections between the stop and the gluino decay is due

to π2 terms which are determined by the sign of (mt̃−mg̃) and arise through the analytical continuation

of the matrix element squared into the different parameter regions, Fig. 3.3. For the gluino decay they

give rise to destructive interference effects of the different color structures, and render the over-all NLO

corrections small. The size and the sign of the NLO correction to the gluino decay depends on the masses

involved. The K factor for the stop decay is always large and positive K = 1.35 · · · 1.9 decreasing far

2This decay width has also been calculated in NLO by other groups [29]; we have analyzed it for the sake of comparison

and to illustrate the running mixing angle. The three calculations are in agreement.
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Figure 3.3: Left: SUSY-QCD corrections to the strong decays t̃2 → g̃t and g̃ → t̄t̃1 + t̄t̃1 as a function of

the common gaugino mass. The masses of the particles involved are labeled in the additional axis. The

input parameters have been chosen as m0 = 900GeV, A0 = 900GeV, tan β = 2.5, µ > 0, in order to

see the possible structures of the curves. The kink in the NLO stop decay width results from the gluino self

energy and could be smoothed by inserting a finite gluino width; Right: SUSY-QCD corrections to weak

decays of the light t̃1. The input parameters are the usual m0 = 100GeV, A0 = 300GeV, tan β =
4, µ > 0. Only the decay into the two lightest neutralinos and into the light chargino is possible in the

m1/2 range considered. Note that the mass of the χ̃+
1 and the χ̃0

2 are almost identical in the SUGRA

inspired scenario. The dashed line denotes the LO, the solid one the NLO results in both figures.

above threshold, the K factor for the gluino decay is in general modest and tends to be smaller than one,

K = 0.8 · · · 1.

The weak decay widths of the light stop t̃1 are shown in Fig. 3.3. They are generically suppressed

compared to the strong decay widths, due to the coupling constant. This yields about one order of

magnitude between the different contributions. Moreover the typical weak coupling factor includes

mixing matrices of the neutralinos and charginos, which may lead to a further suppression. Given that

the masses of the four neutralinos cluster for the higgsino type and for the lighter gaugino type mass

eigenstates, even the decay width into the heavier neutralinos/charginos can exceed the width to the

lighter one [11]. Since the top quark is heavy, the bχ̃+
1 decay mode is typically the first tree level two

particle decay kinematically allowed. The neutralino channels open only for higher stop masses, but

will then be of a comparable size. The NLO corrections exceed 15% for special choices of masses and

parameters only [29].
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3.4. Heavy Neutralino Decay to Stops

Heavy neutralinos will be produced at a future e+e− linear collider [10]. In most supergravity inspired

scenarios they are higgsino-like, and will therefore not decay into light-flavor quark jets. However, the

large top Yukawa coupling may open the decay channel χ̃0
j → t̃1t̄+ ¯̃t1t [j = 3, 4] for a light stop. The

analytical expression for this decay can be obtained from the stop decay width, eq.(3.5), by crossing the

stop and the neutralino.

Γ(χ̃0
j → t t̃1) = − α

m3
χ̃j

Λ1/2(m2
t̃1
,m2

t ,m
2
χ̃j

)
[(

m2
t̃1
−m2

t −m2
χ̃j

)

(C2
L + C2

R) + 4mtmχ̃j
CLCR

]

(3.6)

The couplings are defined as for the stop decay. The numerical result is shown in Fig. 3.4. Similar

to the strong decay width the neutralino decay to two strongly interacting particles exhibits a Coulomb

singularity, due to the exchange of a slowly moving gluon between the decay products. Especially for the

steeply rising decay of the second heaviest neutralino, this Coulomb singularity is very narrow, as can

be seen in Fig. 3.4. Unlike the gluino decay in section 3.1 the next-to-leading order corrections can be

of the order 10% and are positive over the whole mass range. The clustering of the masses of the heavy

higgsino-like neutralinos is a typical behavior in supergravity inspired scenarios, since the off-diagonal

entries of the neutralino mass matrix are small compared to µ.
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Figure 3.4: SUSY-QCD corrections to the weak decays of heavy neutralinos to a stop χ̃0
j → t̄t̃1 + t̄t̃1 as a

function of the common gaugino mass. The masses of the particles involved are labeled in the additional

axis. The input parameters have been chosen as m0 = 450GeV, A0 = 600GeV, tan β = 4, µ > 0,
in order to see the Coulomb singularity at threshold. The dashed line denotes the LO, the solid one the

NLO results.



4. PRODUCTION OF SCALAR TOP QUARKS

4.1. Diagonal Stop Pair Production

4.1.1. Born Cross Section

Diagonal pairs of stop particles can be produced at lowest order QCD in quark-antiquark annihilation

and gluon-gluon fusion:

qq̄ −→ t̃1
¯̃t1 and t̃2

¯̃t2

gg −→ t̃1
¯̃t1 and t̃2

¯̃t2 (4.1)

Mixed pairs t̃1
¯̃t2 and t̃2

¯̃t1 cannot be produced in lowest order since the gt̃t̃ and ggt̃t̃ vertices are diagonal

in the chiral as well as in the mass basis of the squarks involved. The relevant diagrams for the reactions

(4.1) are shown in Fig. 4.6 a. The corresponding cross sections for these partonic subprocesses may be

written as [44, 12]:

σ̂LO[qq̄ → t̃̄t̃] =
α2
sπ

s

2

27
β3

σ̂LO[gg → t̃̄t̃] =
α2
sπ

s

{

β

(

5

48
+

31m2
t̃

24s

)

+

(

2m2
t̃

3s
+
m4
t̃

6s2

)

log

(

1 − β

1 + β

)

}

(4.2)

The invariant energy of the subprocess is denoted by
√
s, the velocity by β =

√

1 − 4m2
t̃
/s. The cross

sections coincide with the corresponding expressions for light-flavor squarks [8]

σ̂LO[qq̄′ → q̃¯̃q
′
] =

α2
sπ

s

{

β

(

4m2
g̃s

9(µ4 +m2
g̃s)

− 8

9

)

+

(

4

9
+

8µ2

9s

)

L

+ δqq′

[

4nq̃β
3

27
+ β

(

4

27
+

8µ2

27s

)

+

(

8µ2

27s
+

8µ4

27s2

)

L

]

}

σ̂LO[gg → q̃¯̃q] =
2nq̃α

2
sπ

s

{

β

(

5

48
+

31m2
q̃

24s

)

+

(

2m2
q̃

3s
+
m4
q̃

6s2

)

log

(

1 − β

1 + β

)

}

µ2 = m2
g̃ −m2

q̃

L = log((1 − β + 2µ2/s)/(1 + β + 2µ2/s)) (4.3)

in the limit of large gluino masses and for 2nq̃ = 1. The main difference between these two cross

sections results from the flavor diagonal qq̃g̃ coupling, which makes the t channel gluino contribution for

the squark production eq.(4.3) vanish in case of stops. This yields a β3 dependence of the qq̄ → t̃̄t̃ cross

section. As described in section 1.2.3 an additional factor 2nq̃ arises for the mass degenerate light-flavor

squark production.



37

Internal gluon propagators in the LO and the NLO calculation are evaluated in the Feynman gauge.

External gluons are restricted to their physical degrees of freedom. The sum over the physical polariza-

tions in the axial gauge is

Pµν =
∑

transverse DOF

εµT
∗
(k) ενT (k) = −gµν +

nµkν + kµnν

(nk)
− n2kµkν

(nk)2

kµP
µν = 0 = kνP

µν (4.4)

with an arbitrary four vector n. In the final result this vector n drops out according to gauge invariance.

Using the Slavnov-Taylor identity (B.47) this is equivalent to using the polarization sum (−gµν) and

removing the momenta kµ1 and kν2 from the tensor matrix element Mµν(k1, k2).

4.1.2. Next-to-leading Order Cross Section

The incoming gluons in the virtual and real correction matrix elements are treated the same way as

in the Born matrix elements. The Feynman diagrams for the virtual gluon correction are shown in

Fig. 4.6 b,c. The masses are renormalized in the on-shell scheme, the coupling constant αs in the MS
scheme. The renormalization is performed in such a way, that the heavy particles (top quarks, gluinos,

squarks) decouple smoothly for scales smaller than their masses, as described in eq.(B.49). Note that

no vertex requiring a finite renormalization according to section 1.5 occurs in the Born term, again in

contrast to the light-flavor squark production.

The calculation of the gluon bremsstrahlung matrix element has been performed in the cut-off

scheme, appendix 25. The Feynman diagrams for the different incoming states gg, qq̄, gq̄, qg are given in

Fig. 4.6 d. The angular integrals have been calculated analytically, which leads to an analytic cancelation

of the IR poles in ǫ between the virtual correction, the real correction, and the mass factorization matrix

elements squared. The latter one is described in section 2.2.2.

At lowest order, the cross sections for t̃1
¯̃t1 and t̃2

¯̃t2 production are given by the same analytical

expression, since the mixing angle does not occur. At next-to-leading order the tt̃g̃ and four squark

coupling introduce an explicit dependence on the mixing angle. The t̃2
¯̃t2 cross section can be obtained

using the operation P12 described in eq.(A.2). However, the dependence on the mixing angle turns out

to be very weak.

To perform a more detailed analysis the partonic cross section is expressed in form of scaling func-

tions

σ̂ij =
α2
s(µ

2)

m2
t̃

{

fBij (η) + 4παs(µ
2)

[

fV+S
ij (η,mj , θ̃) + fHij (η) + f̄ij(η) log

(

µ2

m2
t̃

)]}

(4.5)

where ij are the incoming partons, (η = s/(4m2
t̃
) − 1) with the partonic cm energy s, mj generically

denote the set of masses entering the virtual corrections, and θ̃ is the stop mixing angle. For the sake of

simplicity we have identified the renormalization and the factorization scale µf = µR = µ. The scaling

function fB contains the Born term, fV+S the virtual and soft-gluon contributions1 , fH the hard-gluon

contribution, and f̄ the scale dependence. The function f̄ combined with the running of the strong

coupling constant and the scale dependence of the parton densities should yield a decreased dependence

on µ.

1Dividing the real gluon contribution into soft and hard gluons leads of course to some ambiguity in the definitions of fV +S

and fH . This is in detail described in appendix B.
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Figure 4.1: The scaling functions for the production of t̃1
¯̃t1 pairs as a function of η = s/(4m2

t̃
)− 1. The

variation of fV+S for all possible values of the mixing angle θ̃ is indicated by the line-thickness of the

curves.

The scaling functions are shown in Fig. 4.1. The scaling functions fgq̄ are identical to fqg. Only the

scaling function fV+S depends on the mixing angle θ̃ and on the additional squark and gluino masses.

The contribution of fV+S compared to fH is small in general, and the dependence on the mixing angle

is suppressed. In contrast to the light-flavor squark production only the gluonic stop production cross

section is proportional to β, whereas the qq̄ collision leading to an s channel gluon exhibits an over-all

factor β3, as can be seen in eq.(4.2). A Coulomb singularity similar to the one for the stop decays in

section 3.1 appears: The scaling function fV+S
gg approaches a non-zero limit near threshold η → 0.

The emission of soft gluons from the incoming partons leads to an energy dependence β logi β near

threshold. The leading log2 β terms are universal and could be exponentiated. All scaling functions

approach a simple form in the limit β ≪ 1:

fBgg =
7πβ

384
fBqq̄ =

πβ3

54

fV+S
gg = fBgg

11

336β
fV+S
qq̄ = −fBqq̄

1

48β

fHgg = fBgg

[

3

2π2
log2(8β2) − 183

28π2
log(8β2)

]

fHqq̄ = fBqq̄

[

2

3π2
log2(8β2) − 107

36π2
log(8β2)

]

f̄gg = −fBgg
3

2π2
log(8β2) f̄qq̄ = −fBqq̄

2

3π2
log(8β2) (4.6)

In the high energy limit η ≫ 1 the LO cross section scales ∝ 1/s, eq.(4.2). The NLO cross sections

involving at least one gluon in the initial state approach a finite value in this limit. This is caused by the

exchange of soft gluons in the t or u channel. Exploiting kT factorization [45] the non-zero limits of the
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scaling functions can be determined:

fHgg =
2159

43200π
fHqg=

2159

194400π

f̄gg = − 11

720π
f̄qg= − 11

3240π
(4.7)

The ratio of fgg and fqg is given by 2N : CF which are the color factors for the exchange of a gluon

between an incoming quark or one of the two incoming gluons, and the Born diagram, which in both

cases is the gg one.

4.1.3. Results

The hadronic cross section is obtained from the partonic by convolution with the parton densities,

eq.(2.5). The phase space integration for the Born cross section as well as for the real gluon emission is

given in appendix B.1.

Scale Dependence

The dependence on the scale µ = µF = µR has been analyzed for the production of t̃1 pairs both at the

upgraded Tevatron and at the LHC. The hadronic cross sections include αs and the CTEQ4 [17] parton

densities consistently in LO or NLO, which also enters the definition of the K factor K = σNLO/σLO.

The scale dependence is shown in Fig. 4.2. The leading order dependence is monotonic and varies by

about ∼ 100% for scales between mt̃1
/2 and 2mt̃1

. The increase for small scales results from the large
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Figure 4.2: Left: The renormalization/factorization scale dependence of the total cross section for t̃1
pair production at the Tevatron and the LHC. the maximum for the NLO cross section at the LHC is

reached only for very small scales; Right: Effect of the variation of the scale on the upgraded Tevatron

production cross section, as a function of the stop mass. The LO and NLO bands show the improvement

of the theoretical uncertainties in the derivation of mass bounds. The SUSY scenario determining the

masses is given in eq.(1.27).
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mt̃1
KTev ggin : qq̄in KLHC ggin : qq̄in

70 1.43 0.69 : 0.31 1.27 0.96 : 0.04

110 1.33 0.46 : 0.54 1.33 0.95 : 0.05

150 1.23 0.29 : 0.71 1.38 0.94 : 0.06

190 1.15 0.19 : 0.81 1.42 0.92 : 0.08

230 1.10 0.12 : 0.88 1.45 0.91 : 0.09

270 1.06 0.08 : 0.92 1.48 0.89 : 0.11

310 1.03 0.06 : 0.94 1.50 0.88 : 0.12
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Figure 4.3: K factors for diagonal stop-pair production at the upgraded Tevatron and the LHC for a

sample of stop masses. Scale choice: µ = mt̃1
. For a comparison of Tevatron and LHC also the LO

initial-state gg and qq̄ fractions are given.

value of the running QCD coupling in leading order. At next-to-leading order the variation with the scale

is reduced to ∼ 30%. The monotonic behavior of the leading order curve is corrected in next-to-leading

order, yielding a maximum value at some small scale, Fig. 4.2.

Supersymmetric Parameter Dependence

The total hadronic cross sections at the Tevatron and at the LHC are given in Fig. 4.5. The masses in-

volved are fixed by a SUGRA inspired scenario eq.(1.27). All squarks except the top squark are assumed

to be mass degenerate. The mass range of the outgoing stop is varied independently of the other mass

parameters. The same is done for the mixing angle and for the gluino mass. The dependence of the cross

section on these internal mass parameters is small, as can be seen from the finite width of the central lines

in the figures, i.e. the cross sections depend essentially on the outgoing masses and do not distinguish

between t̃1 and t̃2. The light-flavor squark and the gluino contributions appearing in the loops are de-

coupled even for numerically small masses. The search for stops therefore yields limits on their masses

independent of any other parameter, unlike the squark/gluino or the neutralino/chargino case.

One exception of this behavior is the kink in the next-to-leading order cross sections for the heavy

stops. Similarly to the decay width of a heavy stop to a gluino, Fig. 3.3, threshold contributions occur.

In the stop production case the heavy stop can decay into an on-shell gluino and a top quark. The kink

will be regularized by introducing a finite width for the stop, and for an analysis it has to be removed by

resummation. However, for the search for stops at the Tevatron this parameter region is not of interest.

The strong mass dependence of the K factor is due to different K factors for the quark and the gluon

channel, both of which are only weakly mass dependent. However the contribution of the two channels

varies strongly with the mass of the external particle, as can be read off Fig. 4.3. Whereas the gluonic K
factor is large (about 1.3), the quark K factor tends to be smaller than and close to one. Weighted with

the fraction of the incoming state these combine to the K factor given in Tab. 4.3. Since at the Tevatron

the contribution of the incoming quarks decreases as the stops become light, the K factor grows from
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1.03 to 1.43 far from threshold. At the LHC the gluons dominate over the whole considered mass region

and the K factor varies between 1.27 and 1.50.

With cross sections between 0.1 and 100 pb the integrated luminosity
∫

L = 20fb−1 should be

sufficient for collecting a sample of 103 and 106 stop events, provided the particle exists and with a mass

less than 450GeV. The LHC with an integrated luminosity of
∫

L = 300fb−1 could collect 105 to 108

stop events in the mass range of 200 to 500GeV.

The normalized differential cross sections with respect to the transverse momentum and the rapidity

is shown in Fig. 4.4. The transverse momentum of the outgoing stops is shifted to a softer regime by the

momentum carried by the additional jet in the final state. A naive description using the K factor would

not take into account this shift and therefore lead to large errors in the size of the cross section for a

certain value of pT . The rapidity distribution keeps almost the same shape in NLO as in LO. However, it

is not symmetric in NLO anymore.

4.2. Non-diagonal Stop Production

In hadron collisions mixed pairs t̃1
¯̃t2 and t̃2

¯̃t1 cannot be produced in lowest order, unlike in e+e− colli-

sions, since the involved coupling conserve the chirality eigenstate, which does not hold for the coupling

to a Z . The mixed production cross section is therefore O(α4
s). For a general mass scenario it is small

but difficult to calculate. In the diagonal production we observe that the limit of a decoupled gluino gives

a good approximation for the size of the cross sections. Therefore we calculate the production cross

section for t̃1
¯̃t2 + t̃2

¯̃t1 in this limit. Only two one-loop diagrams contribute to the amplitude in the limit,

they are given in Fig. 4.6 e. They involve the production of diagonal stop pairs in gg fusion, which are

rescattered to mixed pairs by the four squark vertex. The incoming quarks are suppressed.

The evaluation of the loops yields

σ̂∞[gg → t̃1
¯̃t2 + ¯̃t1t̃2] = sin2(4θ̃)

37

13824

α4
s Λ1/2

2πs3

∣

∣

∣
m2
t̃1

log2(x1) −m2
t̃2

log2(x2)
∣

∣

∣

2
(4.8)

where the subscript in the cross section σ̂∞ indicates the limitmg̃ → ∞. The coefficient Λ1/2 is the usual

2-particle phase-space factor, i.e. Λ = [s−(mt̃1
+mt̃2

)2][s−(mt̃1
−mt̃2

)2], and xk = (βk−1)/(βk+1);

σ[fb] σqq̄ σlimit
qq̄ σgg σlimit

gg

Tevatron t̃1
¯̃t1 0.201 ·103 0.202 ·103 0.087 ·103 0.087 ·103

t̃2
¯̃t2 0.333 0.337 0.016 0.016

t̃1
¯̃t2 + t̃2

¯̃t1 – 0 – 0.131 ·10−4

LHC t̃1
¯̃t1 4.137 ·103 4.150 ·103 70.13 ·103 75.00 ·103

t̃2
¯̃t2 0.169 ·103 0.172 ·103 1.422 ·103 1.458 ·103

t̃1
¯̃t2 + t̃2

¯̃t1 – 0 – 0.149

Table 4.1: Cross sections for diagonal and non-diagonal pair production at the Tevatron and the LHC,

using the default SUGRA-inspired scenario eq.(1.27). The non-diagonal results are given without the

mixing factor sin2(4θ̃).The superscript ’limit’ denotes the asymptotic value of the cross section for large

gluino masses.
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the logarithmic discontinuities are defined properly by the infinitesimal shift s → s + iε in βk. The

fraction 37/13824 originates from the color factor (N − 1)[5N2 − 2(N − 1)2]/[256N3(N + 1)].
The cross section depends strongly on the mixing angle θ̃ through the overall factor sin2(4θ̃). Nu-

merical values for the diagonal and non-diagonal pair cross sections are compared in Tab. 4.1. Note that

the mixed-pair cross section is given in this table without the mixing factor sin2(4θ̃). The values for the

cross section for producing mixed stop pairs in the large mg̃ limit are very small at the Tevatron as well

as at the LHC.
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Figure 4.4: The normalized differential cross section for the production of t̃1 pairs at the Tevatron. The

mass scenario using the central scale is defined in eq.(1.27).
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Figure 4.5: The total cross section for t̃1 and t̃2 pair production at the Tevatron and at the LHC. The band
for the NLO results indicates the uncertainty due to the scale dependence. The mass scenario is given in

eq.(1.27). The line thickness of the NLO curves represents the variation of the gluino mass between 280

and 900GeV and of the mixing angle over its full range. The kink in both of the cross section results

from the on-shell decay of the heavy stop to a very light gluino and a top, and can be regularized by

introducing a finite stop width.
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Figure 4.6: Generic Feynman diagrams for the diagonal stop pair production: (a) Born diagrams for

quark and gluon incoming state; (b) vertex corrections; (c) box contributions; (d) real gluon/quark

emission for different incoming states; (e) mixed stop pair production in the limit of decoupled gluinos.

The self energy contributions are not shown.
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5.1. Production in ep Collisions

Limits on the mass and the coupling λ′ as defined in eq.(1.6) can be derived from the direct search at

different colliders. HERA ep scattering could produce squarks via the R parity violating coupling λ′ to

quarks and electrons, where the flavor of the squark has to be chosen consistent with the whole set of

current bounds [53, 24, 25]:

eq −→ q̃ (5.1)

This resonant s channel production process can be described in terms of general scalar leptoquarks. The

Yukawa matrix λ′ does not have to be diagonal in flavor or generations.

For the leading order hadronic cross section the convolution with the parton density, as defined in

eq.(2.5) becomes trivial, since the energy-momentum conservation yields a factor δ(1 −m2/(xS))

σ̂LO =
πλ′2

4m2

σLO =
m2

S
fPq

(

m2

S
, µ2

)

σ̂LO (5.2)

The parton densities fPq are taken at the factorization scale µ, and possible flavors of incoming quark are

fixed by charge conservation and the charge of the outgoing squark.

The NLO contributions consist of virtual gluons, real gluon emission, and the crossed eg incoming

state. All other supersymmetric particles in this scenario are assumed to be decoupled, see appendix A.3.

Some generic Feynman diagrams for the matrix element can be derived from Fig. 3.1 by replacing the

external gluino by a positron and removing all internal gluino contributions1 . After renormalization and

mass factorization the dimensionally regularized NLO cross section is finite and can be written as

σNLO =
m2

S
fPq (x) σ̂LO

[

1 − CFαs
π

ζ2

]

+ ∆q + ∆g

∆q =
αs
π
σ̂LO

∫ 1

x
dy fPq (y)

{

− z

2
Pqq(z) log z + CF (1 + z)

+ CF

[

2

(

log(1 − z)

1 − z

)

+

−
(

1

1 − z

)

+

− (2 + z + z2) log(1 − z)

]

}

∆g =
αs
π
σ̂LO

∫ 1

x
dy fPq (y)

z

2

{

− Pqg(z)

[

log
z

(1 − z)2
+ 2

]

+ z(1 − z) log z + 1

}

(5.3)

1The next-to-leading order calculation was performed in parallel to [46], and the results are in agreement
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Figure 5.1: Left: K factors for ed, eu → q̃ as a function of the mass of the produced squark; Right: K
factor for the d type quark vs. the renormalization and factorization scale.

where x = m2/S and z = x/y, and the renormalization and factorization scales are set µF = µR = m.

The splitting functions Pij are defined in eq.(B.23), and the + distributions are given in eq.(B.24). The

NLO cross section is proportional to σ̂LO, i.e. the anomalous coupling drops out of the K factor. In the

formulae the factorization and renormalization scales have been identified with the squark mass.

The K factors for the production of an up-type and a down-type squark are given in Fig. 5.1. The

next-to-leading order correction for the HERA process is dominated by the gluon emission from an

incoming quark. They are positive in the whole mass region considered. The virtual correction as well

as the crossed channel are suppressed. Since the parton distributions enter the K factor, the different up

and down type valence and sea quarks receive different corrections.

The dependence on the factorization and renormalization scale can be made explicit in eq.(5.3) by

adding log µ2
FR/m

2 to the ζ2 term in the virtual correction and to the logarithms multiplied by Pij .
Additionally the mass m in the argument of the parton densities and the running coupling λ′ has to be

replaced by µ. The decrease of the scale dependence of the cross section is shown in Fig. 5.1.

The partial width for the decay of a R parity violating squark can be computed using the results for

the scalar top squark. The width for the decay channel

q̃ −→ eq (5.4)

in NLO reads

ΓNLO(q̃ → eq) =
λ′2m

16π

[

1 +

(

27

8
− 2ζ2

)

CFαs
π

]

(5.5)

This correction is small (∼ 10%). If the R parity breaking coupling λ′ is small, then the squark will be

long-lived, and the NLO correction will not change this effect. A typical scenario could be a squark with

a mass of 200GeV and a Yukawa coupling λ′ ∼ e/10, which leads to a decay width of Γ ∼ 3GeV.

Bound states however will only occur, if R parity conserving decay modes are kinematically forbidden.
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5.2. Production in Hadron Collisions

In contrast to the HERA production process the production of squarks at hadron colliders, R parity

conserving and R parity violating, is fixed by the QCD coupling, as long as the production process does

not involve any weakly interacting particles2. In the scenario under consideration all other non-Standard

Model particles are decoupled. The Feynman diagrams for the Born cross section [14] are the same as

for the stop pair production, Fig. 4.6a:

qq̄ / gg −→ q̃¯̃q (5.6)

The Born cross section is given by eq.(4.2), the t channel diagram for quark-antiquark collisions is

in this case not suppressed by the incoming state but absent, due to the decoupling of the gluino. The

strong coupling is independent of the flavor of the light squark, i.e. in case of hadroproduction all flavors

look identical, unlike Fig. 5.1. The calculation for R parity breaking squark production is the same as

for the stop pairs, the Feynman diagrams are given in Fig. 4.6 taking the limit of decoupling gluino

and removing the strong four-squark coupling. This follows from appendix A. The partonic NLO cross

section only depends on the partonic cm energy s and on the mass of the squark, leading to the [in this

case literal] scaling functions for the Born, virtual and soft, hard, and scale dependent contributions

σ̂ij =
α2
s(µ

2)

m2
q̃

{

fBij (η) + 4παs(µ
2)

[

fV+S
ij (η) + fHij (η) + f̄ij(η) log

(

µ2

m2
q̃

)]}

(5.7)

where i, j denote the initial state partons. The factorization and the renormalization scale have been

identified, and η = s/(4m2
q̃) − 1. The numerical form and the structure of these scaling functions are

very similar to the stop case, Fig. 4.1, since the SUSY parameters except for the outgoing mass influence

the stop scaling functions only marginally, and the four-squark vertex only contributes to the numerically

suppressed virtual corrections. This result for the R parity violating squarks can also be obtained from

the even more general light-flavor squark production [8] in the limit of a large gluino mass. However,

2Other production channels [47] involve the weak coupling constant and more than two final state particles; their cross

sections are significantly smaller than the squark-antisquark production via an s channel gluon.
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Figure 5.2: Renormalization/factorization scale dependence of the total cross section pp̄ → q̃¯̃q at the

non-upgraded Tevatron. The arrow indicated the average invariant energy < s >1/2 in the hard subpro-

cess, which was used in the original analysis.
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Figure 5.3: Total hadronic cross section for the production of R parity violating squarks in hadron

collisions pp̄→ q̃¯̃q. The leading order result is given for the renormalization/factorization scale µ = m.

In the first case also the values of αs and the parton densities have been taken in leading order. The K
factor for the smaller central scale m is comparably small.

the occurrence of the gluino mass in the Born term requires a numerically large gluino mass for the

analysis. And the four-squark coupling has to be removed as for the derivation from the diagonal stop

pair production.

Exactly as for the stops, the scale dependence Fig. 5.2 in NLO leads to a maximum and an increasing

accuracy for the derivation of limits on the mass of the particles from non-observation. Since in leading

order any scale of the process can be considered, choosing the invariant energy of the final state µ =
√
s

is possible. Especially if NLO calculations are not available the choice of the scale of the process leads

to considerable uncertainties, which is illustrated in this example: In NLO the choice of the factorization

scale is no longer free, since it must be a parameter defined in terms of external variables, which does

not allow for µ =
√
s. The choice of µ =

√
s in next-to-leading order leads to an inconsistence of the

order αs, independent of the order of perturbation theory, in which the process has been calculated [48].

Another scale for the production of massive particles would be the final state mass m, which turns out

to be much smaller than
√
s averaged with the weight of the cross section. The different K factors for

both choices of the scale are given in Fig. 5.2. For the typical behavior of the leading and next-to-leading

order cross section the large scale,
√
s, is far from the point of maximal convergence. This reflects the

appearance of logarithms logm2/µ2, which render the corrections unnaturally large.

The NLO cross section and the LO cross section for the central mass scale for the upgraded Tevatron

are given in Fig. 5.3. The variation of the cross section with the scale decreases from 100% to 30% if

the NLO result is used. Compared to the µ = m leading order result this leads to a more accurate and

always higher mass limit, the improvement of the mass bounds however stays below 10GeV for the

central scale.

Experimental Analyses

One of the design features of the ep collider HERA is the search for leptoquark-like particles, i.e. particles

which carry electron and quark quantum numbers, and can in case of scalars be identified with R parity

violating squarks. They can occur either in the s or in the t channel and lead to an excess in the ep cross

section [49]. The decay channel of this squark strongly depends on the masses of the supersymmetric
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scenario considered, but may well include a high-pT electron. This signal is essentially background

free [23]. The interpretation of the combined data of ZEUS and H1 as R parity violating squarks leads to

combined limits on the Yukawa coupling λ′ and the branching ratio BR to the observed high-pT electron

final state [The numbers are based on the data analyzed by fall 1997.].

e+u : λ′
√

BR ∼ 0.017 · · · 0.025
e+d : λ′

√
BR ∼ 0.025 · · · 0.033

e+s : λ′
√

BR ∼ 0.15 · · · 0.25 (5.8)

Couplings to d̄ and ū would lead to a large enhancement in the e−p run and are forbidden because of

their non-observation. Moreover, couplings involving a positron and an up-type quarks would lead to

electric charges, which do not occur for MSSM-type squarks. The coupling λ′ has to be interpreted

as entries into the non-diagonal Yukawa coupling matrix, connecting down-type quarks to squarks and

electrons. The diagonal matrix element λ′111, which would lead to the production e+d → ũ, is excluded

by neutrinoless double beta decay. Possible candidates for a resonance production are

e+d→ c̃L, t̃L e+s→ t̃L (5.9)

As depicted in section 1.2.1, atomic parity violation yields strong limits on λ′2/m2 for any lep-

toquark interacting with valence quarks. They can for a mass of ∼ 200GeV be translated into

bounds on the Yukawa coupling matrix λ′ . 0.055 [e+d] [24, 25]. Combined with the measured val-

ues at HERA, eq.(5.8), this yields lower limits on the branching ratio to the observed eq final state

BR & 0.2 · · · 0.4 [e+d]. The limits obtained from atomic parity violation are derived for the presence of

only one particle being responsible for the possible deviation from the Standard Model. More than one

R parity violating squark influences this analysis, the result depending on the sign of interference terms

and thereby on the quantum numbers. The assumed left handed stop quark is in general a superposition

of two states with different mass and equal electroweak properties. This strengthens the bound on the

branching ratio:

BR −→ BR

(

1 + tan2 θ̃
m2
t̃1

m2
t̃2

)

(5.10)

At LEP, the obtained limits on λ′ are relevant for sea quarks only [24, 25]. By the same token as for

atomic parity violation they start from λ′ . 0.6 [e+s] and give BR & 0.05 · · · 0.2 [e+s].

The data from the search at the Tevatron can be written — given the mass of ∼ 200GeV from the

HERA analysis — as an upper bound in the branching ratio BR . 0.5 · · · 0.7. Theoretically the compe-

tition between supersymmetric R parity conserving, and R parity violating decays makes it possible to

vary the branching ratio into the eq mode with the mass of the particles forming the decay chains.

In the case of ed→ c̃L the most important MSSM-like decay modes are cχ̃0
j and sχ̃+

j . Assuming the

gauginos being heavy [mχ̃+

1

> 200GeV] insures that the branching ratio lies in the region of BR ∼ 1/2.

The higgsino decays suffer from the small strange quark mass. For ed → t̃L the strong decay channels

are forbidden, as depicted in section 3. The decays into tχ̃0
j and bχ̃+

j can be suppressed by large gaugino

and higgsino mass parameters. However, suppressing the whole set of possible stop decays, eq.(3.1),

yields some fine tuning of masses and mixing also in the sbottom sector. The coupling λ′ for the es →
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t̃L production channel is comparably large, which renders the different Yukawa coupling and gauge

coupling mediated decay channels of similar size, and thereby prevents from any fine tuning.

The interpretation of the HERA excess as R parity violating squarks is therefore not ruled out by the

bounds set by other experimental and theoretical analyses, but give an impression how different collider

experiments and non-collider experiments like atomic parity violation and search for neutrinoless beta

decay can altogether constrain the parameters in the same model. Incorporating all available data, HERA

itself is the only experiment able to remove this interpretation by non-confirming the excess.



6. CONCLUSIONS

In this work supersymmetric QCD corrections to decays involving scalar top quarks and to the hadropro-

duction of neutralinos/charginos and stops are presented. The decay widths as well as the production

cross sections calculated in perturbation theory exhibit an unphysical dependence on the renormalization

and/or factorization scales. In leading order this dependence is in general strong. Compared to a central

scale, which could be the mass m for the decay width and the hadro–production cross section of massive

particles, this leads to variations up to a factor of two for scales between m/2 and 2m. In next-to-leading

order this dependence is considerably weaker, i.e. in addition to the K factor, the next-to-leading order

results always improve the precision of the theoretical prediction used for the experimental analysis.

The basic properties of the scalar top sector are investigated by calculating the supersymmetric QCD

corrections to the strongly and weakly coupling decays, including a stop either in the initial or in the final

state. An elegant definition of a running mixing angle in next-to-leading order is given, in order to restore

the Born type symmetries between the stops in next-to-leading order observables. The mixing angle

counter term is compared to other renormalization schemes. Although the phenomenological motivations

for the various schemes are different, the numerical differences are shown to be small.

The different stop decay widths obey a strong hierarchy, starting with rare decay channels, and then

proceeding towards weak and strong two-body decays for an increasing mass of the decaying stop. The

strong decay will be dominant for a heavy stop state. The next-to-leading order corrections to the heavy

stop state decaying into a gluino are large ∼ 30% and always positive, while for the gluino decay into

a top squark they turn out to be small and negative ∼ −5%. This feature also arises for the light-

flavor squarks and is due to interference between different color structures and the different analytical

continuation of logarithms. The dependence of all decay widths on the mixing angle can be described by

a K factor, which stays constant for varying angle. The scale dependence of the decay widths is reduced

from a factor of two to about 50% in next-to-leading order.

The weak decays of a light stop into a neutralino and a chargino are analyzed, to illustrate the running

mixing angle. The next-to-leading order supersymmetric QCD corrections are small compared with

typical strong decays. Apart from special mass scenarios and threshold effects they are . 10%. In

contrast to the strong decays the sign of the correction is not fixed, it is strongly dependent on the mass

scenario considered. The same holds for decays of heavy neutralinos. They can be produced at e+e−

linear colliders and will in supergravity inspired scenarios be higgsino-like. Therefore the decay induced

by the top-stop Yukawa coupling can give large contributions, whereas the light-flavor final states are

strongly suppressed. The next-to-leading order corrections to these widths are moderate: ∼ 10%.

The next-to-leading order production cross section for neutralinos and charginos can be used to derive

mass limits at the upgraded Tevatron and at the LHC. This yields an improvement of the mass bounds for

these particles obtained at LEP2. Although mass and mixing parameters could be derived from cascade

decays of strongly interacting particles, the only way to keep maximal independence of the choice of the

model is the direct search. Similar to the case of gluino production, on-shell and off-shell intermediate

particle contributions have to be distinguished. This is done in a manner, which naturally coincides with
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the experimental analyses. The different higgsino-like and gaugino-like contributions to the production

cross section can be analyzed and give a smooth picture of the next-to-leading order corrections. Al-

though the scale dependence in next-to-leading order is not as much improved as for strongly interacting

particles, where the dependence on the running QCD coupling arises in leading order, it stays below few

percent in next-to-leading order. The K factor for all possible final state neutralinos/charginos is nearly

constant for varying masses and corrects the leading order result by +20% to +50%. However, strong

cancelations between different diagrams may lead to large K factors in the mixed production channel,

strongly dependent on the mass and mixing parameters chosen.

The search for scalar top quarks is naturally the next step after the search for light-flavor squarks

and gluinos at the upgraded Tevatron and at the LHC. Since the QCD type couplings are invariant under

chiral transformations, and cannot distinguish between the right and the left stop, the production cross

section in leading order depends only on the mass of the produced particles. The mixing angle as well as

the mass of the light-flavor squarks and the gluino only enters through the virtual corrections. This de-

pendence is found to be much smaller than the scale dependence and thereby negligible. The corrections

to the diagonal stop pair production are different for quark and gluon incoming states. Whereas they are

small and negative ∼ −5% for incoming quarks, they are large and positive ∼ 50% for gluons. Since

even at the Tevatron only very heavy stops are produced mainly in quark-antiquark collisions, this mass

dependent K factor leads to an increase of the mass bounds derived in leading order. In addition to the

total cross section the differential cross sections are analyzed: The rapidity distribution at the upgraded

Tevatron can be described using a K factor, the transverse momentum distribution however is shifted to

a softer regime in next-to-leading order.

The search for mixed stop final states could be a means to measure the stop mixing angle directly

at hadron colliders. However, the cross section is based on a one-loop amplitude, and the calculation in

the limit of decoupled gluinos shows, that it is much smaller than the cross section for the production of

two heavy stop particles. The direct measurement of the stop mixing angle will be possible only in the

process e+e− → t̃1
¯̃t2.

The calculation of the stop production cross section can be adapted to the search for supersymmetric

R parity violating squarks at the Tevatron. Similar to the HERA production process, the next-to-leading

order calculation for the hadroproduction gives rise to improved bounds on the mass and on the branching

ratio into the observed eq channel. However, this is not sufficient to close the window in the branching

ratio between the atomic parity violation and LEP on one side and the Tevatron on the other side, before

the excess completely vanishes by accumulating more HERA data.

All calculations have been performed in a supergravity inspired GUT scenario. This connects not only

the different gaugino masses, but also the masses of the squarks and the stops. All these particles can be

searched for at the upgraded Tevatron and at the LHC. In Fig. 6.1 the relevant cross sections are given as

a function of the mass of the produced particles. The weakly interacting particles are strongly suppressed

at the LHC; however, the search for leptonic events at hadron colliders is completely different from the

hadronic final states. Assuming a similar efficiency for the search for stops and light-flavor squarks the

search for both of them in parallel seems to be promising, in particular, since the search for squarks

is a two dimensional, the search for stops a one dimensional problem. The smaller stop cross section,

due to the missing t channel gluino contribution and the fixed non-degenerate flavor, is compensated

by the small mass of the light stop state in typical scenarios. For gluinos, like-sign leptons in the final

state should improve the efficiency considerably, yielding all production processes given in Fig. 6.1 very

promising at the upgraded Tevatron and the LHC.
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Figure 6.1: The total cross section for pairs of squarks, gluinos, stops, and neutralinos/charginos

as a function of the mass of the produced particles. The usual SUGRA mass spectrum m0 =
100GeV,m1/2 = 150GeV, A0 = 300GeV, tan β = 4, µ > 0 is denoted by the arrows. The masses of

χ̃0
2 and χ̃−

1 differ only by a few GeV in the small m1/2 regime. For the neutralino/chargino production

cross section the masses are consistently varied withm1/2. The cross sections are given for the upgraded

Tevatron and for the LHC.
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A. SUSY LAGRANGEAN

A.1. Feynman Rules for Supersymmetric QCD

In this appendix we give a complete set of Feynman rules, as used in the calculation of the various

processes. Since fermion number violating processes have to be considered, the rules make use of a

continuous fermion flow [50], which has to be fixed once for any process. The Dirac trace has to be

evaluated in the opposite direction of this fermion flow. If not stated otherwise, we assume the fermion

flow being identical to the Dirac fermion flow e.g. for the quarks.

Using these Feynman rules makes it needless to introduce charge conjugation matrices. Moreover, the

relative signs of different diagrams contributing to the same process can be fixed: Any permutation of

the fermion flow of two external fermion lines gives rise to a factor (−1) for the matrix element, due to

Fermi statistics and Wick ordering. To match the spinors for processes including two external Majorana

and two external Dirac fermions, all diagrams have to be evaluated with two different directions of the

fermion flow. We have checked explicitly that the two possible orientations of the fermion flow of two

combined diagrams lead to the same result.

By changing the orientation of the fermion flow, the signs of vertices with different types of couplings

[S,P, V,A] change:

coupling sign

scalar (S) C 1 C−1 = 1T +

pseudo-scalar (P ) C γ5 C
−1 = γT5 +

vector (V ) C γµ C
−1 = −γTµ −

axial-vector (A) C (γ5γµ) C
−1 = (γ5γµ)

T +

Table A.1: Transformation of couplings with the orientation of the fermion flow. C is the charge conju-

gation matrix.

Standard Model Feynman Rules

All momenta in the Feynman rules are defined incoming. The Standard Model couplings of quarks,

gluons, Fadeev-Popov ghosts and weak gauge bosons are given in Fig. A.1 in the Feynman gauge. The

generators of SU(3)C obey the relations

Tr
(

T aT b
)

=
1

2
δab

[

T a, T b
]

= ifabcTc (A.1)

The fermion propagators are defined as i/(/p−m+ iε), where p is the momentum in the direction of the

fermion flow. The fermion number flow does not occur. The gluon propagator is −igµν/(p2 + iε).
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Figure A.1: Feynman rules for Standard Model quarks, gluons, ghosts and weak gauge bosons, the

dotted lines for scalars refer to Fadeev-Popov ghosts. The generic couplings ℓ, r are defined in Tab. A.2;

PLR are the chiral projectors (1 ∓ γ5)/2

Supersymmetric QCD Feynman Rules

The Feynman rules for supersymmetric QCD include, besides the Standard Model particles, the gluino

(g̃), the light flavor squarks (q̃L, q̃R), and the mixing top squarks (t̃1, t̃2). Like in Fig. A.1, all momenta

are defined incoming. The coupling qq̃g̃ preserves the helicity of the quark and its scalar partner as

well as the flavor. In higher orders it has to be modified to restore the supersymmetric Ward identity, as

described in chapter 1.5. The same holds for the q̃q̃g coupling. In leading order we use gs for all strong

Standard Model and their supersymmetry transformed couplings.

The q̃q̃g(g) vertices preserve the flavor and the ’helicity’ of the squark. Since only two squarks are

present, this coupling cannot mix the mass eigenstates.

The qq̃g̃ vertex Feynman rule is given for a light-flavor q̃LR with the corresponding sign and projector.

To obtain the rules for t̃1 one has to add the contributions of the helicity eigenstates and multiply the L

ℓ r

qq̄γ Qe ℓ

qq̄Z
e

swcw

(

T3 −Qs2w
)

ℓ [T3 = 0]

ud̄W+
out

e√
2sw

0

Table A.2: Couplings of quarks to weak gauge bosons as used in Fig. A.1.
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µ,a

j

k

−igs T akj (pj − pk)
µ

µ,c

a

b

−gs fabc γµ

j (LR)

k

a

−igs
√

2 T ajk (±PLR)
j (LR)

k

a

−igs
√

2 T akj (±PRL)

µ,a

ν,b

k

j

ig2
s {T a, T b} gµν

i

k

j

l

ig2
s

Sijkl
2

Figure A.2: Feynman rules for supersymmetric QCD. The dotted lines denote the squark q̃L, q̃R. The

tensors Sijkl are defined in Tab. A.3; PLR are the chiral projectors (1 ∓ γ5)/2

term with sin θ̃ and the R term with cos θ̃. The mixing of the scalar top quark is described in detail in

chapter 1.2.4. The relevant terms for stop mixing in the Lagrangean include the coupling to the gluino

and the four squark coupling which arises from the D term in the scalar potential, described in eq.(1.4)1.

They can be expressed using the permutation operator

P12 : [t̃1 ↔ t̃2; cθ̃ → −sθ̃, sθ̃ → cθ̃] (A.2)

which links the vertices including t̃1 and t̃2

L3 = −
√

2 gsT
a
ij (1 + P12) ¯̃ga

[

cθ̃ PL − sθ̃ PR

]

tj t̃1
∗
i + h.c.

L4 = − g2
s

8
(1 + P12) t̃1

∗
i t̃1j

{

c2
2θ̃
Sijkl2 t̃1

∗
k t̃1l + 2

[

s2
2θ̃
Sijkl2 − Sijkl1

]

t̃2
∗
k t̃2l

+ 4 c2θ̃ S
ijkl
1

∑

q̃ 6=t̃

(

q̃L
∗
k q̃Ll − q̃R

∗
k q̃Rl

)

}

(A.3)

The sine/cosine of an angle β is as usually denoted by sβ, cβ . However, these vertices describe only

processes which are essentially diagonal either in t̃1 or in t̃2. Four squark vertices, mixing t̃1 and t̃2, can

1This coupling is not fixed by the requirement that the scalar top quark should carry a fundamental representation SU(3)

charge.
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be derived from the Lagrangean

L′
4 =

g2
s

4
s2θ̃
(

t̃1
∗
i t̃2j + t̃2

∗
i t̃1j

)

{

c2θ̃ S
ijkl
2

(

t̃1
∗
k t̃1l − t̃2

∗
k t̃2l

)

+ 2Sijkl1

∑

q̃ 6=t̃

(

q̃L
∗
k q̃Ll − q̃R

∗
k q̃Rl

)

}

(A.4)

The structure of the four squark coupling is given in terms of the flavor fj and the helicity of the Standard

Model partner hj . The two tensors used in Tab. A.3 are

S
(1)
ijkl =

(

δilδjk −
1

N
δijδkl

)

S
(2)
ijkl =

N − 1

N
(δilδjk + δijδkl) (A.5)

q̃iq̃j q̃kq̃l Sijkl

q̃q̃q̃q̃ [hi = hj hj = hl fi = fj fj = fl] −S(2)
ijkl

q̃q̃q̃q̃ [hi = hj hj = hl fi 6= fj fj 6= fl] −S(1)
ijkl

q̃q̃q̃q̃ [hi 6= hj hj 6= hl] +S
(1)
ijkl

t̃1t̃1q̃LRq̃LR ∓c2θ̃ S
(1)
ijkl

t̃2t̃2q̃LRq̃LR ±c2θ̃ S
(1)
ijkl

t̃1t̃2q̃LRq̃LR t̃2t̃1q̃LRq̃LR ±s2θ̃ S
(1)
ijkl

t̃1t̃1t̃1t̃1 t̃2t̃2t̃2t̃2 −c2
2θ̃
S

(2)
ijkl

t̃1t̃1t̃1t̃2 t̃1t̃1t̃2t̃1 +s2θ̃c2θ̃ S
(2)
ijkl

t̃2t̃2t̃2t̃1 t̃2t̃2t̃1t̃2 −s2θ̃c2θ̃ S
(2)
ijkl

t̃1t̃1t̃2t̃2 S
(1)
ijkl − s2

2θ̃
S

(2)
ijkl

t̃1t̃2t̃1t̃2 t̃2t̃1t̃2t̃1 −s2
2θ̃
S

(2)
ijkl

Table A.3: Tensors arising in the generic four squark coupling in Fig. A.2. The tensors S(1) and S(2) are

defined in eq.(A.5).

A.2. Neutralinos and Charginos

Diagonalization for Neutralinos

The diagonalization procedure for Neutralinos is described e.g. in [51]. The four Majorana neutralinos

(χ̃0
j ) are defined as the mass basis of all neutral higgsinos, the photino, and the zino interaction eigen-

states. They are four component Majorana spinors, therefore the mass matrix is symmetric. It is possible
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to start from a non-diagonal matrix in the (B̃W̃3) basis or in the (γ̃Z̃) basis. We denote the two possible

mass matrices as M and M′ for the two component states:

M =









mB̃ 0 −mZswcβ mZswsβ
0 mW̃ mZcwcβ −mZcwsβ

−mZswcβ mZcwcβ 0 −µ
mZswsβ −mZcwsβ −µ 0









(A.6)

The corresponding unitary mixing matrices N,N ′ diagonalize these mass matrices, N in the (B̃W̃3) and

N ′ in the (γ̃Z̃) basis2. In case the mass matrix is real, the mixing matrices N,N ′ are also chosen to

be real, to keep the couplings from becoming complex i.e. in this special case the in general complex

unitary transformation becomes real and orthogonal. However, for CP invariant observables the typical

coupling factors must be purely real or imaginary for any complex unitary mixing matrix.

N∗ M N−1 = Mdiag

N ′∗ M′ N ′−1 = Mdiag N ′
j1 = Nj1cw +Nj2sw

N ′
j2 = −Nj1sw +Nj2cw

N ′
j3 = Nj3

N ′
j4 = Nj4 (A.7)

2Any complex symmetric matrix can be diagonalized to a real diagonal matrix by a unitary transformation UT AU where

U† = U−1. The diagonal matrix can be chosen real since phase factors can be absorbed into the unitary mixing matrix.

µ
−iγµ (LPL +RPR)

(LR)

−i
√

2(±A∗
LRPLR +B∗

LRPRL)
(LR)

−i
√

2(±ALRPRL +BLRPLR)

Figure A.3: Feynman rules for neutralinos and charginos. The dotted lines denote a left or right scalar

quarks q̃L, q̃R. L,R are defined in Tab. A.4, A,B in Tab. A.5. Note that the qq̃χ̃ vertices for incoming

and outgoing squarks are linked.
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L R

χ̃0
i χ̃

0
jZ

e

2swcw

(

N
′
i3N

′∗
j3 − N

′
i4N

′∗
j4

)

L∗ [N′
k4 ↔ −N

′
k3]

χ̃+
i χ̃

−
j γ eδij L∗

χ̃+
i χ̃

−
j Z

e

swcw

(

Vi1V
∗
j1 +

1

2
Vi2V

∗
j2 − δijs

2
w

)

L∗ [V → U ]

χ̃0
i χ̃

+
j W

+
out

e√
2sw

(

N
′
i4V

∗
j2 −

√
2
(

swN
′
i1 + cwN

′
i2

)

V ∗
j1

)

L∗ [V → U,N′
i4 → −N

′
i3]

χ̃0
i χ̃

−
j W

+
in

e√
2sw

(

N
′∗
i4Vj2 −

√
2
(

swN
′∗
i1 + cwN

′∗
i2

)

Vj1

)

L∗ [V → U,N′
i4 → −N

′
i3]

Table A.4: Couplings of neutralinos and charginos to weak gauge bosons as used in Fig. A.3. The mixing

matrix N
′ is defined in the photino-zino basis. For charginos, the fermion flow is assumed to follow the

χ̃+
i fermion number flow.

The mixing matrix is defined in terms of the arbitrary-sign eigenvalues of the mass matrix, mi:

Ni2

Ni1
= − cw

sw

mB̃ −mi

mW̃ −mi

Ni3

Ni1
=
µ(mB̃ −mi)(mW̃ −mi) −m2

Zsβcβ[(mB̃ −mW̃ )c2w +mW̃ −mi]

mZsw(mW̃ −mi)(µcβ +misβ)

Ni4

Ni1
=

−mi(mB̃ −mi)(mW̃ −mi) −m2
Zc

2
β[(mB̃ −mW̃ )c2w +mW̃ −mi]

mZsw(mW̃ −mi)(µcβ +misβ)

Ni1 =

[

1 +

(

Ni2

Ni1

)2

+

(

Ni3

Ni1

)2

+

(

Ni4

Ni1

)2
]−1/2

(A.8)

The entries of Mdiag are not necessarily positive, if the mixing matrix is kept real, i.e. the eigenvalues

are only equal to the physical massesmχ̃j
up to a sign. It is possible to work with a Lagrangean including

negative mass eigenvalues mj . In the final expression these eigenvalues have to be substituted by their

absolute values mj → ±mχ̃j
, in order to express the analytical result in terms of physical masses. An

equivalent way of introducing these phases is to define a complex mixing matrix [N,N′], in which a row

is multiplied by i, if the corresponding eigenvalue is negative:

Nkl =

{

Nkl [l = 1, ..., 4] if eigenvalue mk positive

iNkl [l = 1, ..., 4] if eigenvalue mk negative
(A.9)

The re-definition of N ′ → N
′ is defined in analogy; in typical scenarios one of the higgsino eigenvalues

mk [k = 3, 4] turns out to be negative, whereas the re-rotation N → N
′ only affects the gaugino part of
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the mass matrix. Using this matrix N,N′ one can always stick to the positive mass values.

N
∗ M N

−1 = Diag
(

mχ̃j

)

N
′∗ M′

N
′−1

= Diag
(

mχ̃j

)

j = 1, 2, 3, 4 (A.10)

The masses of the four neutralinos are re-ordered by their size after diagonalization, where χ̃0
1 is defined

being the lightest of the four. Combining the complex couplings including the matrix N,N′ leads to

exactly the same analytical results for CP invariant observables as using the matrix N,N ′; the phase

factors from the negative masses now enter by collecting factors of i2 in the typical combinations of the

couplings and by anti-commuting the Dirac matrices. One advantage of the latter strategy is, that the

neutralino mass matrix is not fixed to real values by first principles [52].

Diagonalization for Charginos

Charginos (χ̃−
j , χ̃

+
j ) are the mass eigenstates of charged winos and higgsinos. The positive and negative

charge particles mix independently. Since the charginos are no Majorana particles the mass matrix is not

symmetric. Nevertheless the Dirac-chargino vertices can be fermion number violating.

M =

(

mW̃

√
2mWsβ√

2mWcβ µ

)

(A.11)

The unitary diagonalization matrices for the positive and negative winos and higgsinos are V and U , and

the eigenvalues of the diagonalized mass matrix can in general assumed to be real3. The mixing matrices

themselves are only real, if µ is chosen to be real.

U∗ M V −1 = Diag
(

mχ̃j

)

j = 1, 2 (A.12)

Neutralino/Chargino Feynman Rules

The Feynman rules for the neutralinos and charginos are given in Fig. A.3. The q̃qχ̃ vertex is given for

left and right squarks, the coupling to the mixing scalar top quark is a superposition of both couplings,

as it is for the gluino case.

A.3. R Parity breaking Squarks

The breaking of R parity only adds new interaction terms to the Lagrangean, eq.(1.6), which are not

related to any of the Standard Model gauge symmetries. For any of these scenarios including non-MSSM

squark couplings, the QCD Feynman rules are still completely fixed by the requirement, that any squark

should be part of the fundamental representation of SU(3)C , i.e. carries quark-type color charge [53].

Under the simplifying assumption of one light squark flavor, one can integrate out all heavy strongly

interacting supersymmetric particles and regard the R parity violating scenario as the extension of the

Standard Model by one leptoquark-like squark. Another difference between a scalar leptoquark model

and the MSSM squark sector occurs: The MSSM four-squark coupling originates from the D terms in

the scalar potential eq.(1.4). In the most general effective model this term need not be present. The

3Any complex matrix can be diagonalized to a real and positive diagonal matrix using two unitary matrices UT AV . If the

matrix A is real the matrices U and V can be chosen real.
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AL AR BL BR

ũuχ̃0
j gswQN

′
j1 +

g

cw
N

′
j2

(

T3 −Qs2w
)

A∗
L [T3 = 0]

gmu

2mWsβ
N

′∗
j4 B∗

L

d̃dχ̃0
j gswQN

′
j1 +

g

cw
N

′
j2

(

T3 −Qs2w
)

A∗
L [T3 = 0]

gmd

2mW cβ
N

′∗
j3 B∗

L

d̃u
(

χ̃−
j

)

out

g√
2
Uj1 0 − gmu

2mWsβ
V ∗
j2 − gmd

2mWcβ
Uj2

ũd
(

χ̃+
j

)

out

g√
2
Vj1 0 − gmd

2mW cβ
U∗
j2 − gmu

2mWsβ
Vj2

Table A.5: Couplings of neutralinos and charginos to squarks and quarks as used in Fig. A.3. The mixing

matrix N
′ is defined in the photino-zino basis..

four-squark coupling will then be proportional to the weak coupling constant, and quadratic divergences

of scalar masses occur.

The coupling to any pair of Dirac and Majorana fermions can be identified with the most general param-

eterization of the t̃1tχ̃
0
j coupling. However, the qq̃e coupling constant is not fixed by any gauge coupling,

but results from the superpotential term eq.(1.6)

Lint = λ′ēqq̃ + h.c. (A.13)

Since its Dirac structure is fixed by the helicity of the quark and the electron, the coupling can be param-

eterized as −i(ALPl+ARPR). For unpolarized particles this yields (A2
L+A2

R) in the HERA production

cross section and the decay width, likewise for leading and next-to-leading order, this means the coupling

completely drops out of the next-to-leading order QCD K factors.

Because the coupling λ′ connects two strongly interacting particles, it has to be renormalized, e.g. in

MS. Furthermore, it runs in complete analogy to the running QCD coupling constant

λ′
2
(µR) =

λ′2(M)

1 + αs

π log
µ2

R

M2

(A.14)
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B.1. Phase Space and Partonic Cross Sections

(2 → 1) Production Cross Section

Assume the production of one final state particle in NLO

q(k1) + q̄(k2) → X1(p1)[+g(k3)] (B.1)

with massless partons kj [j = 1, 2, 3] and a massive particle in the final state p2
1 = m2. The invariants are

the usual Mandelstam variables

s = 2(k1k2) t1 = 2(k1k3) u1 = 2(k2k3) (B.2)

These Mandelstam variables can be expressed in terms of the rescaled gluon emission angle θ

y =
1

2
(1 + cθ) ∈ [0, 1]

t = − s(1 − τ)y

u = − s(1 − τ)(1 − y) (B.3)

where τ = m2/s and cθ = cos θ. The formula for the cross section becomes [54]:

s
dσ̂R

dy
= Kij

π(4π)−2+ǫ

Γ(1 − ǫ)

(

m2

µ2

)−ǫ
τ ǫ(1 − τ)1−2ǫ

yǫ(1 − y)ǫ

∑
∣

∣MR
∣

∣

2
(B.4)

Kij are the spin-color averaging factors, for the HERA process Keq = 1/(4N). For the general squark

production at HERA the integration over the gluon emission angle can be performed analytically. Poles

in ǫ appearing in the soft/collinear phase space region cancel with the divergences arising from the

virtual gluon contributions and with the mass factorization, i.e. the renormalization of the parton densities

described in section 2.2.2.

(1 → 2) Decay Widths

The calculation of the different decays has been performed in four dimensions. The general decay mode

is

X1(p1) → X2(p2) +X3(p3)[+g(k)] (B.5)
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where all particles are assumed massive p2
j = m2

j [j = 1, 2, 3] and k2 = λ2. The Born and real gluon

emission decay width is 1

ΓB = Ki
1

16πm1

Λ1/2(m2
1,m

2
2,m

2
3)

m2
1

∑
∣

∣MB
∣

∣

2

ΓR = Ki
1

64πm1

∫

d3p2

2p0
2

d3p3

2p0
3

d3k

2k0

1

π2
δ4(p1 + p2 + p3 + k)

∑
∣

∣MR
∣

∣

2
(B.6)

Kq̃ = 1/N is the spin-color averaging factor for the decay of the squark. The integrals

Ii1···inj1···jm
=

1

π2

∫

d3p2

2p0
2

d3p3

2p0
3

d3k

2k0
δ4(p1 + p2 + p3 + k)

2(kpi1) · · · 2(kpin)

2(kpj1) · · · 2(kpjm)
(B.7)

can be found in the literature [55]2.

(2 → 2) Production Cross Section

The partonic production process of two massive particles can be written as

q(k1) + q̄(k2) → X1(p1) +X2(p2)[+g(k3)] (B.8)

The kj [j = 1, 2, 3] are assumed massless, the pj[j = 1, 2] will in general have different masses m1,m2.

Replacing quarks by gluons and vice versa does not have any effect on the kinematics. We introduce the

invariants:

s = 2(k1k2)

t1 = 2(k1p1) u1 = 2(k2p1) s4 = 2(k3p1)

t2 = 2(k2p2) u2 = 2(k1p2) s3 = 2(k3p2)

t′ = 2(k2k3) u′ = 2(k1k3) s5 = 2(p1p2) +m2
1 +m2

2 (B.9)

All momenta are chosen incoming: k1 + k2 + k3 + p1 + p2 = 0. Only five invariants are independent:

s3 = − s5 − t2 − u2 −m2
2 +m2

1

s4 = − s5 − t1 − u1 −m2
1 +m2

2

s5 = + s+ t′ + u′

u′ = − s− t1 − u2

t′ = − s− t2 − u1 (B.10)

From the relation s4 = s + t2 + u2 −m2
1 + m2

2 one can see that the limit s3, s4 → 0 is equivalent to

the Born kinematics. The differential cross section in the Born approximation therefore includes a factor

δ(s4):

s2
d2σ̂B

dt2ds4
= Kij

π(4π)−2+ǫ

Γ(1 − ǫ)

(

t2u2 − sm2
2

sµ2

)−ǫ

δ(s4)
∑

∣

∣MB
∣

∣

2
(B.11)

1As usual Λ(x, y, z) = x2 + y2 + z2
− 2(xy + xz + yz)

2Note that in the formulae (D.11) and (D.12) of [55] the indices of the m4
0,1 term have to be interchanged
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with the n dimensional spin-color averaging factors for different strongly interacting incoming states

Kqq̄ =
1

4N2
Kgg =

1

4(1 − ǫ)2(N2 − 1)2
Kqg = Kgq̄ =

1

4(1 − ǫ)N(N2 − 1)
(B.12)

The matrix element for the real gluon emission corresponds to a differential cross section in four vari-

ables.

s2
d2σ̂R

dt2ds4
= Kij

µ2ǫ(4π)−4+2ǫ

2Γ(1 − 2ǫ)

(

t2u2 − sm2
2

sµ2

)−ǫ
s1−2ǫ
4

(s4 +m2
1)

1−ǫ

∫

dΩ
∑

∣

∣MR
∣

∣

2
(B.13)

The total partonic cross section is defined as

σ̂ =

∫ tmax
2

tmin
2

∫ smax
4

0

d2σ̂

dt2ds4
smax
4 = s+ t2 +m2

2 −m2
1 +

sm2
2

t2

t
min/max
2 = −s+m2

2 −m2
1 ± Λ1/2(s,m2

1,m
2
2)

2
(B.14)

To integrate over the angle of the final state gluon analytically, one chooses different parameterizations

of the phase space. The angular integration is performed in the center-of-mass frame of p1 and k3. One

of the three dimensional components of k2, k1 or p2 is taken parallel to the z axis. In the first case the

momenta are [38]:

k1 = (−w1, ..., 0,−psψ ,−pcψ + w2)

k2 = (−w2, ..., 0, 0,−w2)

k3 = (w3, ..., w3s1s2, w3s1c2, w3c1)

p1 = (E1, ...,−w3s1s2,−w3s1c2,−w3c1)

p2 = (E2, ..., 0, psψ , pcψ) (B.15)

si, ci are defined as the sine and cosine of the angles θ1, θ2, ψ. The angles θj are connected to the angular

integration for the additional gluon:
∫

dΩ =

∫ π

0
dθ1s

n−3
1

∫ π

0
dθ2s

n−4
2 (B.16)

The non-invariant variables can be expressed in the invariants:

w1 =
s+ u2

2
√

s4 +m2
1

w2 =
s+ t2

2
√

s4 +m2
1

w3 =
s4

2
√

s4 +m2
1

E1 =
s4 + 2m2

1

2
√

s4 +m2
1

E2 =
t2 + u2 + 2m2

2

2
√

s4 +m2
1

p =

√

(t2 + u2)2 − 4sm2
2

2
√

s4 +m2
1

cψ =
t2(s4 −m2

2 +m2
1) − s(u2 + 2m2

2)

(s + t2)
√

(t2 + u2)2 − 4sm2
2

(B.17)

Inserting these equalities into the matrix element after partial fractioning leads to the typical integral [38]
∫

dΩ
1

(a+ bc1)k
1

(A+Bc1 + Cs1c2)l
k, l ǫN (B.18)

Note that it is not necessary to perform this integration analytically, if the divergent regions of phase

space are regularized e.g. by the subtraction method [56].
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Cut-off Method

The radiation of on-shell gluons leads to divergences in the phase space integration in two limiting cases:

(i) the gluon is soft, all components of its four vector vanish kµ → 0 [µ = 0, 1, 2, 3]; (ii) the gluon is

collinear to another massless particle with the momentum p, i.e. k ∼ p+ k⊥ with k⊥ → 0. In both cases

the invariant vanishes, (pk) → 0, leading to infrared divergences in the matrix element. In the limit of a

soft gluon the invariants for the three body process approach

s3 → 0 t′ → 0 t2 → t1 +m2
1 −m2

2

s4 → 0 u′ → 0 u2 → u1 +m2
1 −m2

2 s5 → s (B.19)

The integration of real gluon matrix element is split into two regions, corresponding to soft and hard

gluons [38]:
∫

0
ds4

d2σ̂

dt2ds4
=

(∫ ∆

0
+

∫

∆

)

ds4
d2σ̂

dt2ds4

=

∫ ∆

0
ds4

d2σ̂

dt2ds4

∣

∣

∣

∣

∣

approx

+

∫

∆
ds4

d2σ̂

dt2ds4
(B.20)

In the second integrand the limit ∆ → 0 has to be checked numerically. The soft gluon matrix element

in the first integrand is evaluated in the eikonal approximation, where the gluon momentum is neglected

compared to any other variable [δ(s4)]. The angular integral is analytically evaluated using the angular

integrals eq.(B.18). In addition to soft poles in ǫ logarithms logj ∆[j = 1, 2] appear. These have to

be added to the final expression. To cancel the ∆ dependence of the hard gluon part, these terms are

rewritten as
∫ smax

4

0
ds4 log

(

∆

µ2

)

δ(s4) =

∫ smax
4

∆
ds4

[

log(smax
4 /µ2)

smax
4 − ∆

− 1

s4

]

∫ smax
4

0
ds4 log2

(

∆

µ2

)

δ(s4) =

∫ smax
4

∆
ds4

[

log2(smax
4 /µ2)

smax
4 − ∆

− 2 log(s4/µ
2)

s4

]

(B.21)

In addition to the soft singularities in the gluon emission matrix element collinear poles arise in next-to-

leading order. As long as the final state particles are massive, these have to be absorbed completely into

the renormalization of the parton densities, as described in chapter 2.2.2. The additional terms are of the

form

s2
d2σ̂MF

ij

dt2ds4
≃ αs

2π

[

1

ǫ
− γE + log

(

4πµ2

Q2
F

)]∫ 1

0

dx

x
Pli(x)

(

s2
d2σ̂Blj
dt2ds4

)

xkl

(B.22)

The splitting function Pij describes an incoming parton i changing to j3

Pgg(x) = 2CA

[ (

x

1 − x

)

+

+
1 − x

x
− 1 + x(1 − x)

]

+ δ(1 − x)

[

11

6
CA − 2

3
TRnf

]

Pgq(x) = CF
1 + (1 − x)2

x

Pqg(x) = TR
(

x2 + (1 − x)2
)

Pqq(x) = CF

(

1 + x2

1 − x

)

+

(B.23)

3The color factors for the SU(3) are N = 3, CA = 3, CF = 4/3, TR = 1/2
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with the + distribution defined as

(F (x))+ = F (x) θ(1 − x− β) − δ(1 − x− β)

∫ 1−β

0
dξF (ξ) (B.24)

in the limit β → 0; the parameter β separates soft from hard gluons. Numerically the + distributions can

be evaluated following

∫ 1

τ
dx
[

f(x) (L(x))+ + g(x)
]

=

∫ 1−β

τ
dx [f(x)L(x) + g(x)] − f(1)

∫ 1−β

τ
dx

[

L(x) +
L̄

1 − τ

]

(B.25)

where L̄ =
∫ τ
0 dxL(x) has to be calculated analytically and β → 0. The second part of the + distribution

eq.(B.24) contributes to the soft gluon part of the splitting function. After performing the integration

over the momentum shift x using the δ(1 − x) term, the result follows the Born kinematics and cancels

the collinear divergences of the virtual corrections. The separating parameter can be linked to the cut-off

∆ via β = ∆/(s + t2) and β = ∆/(s + u2) for a shifted momentum k2 or k1.

For hard gluons the four momentum conservation δ(s4) included in the Born differential cross section

can be used to remove the integration over the shift in the four momentum, i.e. the mass factorization

term cancels the collinear divergences arising from the virtual and from the real corrections.

Subtraction Method

The subtraction method [56] is used to calculate the neutralino production cross section, i.e. there are no

massive strongly interacting particles present in the final state and qq̄ is the only incoming state.

Given a divergent real gluon matrix element, a subtraction matrix element σA,3 is constructed for the

three particle final state, in order to remove the soft and collinear singularities point-wise from the gluon

emission phase space.

s2
d2σ̂R

dt2ds4
− s2

d2σ̂A,3

dt2ds4
∼
∑

∣

∣MR
∣

∣

2 −D13,2 −D23,1 (B.26)

In case of only two initial state partons k1, k2 and one emitted gluon k3 the dipole terms

D13,2 =
1

2x(k1k3)
V 13,2(x)

∑
∣

∣MB
∣

∣

2

subst1

D23,1 =
1

2x(k2k3)
V 23,1(x)

∑
∣

∣MB
∣

∣

2

subst2
(B.27)

have to be added to
∑
∣

∣MR
∣

∣

2
. The rescaling factor for the split incoming momentum is given as x =

(k1k2 +k3k1 +k3k2)/k1k2 and re-defines the kinematics of the Born matrix element k′i, p
′
j e.g. for D13,2

k′1 = x k1

k′2 = k2

p′j = pj −
2pjK + 2pjK

′

(K +K ′)2
(K +K ′) +

2pjK

K2
K (B.28)
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with K = k1 +k2+k3 and K ′ = k′1 +k′2. The result for D23,1 is obtained by interchanging the incoming

quarks. The kernels V 13,2 and V 23,1 are of the form

V qg,q(x) = 8πµ2ǫαsPqq(x) = 8πµ2ǫαsCF

[

2

1 − x
− (1 + x) + ǫ(1 − x)

]

(B.29)

Since this subtracted real gluon emission matrix element is finite, dσ̂R and dσ̂A,3 can be evaluated in

n = 4 dimensions. However, this does not hold for the virtual corrections matrix elements, where one

has to use the dipole terms dσ̂A,2, which arise from the exact integration of the subtraction term dσ̂A,3

over the additional gluon emission phase space. This results in soft and collinear poles in ǫ, therefore the

dipole moments for the calculation of the virtual subtraction term have to be evaluated in n dimensions.

The integrated soft and collinear gluon subtraction yields

s2
dσ̂A,2

dt2
=

∫ 1

0
dx I(x, ǫ)

[

(

s2
dσ̂B

dt2

)

xk1

+

(

s2
dσ̂B

dt2

)

xk2

]

(B.30)

The integration of V qg,q(x) and the mass factorization leads to the integration kernels for quark-antiquark

and quark-gluon incoming states:

Iqq(x, ǫ) =
αs
2π

[

δ(1 − x)
CF

Γ(1 − ǫ)

(

4πµ2

s

)ǫ(
1

ǫ2
+

3

2ǫ
+ 5 − 3ζ2

)

− Pqq(x) log

(

Q2
F

xs

)

+ CF

(

4

(

log(1 − x)

1 − x

)

+

− 2(1 − x) log(1 − x) + 1 − x

)

]

Iqg(x) =
αs
2π

[

− Pqg log

(

Q2
F

(1 − x)2s

)

+ 2TR x(1 − x)

]

(B.31)

Since using the subtraction method the gluon emission angles are integrated numerically the mass fac-

torization terms are not added analytically to the real gluon matrix element. Instead of using the δ(s4)
distribution to remove the integration over the momentum shift x, it is kept for the phase space integra-

tion. The convolution is then performed numerically. The separation into virtual-soft and hard gluon

contributions is by no means unique.

B.2. Hadronic and Differential Cross Sections

For a general hadronic cross section the partons are treated as parts of a massive hadron hj [j = 1, 2].
The hadronic variables are referred to as capital letters.

h1(K1) + h2(K2) → X1(p1) +X2(p2)[+g(k3)] (B.32)

The additional gluon k3 is again assumed massless, the pj[j = 1, 2] will in general have different masses

m1,m2. We introduce the invariants:

S = 2(K1K2) T1 = 2(K1p1) U1 = 2(k2p1)

T2 = 2(K2p2) U2 = 2(K1p2) (B.33)
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All momenta are chosen incoming. After integration of the gluon emission angles the real emission

matrix element together with the parton densities is a differential cross section with respect to four

variables including some general function F :

σtot =

∫ 1

xmin
1

dx1

∫ 1

xmin
2

dx2

∫ tmax
2

tmin
2

dt2

∫ smax
4

0
ds4 F

xmin
1 =

(m1 +m2)
2

4S

xmin
2 =

(m1 +m2)
2

4Sx1

smax
4 = s+ t2 +m2

2 −m2
1 +

sm2
2

t2

t
min/max
2 = −s+m2

2 −m2
1 ± Λ1/2(s,m2

1,m
2
2)

2
(B.34)

This can be rewritten for the on-shell subtraction in the s4 channel, when the final state particle X1 is

produced via decay of one on-shell squark [8]:

σtot =

∫ 1

xmin
1

dx1

∫ 1

xmin
2

dx2

∫ smax
4

0
ds4

∫ tmax
2

tmin
2

dt2 F

smax
4 = s+m2

2 −m2
1 − 2

√

sm2
2

t
min/max
2 = −s− s4 +m2

2 −m2
1 ±

√

(s − s4 +m2
2 −m2

1)
2 − 4sm2

2

2
(B.35)

The integration variables x1, x2 are only used to compute the total hadronic cross section. Therefore the

subtraction in s3 involving the particle X2 can be obtained by exchanging p1 ↔ p2 in the subtraction

matrix element and in the phase space. This holds only if the gluon emission angle dΩ is integrated out

completely.

To be able to compute differential cross sections with respect to the transverse momentum of one of the

final state particles or the rapidity

p2
T =

T2U2 − Sm2
2

S
=
t2u2 − sm2

2

s
y =

1

2
log

(

T2

U2

)

(B.36)

the integration has to be ordered differently

σtot =

∫ pmax
T

0
dpT

∫ ymax

−ymax

dy

∫ smax
4

0
ds4

∫ 1

xmin
1

dx1 2pTS
x1x2

x1S + T2
F

pmax
T =

1

2
√
S

Λ1/2(S,m2
1,m

2
2)

ymax = arcosh





S +m2
2 −m2

1

2
√

S(p2
T +m2

2)





smax
4 = S + T2 + U2 +m2

2 −m2
1

xmin
1 =

s4 − T2 −m2
2 +m2

1

S + U2
(B.37)
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with x2 = (s4 − x1U2 −m2
2 +m2

1)/(x1S + T2).

The subtraction of differential cross sections in the s3 channel requires a substitution of one of the two

angular integrations in dΩ [8], which is implicitly included in eq.(B.37). We refer to the integration

boundaries therein as s∗4, x
∗
1.

∫ s∗4

0
ds4

∫ 1

x∗
1

dx1

∫

dΩ =

∫ s∗4

0
ds4

∫ 1

x∗
1

dx1

∫ π

0
dθ1

∫ π

0
dθ2s1

=

∫ smax
3

0
ds3

∫ 1

xmin
1

dx1

∫ smax
4

smin
4

ds4

∫ π

0
dθ2

2(s4 +m2
1)

s4
√

s− s4 −m2
1 +m2

2

(B.38)

The integration borders are

smax
3 =

S + T2 + U2 +m2
2 −m2

1

2(S + T2 + U2 +m2
2)

(

−T2 − U2 − 2m2
2 +

√

(T2 + U2)2 − 4m2
2S

)

xmin
1 =

1

2(S + U2)(m2
2S +m2

2U2 + s3U2)

[

− 2m4
2S + 2m2

2m
2
1S − 2m2

2Ss3 − Ss23 − 2m2
2ST2

− Ss3T2 − 2m4
2U2 +m2

2m
2
1U2 − 3m2

2s3U2 +m2
1s3U2 − s23U2 − 2m2

2T2U2 − 2s3T2U2

− s3

(

4m4
2S

2 − 4m2
2m

2
1S

2 + 4m2
2S

2s3 + S2s23 + 4m2
2S

2T2 + 2S2s3T2 + S2T 2
2 + 4m4

2SU2

− 4m2
2m

2
1SU2 + 6m2

2Ss3U2 − 2m2
1Ss3U2 + sSs23U2 + 2m2

2ST2U2 + 2m2
1ST2U2

+ 2Ss3T2U2 +m4
2U

2
2 − 2m2

2m
2
1U

2
2 +m4

1U
2
2 + 2m2

2s3U
2
2 − 2m2

1s3U
2
2 + s23U

2
2

)1/2
]

s
min/max
4 =

s3
2(m2

2x1S +m2
2T2 + s3T2)

[

−m2
2T2 −m2

1T2 − s3T2 − 2m2
2x1S − x1Ss3 − x2

1SU2

∓
(

(−m2
2T2 −m2

1T2 − s3T2 − 2m2
2x1S − x1Ss3 − x2

1SU2)
2

− 4m2
1(x1S + T2)(m

2
2x1S +m2

2T2 + s3T2)
)1/2

]

for s3 ≤ s∗3

smax
4 = x1(S + U2) + T2 +m2

2 −m2
1 for s3 > s∗3

s∗3 =
x1S + T2 + x1U2 +m2

2 −m2
1

2(x1S + T2 + x1U2 +m2
2)

(

− T2 − x1U2 − 2m2
2 −

√

(T2 + x1U2)2 − 4m2
2x1S

)

(B.39)

B.3. Scalar Integrals

Dimensional Regularization

The analytical expressions for the virtual corrections contain scalar integrals which are multiplied by

polynomials including the Mandelstam variables. The scalar integrals A,B,C,D in case of dimensional

regularization [35, 57] are defined in n = 4 − 2ǫ dimensions and are used to calculate the production
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processes of neutralinos/charginos and stops.

C({pi}; {mj}) =

∫

dnq

i(2π)n
µ4−n

[q2 −m2
1][(q + p1)2 −m2

2][(q + p12)2 −m2
3]

D({pi}; {mj}) =

∫

dnq

i(2π)n
µ4−n

[q2 −m2
1][(q + p1)2 −m2

2][(q + p12)2 −m2
3][(q + p123)2 −m2

4]

pijk = pi + pj + pk (B.40)

The definition of the one and two point functions A,B follows the same conventions. Using this in-

tegration measure, the non-absorptive virtual contributions are real and the integrals have got integer

dimension. The infrared and collinear divergences occur as poles 1/ǫk [k = 1, 2] [38, 8]. µ is the

renormalization scale of the process.

As long as only CP conserving observables are calculated, the typical combinations of couplings in front

of the scalar integrals are real, therefore only the real part of the scalar integrals is needed. If, as described

in appendix A, we chose the parameters in the Lagrangean as being complex we also need the imaginary

parts of the scalar integrals.

The expressions for finite integrals have been taken from the literature [58, 55]. The divergent integrals

have been calculated using Cutkosky cut rules and dispersion relations [59], and most of them are also

present in the literature [8].

A typical singular scalar three point function occuring in the neutralino/chargino production cross section

is:

C(p1, k1;mx, 0, 0) =
Cǫ
t1

[

− 1

ǫ
log

(−tx
M2

1

)

+ Li2

(

t

m2
x

)

− Li2

(

m2
1

m2
x

)

+ log2

(−tx
m2
x

)

− log2

(

M2
1

m2
x

)

+ log

(

m2
x

M2

)

log

(−tx
M2

1

)

]

tx = t−m2
x

M2
i = m2

x −m2
i (B.41)

The definition of the momenta and Mandelstam variables follows appendix B.1. The factor in front

contains the typical MS terms

Cǫ =
1

16π2
e−ǫγE

(

4πµ2

M2

)ǫ

(B.42)

The scale M is either chosen as the mass of the outgoing particle or, for different masses in the final

state, as the averaged mass. The factor Cǫ is a common factor of all virtual gluon contributions and can

be pulled out of all renormalization contributions, i.e. it occurs as an over-all factor in the regularized

and renormalized matrix element and can then be evaluated in the limit n = 4.
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One scalar four point function is

D(k2, k1, p1; 0, 0, 0,mx) =
Cǫ
stx

[

1

ǫ2
− 1

ǫ

(

log

( −s
M2

)

+ log

(−tx
M2

1

)

+ log

(−tx
M2

2

))

− 2Li2

(

1 +
M2

1

tx

)

− 2Li2

(

1 +
M2

2

tx

)

− Li2

(

1 +
M2

1M
2
2

sm2
x

)

− log

(

1 +
M2

1M
2
2

sm2
x

)

[

log

(−M2
1M

2
2

sm2
x

)

− log

(

M2
1

M2

)

− log

(

M2
2

M2

)

+ log

(−sm2
x

M4

)]

+
1

2
log2

( −s
M2

)

− 1

2
log2

(−s
m2
x

)

+ 2 log

( −s
M2

)

log

(−tx
m2
x

)

− log

(

M2
1

M2

)

log

(

M2
1

m2
x

)

− log

(

M2
2

M2

)

log

(

M2
2

m2
x

)

]

− 3

2
ζ2

(B.43)

The log(1 +M2
1M

2
2 /(sm

2
x)) multiplied with the terms in brackets originates from the analytical contin-

uation of the Dilogarithm [59]. This method of calculating scalar integrals omits the typical roots, which

appear by using the Feynman parameterization after partial fractioning. Thereby, large cancelations are

absent in our results, which improves the numerical accuracy.

Massive gluon regularization

For the massive gluon regularization scheme, as it is used for the calculation of the decay processes, the

conventions concerning the scalar integrals are exactly the same as for dimensional regularization in the

limit n = 4. In this case we obtain divergences in form of logarithms of the gluon mass log λ2 [59].

For linear divergences the log λ2 description can naively be translated into 1/ǫ, whereas for higher diver-

gences this is more involved.

For the gluino decay the divergent scalar integral

C(p1, p2;m1, λ,m2) =
Cǫxs

m1m2(1 − x2
s)

[

log(xs)

[

− log

(

λ2

m1m2

)

− 1

2
log(xs) + 2 log

(

1 − x2
s

)

]

+ Li2

(

1 − xs
m1

m2

)

+ Li2

(

1 − xs
m2

m1

)

+ Li2
(

x2
s

)

+
1

2
log2

(

m1

m2

)

− ζ2

]

(B.44)

is used in the massive gluon regularization scheme. The factor Cǫ is taken in the limit n = 4, and

p2
1 = m2

1 p2
2 = m2

2

xs =

√

1 − 4m1m2

s−(m1−m2)2 − 1
√

1 − 4m1m2

s−(m1−m2)2
+ 1

(B.45)
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For the stop production the same integral is needed in the case of equal masses and regularized dimen-

sionally. There the divergent logarithm has to be replaced by a linear pole log λ2 → 1/ǫ+ log µ2
R

C(p1, p2;m1, 0,m2) =
Cǫxs

m1m2(1 − x2
s)

[

log(xs)

[

−1

ǫ
− log

(

M2

m1m2

)

− 1

2
log(xs) + 2 log

(

1 − x2
s

)

]

· · ·
]

(B.46)

The same relation holds for the other scalar integrals used calculating stop decay widths.

B.4. Counter Terms

Renormalization of the external masses in the on-shell scheme preserves the Slavnov-Taylor identity [38]

kµ1 Mµν = Mghost
ν ∝ k2ν (B.47)

where Mµν is the matrix element for the production of two massive SU(3) charged particles in gluon

fusion and Mghost
ν the ghost contribution, both of which are present in LO and NLO. This identity has

been used to calculate the ghost contribution of the stop pair production, as described in chapter 1.2.4.

The mass counter terms for a heavy quark t and a squark q̃ are

m
(0)
t = mt

[

1 +
αsCF
4π

(

− 3

ǫ
+ 3γE − 3 log(4π) − 4 − 3 log

µ2
R

m2
t

)

]

m
(0)
q̃ = mq̃

[

1 +
αsCF
4π

(

(

− 1

ǫ
+ γE − log(4π) − log

µ2
R

m2
q̃

)2m2
g̃

m2
q̃

− 1 −
3m2

g̃

m2
q̃

+
m2
q̃ − 2m2

g̃

m2
q̃

log
m2
q̃

m2
g̃

−
(m2

q̃ −m2
g̃)

2

m4
q̃

log

∣

∣

∣

∣

∣

m2
q̃ −m2

g̃

m2
g̃

∣

∣

∣

∣

∣

)]

(B.48)

The strong coupling is renormalized in the MS scheme

g(0)
s = gs(µR)

[

1 +
αs
4π

(

(

− 1

ǫ
+ γE − log(4π) + log

µ2
R

M2

)β0

2

− N

3
log

m2
g̃

µ2
R

− nf − 1

6
log

m2
q̃

µ2
R

− 1

12
log

m2
t̃1

µ2
R

− 1

12
log

m2
t̃2

µ2
R

− 1

3
log

m2
t

µ2
R

)]

where β0 =
11

3
N − 2

3
N − 2

3
nf −

1

3
nf (B.49)

µR is the renormalization scale of the process, nf = 6 the number of quark and squark flavors. The

β function gets contributions from the gluons, the gluinos, the quarks, and the squarks. For the MSSM

the sign of this coefficient is the same as for the Standard Model. To decouple the heavy particles from

the running of αs the massive logm2 terms have to be subtracted i.e. the strong coupling constant is

effectively evaluated as the usual low energy Standard Model QCD coupling.
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In addition to these Standard Model like renormalization constants, which remove the UV divergences

from the virtual correction matrix element, finite counter terms have to be added to restore the supersym-

metric Ward identity, as described in chapter 1.5. These are no counter terms observables arising from

divergent vacuum fluctuations in field theory, i.e. even the weak coupling will contain a new counter term

∝ αs although physically GF should stay unrenormalized in supersymmetric QCD.



C. ANALYTICAL RESULTS FOR THE STOP DECAY WIDTH

As an example, the analytical results for the decay of a light stop t̃1 into top and gluino are given. The

decay width in next-to-leading order may be split into the following components:

ΓNLO = ΓLO + Re (∆Γt + ∆Γg̃ + ∆Γ11 + ∆Γv + ∆Γr + ∆Γc + ∆Γf + ∆Γdec) (C.1)

To allow for more compact expressions we first define a few short-hand notations:

µabc = m2
a +m2

b −m2
c σ2θ̃ = mtmg̃ sin(2θ̃) N =

Λ1/2(m2
t̃1
,m2

g̃,m
2
t )

16πm3
t̃1
N

(C.2)

where a, b, c = g̃, t, j with j representing t̃j . The different contributions defined in eq.(C.1) are listed

below:

lowest-order decay width1:

ΓLO = 8NCFπαs
(

−µg̃t1 + 2σ2θ̃

)

N ≡ N|MB |2 (C.3)

top self-energy contribution:

∆Γt =
2NCFπαs|MB |2

m2
t

{

2(1 − ǫ)A(mt) + 2A(mg̃) −A(mt̃1
) −A(mt̃2

)

+ µt1g̃B(pt;mg̃,mt̃1
) + µt2g̃B(pt;mg̃,mt̃2

)

− 4m2
tσ2θ̃

[

Ḃ(pt;mg̃,mt̃1
) − Ḃ(pt;mg̃,mt̃2

)
]

+ 2m2
t

[

µg̃t1Ḃ(pt;mg̃,mt̃1
) + µg̃t2Ḃ(pt;mg̃,mt̃2

) − 4m2
t Ḃ(pt;λ,mt)

]

}

+
16NNC2

Fπ
2α2

s

m2
t

c2
2θ̃
µg̃t1

{

A(mt̃2
) −A(mt̃1

) − µg̃t1B(pt;mg̃,mt̃1
) + µg̃t2B(pt;mg̃,mt̃2

)
}

(C.4)

where the definitions of the scalar integrals are given in eq.(B.40). When renormalizing external masses

in the on-shell scheme the scalar function Ḃ(p;ma,mb) = ∂B(p;ma,mb)/∂p
2 appears.

1The Casimir invariant for the gauge group SU(3) is CF = 4/3
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gluino self-energy contribution (for nf = 6 quark flavors):

∆Γg̃ =
4Nπαs|MB |2

m2
g̃

(nf−1)
{

−A(mq̃) + (m2
q̃ +m2

g̃)B(pg̃;mq̃, 0) + 2m2
g̃(m

2
g̃ −m2

q̃)Ḃ(pg̃;mq̃, 0)
}

+
2Nπαs|MB |2

m2
g̃

{

2A(mt) −A(mt̃1
) −A(mt̃2

) + µ1g̃tB(pg̃;mt̃1
,mt) + µ2g̃tB(pg̃;mt̃2

,mt)

− 4m2
g̃σ2θ̃

[

Ḃ(pg̃; ,mt̃1
,mt) − Ḃ(pg̃;mt̃2

,mt)
]

+ 2m2
g̃

[

µg̃t1Ḃ(pg̃;mt̃1
,mt) + µg̃t2Ḃ(pg̃;mt̃2

,mt)
]

}

+
4NNπαs|MB |2

m2
g̃

{

(1 − ǫ)A(mg̃) − 4m4
g̃Ḃ(pg̃;λ,mg̃)

}

(C.5)

diagonal stop self-energy:

∆Γ11 =8CFNπαs|MB |2
{

B(pt̃1 ;mg̃,mt) −B(pt̃1 ;λ,mt̃1
) + 2σ2θ̃Ḃ(pt̃1 ;mg̃,mt)

− µg̃t1Ḃ(pt̃1 ;mg̃,mt) − 2m2
t̃1
Ḃ(pt̃1 ;λ,mt̃1

)
}

(C.6)

[The off-diagonal mixing contribution

∆Γ12 =
128NNC2

Fπ
2α2

s

m2
t̃1
−m2

t̃2

σ2θ̃ c
2
2θ̃

{

A(mt̃2
) −A(mt̃1

) +
4m2

tm
2
g̃

σ2θ̃

B(pt̃1 ;mg̃,mt)

}

(C.7)

is absorbed into the renormalization of the mixing angle for θ̃ = θ̃(m2
t̃1

), as described in chapter 1.2.4 ]

vertex corrections:

∆Γv = 64Nπ2α2
sNC

2
F

[

FF1 + σ2θ̃F
F
2 + σ2

2θ̃
FF3

]

+ 32Nπ2α2
sN

2CF

[

FA1 + σ2θ̃F
A
2 + σ2

2θ̃
FA3

]

+ 8Nπαs|MB |2FB (C.8)

with:

FF1 =2(m2
t +m2

g̃)B(pt̃1 ;mg̃,mt) + (m2
t̃1

+m2
t +m2

g̃)B(pt̃1 ;λ,mt̃1
)

+2(m2
g̃ −m2

t̃1
)B(pt;λ,mt) − 2m2

tB(pt;mg̃,mt̃2
) − 4m2

g̃B(pg̃;mt,mt̃1
)

+4m2
g̃(m

2
t̃1
−m2

g̃)C(pt̃1 , pt;mt,mg̃,mt̃1
) + 2m2

t (m
2
t̃1

+m2
t̃2
− 2m2

t )C(pt̃1 , pt;mt,mg̃,mt̃2
)

FF2 = − 2B(pt̃1 ;λ,mt̃1
) − 2B(pt;λ,mt) − 4B(pt̃1 ;mg̃,mt) + 2B(pt;mg̃,mt̃1

)

+4B(pg̃;mt,mt̃1
) + 4µg̃t1C(pt̃1 , pt;mt,mg̃,mt̃1

) + 2(m2
t̃1
−m2

t̃2
)C(pt̃1 , pt;mt,mg̃,mt̃2

)

FF3 =
1

m2
g̃m

2
t

{

2m2
t [B(pt;mg̃,mt̃2

) −B(pt;mg̃,mt̃1
)] + µg̃t1(µg̃t1 − 4m2

t )C(pt̃1 , pt;mt,mg̃,mt̃1
)

− (µg̃t1µg̃t2 − 2m2
tµg̃t1 − 2m2

tµg̃t2)C(pt̃1 , pt;mt,mg̃,mt̃2
)
}
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FA1 = − 2ǫ µg̃t1B(pt̃1 ;mg̃,mt) + 4(m2
t −m2

t̃1
)B(pg̃;λ,mg̃)

+2m2
t [B(pt;mg̃,mt̃2

) −B(pt;mg̃,mt̃1
)] + 4m2

g̃B(pg̃;mt,mt̃1
)

+4m2
g̃(m

2
g̃ −m2

t̃1
)C(pt̃1 , pt;mt,mg̃,mt̃1

) − 2m2
t (m

2
t̃1

+m2
t̃2
− 2m2

t )C(pt̃1 , pt;mt,mg̃,mt̃2
)

FA2 =4ǫB(pt̃1 ;mg̃,mt) − 4B(pg̃;λ,mg̃) − 4B(pg̃;mt,mt̃1
)

−4µg̃t1C(pt̃1 , pt;mt,mg̃,mt̃1
) − 2(m2

t̃1
−m2

t̃2
)C(pt̃1 , pt;mt,mg̃,mt̃2

)

FA3 =
1

m2
g̃m

2
t

{

2m2
t [B(pt;mg̃,mt̃1

) −B(pt;mg̃,mt̃2
)] + µg̃t1(4m

2
t − µg̃t1)C(pt̃1 , pt;mt,mg̃,mt̃1

)

+ (µg̃t1µg̃t2 − 2m2
tµg̃t1 − 2m2

tµg̃t2)C(pt̃1 , pt;mt,mg̃,mt̃2
)
}

FB =N
[

µt1g̃C(pt̃1, pt;mt̃1
, λ,mt) − µg̃t1C(pt̃1 , pt;mg̃,mt, λ) − µ1g̃tC(pt̃1 , pt;λ,mt̃1

,mg̃)
]

−2CFµt1g̃C(pt̃1 , pt;mt̃1
, λ,mt) (C.9)

corrections from real-gluon radiation:

∆Γr =
αs|MB |2
4π2mt̃1

[

(m2
t̃1
−m2

t )It̃1 g̃ −m2
t It̃1t −m2

g̃Ig̃g̃ − Ig̃

]

+
αsCF |MB |2
4π2mt̃1

N

[

−m2
t̃1
It̃1 t̃1 −m2

t Itt + µt1g̃It̃1t + It̃1 − It

]

+
α2
sC

2
F

πmt̃1

I g̃t +
α2
sNCF
πmt̃1

I t̃1g̃

(C.10)

renormalization of the coupling constant as defined in eq.(B.49):

∆Γc = −Nαs|MB |2
4π

[

1

ǫ
− γE + log(4π) − log

(

µ2
R

µ2

)](

11

3
N − 2

3
N − 2

3
nf −

1

3
nf

)

(C.11)

finite shift of the Yukawa coupling relative to the gauge coupling in MS, as described in chapter 1.5:

∆Γf =
Nαs|MB |2

4π

(

4

3
N − CF

)

(C.12)

decoupling of the heavy flavors from the running strong coupling constant:

∆Γdec =
Nαs
π

|MB |2
{

nf − 1

12
log

(

µ2
R

m2
q̃

)

+
1

24
log

(

µ2
R

m2
t̃1

)

+
1

24
log

(

µ2
R

m2
t̃2

)

+
1

6
log

(

µ2
R

m2
t

)

+
N

6
log

(

µ2
R

m2
g̃

)}

(C.13)
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[4] L.E. Ibañez and G.G. Ross, Phys.Lett. B105 (1981) 439; S. Dimopoulos, S. Raby, and F. Wilczek,

Phys.Rev. D24 (1981) 1681; J. Ellis, S. Kelley, and D.V. Nanopoulos, Phys.Lett. B249 (1990)

441; P. Langacker and M. Luo, Phys.Rev. D44 (1991) 817; U. Amaldi, W. de Boer, and

H. Fürstenau, Phys.Lett. B260 (1991) 447; P. Langacker, in ’Precision Tests of The Electroweak

Standard Model’ (ed. P. Langacker), Singapore, 1995.

[5] see e.g. A. Brignole, L.E. Ibáñez, and C. Muñoz, CERN-TH/97-143, hep−ph/ 9707209 to appear
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