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Abstract

We introduce a series of articles reviewing various aspects of integrable

models relevant to the AdS/CFT correspondence. Topics covered in these

reviews are: classical integrability, Yangian symmetry, factorized scatter-

ing, the Bethe ansatz, the thermodynamic Bethe ansatz, and integrable

structures in (conformal) quantum field theory. In the present article we

highlight how these concepts have found application in AdS/CFT, and

provide a brief overview of the material contained in this series.
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In this article we introduce a series of articles reviewing aspects of integrable models. The

articles provide a pedagogical introduction to the topic of integrability, with special emphasis

on methods relevant in the AdS/CFT correspondence. After a brief motivation regarding

the value of general integrable models in the development of theoretical physics, here we

discuss the application of the framework of integrability to the AdS/CFT correspondence.

We then provide an overview of the material contained in the various reviews, referring

back to AdS/CFT applications, and indicating links between the reviews themselves and to

the relevant literature. While written with an AdS/CFT background in mind, the methods

covered in the reviews themselves have applications throughout the wider field of integrability.

Integrability

Integrable models appear throughout theoretical physics, starting from classical mechan-

ics where models such as the Kepler problem can be solved—in the sense of the Liouville

theorem—by integration. In general, integrable models show special behaviour due to many

underlying symmetries, symmetries due to which they can often be exactly solved. Only a

fraction of the physical systems appearing in nature can be described in these terms. Never-

theless, integrable models offer insight into real-world situations through universality, or when

used as a theoretical laboratory to develop new ideas. In statistical mechanics for example,

many subtleties of the thermodynamic limit have been understood by working out specific

models, notably phase transitions in the Lenz-Ising model and the role of boundary conditions

in the ice model. In hydrodynamics, the Korteweg-de Vries equation illustrates how a non-

linear partial differential equation can admit stable, wave-like localized solutions: solitons. In

condensed matter physics, both integrable quantum spin chains and one-dimensional gases

of almost-free particles play a pivotal role. Finally, in quantum field theories (QFTs) in two

space-time dimensions, exactly solvable models helped unravel phenomena like dimensional

transmutation, as in the case of the chiral Gross-Neveu model, or concepts like bosonisation,

as in the case of the sine-Gordon and Thirring models. The general framework to study such

integrable QFTs, mainly associated to inverse and factorized scattering, was laid down in

the 1970s and has found numerous applications since.

Integrability in AdS/CFT

In recent years, the general framework of integrability has been successfully applied in the

context of the AdS/CFT correspondence [1], a concrete realisation of the holographic prin-

ciple [2]. According to this correspondence, string theory on anti-de Sitter (AdS) backgrounds

is dual (equivalent) to conformal quantum field theory (CFT) on the “boundary” of AdS. The
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canonical example of this duality is the correspondence between closed type IIB superstrings

on AdS5×S5 and N = 4 supersymmetric Yang-Mills (SYM) theory in four dimensions. Both

sides of this duality can be studied using integrability-based techniques, at least in the so-

called planar limit. Similar ideas apply to lower dimensional AdS backgrounds, as well as to

deformations of these backgrounds. Part of this progress is reviewed in e.g. [3, 4, 5, 6, 7, 8].

In the AdS/CFT context, integrability enters naturally on the string theory side as a

property of particular two dimensional field theories.1 The details of two dimensional field

theories can be such that their classical equations of motion can be tackled by the inverse

scattering method, an approach initiated in the 1960s [9] and mainly developed in the following

decade [10]. In particular, the equations of motion of such integrable field theories can be

represented as the flatness of a so-called Lax connection. Now in the planar limit, closed

string theory reduces to field theory on a two-dimensional cylinder—the worldsheet of a

single string—and this field theory is integrable [11] in the above sense. By expanding the

machinery of classical integrability it is possible to tackle the semi-classical spectrum of

integrable field theories as well, resulting in what is known as finite-gap equations [12]. The

semi-classical limit of our closed string can be approached in this spirit [13], see also [14].

Moving beyond the semi-classical spectrum is more involved, as will come back shortly.

The integrability appearing on the CFT side of AdS/CFT is that of integrable spin

chains. Integrable spin chains such as the Heisenberg spin chain can be solved by the Bethe

ansatz [15]. This is an ansatz for the eigenfunctions of a spin-chain Hamiltonian, written

in terms of collective excitations called magnons or spin waves, and their scattering matrix

(S matrix). There is an underlying algebraic structure however, based on an R matrix and

Lax matrix, which leads to the algebraic Bethe ansatz also known as the quantum inverse

scattering method [16]. Historically, the appearance of an integrable spin chain was the first

indication of integrability in AdS/CFT [17].2 Working in N = 4 SYM theory at one loop

order, Minahan and Zarembo showed [17] that by identifying single-trace operators with

particular spin-chain states, the dilatation operator—whose eigenvalues yield the anomalous

dimensions of such operators—becomes the Hamiltonian of an integrable spin chain [19],

whose spectrum can be found via the Bethe ansatz.

Though different in their appearance, these two types of integrability share a common

symmetry structure. Two-dimensional integrable field theories typically have infinitely many

conserved charges that can be packaged into a powerful algebraic structures, and these same

structures come back in spin chains. A prototypical example of such a structure, particularly

important in AdS/CFT, is the Yangian algebra [20]. Indeed, the classical integrability of the

1Our exposition is not chronological. Some historical aspects are discussed in [4].
2In the context of gauge theory, integrability was previously encountered in high energy hadron scattering

in QCD [18].
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string brings with it an infinite set of conserved charges [11], which form a Yangian algebra

that can also be seen as the symmetry of the quantum spin chain of SYM [21].

Going beyond one loop in SYM, or semi-classics in string theory, requires more work,

but is possible. The presence of integrable structures at higher loops in SYM [22, 23, 24]

makes it possible to find an exact S matrix for the spin chain magnons [24] and write down

an asymptotic Bethe ansatz [23]. This S matrix and Bethe ansatz have counterparts in the

dual string theory [25, 26, 27]. There, the S matrix is simply the worldsheet S matrix of

the light-cone gauge-fixed string [27]. To define this S matrix and the associated asymptotic

states we need to take the limit where the length of the gauge-fixed string (volume of the

theory) goes to infinity. The asymptotic Bethe ansatz then arises by re-imposing periodic

boundary conditions on approximate wavefunctions obtained from the S matrix using the

ideas of factorized scattering.

The reason for distinguishing the asymptotic Bethe ansatz from the (exact) Bethe ansatz

is clear on the string theory side: merely imposing periodic boundary conditions while work-

ing with the S matrix of the infinite length string, neglects possible virtual particles wrapping

around the worldsheet (cylinder) [28]. This failure of the asymptotic Bethe ansatz for the

string [29] is paralleled by a similar breakdown in the N = 4 SYM spin-chain [30]. Here the

dilatation operator features interactions whose range increases with the loop order, so that

eventually the interaction range is of the order of the length of the composite operator under

consideration, and the Bethe ansatz breaks down. In relativistic field theory models these

finite size effects can be understood by integrability techniques [31, 32] using the thermody-

namic Bethe ansatz [33]. Extending these ideas to the integrable string sigma model gives the

AdS5/CFT4 thermodynamic Bethe ansatz [34] and its improvement known as the quantum

spectral curve [35]. It is now possible to compute the energy of closed string states nonper-

turbatively with arbitrary numerical precision, or analytically in a weak coupling expansion

up to loop orders prohibitively difficult to reach by conventional techniques.

The chain of reasoning leading up to this description of the spectral problem involves vari-

ous unproven albeit well-tested assumptions, in particular the hypothesis that integrability

persists at the quantum level at arbitrary coupling. In some simpler models—specific con-

formal field theories and their massive deformations—the resulting structures can be more

rigorously derived from first principles by methods introduced by Baxter [36] and developed

by Bazhanov, Lukyanov and Zamolodchikov [37]. Doing so in the AdS/CFT context would

undoubtedly provide remarkable insights, but thus far the answer appears to be elusive [38].
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The articles

Beyond the spectral problem for AdS5/CFT4 described above, integrability based approaches

to other observables and other instances of AdS/CFT are being actively pursued. While this

landscape is motivation for this series of articles, we do not aim to review all of it. Rather,

we review some of the key ideas upon which the progress in this field is based, ideas which

can often be introduced and understood in simpler models. In fact, these ideas and methods

are central to many integrable models and not just those appearing in AdS/CFT, and as

such the material presented in this series is relevant to integrability in general.

Our aims have required us to make choices: we will cover a relatively broad set of tech-

niques and highlight how they are related to each other, at the expense of the details of the

many models where they can be applied. Our key example is the chiral Gross-Neveu model,

as a good compromise between keeping relevant features of general integrable models and

reducing technical complications. Where appropriate, the individual chapters contain further

references to the AdS/CFT or integrability literature.

Below we give a detailed overview of each of the chapters, appearing in their suggested

reading order [39, 40, 41, 42, 43, 44]. The lectures on Classical Integrability and Yangian

Symmetry give the historical and mathematical background for the other lectures. After-

wards we turn our attention to scattering matrices, with special focus on integrable scattering

in two dimensional QFTs. Building on this, we discuss how to obtain (asymptotic) Bethe

ansatz equations, both in the original and algebraic approach. Next, we move to the thermo-

dynamic Bethe ansatz as a tool to describe integrable models either at finite temperature or

at finite size. The last article explores the relation between the symmetries stemming from

integrability and those of conformal symmetry in two-dimensional QFTs, tying together most

of the material presented in the previous articles. We have aimed to keep notation uniform

throughout the articles.

Chapter I: Classical Integrability. The chapter on Classical Integrability [39] deals with

classical Hamiltonian systems which are integrable by Liouville’s theorem, and explores the

algebraic techniques which are available to exactly solve such systems. This part is mostly

concerned with the classical inverse scattering method, where Lax pairs and r-matrices are

treated and their properties outlined, culminating in a discussion of soliton solutions and

the Gel’fand-Levitan-Marchenko equation. Although most of the these topics are reviewed

in standard monographs, such as [45], some of the algebraic aspects—such as the Belavin-

Drinfeld theorems [46]—tend not to be, and are here presented in a compact uniform fashion.

This section introduces tools of classical integrability that play an important role in de-

scribing strings on various anti-de Sitter spaces [4, 6]. Although the applications to string
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theory are rich of algebraic complications (see for instance [47, 7]), the basic ideas are practic-

ally the same as those contained in this review, which therefore works as a good entry point

for anyone interested in delving into the modern topics connected to AdS/CFT integrability

in the strong coupling (classical string theory) regime.

Chapter II: Yangian Symmetry. The quantum Yang-Baxter equation represents one

of the most prominent features of integrable models. The lectures on Yangian symmetry of

this chapter [40] deal with the algebraic structure that underlies rational solutions to this

equation. The Yangian beautifully extends the concepts of classical integrability reviewed

in Chapter I [39]. Mathematically, this symmetry enhances an ordinary Lie algebra to a so-

called quantum group with the structure of a Hopf algebra.3 In physical models, the crucial

difference of the Yangian to ordinary Lie algebra symmetries lies in the fact that the Yangian

generators represent non-local symmetries, which act on a discrete or continuous space. This

one-dimensional space can be realized in many different ways making the Yangian a rather

universal concept with strong implications for a given theory—classical or quantum.

In particular, the Yangian appears in the context of (1+1)-dimensional field theories,

in spin chain models and it underlies the integrability of the AdS/CFT correspondence.

Its prime application is to bootstrap integrable scattering matrices which are discussed in

Chapter III [41], and its algebraic structure provides the basis for the Bethe ansatz reviewed

in Chapter IV [42]. Keeping an eye on the historic development, we provide an introduction

to the subject that contains both the more mature discussions of Yangian symmetry in two-

dimensional models (see e.g. [48]), as well as its modern application to the gauge/gravity

duality (see e.g. [49]). Generic definitions and concepts are illustrated by means of examples

including the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain, as well

as N = 4 super Yang-Mills theory in four dimensions. These lectures aim at providing an

introductory overview, which draws connections between different physical applications and

mathematical aspects of the rich subject of Yangian symmetry.

Chapter III: S matrices and Integrability. The third chapter [41] of this collection

deals with a fundamental object in quantum integrable theories: the S matrix, i.e. the

operator that maps initial to final states in a scattering process.

First of all, knowing the S matrix is crucial for calculating the energy spectra in the

large volume limit, via the derivation of the asymptotic Bethe ansatz, as will be reviewed

in Chapter IV [42]. Beyond the asymptotic regime, the S matrix is a key ingredient for the

leading and exact finite-size corrections of the energies, calculated by the Lüscher formulas

and the thermodynamic Bethe ansatz respectively, both discussed in Chapter V [43].

3The Yangian represents one member of the family of quantum groups that are found in integrable models.
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The miracle happening in (1+1)-dimensional integrable models, as we will explain in

this chapter [41], is the possibility to determine the S matrix exactly, due to the highly

constraining conservation laws of these particular theories and few analytical assumptions.

This also makes it possible to derive the S matrices for bound states, if any, of the theory.

From an algebraic point of view, the S matrix can often be identified with a representation

of the universal R-matrix of a Hopf algebra, reviewed in Chapter II [40]. This places the

properties of the S matrix in an algebraic setting, and allow us to generalize its derivation

also beyond the relativistic case.

Finally, the role played by the S matrix in the determination of form factors will also be

briefly mentioned, and the S matrices of sine-Gordon, SU(2) and SU(3) chiral Gross-Neveu

models will be discussed. Through these examples, it will be possible to show how to derive

the exact S matrices and some simple form factors in practice, both for fundamental and

bound states. We will also briefly discuss non-relativistic S matrices and overview their

applications to the AdS/CFT correspondence.

Chapter IV: The Bethe Ansatz. Bethe ansatz techniques originated from the explora-

tion of spin chains as models of condensed matter systems. The same methods also turned

out to play a key role in computing the spectrum of 2d integrable field theories. These two

applications have been recently united in the context of integrability in the AdS/CFT cor-

respondence. The Bethe ansatz in AdS/CFT [23] realizes a beautiful interpolation between

integrable spin chains on the gauge theory side [17] and the integrable structure of a 2d sigma

model on the string theory side [25].

Chapter IV of this collection [42] covers various aspects of the Bethe ansatz in a ped-

agogical way, serving as a preparation for understanding its applications in AdS/CFT. This

chapter logically continues the article dedicated to exact S matrices [41]. It is discussed how,

knowing the S matrix, we can use the Bethe ansatz to find the theory’s non-perturbative

spectrum, albeit only in large volume. As explicit examples, the two-dimensional SU(2) and

SU(3) chiral Gross-Neveu models are considered. We will see that to compute the spectrum

one should first solve an auxiliary spin chain, which in these cases is the famous Heisenberg

XXX model. Its solution is covered in detail, including the coordinate and the algebraic Bethe

ansatz approaches, as well as the nested Bethe ansatz in the SU(3) case. It is also demon-

strated that in the classical limit the Bethe equations encode a Riemann surface known as

the spectral curve of the model. Finally, it is shown how the familiar 1d oscillator in quantum

mechanics can be solved via a Bethe ansatz-like method.

Chapter V: The Thermodynamic Bethe Ansatz. The thermodynamic Bethe ansatz

(TBA) is a method used to describe the thermodynamics of integrable systems solved by
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the Bethe ansatz, resulting in a set of integral equations whose solution determines the

free energy of the model in thermodynamic equilibrium. After its inception at the end of

the sixties by Yang and Yang [33] to describe the thermodynamics of the one dimensional

Bose gas with delta function interaction (the Lieb-Liniger model), the TBA was quickly

and broadly adopted. Its use now ranges from describing the thermodynamics of integrable

spin chain models such as the XXZ spin chain [50], to computing the spectra of integrable

field theories on circles of finite circumference [31, 32] and beyond. This is how the TBA

originally entered in the AdS/CFT correspondence for instance: the exact energy spectrum

of the AdS5 × S5 superstring is encoded in a set of TBA equations [34]. At the same time,

equations of TBA type arise in determining the area of classical string worldsheets [51] for

example.

The fifth chapter of this series [43] provides an introduction to the TBA, focussing on the

conceptual ingredients—root distributions, counting functions, particle and hole densities,

the string hypothesis in case of bound states—that underlie this method. We illustrate this

discussion on concrete examples, starting from simple free electrons, then the original Bose

gas, and finally the XXX spin chain and SU(2) chiral Gross-Neveu model as respectively

spin chain and field theory examples with nontrivial string hypotheses. We also discuss the

simplification of TBA equations, the derivation of Y systems from TBA equations and the

equivalence between the two modulo analyticity data, and the use of the TBA in finite volume

integrable field theory, including excited states and Lüscher formulae.

Chapter VI: Integrable Structures in Quantum Field Theory. The expression “in-

tegrable structures” appearing in the title of this article can be interpreted in two different

ways. On the one hand, it is used as a label for fundamental objects appearing in quantum

integrable models, that is to say integrals of motion, transfer matrices, Baxter Q-operators

and so on. There exists, however, a broader meaning to this expression, referring to the

nature and the properties of the algebraic foundations on which the quantum integrable the-

ories stand. The fundamental objects named above then appear as the main characters in

the story of the integrable structures. This tale has been known for decades in the case of

spin chains and lattice models [36], but it was only in the nineties that it was first told for a

2D quantum field theory [37, 52]. The approach of Bazhanov, Lukyanov and Zamolodchikov,

nowadays referred to as the BLZ method, was the first successful attempt at the construction

of the fundamental integrability objects from the algebraic structure of a field theory. Al-

though this does not deal directly with theories associated to sigma models and AdS/CFT,

it nonetheless provides general recipes with broader applications [32, 53]. Another import-

ant, pedagogical aspect, is that the BLZ method employs an array of mathematical concepts

with connections to most approaches to integrability. In this way, the sixth chapter of this
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series [44] can serve as a playground where the methods and concepts discussed in the other

chapters can be put in motion.
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R. Frassek, A. Sfondrini, I. M. Szécsényi and S. J. van Tongeren, Journal of Physics A (2016),

to appear.

[44] S. Negro, “Lectures on Integrable Structures in Quantum Field Theory and Massive ODE/IM

Correspondence”, arxiv:1606.xxxxx, in: “An integrability primer for the gauge-gravity

correspondence”, ed.: A. Cagnazzo, R. Frassek, A. Sfondrini, I. M. Szécsényi and
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