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Abstract

HERA is the high energy electron(positron)-proton collider at Deutsches Elektronen-Synchrotron
(DESY) in Hamburg. Following eight years of successful running, five of which were with a longitudi-
nally spin polarized electron(positron) beam for the HERMES experiment, the rings have now been
modified to increase the luminosity by a factor of about five and spin rotators have been installed for
the H1 and ZEUS experiments. The modifications involve nonstandard configurations of overlapping
magnetic fields and other aspects which have profound implications for the polarization. This the-
sis addresses the problem of calculating the polarization in the upgraded machine and the measures
needed to maintain the polarization. A central topic is the construction of realistic spin—orbit trans-
port maps for the regions of overlapping fields and their implementation in existing software. This
is the first time that calculations with such fields have been possible. Using the upgraded software,
calculations are presented for the polarization that can be expected in the upgraded machine and an
analysis is made of the contributions to depolarization from the various parts of the machine. It is
concluded that about 50 % polarization should be possible. The key issues for tuning the machine are
discussed. The last chapter deals with a separate topic, namely how to exploit a simple unitary model
of spin motion to describe electron depolarization and thereby expose a misconception appearing in
the literature.

Descriptors

electron polarization, luminosity upgrade, overlapping fields, spin rotators, numerical spin—orbit maps,
spin diagnostics, unitary model
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Chapter 1

Introduction

HERA is a 6.3 km long electron(positron)/proton double ring collider situated at Deutsches Elektronen
Synchrotron, DESY, in Hamburg, Germany. The machine was commissioned during 1991 and has been
providing luminosity since June 1992. The electron(positron) beam?! is accelerated to an energy of
27.5 GeV and, since 1998, the proton beam energy used for routine operation has been 920 GeV. The
ring has four experimental regions. The beams collide head—on at two interaction points, IP North
and IP South, where the H1 and ZEUS experiments are located. Two further experimental stations
make separate use of the et/~ and proton beams. HERMES, which is located in the East straight
section, has since 1995 utilized the longitudinally polarized et/~ beam in collisions with a polarized
gas target. The relatively new (1998) HERA B experiment, located in the West straight section, uses
the proton beam halo interacting with a wire target. The physics studied at HERA spans a wide field
including probing the internal structure of the proton and studies of the fundamental interactions
between particles (H1 and ZEUS), measurements aiming to resolve the spin distributions of quarks
and gluons in nucleons? (HERMES), and studies of CP—violation in B-meson systems (HERA B).
The layout of HERA and the pre-accelerators is depicted in Figure 1.

The instantaneous polarization vector of an ensemble of N particles is defined as the ensemble
average of the spin expectation values S; (V¢ € {1,...,N}) through

P(t)

SN

12 - -

2 0= (5),,. (1)
and the fact that it is possible to have polarized beams for HERMES is rooted in a discovery made
at the beginning of the 1960’s. In 1961 Ternov, Loskutov and Korovina [TLK62] made the first
prediction of radiation induced polarization of electrons and positrons, caused by the quantum emission
of synchrotron radiation when these particles travel in electromagnetic fields. This work was followed
up a couple of years later by Sokolov and Ternov [ST64]. According to their theory, electrons circulating
in the magnetic guide field of a storage ring gradually become polarized antiparallel to the field,
whereas positrons become polarized parallel to the field. This naturally occuring polarization has been
termed “vertical” or “transverse” polarization. Experiments soon followed and transverse, radiation
induced polarization was first reported measured at the ACO storage ring in Orsay and at VEPP-2
in Novosibirsk [Be68, Ba72]. Since then high levels of vertical polarization in e*/~ beams have been
obtained at several high energy machines [Bb96]. This is largely due to work done in the late 70’s
and early 80’s, especially at DESY [Ch81a, Br82, MR&83, RS85, Bb&5a], contributing to the practical

!In the following the abbreviation e*/~ will be used to denote positrons and/or electrons.
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Figure 1.1: The HERA collider and the injector chain with PETRA.



realization of vertically, radiatively polarized beams, despite the inherent polarization limitations in
real machines.

Unfortunately, although vertical polarization is useful as a means of making very precise beam
energy calibrations (see for instance [Ar92]), it is not very attractive to experimentalists studying
e — p collisions. They require longitudinal polarization instead. This means that the natural vertical
polarization must be rotated into the longitudinal direction just before an interaction point and then
back to the vertical just after the interaction point, using special magnet configurations. A specific
kind of such so called spin rotators will be described in some detail in Chapter 4. With the aid
of spin rotators and with the implementation of a specially designed machine optic facilitating high
polarization, using a technique which is also described in Chapter 4, longitudinal radiative electron
polarization was achieved for the first time in the history of storage ring physics at the East IP of
HERA in May 1994 [Bb95]. As already mentioned, HERMES has been using this unique feature of
HERA since 1995 to study the spin structure of the nucleon. The spin of the nucleon can be broken
down into four components

W= = (Mgt M)+ Ag+ Lo

where Ag, is the contribution from the valence quarks, Ag; comes from the sea quarks, Ag is the
gluon polarization and L, is a possible contribution from the orbital angular momentum of the
partons. Measurements with HERMES have confirmed the original findings by the European Muon
Collaboration (EMC) at CERN from 1988 [EMCS88] that the total spin carried by the quarks only
amounts to about 30 % of the nucleon spin. A special aspect of the HERMES experiment is that it,
by the detection of the scattered hadrons in coincidence with the scattered leptons from deep inelastic
scattering (DIS) processes, offers the possibility to pin down the spin contributions of the various
quark flavours to the spin of the nucleon. Furthermore HERMES has been the first high energy
physics experiment able to perform direct measurements of the gluon polarization. Crucial for these
experiments is, apart from a highly specialized target and detector system, the provision of the high
current longitudinally polarized et/~ HERA beam. The efficacy by these measurements for a given
luminosity (see next chapter) scales like P? where P, is the beam polarization.

As a tool for studying the internal structure of nucleons HERMES is, with its fixed target, limited
to processes with centre of mass energies (y/s) little more than 7 GeV. This has to be compared with
the collision experiments H1 and ZEUS where /s &~ 300 GeV. Over the years, since these experiments
started to collect data, H1 and ZEUS have contributed to the wealth of knowledge in elementary
particle physics, especially on the inner structure of the proton and on the fundamental interactions
between particles. DIS measurements at H1 and ZEUS show directly for the first time that at high
momentum transfers, with Q2 values® above 10* GeV?, the electromagnetic and weak forces become
similar in strength [Sc98]. However, despite the excellent performance of HERA in recent years (see
Figure 2.1 in Chapter 2), the relatively low interaction rate has precluded detailed investigation of this
hitherto unexplored high Q? region. An extension to smaller z,, which is the fractional momentum
carried by the struck quark in a DIS scattering process (the so called Bjgrken scaling variable), would
open up new windows to QCD dynamics. There has therefore been a strong interest in increasing
the kinematic range of the HERA experiments. The need for higher interaction rates has led to the
decision to launch a luminosity upgrade of HERA. This requires the measures described in Chapter 2.
The opportunity has also been taken to install two more pairs of spin rotators to serve H1 and ZEUS
with longitudinal e*/~ beam polarization.

There is also interest in storing polarized proton beams in HERA, which would add substantially
to the physics potential of the collider. See [IRK96, pp99]. This however would require major and

7@? is the negative square of the 4-momentum transfer.
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costly modifications to both the preaccelerators and to HERA, and a decision on whether or not this
will be implemented has not yet been taken. A study of the feasibility of providing polarized proton
beams for HERA is given in [Vo00, Ho00a].

This work is not a document on high energy physics, but instead presents a study of the implications
of the HERA luminosity upgrade on the e/~ polarization and suggested measures needed to obtain
a high degree of longitudinal polarization for H1 and ZEUS and, in addition, maintain the high
polarization for HERMES after the upgrade. The reader interested in the high energy physics should
consult the literature from the HERA experiments.

The work is structured as follows. Chapter 2 gives an overview of the luminosity upgrade project
and presents the most important machine parameters in this upgrade. In Chapter 3 an introduction
to the necessary theoretical concepts for describing radiative spin polarization is given. A summary
of the experience gathered at HERA on operation with et/~ polarization and a presentation of the
impact that the upgrade will have on the latter is found in Chapter 4. The HERA polarimeters
and their upgrade are also presented in Chapter 4. Methods developed for modelling the complicated
field configurations in the new interaction regions are described in Chapter 5. Polarization calculations
made for the upgraded HERA using these models in various computer codes are presented in Chapter 6.
Chapter 7 contains an alternative model for describing polarization resonance phenomena, applicable
under certain conditions, and is an extension of an earlier study to which the author has contributed.
Finally, the conclusions are presented in Chapter 8.

A few words on conventions chosen for this thesis are in order. For Cartesian coordinates, the
generic labelling (z,z,s) is used for right-handed systems. Note that this implies that quantities
referring to the vertical plane are labeled with a z, whereas many authors prefer to use y. Variable
length vectors are symbolized by arrows (e.g. ﬁ), whereas unit vectors are symbolized by “hats”
(e.g. P).* SI units are used throughout. In Chapter 7 it was not possible to set the Pauli matrices
occurring in some exponents in boldface font. Due to the finite number of Latin and Greek letters, the
same symbols are sometimes used for different physical and mathematical quantities. The meaning
should however always be clear from the context.

*Note that the quantity & which occurs in Chapter 7 is not a unit vector, but the symbol has been used so as to agree
with a notation from the literature.
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Chapter 2

The HERA Luminosity Upgrade
Project

2.1 General

The HERA collider is a unique facility, the first of its kind, bringing high energy charged particle beams
of totally different species into collision. The performance of HERA has steadily improved since the
startup and has now reached or surpassed design goals for most key parameters. The luminosity
delivered by HERA to the colliding beam experiments over the years illustrates this progress well, see
Figure 2.1. In 2000 the peak luminosity exceeded the design value of 1.5-10%! cm~2 s~!. The averaged
specific luminosity per bunch of 7.4 -10%° cm=2? s=! mA~?2 achieved in the same year is more than
twice the original design value. The corresponding integrated luminosity delivered by HERA reached
a value close to 70 pb~!.

HERA luminosity 1992 — 2000

FT I I I I I I ! I I I ]
?U_— 2000 —_?U

Integrated Luminosity (pb™')

=01

" Feb Mar Apr May Jun Jul Aug Sep Oct Now Dec

Figure 2.1: Integrated luminosity delivered by HERA to ZEUS versus time.

The margin for pushing these numbers further, given the original layout of the machine, has today
largely been exhausted. As indicated in Chapter 1, there has however been a strong interest from
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the users to widen the domain of physics accessible with HERA. During a workshop in 1995/1996 on
“Future Physics at HERA” [IRK96] a discussion was held concerning the fields of high energy physics
that could be reached within the potential of an upgraded HERA, if the machine could deliver an
integrated luminosity of 1 fb~! over an operational period of five years. Such a luminosity would make
possible unique and sensitive tests of electroweak physics, QCD and physics beyond the Standard
Model. Furthermore, the availability of longitudinally polarized electron and positron beams at the
colliding beam experiments would add important features to the physics potential of the accelerator.

In order to match the investigations of the user groups, the HERA workshop also included a
working group looking into the machine aspects of a luminosity upgrade of HERA. The conclusion
arrived at by this group was that the most promising way of achieving the desired luminosity increase
would be to reconstruct the interaction regions (IRs) so as to allow a substantial decrease of the -
functions of the beams in both transverse planes at the interaction points. A preliminary version of
such a redesign of the IRs was layed out in the proceedings.

The work on the redesign of the HERA IRs and connected issues was continued after the “Future
Physics at HERA” workshop by physicists from the DESY machine group and members of the H1
and ZEUS collaborations. Many different issues have been addressed such as magnet design and
construction, lattice design, synchrotron radiation absorbers, vacuum systems, mechanical support
structures, instrumentation, e¥/~ beam stability, and polarization. The goal of the luminosity upgrade
project has been to devise a machine that allows an increase of the luminosity by a factor of about
5 compared to the original HERA design, while still delivering a high degree of longitudinal spin
polarization to the HERMES experiment and, additionally, delivering longitudinal polarization to H1
and ZEUS. The project was officially approved in December 1997 and in September 2000 HERA was
shut down for the rebuilding of the machine in accordance with the new design.

2.2 Upgrade concept and parameters

The HERA luminosity upgrade is described in detail in a project design report from August 1998 [Sc98].
To put the following chapters in context, and especially Chapter 6 that contains discussions on, and
results of, polarization simulations for the HERA—e upgrade lattice, the general concept and the most
important parameters of the luminosity upgrade will be presented here.

Apart from the beam energies the most important parameter at a colliding beam facility, as far as
high energy physics is concerned, is the counting rate, R. The counting rate for a particular process
is expressed in terms of the luminosity L, which describes the geometry and characteristics of the
incident beams, by

R=0LA (2.1)

The quantity o is the total cross section for the process and A is the corresponding acceptance of the
detector. The luminosity of HERA can be written as

[ = NeNpr,col frev

2 2 2 2
2my/oz. + Tipr\/Oze + 03,

(2.2)

where NV, is the number of leptons per bunch, N, is the number of protons per bunch, Ny .. is the
number of colliding bunches per beam !, f,., is the revolution frequency and Oy ze,p are the rms beam

'In HERA a small number of non—colliding “pilot” bunches are used for background correction of the luminosity
measurement.

12



sizes at the IP of the lepton and proton beams respectively. In order to understand the concept chosen
for boosting the luminosity in HERA, it is instructive to write the luminosity in terms of the quantities
limiting it.

The beam dynamics in an et/ ring is strongly influenced by the emission of synchrotron radiation.
Moreover, the energy lost per turn by an electron(positron) scales like £ where F is the energy. Thus
the achievable et/~ energy and the beam current I. = eNeNp 1ot frew (Where Ny 4o is the total number
of lepton bunches, including pilot bunches) are restricted by the available RF power. Measures have
been taken to soften this constraint in HEERA by installing more RF accelerating cavities, but the high
costs associated with a major upgrade of the RF system prevents this option from being extended
further. At the highest energies there are also difficulties in obtaining stable beam conditions for the
design current of 58 mA. In practice this means that the operating e/~ energy in HERA after the
upgrade will be lower than the design value of 30 GeV. However, the need for longitudinally polarized
beams puts a lower limit on the et/ beam energy of approximately 27 GeV. I will elaborate on this
point in Chapter 6.

For high energy physics an increase in luminosity is often equivalent to an increase in the energy.
In 1998 the proton beam energy was successfully increased from the original design value of 820 GeV
to 920 GeV. A further increase bringing the energy up to 1 TeV is not feasible however, since the
superconducting proton magnets cannot be operated with sufficient safety at such high energy levels.
Owing to space charge effects in the injector chain, especially in DESY III, the number of protons
per bunch is restricted. The maximum beam “brightness”, given here as N, /e, with €2 being the
normalized proton beam emittance, therefore poses another limitation to the attainable luminosity in

HERA.

The experience accumulated from years of running colliders such as HERA shows that matching
of the et/~ and proton beam sizes, as well as alignment of the beams at the IPs, are crucial for
the luminosity [BW93]. Matching and alignment are necessary for reducing the nonlinear effects of
the beam—beam interaction. In particular the proton beam in HERA suffers if the matching is poor,
leading to emittance blowup, short lifetimes and large backgrounds. Hence

*

Tye = Oyp =/ Eyellye = \/5ypﬁyp =0, (2.3)

where 3 is the envelope function of Courant and Snyder [CS58] and &, are the et/= and proton
beam emittances, respectively. The general subscript y is used to denote either the horizontal plane z,
or the vertical plane z. The superscript * is the conventional way of denoting a beam optical quantity
at an IP. Imposing the restriction (2.3), together with the fact that £, ~ ¢, on the proton emittance
enables the luminosity to be reexpressed thus

v 1. N,
zpH zp N

where 7, is the proton Lorentz factor.

From the above argumentation it is clear that the only feasible way to increase the luminosity is to
decrease the proton f-functions at the IPs, and thus due to (2.3), the et/= size at the IPs. However
the G—functions in a drift space increase quadratically with distance s from the IP according to

82

p5(0)

5% is therefore limited from below by the need to accommodate the peaks of the transverse beam
dimensions in the final focus magnets within the available aperture. Furthermore if 3* is made too

By(s) = 35(0) + (2.5)
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small, the 3, in the focusing quadrupoles will be so large that the necessary chromaticity correction
becomes difficult.

It is important for the beam stability that the beams are separated early after collision. Moreover
the et/~ beam must not be exposed to the strong focusing fields from the proton quadrupoles. In
HERA, head-on collisions are achieved by bending the incoming et/~ beam into the path of the
proton beam and then bending it out again after collision. This collision scheme is carried over to
the new design. To achieve the strong focusing needed for small beam sizes at the IPs, and to obtain
the early separation required, a solution employing superconducting separator magnets with gradient
fields has been chosen. Such magnets have the advantage that they can be built with small outer
dimensions while retaining relatively large apertures, thereby enabling them to be placed partially
inside the experimental detectors — an unconventional solution. Note that the new IR design does
not leave any space for the “anti—solenoids” which in the previous layout compensated for the effects
of the experimental solenoids on orbit and spin motion. Part of this compensation will be taken over
by correction coils contained within the superconducting magnets.

The first proton magnets are placed 11 m from the IPs. At this position the beams are separated
by about 60 mm, which is sufficient to accommodate the first of the two proton septum quadrupoles.
The maximum tolerable f—functions at this location, together with the apertures of the separator
magnets, determine the minimum value of the proton 7. The tight design, together with the matching

condition, makes the horizontal et/~ beam size critical. However, it is planned to reduce the horizontal
et/~ emittance in HERA from 41 nmrad to 20 nm rad, thereby allowing an aperture of 20 ¢, to be
maintained. The necessary emittance reduction can be achieved by increasing the focusing in the arcs
or by changing the damping partition numbers via a small shift of the RF frequency. Simulations
show [Ho99] that a combination of these two methods is advantageous. In the chosen solution the
phase advance per FODO cell is increased from the pre—upgrade value of 60° to 72° and simultaneously
the RF frequency is increased by about 250 Hz. For this choice of parameters the dynamic aperture
is preserved. A discussion on the impact of the RF frequency shift on the polarization can be found
in Chapter 6, Section 6.4.

A lower limitation on the proton beam size also comes from the so called “hourglass effect”.
Following eqn. (2.5), if the smallest of the proton B, is comparable to the proton bunch length o,
the transverse dimension of the proton bunch varies strongly as the bunch passes through the IP. The
average transverse dimension seen by an on—coming et/~ bunch can therefore be much larger than
that suggested by the 37, so that the gain in luminosity from the shrinking beam waist is counteracted
by a loss from the broadening bunch tails.

Another important issue already mentioned is the beam—beam effect. Each time the electrons
(positrons) collide with the counter-rotating proton beam, the particles are deflected by the electro-
magnetic forces of the on—coming bunches. These forces are very nonlinear functions of the transverse
particle positions, but for small amplitudes the effect is merely a shift of the betatron tunes. This is
quantified by the incoherent linear beam—beam tune shifts. The shifts per IP are given by

NG5
AVt = reNoly (2.6)
Y 21y (0r + 0% ) oy
7, N GP
Avh = r oy (2.7)

2myp(05 4 o) oy

where r. and r, are the classical electron and proton radii respectively. Recent measurements in
HERA [Bi99] indicate that the smaller emittances and higher beam currents ? foreseen in the HERA

2 The original design current for the et/~ beam of 58 mA has been kept as the goal for the upgrade. HERA has so
far operated at a maximum of 86 % of this current.
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upgrade can be tolerated without loss of luminosity. Note that the beam—beam tune shifts will be
significantly higher than in the old optic. In particular the vertical tune shift of the e/~ beam will be
large, Av: = 0.052 per IP. The betatron tune shifts and the nonlinear contributions from the beam—
beam force influence the spin motion, and are therefore potential sources of depolarization. Further
discussion on the topic is found in Chapter 6, Section 6.5.

The strong fields in the new IRs lead to strong synchrotron radiation emission from the e/~ beam,
an important consideration that has required special attention during magnet and absorber design.
The average bending radius of the separation magnets is decreased from the original 1200 m to 400 m
and an estimated 28 kW of synchrotron radiation power will be produced in the detector areas. No
collimation of the synchrotron radiation is possible in these regions implying that the geometry must
be fashioned in a way that allows the radiation fan to pass through the detector areas with minimal
losses and enter regions where it can be absorbed. The “warm” final focus magnets will therefore have
gaps between the coils to let the synchrotron radiation through, and the first absorber will be located
at 11 m from the IPs. To protect beamline and detector components from damage in case of spurious
radiation losses in the detector areas, an extensive programme of measurement and correction of the
orbit in the IRs is foreseen.
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Figure 2.2: New interaction region layout. In the picture the et/~ are moving from left to right and
the protons are moving from right to left.

The layout of the two upgraded interaction regions is illustrated in Figure 2.2. The superconducting
separator magnets mentioned earlier (GO and GG) are placed inside the colliding beam detectors (not
shown here, see instead the illustrations in Figures 5.1, 4.3 and 4.4) at a distance of 2 m on either side
of the IPs. The geometry on the left side (upstream for the e*/~ beam ) and right side (downstream)
differs, owing to asymmetries in detector component arrangements and the need to accommodate the
synchrotron radiation fan on the downstream side. The layout is identical for both the North and
South IRs. On the left side the 3.2 m long combined function magnet, GO, provides the necessary final
focusing and a 8.2 mrad deflection to the et/~ beam. The right hand counterpart, GG, is only 1.3 m
long and will nominally be used for deflection only. Following this magnet are two normalconducting
combined function magnets of type QI, and one of type QJ. On the left side one of the Qls is missing.
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LUMINOSITY UPGRADE DESIGN 2000 (average )
e-Beam p-Beam e-Beam | p-Beam | e-Beam | p-Beam
E [GeV] 27.5 920 30 820 27.5 920
I [mA] 58 140 58 160 45 95
Nypp (Ne or Np) x 10%° 4.0 10.3 3.6 10.1 3.1 7.0
Nb tot 189 180 210 210 189 180
Nb.col 174 174 210 210 174 174
¢, [nmrad] 20 e 48 v 41 e
€./ 0.17 1 0.05 1 0.1 1
* [m] 0.63 2.45 2.2 10.0 0.9 7.0
* [m] 0.26 0.18 0.9 1.0 0.6 0.5
oy X 0, [pm?] 112 x 30 112 x 30 325 x 46 | 262 x 83 | 192 x 50 | 189 x 50
oy [mm] 10.3 191 8.3 200 (85) 11.2 191
Av, /1P 0.034 0.0015 0.019 | 8-107* | 0.012 0.0012
Av, /TP 0.052 4107 0.024 | 6-1071 0.029 | 3-107
min. aperture [0y ] 20 12 23 16 14 10
L, [em™ 27 ImA~2] 1.8-10% 3.4-10% 7.4-10%
L [em™2s71] 7.5-10% 1.5-10% 1.5-10%

Table 2.1: Luminosity upgrade parameters compared with the original design values and the averaged
values for 2000 before the shutdown.

The GO magnet and the first QI on the right hand side are rotated around their midpoints in the
horizontal plane by —4.1 mrad and +2.4 mrad respectively, to fit the apertures of the experiment
detectors. The GG magnet is shifted outwards by 20 mm with respect to the detector axis (H1 and
ZEUS) to provide the necessary space for the synchrotron radiation fan.

In the centre of the QJ magnet, at 9.5 m from the IP, the beam envelopes are completely separated.
The first proton septum quadrupole, QM, located at 11 m is followed by a second QM, three QN type
quadrupoles and two QA type quadrupoles. These proton magnets are specially designed to provide
space for the et/~ beam and for the synchrotron radiation fan. The magnets that follow are all
of HERA standard types. In the electron ring, the first standard focusing element after the IR
combined function magnets is found at 55 m. A total of 4 new superconducting magnets and 56 new
normalconducting magnets is needed for the luminosity upgrade.

An important feature of HERA T has been the possibility to collide the proton beam with either
electrons or positrons. This possibility is maintained in the upgraded machine. The switching between
lepton types will however be more difficult than in the old design. A change from electrons to positrons
(or vice versa) requires the polarity of the separation magnets to be switched. This causes a disturbance
of the trajectory and optic of the proton beam. While the optical errors can be compensated by
changing quadrupole currents, there can be no local compensation of the proton trajectory by dedicated
dipoles due to lack of space. Instead, some of the e/~ low—3 magnets must be repositioned. In the
solution adopted, the IPs are shifted horizontally with respect to the magnetic axes of the final focus
superconducting magnets as well as with respect to the detector solenoids, the shift depending on
lepton type and experiment solenoid.

By implementing the modifications described above the goal of the upgrade programme, an increase
of the HERA luminosity by a factor of about 5, should be achieved. Table 2.1 summarizes the most
important parameters of the luminosity upgrade. A comparison is also made with the original design
and the beam parameters used immediately before the shutdown. The optical functions in the IRs for
the upgrade lattice and the lattice used in the year 2000 runs are illustrated in Figures 2.3 and 2.4.
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Figure 2.3: Optical functions for the e~ in the luminosity upgraded IRs. The boxes indicate magnet
positions.
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Figure 2.4: Optical functions for the e~ in pre—upgrade HERA IRs. The boxes indicate magnet
positions.
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Chapter 3

Radiative Spin Polarization

3.1 Phenomenology

The theory of radiative spin polarization in storage rings is now fairly well understood and has been
treated in many publications. However, even for linear orbital motion the evaluation of the polarization
from the resulting formulae can be a difficult task in practical cases. In the presence of strong
nonlinearities in the orbital motion, as for example in the case of the beam—beam interaction, there
is no analytical formalism. The aim of this section is to give an overview of the subject and to
develop the terminology that will be used throughout this thesis to describe the physics of polarized
electron and positron beams in storage rings. In particular I want to provide the necessary theoretical
background in preparation for describing the impact that the luminosity upgrade will have on the et/
beam polarization in HERA. Comparisons with non-radiative polarization theory and other relevant
observations will be made.

The starting point for our description of polarized electrons in a storage ring is the concept of
spin—flip synchrotron radiation emission, the celebrated Sokolov—Ternov effect [ST64]. When electrons
(positrons) are moving on curved orbits, such as those prescribed by the magnetic guide fields of a
storage ring, they emit synchrotron radiation. By calculating transition rates in terms of exact Dirac
wavefunctions for electrons moving in a homogenous magnetic field, it is found that a very small
fraction of the emitted photons will cause a spin—flip between the “up” and “down” quantum states of
the electrons’ spin. For electrons with spins initially aligned along the magnetic field the probabilities
for transitions from the up-to—down state and down-to—up state differ, leading to the build—up of
polarization antiparallel to the field. Positrons become polarized parallel to the field. The transition
rates for electrons are

wh, = OY3rath (1+-2)
t 16 mlplP \" " 53
5\/§re~y5h( 8 )

Wy = —/—2 _(1-— 3.1

where the arrows indicate the relative directions of the spin in the initial and final states. For positrons
plus and minus signs are interchanged here and elsewhere. An initially unpolarized stored et/ beam
gradually becomes polarized following the exponential law

PST (t) = Peq,ST (1 - e_t/TST) (3'2)
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where the maximum attainable (equilibrium) polarization is given by

_ W Wi 8

= = ~ 0.9238 3.3
I W+ Wi 53 (33)
and the build—up rate is
5v/3 rev°h
T_l = —\/_r P)/ (34)
sT 8 mlpf?

Here p is the (local) radius of curvature of the orbit, and the other symbols have their usual definitions.
It should be emphasized that due to the smallness of the spin—flip transition probability !, the time
scale of polarization build—up is large compared to other processes taking place, such as synchro-
betatron oscillations and radiation damping. The build—up rate depends strongly on energy (y°) and
bending radius (p~2). Its reciprocal, the build—up time 7., is typically of the order of minutes or
hours. For HERA at an operating energy of 27.5 GeV is 7., ~ 40 min.

A generalization of the Sokolov—Ternov build—up rate to electrons moving in arbitrary magnetic
field configurations and with spins initially aligned along an arbitrary unit vector &, has been given
by Baier and Katkov using semiclassical methods [BK67]

where 5 denotes the direction of motion.

A second fundamental property of an electron (positron) moving in the electromagnetic guide fields
of a storage ring is the spin precession. This physical phenomenon also applies to other particles, such
as protons and deuterons in which cases synchrotron radiation emission is normally negligible so that
spin—flip induced polarization is usually not observed.

Neglecting radiation, the evolution of the centre—of-mass spin expectation value, §, 2 of a rel-
ativistic charged particle moving in the electromagnetic fields of a storage ring is contained in the
Thomas-Bargmann-Michel-Telegdi (T-BMT) equation [Th27, BMT59]

— =Q,,,.(F ) xS (3.6)

where

2 -
- B e 1 A SR ~y . &
QBMT__—((l—I_aP)/)B_ —(T‘B)T‘—(a’)/+m)rxc—2)

QBMT is the spin precession vector evaluated in the laboratory frame, with time ¢ used as the in-
dependent variable. B and £ are the magnetic and electric fields given in this frame. The position
vector 7 and its time derivative 7 evolve according to the Lorentz equation [Ja98]. The parameter

'For the HERA electron ring at an energy of E ~ 27.5 GeV, the ratio of the probabilities W is of the

non—flip rad.
order 1-1071°.

2For the rest of this thesis we will work with the vector S =

“the spin”.

S. This vector will often be referred to as simply

SHeo
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a = (g — 2)/2 is the particle’s gyromagnetic anomaly, which for electrons and positrons has the nu-
merical value a ~ 0.0011597, while for protons the value is approximately 1.7928. In the proton case,
the symbol G instead of a is commonly used to represent the gyromagnetic anomaly. By expressing
the T-BMT equation in terms of components perpendicular and parallel to the particle momentum
p and comparing with the Lorentz equation of motion (ignoring the electric fields, which normally in
storage rings are non-zero only in the accelerating cavities)

dp e = .
% = —7—m8L Xp (37)
ds e - - ~

several conclusions can be drawn. From eqs. (3.7) and (3.8) it is seen that for motion perpendicular
to the field, the spin precession around B is a factor (1 4 av) larger than the corresponding orbit
deflection

505pin = (1 + aPY) 5007’bit (39)

The term “1” corresponds to the relativistic cyclotron frequency, w. = —52L and is eliminated in
a transformation to a frame rotating with the particle orbit according to eqn. (3.7). The remaining
factor a7y, which is referred to as the naive spin tune, is simply the instantaneous rate of precession
in the rotating frame. In a perfectly flat ring, while particles complete a full turn with 27 of orbit
deflection, the spins are rotated av times around the vertical direction with respect to the orbit.
Inspection of eqn. (3.8) also reveals that the precession rate around a fixed transverse field at high
energies is essentially independent of energy (1/v < 1), whereas for longitudinal fields (as in solenoids)
the precession rate is inversely proportional to the energy, an important observation when it comes
to the design of spin manipulating devices such as spin rotators and Siberian Snakes [Mo84]. For
spin motion in purely transverse magnetic fields a few more points can be noted using HERA as an
example:

e Relation (3.9) implies that an orbit deflection angle of 1 mrad in a transverse magnetic field
for electrons (positrons) operated at the HERA nominal energy of 27.5 GeV gives rise to a spin
rotation of approximately 3.6°. For protons operated at 920 GeV the same orbit deflection leads
to a spin rotation of 100°.

e The naive spin tune ay increases for electrons (positrons) by one unit every AE =~ 441 MeV

For

2 2
(= ™£%), whereas for protons the corresponding value is AF a2 523 MeV (= %C—)

HERA-e at 27.5 GeV, ay ~ 62.5.

e lor a fixed transverse orbit deflection (and hence fixed ratio EL/y), the spin precession rate
increases linearly with energy. Spin motion is therefore more sensitive to (transverse) orbit
distortions at higher energies.

The laboratory frame, in which the T-BMT equation was originally derived, is not a suitable
reference frame for the description of orbital motion in circular accelerators. Therefore, as a standard
procedure, a transformation is made to a reference frame where the particles are described with
respect to a moving curvilinear coordinate system, associated with a fictitious ideal particle. The
six dimensional vector describing the particle positions in phase space in this reference frame will be
denoted by #. Here we will choose the coordinates such that @ = (2,2, 2,2/, £, ), where z, 2/, z, 2" are
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the horizontal and vertical (transverse) positions and directions and ¢, § are the longitudinal deviation
and fractional energy deviation with respect to the synchronous particle (at the centre of the bunch)
respectively. At high energies the coordinate pairs (z,2'), (z,2) and (¢,8) are nearly canonically

conjugate and we can write z’ ~ % =

and 2/ ~ %, except inside solenoids where these relationships

have to be replaced by z’ ~ % +z 2€—ECOB§L° and 2’ ~ % - 2€—ECOBZLO’ where B = (Bg'o, Bio, Bg‘ﬂ)

is the magnetic field on the design orbit. > The change of coordinates means that QBMT(r, 7 t) must
be transformed to a corresponding Q(ﬁ, s), where s is the distance along the design orbit, and that
the components of the spin vectors now refer to the curvilinear coordinate system S = (S, Sz, SS)T.
The details of the transformation are outlined in Appendix A. After transformation to curvilinear
coordinates, the T-BMT equation of spin motion reads as

dS - ~
d—f = Qu;s) x S (3.10)
Further insight into the implications of the T-BMT equation can be gained by writing the rotation

vector €2 as

—

Qa;s) = Q° + & (3.11)

The vector £°° contains the fields along the periodic closed orbit and satisfies the periodicity condition
Q°°(s 4 C') = Q°°(s), where C'is the circumference of the ring. This can be written as Q¢ = Q% 4
G™P_where 4° contains the design fields and &GP represents the effects of magnet misalignments,
correction fields etc. along the closed orbit. The term &*® contains the contribution due to synchrotron
and /or betatron motion with respect to the closed orbit. This term is in general not one—turn periodic.

Since the length |§| is invariant during precession, the most intuitive way of representing the spin
evolution in a storage ring is through the real orthogonal 3 x 3 rotation matrices of the SO(3) group. *
In this formalism it is convenient to parametrize the rotations via the unit rotation axis 7 and the
rotation angle ¢. However, it is often more eflicient to use other representations for the spin rotations,
especially for spin tracking. We will return to this point later on in the text. By introducing the
anti-symmetric matrix

0 -9, Q
Qi;s) = Q 0 -
-Q, Q, 0
eqn. (3.10) can be expressed as
d ~
d—f = Q(u;s) S (3.12)

The solution to this ordinary differential equation (ODE) can be written in terms of an orthogonal
matrix Rgz @ S(s) = Rz(s,s;) S(s;), for transport of a spin vector S from s; to s. In particular, on
the closed orbit the equation of spin motion and its solution takes the form

d§ Sc.o a
5 ST xS (3.13)
and R ~
S(s) =R(s,s;) S(s;) with R“(s;,s;) =1 (3.14)

®Any momenta p that occur are now calculated in the curvilinear coordinate system.
“The orthogonality condition for SO(3) matrices R is expressed as RT R = R™' R = I, where I is the (3 x 3) unit
matrix.
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As the next step, we need to find the unit length periodic solution on the closed orbit. This is
accomplished by solving the eigenvalue problem for the one turn rotation matrix: R®°(s+C, s)7,(s) =
AuTu(s). The solution we are looking for is the unit length eigenvector with unit eigenvalue. This
periodic solution is parallel to the effective one turn rotation axis, and away from resonances (see
eqn. (3.42) and the accompanying text) it is unique. It is denoted by fig in the literature ® and is
a central object for the description of polarization in storage rings. The remaining two eigenvalues
of the one turn rotation matrix form a complex conjugate pair: eT2™0_ The closed orbit spin tune
Vg, appearing in the exponent, is the number of spin precessions around g in one turn around the
machine. For a perfectly aligned flat ring without solenoids vy = avy. It should be noted that only
the fractional part of the spin tune can be extracted from the numerical values of the complex pair
of eigenvalues. The integer part must be found by following the spin motion for one turn around the
machine. For the definition of spin tune away from the closed orbit, see [VBH98]. Suffice it to say
that the spin tune at some arbitrary amplitude in phase space cannot be extracted as an eigenvalue
of some generalized eigenvector problem, since particle orbits are not one—turn periodic.

Just as a suitable coordinate frame is necessary for the description of the orbital motion in storage
rings, an appropriate coordinate frame is needed for the description of the spin motion. The unit
eigenvector ng of the one—turn spin rotation matrix on the closed orbit, together with the eigenvectors
associated with the complex conjugate eigenvalue pair lend themselves to the construction of such a
frame. Writing the latter palr as mg L1 lo we can extract two new basis vectors mg and lo which are
both orthogonal to ng, Mg = lo X g, lo = fig X Mg, and obey the relation

tio(s + C) + ilo(s + C) = 727 [1ig(s) + i lo(s) (3.15)

It should be observed that 1o and Iy are solutions to the T-BMT equation on the closed orbit,
eqn. (3.13). With these new unit vectors, we have a righthanded coordinate system (ﬁo,mo,io) in
which spin motion can be described with respect to the “ideal particle” on the closed orbit. This spin
basis will be needed in Section 3.2.

By studying the equation of motion of the spin expectation value in the synchrotron radiation
field one obtains the general evolution equation for the polarization given by Baier, Katkov and
Strakhovenko (BKS) [BKS70], ¢ which for motion on the closed orbit takes the form

(f;_f;) _ Q&O(F?F;t)xp—ﬁ<lg—§( )8+57 ()) (3.16)
BKS

The first term on the right hand side describes precession and the second term describes radiative
build—up of polarization. This equation is valid under the simplifying assumption that even when a
synchrotron radiation photon is emitted, the particle stays on the closed orbit. The unit vector bis
perpendicular to both the velocity and the acceleration, b = (8§ x §)/|§|, and is the direction of the
magnetic field in the case of no electric fields and motion perpendicular to the magnetic field. Note
the difference in time scales of the terms in eqn. (3.16): the first term varies like 7,..,/ay where 7.,
is the revolution time, whereas the characteristic time of the second term, 7., is many orders of
magnitude larger. This fact simplifies the mathematical analysis of the spin motion, making averaging
techniques permissible. By integration of the BKS equation, and by letting { — oo the generalization
of the Sokolov—Ternov formula for the asymptotic electron polarization in arbitrary magnetic field
configurations along the closed orbit is obtained

®In early publications the notation fi is common. This is an unlucky choice, since the same symbol is also used for
the invariant spin field appearing in the Derbenev—Kondratenko formula (3.20).
SHere we choose t as the independent variable in conformity with the original paper.
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JLICHC
lp(s)|”
PBI\"S - PST (1 . Z(ﬁo . §)2) (317)
j{ ? 3 ds
lp(s)]
and
BKS — _PBKS o (3'18)
The build—up rate is
2/ A o
VBt g (1= 3G 9?) ds (3.19)

TR T O T P

At equilibrium, the polarization is aligned with fng on the closed orbit. In a perfectly flat ring,
without solenoids, g is vertical. In rings containing vertical bends (e.g. dipole spin rotators) there
are regions where |iig(s) - b(s)| # 1 and the radiative polarization can usually not reach the 92.38 % of
the Sokolov—Ternov formula. Nevertheless, the polarization is still parallel to fg.

Unfortunately in the inhomogeneous fields of storage rings the Sokolov—Ternov effect is accom-
panied by depolarization. Soon after the discovery of radiative polarization is was realized that
synchrotron radiation not only creates polarization, but that it can also destroy the polarization! This
radiative depolarization was predicted in 1965 by Baier and Orlov [BO66] and a few years later it
was observed and studied for the first time at the ACO storage ring at Orsay [Be68]. To complete
this introduction to the theory of electron spin dynamics the important matter of radiation induced
depolarization will now be addressed.

In an electron storage ring energy is continuously lost through the emission of synchrotron radiation
in the bending magnets. This, together with replenishment of energy loss by the RF cavities leads
to a damping of the synchro—betatron motion. The emission of the individual synchrotron radiation
photons is a stochastic process. Fach photon emission is accompanied by a discontinuous change
in energy of the emitting electron and a corresponding disturbance of the electron’s trajectory. For
the beam as a whole, the random disturbances introduce noise into the synchrotron oscillations and
then via the dispersion into the betatron oscillations causing a diffusion of all orbital amplitudes.
The classical description of the orbit dynamics thus leads to stochastic differential equations [MR&3,
EMR99] for the evolution of the dynamical phase space variables. The balance between radiation
damping and diffusion determines the equilibrium electron beam emittances. See Appendix A also.

The evolution of the electron polarization shows some similarities with the orbit dynamics. While
the synchrotron radiation emission gives rise to a polarization build—up through the Sokolov-Ternov
effect, which is the spin dynamical parallel to orbital damping, the stochastic nature of the individual
emissions can bring spin diffusion. Photon emission imparts both transverse and longitudinal recoils
to the electron, so that the electron changes its position in phase space. However, since a photon is
typically emitted within an angle 1/4 with respect to the direction of the electron the effect of the
longitudinal recoil, i.e. the energy jump, dominates. The transverse recoil is therefore often neglected
in calculations. In the motion that follows after every such emission event, the electrons will experience
fields in the quadrupoles (and higher order multipoles) that appear to contain a stochastic component.
Imagining, in a classical sense, that the spins are passengers on the electrons, the stochastic journey will
impart stochastic precessions to the spins through the term &*® of the T-BMT equation (egs. (3.10)
and (3.11)). If after a photon emission, the electron would eventually return to its original phase space
position, owing to the damping, the spin would not point in the same direction as before the emission.
For an initially fully polarized ensemble of electrons, the cumulative effect on the polarization of a large
number of uncorrelated photon emission events is an incoherent summation of disturbances resulting
in a spread of the spin vectors and decreased polarization.
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This is a naive picture, but nevertheless instructive. It emphasizes that the orbit dynamics has a
strong influence on the spin motion and also that the electron polarization achieved is the result of
a competition between the radiation induced polarization due to the Sokolov—Ternov effect and spin
diffusion. But spin is by nature a purely quantum mechanical concept. Therefore this description of
classical spin diffusion mixed with quantum mechanical spin—flip should be replaced by an approach
unifying the various aspects of electron spin dynamics. | will now outline how this can be achieved
by using more quantitative arguments to describe the interplay between polarization build—up and
diffusion in et/~ storage rings.

The most elegant way to proceed is to consider the stationary (i.e. equilibrium) polarization state
of the machine. The beam phase space density, w, is a function of the phase space position @ and
azimuth s: w(#@;s). If the beam is stable, the phase space density of a bunch is a periodic function of s
so that we can write we,(%; s) = we,(4; s+ C'). Likewise at equilibrium the polarization at each point
in phase space should repeat itself from turn to turn, ﬁeq(ﬁ; s) = ﬁeq(ﬁ; s+C'). Note that P;q need not
in general be parallel to ig for @ # 0. In the absence of spin-flip synchrotron radiation spin motion is,
as we have seen, described by the T-BMT equation (3.6). In analogy with eqn. (3.16) we expect that
a general evolution equation for the polarization under the influence of stochastic radiation should
contain a T-BMT like term. Moreover, because of the time scales (and hence the strengths) of the
processes involved this term is expected to dominate the spin motion: The Sokolov—Ternov effect and
the spin diffusion leading to depolarization operate on a time scale of minutes to hours, whereas the
radiation damping is measured in milliseconds and the spin precession in fractions of microseconds. A
visual representation of characteristic time scales for a typical 25 GeV electron storage ring is found
in Appendix B.

Because of the dominance of the T-BMT term, the stationary polarization direction P.,/||P.,|| at
each point in phase space should, to a good approximation, be parallel to the direction we would get
for a stationary (periodic) polarization distribution without the radiative effects [BHO1]. We denote
this latter direction by # © and by definition it satisfies the periodicity condition A(#;s) = 7 (@;s+C).
The unit vector field 7(; s) obeys the T-BMT equation along particle trajectories in the sense that
(M (i 5); s+C) = R(@; s) 2(il; s), where M (@; s) is the new phase space vector after one turn starting
at @ and s and R(#; s) is the corresponding spin transfer matrix. Observe that a spin initially parallel
to 7 at some starting phase space position @ and azimuth s is generally not transformed into itself
in one turn around the machine, whereas the whole field n(#;s) is! We therefore call 2(u;s) the
invariant spin field [VBH98, Bb99]. The vector field #(; s) is uniquely defined ® except at spin—orbit
resonances to be discussed later. If a spin S is followed along a phase space trajectory in the absence
of radiation, the scalar product S - # of S with the local # is an invariant since both vectors obey the
T-BMT precession equation. Note that because orbital motion is in general not one—turn periodic,
n(@; s) cannot usually be derived as an eigenvector of the spin transfer matrix R(#;s). On the other
hand 7(@; s) reduces to 7(0;5) = fg(s) on the closed orbit, and of course fg(s) = fg(s + C). The
meaning of the invariant spin field is illustrated in Figure 3.1.

If we now include the effects of radiation, following the treatments of either Derbenev and Kon-
dratenko [DK73] or Mane [Ma86a] we obtain the generalization of the BKS equation (3.16). Before
doing so, and again stressing the importance of time scales in the field of radiative spin polariza-
tion, it must be pointed out that under the assumption of “well behaved” integrable orbital motion,
the absolute value of the electron polarization is essentially independent of azimuth and position in
phase space. Neglecting the effect of transverse recoil by photon emission ?, the equilibrium electron
polarization is given by

"Sometimes # will be referred to as the “fi-axis”.

8For comments upon existence and uniqueness of #(i; s), see for example [Bb99].

°The effect of transverse recoil can also be included but contributes extra terms containing derivatives of i w.r.t.
#' and z’ which are typically a factor v smaller than % [BR99].
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Figure 3.1: The invariant spin field 7#(@; s): an s—periodic unit vector field at each point in phase space,
illustrated here for the same region of phase space (solid line ellipses) at three different azimuths.
The dashed ellipse indicates the rotation of particle phase space associated with a bunch of particles
travelling around the accelerator.

P _p ?{<|p<1>|3 b- (- g§)>sd5 390
bR st 1 205 2 1104\ (3.20)
?{ oo (1= 3697+ R(55) ) ) ds
and
<PDK>enS = —Ppy <ﬁ>s (3'21)
where (), denotes an average over phase space. The corresponding build—up rate is
PN 2\2
L 5VBrath 1 /18097 + 1 (5)
TDI\" = ? 5 3 dS (322)
m p(5)] ]

The ensemble average (), of the equilibrium polarization, eqn. (3.21), is given by P,, times
the average across phase space of 7(4;s) at azimuth s, (2),. The expressions differ from those in
egs. (3.17) and (3.19) by the inclusion of terms with 22 and by the exchange of 7 for 7. The partial

derivative g? is a measure of the change of # caused by the fractional energy jumps §. ¥ Note that the

statement that the value of the polarization to a good approximation is the same at all phase space
positions and azimuths does not generally hold true for protons, especially at high energies. Even at
HERA energies, there is essentially no radiation from a proton beam and hence no mechanism similar
to the “spin damping” of the Sokolov—Ternov effect is in play. There is also only little exchange of
particles between different phase space tori. In fact the polarization times for proton beams are very
much larger than for electron beams, making self-polarization practically impossible. For instance the
build-up time in HERA-p at 920 GeV would be 7 - 10'° years! It is therefore customary to inject a
prepolarized proton beam that is then accelerated. Polarization lost at some orbital amplitudes during

%The original notation used by Derbenev and Kondratenko for this derivative, 7%, is not used here since it is open
to misinterpretation.

26



the acceleration cannot be replenished, and the polarization can therefore vary across the beam phase
space. Furthermore (1), can vary significantly with the azimuth s [Vo00, Ho0Oa].

Far from resonances (see below) the invariant spin field 7 is very nearly aligned along g, hence

PDK <ﬁ>s ~ PDK g (3'23)

but when the spin tune is sufficiently close to a spin—orbit resonance (see next section) the spin field
n(; s) starts to “open up”. In our unified model it is therefore not adequate to talk about diffusion
away from 7o but away from # instead. In et/~ beams the opening angle between 7 (%; s) and g (s)
can be tens of milliradians near resonances at a few tens of GeV and increases with particle amplitude
and naive spin tune ay. Observe that for electrons |(7),] has a value close to one even in the vicinity
of resonances and the beam polarization is mainly influenced by the value of P, . In the Derbenev—
Kondratenko—Mane formalism, the depolarization is quantified by the square of the spin—orbit coupling
function %(u s), in the denominator of eqn. (3.20). To attain high polarization, (%)2 has to be kept
small (< 1) in the dipole magnets of the machine. Methods to achieve this are referred to as spin
matching and amount to organizing the machine optic in such a way that certain criteria are fulfilled.
Details about several spin matching schemes can be found in Chapter 4, Chapter 6 and [BR99].

Derbenev and Kondratenko derived their expression for the equilibrium polarization already in
1973 using a complete semi-classical quantum mechanical treatment. It should be mentioned that it
took a long time before the implications and correct usage of this formula were fully appreciated by
the physics community. Mane gave an important contribution to the understanding of the underlying
physics when in 1987 he rederived the Derbenev-Kondratenko formula from a statistical viewpoint.
The evaluation of n(#;s) and the partial derivative g—?(u s) are today the key tasks in most computer
algorithms written for deriving the equilibrium polarization in storage rings. However, rewriting the

Derbenev-Kondratenko build—up rate (eqn. (3.22)) in the form

b= gt bt (3.24)

DK BKS dep ST dep

where TC;; is the depolarization rate given by

11 (9n\?
53 roh 1 —8(35)
LTy Ce — ——Z Y d 3.25
Tdep 8 m C < |p(8 |3 S ( )

suggests another route to arrive at the equilibrium electron polarization, without introducing the
concept of the invariant spin field 7 necessary in the Derbenev—Kondratenko—Mane formalism. In
particular 7, can be estimated by a spin—orbit tracking simulation. This is the strategy adopted
in the Monte Carlo program SITROS [Ke85]. The equilibrium polarization in this approximation is
extracted using eqs. (3.17) and (3.19) as

T Th o
dep _ DK

Peq = PBKS 7_|_ - PBKS (3'26)
Ters Tiep Ters

The contribution from the usually small term b- 8—5 in the numerator of the Derbenev—Kondratenko

formula is neglected here. This term represents a correlation between the spin orientation and the
radiation power and it is normally negligible since g—? is usually essentially perpendicularA to ‘Ehe main
bending field. However in the case of a ring with dipole spin rotators such as HERA b - g—? # 0 in
the rotator dipole fields. In addition, since in such a case the periodic spin solution 7¢ by design is

horizontal in some straight sections, b- % need not vanish in any dipole in these “straight sections”.
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This can lead to a build—up or “build-down” (i.e a shift) of polarization separate from the Sokolov—
Ternov effect. The phenomenon is called kinetic polarization [Mo84] and is a manifestation of the
unified treatment.

The time dependence of polarization build—up, starting from an initial polarization P, (for ¢ < o)
is given by

Pt)= (P

DI\">ene (1 _ e_(t—to)/TDK) + Po 6—(t—to)/TDK (327)
The formula can be used in combination with eqn. (3.26) to calibrate polarimeters. In such a rise time
calibration (a short description of the procedure is given in Section 4.3) the polarization is measured
as a function of time and the parameters P, 7., and P, are fitted to the expression in (3.27). The
measurements should be made with a flat machine to minimize the effect of the kinetic polarization,
which in practice is difficult to predict with high accuracy.

An intuitive way of understanding depolarization and spin diffusion, but now in terms of the fn—
axis, may be gained through the following visualization. See Figure 3.2. Consrder an electron with
spin vector S aligned along n(#;s) at some initial phase space position y: S, = |S 7| = 1. Suppose
that the electron undergoes a stochastic photon emission. After the emission (which can be regarded
as an instantaneous process since 7, &~ p/cy ~ 10710 s), the spin finds itself at a new phase space
position iy due to the electron recoil. At this new position, the spin field vector 7 is generally pointing
in some other direction compared to the direction of 7 at the initial phase space point. The spin vector
S on the other hand has not changed direction. The projection of S upon n is therefore decreased
S, =
unless we are Close to a spin—orbit resonance. At the new phase space position S obeying the T— BMT
equation, will rotate around the stable spin solution 7. After a short time, the electron will emit
another photon. At the moment of emission the spin is pointing in a direction determined by the cone
of rotation and the exact emission time. The projection of S upon # may be increased or decreased
following the second recoil, depending on the direction of 7 at the electron’s new phase space point.
The result of a large number of such stochastic emission events is a random walk where the total
probability of a decrease of S, results in an exponential decay of the polarization.

The above picture of spin diffusion has overseen an important factor, namely the damping. Without
damping, the orbital phase space would grow indefinitely and no polarization could be observed. In
general, following a disturbance, an electron beam will return to its original phase space distribution
after a few damping times. !! The damping is a slow process, compared to the time scale of photon
emission and the effective change of orbital amplitude of individual electrons due to damping can
therefore be regarded as being adiabatic. In [Ho00a] a proof is given that S, = |S - 4| is an adiabatic
mvariant along a particle trajectory when a parameter such as orbit amplitude changes slowly. Thus
the angle between the spin vector and 7 is essentially “locked” as the electron slowly moves towards
lower amplitudes under the damping.

3.2 Methods of calculation

In the previous section we have briefly touched upon different philosophies for the calculation of

the equilibrium polarization for electrons in storage rings. We have learned of the central role for

estimating the polarization played by the calculation of # and of (g—?) in the dipoles, where the

" This property can be understood by studying the Fokker-Planck equation for the evolution of the electron phase
space density [Bb91, Ri&9].
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Figure 3.2: A simple model illustrating spin diffusion away from n. At time to a photon (v) is emitted
and the particle makes a discontinous jump in phase space due to the recoil. In the time interval ;
to ty the particle coordinates changes smoothly as the particle travels from azimuth s; to s; under
the influence of synchro—betatron motion and damping. At time ¢; another photon is emitted. The
influence on the particle spin during these processes is described in the text. Observe that the spread of
n(; s) has been exaggerated in the picture (assuming that we are not close to a spin—orbit resonance).

radiation takes place. To proceed further, we need to discuss ways to integrate spins along non—
periodic orbital trajectories, so that we can calculate these quantities. The starting point for this is
the T-BMT equation of spin motion (3.10) or (3.12)

s . o
e Qi s) x S = Q(u;s) S

Since the elements of € depend on the phase space position @, so does the spin motion and it is in
general not possible to find analytical solutions for all initial orbital conditions. In the spirit of the
treatment of orbital motion with respect to the closed orbit, to facilitate perturbation calculations,
we separate Q(ﬁ, s) into a periodic part Qo(s) and a small part &(u;s) due to the synchro-betatron
motion, as in eqn. (3.11)

Qa; s) = Qols) + 3(T; s) (3.28)

We now recall that we expect the polarization ﬁeq(ﬁ; s) to be closely aligned along 7 and that away
from resonances (see eqn. (3.42) or (3.44)) @ is nearly parallel to 72g. We therefore write the general
solution to the T-BMT equation in the form

S() = () fo(s) + ao( ) itg(s) + fo( ) lo(s) (3.29)
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where the spin variables ag = S . Mg and Gy = S . le are expected to be small, so that vg = S . g =
\/1— a2 — 32 ~ 1. 12 To obtain the equations of motion for ag, By and v we write the above equation
as § — R0T§, where

i Thoy  log
RO = ﬁOz mOZ l:Oz (330)

ﬁos mos los
This transformation implies the companion transformation
T
dR;

ds
= RlIwRy (3.31)

Q-+ W = R{QR;+ —2Rq

for which the orthogonality of Rg has been used. The matrix w is here the anti-symmetric matrix of
components in &, in analogy with Q(;s) in eqn. (3.12). In an accelerator Qo is normally piecewise
constant and one—turn periodic to a good approximation and the derivation of Ry is hence straightfor-
ward (cf. eqn. (3.14) and following text). After the transformation we are left with a coupled system
of nonlinear differential equations in the spin components ag, 3y and g

TG _ TG
- (R§S) = W(R{S)
f—r
d Yo X 0 —io -G mo -G Yo
% (a7} = lo ] 0 —ﬁo ] (8% (332)
Bo —g & g @ 0 Bo

The nonlinearities are buried in the dependence of & on phase space position @ and the fact that only
two of the spin variables can vary independently. Moreover, since & depends on s, the W—matrices
calculated at different azimuths do not commute. A perturbative solution to (3.32) can be found in
the form of an azimuth—ordered '* exponential, analogous to the von Neumann expansion in quantum
mechanics [Ne55]

Yo y Yo
o0 = Aexp (/ W (i;; s’)ds’) o0
5 ), 5 ),

!

[I—I—/ fW(ﬁi;s’)ds’—l—/ fW(ﬁi;s')/ W (i;; s")ds"ds'

7

' " Yo
Sf S S
—I—/ W (i;; s') / W (i s") / W (id;;8")ds"ds"ds' + . .. ap (3.33)
Si 54 54 ﬁ
0
12The empty braces indicate the dependence of S and Yo, o, 3o on the initial coordinates and the transport therefrom,

()= (diss,si)

3here implied by the operator A

7
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However we are interested in a special solution to the T-BMT equation, namely n. There are
a handful of methods available for the derivation of this quantity. In order to illustrate the origin
of spin—orbit resonance structures 1 will concentrate mainly on one of them, namely the perturba-
tive SMILE formalism by Mane [Ma86b]. Before embarking on this, I should mention a few of the
other schemes. Two newer non—perturbative methods are especially interesting. The SPRINT algo-
rithm [Vo00, Ho0Oa] computes an approximation of 7 using a technique developed by Heinemann and
Hoffstatter called stroboscopic averaging [HH96]. In the SPRINT code, multi—turn spin—orbit tracking
is performed for linearized orbital motion, but fully nonlinear spin motion and all orders of resonance
(see below) emerge automatically. The code has been optimized for the spin-orbit tracking of protons
but unfortunately lacks a description of the features specific to radiating particles such as electrons.
At the moment the code does not handle the calculation of 2%(i; s). In the SODOM algorithm [Yo92]
fi is represented by a spinor W;. 14 By utilizing the periodicity condition #(i;s) = 7(@; s+C) and the
corresponding periodicity condition for the one—turn 2 x 2 spinor transfer matrix T on a synchro—beta
orbit

T(¢n) Wi (or) = e Y1/ 20, (¢, + 2713) YV k€ {z,2,5) (3.34)

where the ¢ are the initial orbital phases, v} are the tunes of the three orbital degrees of freedom
k, and vz is the so called amplitude dependent spin tune [Vo00, Ho0Oa], an eigen problem in the
Fourier components of T(¢x) and ¥;(¢r) can be formulated. The Fourier coefficients are obtained
numerically from spin—orbit tracking data and the eigenvector of Fourier components of 7 allows the
invariant spin field to be reconstructed. By constructing # at many points in phase space %(ﬁ; s)
can be obtained by numerical differentiation. However, in order to calculate this derivative at the
nodes of a sufficiently fine phase space mesh, so that reliable results can be extracted for its use in the
Derbenev—Kondratenko formula, very large computer power is needed. The same holds true if this
derivative is to be calculated with the SPRINT code. Ways to derive n using Lie algebraic methods
have also been developed [Yo87, EY94, BG9S].

Now, let us return to the SMILE algorithm. Following Mane [Ma86b] we define the spherical
components

Vo=, Vz= 7 (g £ 1f0) (3.35)
and write )
wo =1, we= (1o ilp) -3 (3.36)
which leads to the form
“t
Wo — 0
d &* N 3/5 wy ‘Vﬁ
7l BCH B B Vi || Ve
V_ 0 wo @o V_
V2
T Vi
= i(a-J) | vo (3.37)
V_

for the equation of motion for the components of 7, where J is a vector of spin—1 angular momentum
matrices. The solution for 7 is then given in the form of a von Neumann expansion as

Y“For an introduction to SU(2) spinor algebra, see [Mo84].
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s - AT As! 7.1
Vo [(s) = lim A exp( / (w-J) e ds) 1 (3.38)

where the inclusion of the damping factor e** (A > 0) ensures that the solution 7 has the correct
periodicity property n(w@;s) = n(ud;s + C'). The incorporation of the damping factor can also be
interpreted in terms of the adiabatic invariance of 5, = |§ -n|. Suppose that we start at “—o0” with
a spin aligned parallel to fg on the closed orbit. As the spin evolution is followed (tracked) forward
in time, the orbit amplitude is slowly increased until it reaches full size. Provided that the increase of
the orbit amplitude is slow enough, the spin will stay aligned with, and be an approximation of, the
pre—established invariant spin field 7(#; s) during this anti-damping procedure.

To illustrate the properties of the derived vector field a perturbative expansion in powers of & is
made and we will look at the structure of the integrals for the first few orders. In order to emphasize
the key features I will restrict the description to the case of linear orbital motion and be quite symbolic.
To first order in & eqn. (3.38) reads

V_|_ 0 l s —w_|_
Vo | () = 1|+ lim — / 0 e ds’ 3.39
L (s) : SVCR N (3.39)

Note that in the linear approximation & is linear in the orbital amplitudes, Az, and we can write
& =1 Y Ay, where now k € {1,...,6} labels the six orbital normal modes. Due to the quasi-
periodicity of the synchro—betatron oscillations and the rotation of the spin basis, the integrand is a
quasi-periodic function obeying wy (s + C) = ! 27E0) 0y, (s) for each k, so that 1°

Vi(s) = lim F ZAk/ Wit (s') e ds’

/\—>0+

. s
e " 27N (viptrg) e—/\NC’ / Wit (S/) ds’
A—=04 s—C

= lim ZF\/_ZAk

=0

_ /\s
= lim WZ elzwkiyo FoToa 1/ Wi (s ds’ (3.40)

A—=04

In this particular perturbation expansion, we see that in the first order terms (of which there are six)
the summation of the geometrical series of phase factors leads to first order resonance denominators.
If the expansion is taken to second or higher order, similar resonance denominators will emerge. For
example, at second order and with an obvious notation

V—l— 5 ~NT V—I; ,

Vo | (8) = lim i / (@-7) | vy | & as (3.41)
A—=04 o0 7

V_ 2 V_ 1

""Note that the periodicity condition for the components wxo read as wro(s 4+ C) = e >™*wyo(s).
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Observe that as before each nonzero element in (@' . J) is a sum of 6 terms and the Vi g are themselves

sums of 6 terms (cf. eqn. (3.40)). At second order we therefore have 6 x 6 = 36 groups of integrals. !¢
In analogy with the first order case, each integral from —oo to s can be written as a sum of one
turn integrals. Then, owing to the quasi—periodicity of the integrand one finds that in addition to
the first order resonance denominators contained in the first order V’s in the integrand, each of the
terms acquires a second order resonance denominator of the kind exp [ 27(}", myry £ vo) ] — 1 with
> |mg| = 2. In the same way higher order resonance denominators emerge from the integration of
terms containing resonance denominators of all lower orders.

Note that when the perturbative solution is transformed back into the machine coordinates, it
satisfies the periodicity condition 7(w@;s) = n(i; s + C) order by order. The resonance denominators
appearing in this perturbative formulation clearly show, as expected, that when the spin motion is
coherent with the orbital motion the f—axis is strongly tilted away from 7y and the spin motion
becomes extremely sensitive to small changes in the orbit variables. Then %(ﬁ; s) can be large so
that spin diffusion can be strong. In this perturbation theory the resonance condition is written as

vo=m-+mgV, +m, v, +m,v, (3.42)

where the m’s are integers and the v’s are the tunes of the three orbital modes. The appearance of
v in the resonance condition (3.42) is an artifact of the perturbative treatment. A non—perturbative
treatment would deliver the condition v = m + my, v, + m, v, + mgzvs where v is the amplitude
dependent spin tune [VBH98, Vo00, Ho00a] and can differ from v5. At HERA energies the difference
is negligible.

The resonances can be classified into several groups. Synchro-betatron resonances with |m,| 4+
|m| + |ms| # 0 are sometimes referred to as “intrinsic resonances”. The integer |mg|+ |m.| + |ms| is
called the order of the resonance. Hence the condition |m,|+|m.|+ |ms| = 1 corresponds to first order
resonances which, as we have seen, emerge from first order integrals as in eqn. (3.40). Another type
of resonance may appear when vy = integer, i.e. a zeroth order resonance in the adopted terminology.
In a real storage ring unavoidable magnet misalignments and field errors give rise to horizontal and
longitudinal fields on the closed orbit, that cause ng to tilt away from its nominal direction. This tilt is
especially large near such “integer resonances”. If vy would be an integer, the one—turn spin rotation
matrix evaluated on the closed orbit would be a unit matrix and 7g(s) would not be unique. Note that
this kind of zeroth order resonance (called “imperfection resonances” in the field of polarized protons)
does not appear here, because we are calculating depolarization rates with respect to fg (or 72) at a
fixed energy or for a narrow range of energies. !7 The effects of closed orbit distortions are therefore
best accounted for already in the calculation of 5. A loss of polarization may nonetheless appear at
integer values of vy, because a strong tilt of 79 away from its nominal direction can cause terms in the
so called G matrix (see Section 3.2.1 and Chapter 4) to switch on and lead to strong depolarization
related to the synchrotron motion. An example of this can be seen in Chapter 6, Figure 6.9 (top left)
where the broad first order synchrotron resonances have swept away the polarization at the positions
of integer vy. Moreover, very close to integer values of vy imperfections can cause fng to be so strongly
tilted away from the vertical in the arcs that the numerator in eqn. (3.17) becomes small. Then the
Sokolov—Ternov effect itself becomes weak and the attainable polarization is small independently of
depolarization effects. This is also illustrated in Figure 6.9.

In practice the dominant higher order resonances are the synchrotron sidebands of first order parent
betatron resonances

Vi
Y%Note that, because of the multiplication in these integrals of terms linear in Ay , the ( Vo ) is second order in
V- /,
the orbital amplitude.
1"But the imperfection resonances are important for the acceleration of polarized protons.
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vo=m=E v, +m;sv, (3.43)

(recall the generic use of the symbol v, representing either v, or v, ). These originate in the synchrotron
part of the term 7-@& in eqn. (3.32) (see also eqn. (3.51) and the paragraph following), which represents
a modulation of the instantaneous rate of spin precession around 79 due to energy oscillations. More
details on synchrotron sidebands and estimates of their strengths will be given in Section 3.2.3 but
since we have been discussing integer resonances, it is already appropriate to point out here that
synchrotron sidebands of parent first order synchrotron resonances can also occur and that they can
produce integer resonances [Ma90, Ma92, Yo83, Yo92]. But these can occur even in the absence of
imperfections, namely if the ring is not properly spin matched for synchrotron motion.

So far in our treatment the simplifying assumption has been made that the horizontal, vertical
and longitudinal oscillation modes of the particles are uncoupled. However, in practice a more or less
strong inter—-mode coupling always exists and the perturbative spin—orbit resonance criterion becomes

Vo=m+mivr+ mirvir + mrrr Vi (3.44)

where vy, vr; and vy are the orbit eigentunes in the presence of coupling. At this point, it should be
emphasized that neither coupling nor inclusion of higher order terms in &, viz. nonlinear fields, are a
prerequisite for the occurrence of higher order resonances. The dominant contribution to all orders
instead comes from noncommutation between spin rotations around different axes. The influence of
noncommutation is manifested in the nontrivial structure of the azimuth—ordered integrals used for
the perturbative derivation of #(#; s) just summarized. ' Observe also that the higher order integrals
describe the combined effects of independent orbital modes.

Equation 3.38 has been implemented by Mane in the SMILE code. The SMILE perturbation
expansion is a power series in the orbital amplitudes, which after averaging over the beam distribution
becomes a series in the emittances. It is a unified approach where all resonances are treated on equal
footing. Unfortunately the algorithm suffers from convergence problems at large avy and is therefore
not a practically useful tool for calculations of 7 and its partial derivative % at HERA energies.

3.2.1 Linear approximation — the SLIM formalism

As we have seen, solving the general equation of spin motion (3.10) with the purpose of finding the
special solution 7, and being able to calculate %, can be far from trivial. It is therefore valuable
to approximate by formulating a simplified problem equivalent to first order SMILE, for which it is
possible to find closed analytical solutions. This is achieved by linearizing the orbit and the spin
motion. Here | will follow the route layed out in [MR83] and start with the orbit motion.

In Appendix A a presentation of the Abraham—Lorentz equation of motion is made, and the
design orbit reference trajectory is introduced. The linear formalism I will discuss here is based upon
an extension of the well known 6 x 6 matrix formalism for describing particle motion through lattice
elements, in which a transformation to the closed orbit as a new reference trajectory is made. In the
absence of radiation, the transport of a phase space vector # from azimuth sy to s; can be described
by a symplectic, i.e. phase space volume preserving, transfer matrix M. Introducing the notation
f(so) = Us=s, and )2(31) = 5=, this transport is given by

— —

X(s1) = M(s1,50) X(s0) (3.45)

18 An alternative, but equivalent perturbation formulation is given in [BHR92].
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The periodic closed orbit in a circular accelerator is generally not identical with the design orbit.
RF cavities are necessary in the lattice to compensate for the radiation losses, mainly occurring in
the arcs. This causes the azimuthal variation of the energy of the circulating particles to attain a
“sawtooth” shape. A real machine always suffers from misalignments of the magnets and compen-
sation magnets are therefore usually needed. There can also be other perturbing fields in the lattice
coming from insertion devices, experimental stations, beam kickers for injection etc. By extending
the six—dimensional phase space vector with a seventh component equal to unity, X, = (@,1), and
correspondingly enlarging the transfer matrix Mgyxe — Mr7, the closed orbit can be calculated. The
transformation through a lattice element then reads as

— —

Xz(s1) = Myrxr(si;s0) Xz(s0) (3.46)
Mexs N,
Mrxr = ( 8X6 16 ) (3.47)

where the vector Ng depends on the perturbing electromagnetic fields along the design orbit. Imposing
the periodicity condition: Xr7(so+ C') = X7 (so) gives for the closed orbit vector at the initial position
S0

)_()0(80) = (I— ].\/_[6><6(80—|—617 80)) 1]\_/:6(80—|—617 80) (348)
By using eqn. (3.46) the closed orbit Xo(s) can be found at every position in the lattice. In principle
the sextupoles have to be included in the calculation of the closed orbit. This gives rise to a nonlinear
problem and it has to be solved by iteration. The elements of the enlarged transfer matrix Mz, 7 for
various magnet types can be found in [Ch79] or [MR83]. With the knowledge of the closed orbit, the
synchro—betatron oscillations can be described using this periodic orbit as a new reference trajectory.

Already in Section 3.1 a decomposition of the spin motion into a closed orbit contribution and
a synchro—beta contribution was introduced, and at the beginning of this section a transformation
was made to a frame rotating with the spin on the closed orbit, so that the spin evolution could
be described in terms of the small quantities ag and 9. The particular spin basis chosen for that
discussion however is not one-turn periodic, but for the following description we will need a periodic
spin basis. Such a spin basis can most easily be constructed from the non—periodic basis (7, 7o, le)
by introducing an additional backward rotation around 7y by an angle 1(s) thus

i(s) +i(s) = 70 g (s) + i lo(s)] (3.49)

and requiring that ¢g(s + C) — o(s) = 271g. The new unit vectors 7 and [, together with 7o, then
form a s—periodic righthanded set (g, 72, () with period C'. The n—axis can be expressed in terms of
this new spin basis as

A(il; s) = (i@ 5) fo(s) + o(T@; 5) i(s) + B(iE; 5) I(s) (3.50)

with v = /1 — a? — 32, where the v, @ and 3 are, like 7, periodic in s at fixed 4. The components «

and [ satisfy the nonlinear system of differential equations (compare eqn. (3.32))

o = \/1—042—ﬁ2<3-i—ﬁ(ﬁ0'5)+ﬁ¢6(5)
Bo= —J1—a2 =BG i+ a(io- @) — aph(s) (3.51)
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Now, assuming that # remains close to 7 (a reasonable assumption away from resonances, as pointed
out earlier), implying that o and 5 can be assumed to be small quantities, the above expressions can
be simplified. In the approximation of linear orbit and spin motion, i.e. linearizing & in the orbital
coordinates such that & =1 Faye @ (equivalent to the ansatz & = Y, Ar&y used earlier), and dropping
terms of higher order in « and f, the differential equations for e and g reduce to

of =3I+
B = =3 m—at] (3.52)

which can be straightforwardly solved. In this linear approximation the Derbenev—Kondratenko fi—axis
is given by

A(&@; 5) = ho(s) + ol s) i(s) + B(T; ) I(s) (3.53)

valid as long as \/a? + 32 < 1.

By combining the orbit and spin descriptions in a fashion that was first done by Chao [Ch81a],
we arrive at a compact 8 X 8 matrix notation. In this formalism the orbit and spin motions through
the various lattice elements are represented by 8 X 8 matrices acting on an 8-dimensional spin—orbit
“phase space vector” (4, oe,ﬁ)T, effectively describing the motion with respect to an 8-dimensional
closed orbit:

4
ds

i@
o

ResE e~

8

where Agys is a coefficient matrix, whose form is given for various ring elements for example in [MR83].
The general solution to this equation is written in terms of the 8 x 8 transfer matrix

[ Megys 0Ogx2
Msxs = ( Gove Do (3.55)

Recall that Mggg is a symplectic matrix, describing the “Hamiltonian part” of the orbital motion with
respect to the closed orbit. The radiation is taken into account in a second step of the calculations.
The Goxg matrix describes the coupling of the spin variables to the orbital motion. It is the transfer
matrix of the spin variables o and 3, giving the solution of the linearized equation (3.52)

o)\ _ o xo(e a(so)
( ﬁ(s) ) = Gy X]( 0)—|—D2X2 ( ﬁ(So) ) (3.56)

with
Jdo
“u= o
! Vje{l,...,6}
0P
“u = o
J

The elements G;; of the G matrix generally depend upon the orientation of the spin base vectors i(s)
and m(s) as well as on characteristics of the field of the particular lattice element. For later use |
introduce the notation G = (G, G, G;), where the G, G, and G are 2 X 2 matrices associated with
the spin coupling to the orbital motion in the horizontal, vertical and longitudinal planes, respectively.
The G matrix plays a vital role in some formulations of spin matching conditions, see Chapter 4
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and [BR99]. Examples of G matrices for various magnet types are given in [Bb85b]. This formalism
usually does not take into account the weak Stern—Gerlach forces causing the spin motion to act back
on the orbital motion, hence the 0gy2 in the last two columns of Mgyg. The Dyys in the bottom right
corner is a rotation matrix related to the spin phase manipulation needed to satisfy the spin basis
periodicity requirement. We choose to apply this backward rotation Ay = 271y to 1y, [p and G at
the end of each turn.

(3.57)

cos 2wy sin 27y
—sin 2wy cos 2wy

Doxa(s+C,s)= (

Solving the eigen problem posed by the one turn map: Msys(s + C,s) Gu(s) = /A\M qu(s), gives
eigenvectors of the form

G(s) = (466 ) Q—r(s) =1la(s)]” k=1V (3.58)

The eigenvectors associated with the orbital motion, ¥ are normalized according to ﬁikS Tpp = 41 19,
whereas the spin parts of the eigenvectors, @y are given by

dils) = ~[Dls+Cs) M| Gls+Co0)mls) Wk e {LILIITY

Tp(s) = % (_1 ) e~ ols) k=1V (3.59)

with
W_p(s) = [Wk(s)]” VEe{l,II,III IV}

The corresponding eigenvalues of Mgys(s + C,s) are ;\k = el , where v are the orbital tunes

(ke{l,II,111})and vy =vo; v = —vg (ke {Il,1I,1II,1V}).

In the absence of radiation

6(8) = Z {Ak 17k(8) + A_p 17_k(8)} (3.60)
k=I11,11T

where the amplitudes Aj are constants of motion. However, the synchrotron radiation adds a non—
Hamiltonian part to the problem. But the radiation effects in a storage ring are usually weak (in
HERA for example the radiation losses in one turn are only a fraction of a percent of the total energy)
and can therefore be treated as a perturbation. Hence using perturbation theory the full problem,
including radiation, can be solved and then [Ch79, MR83, EMR99] in the linear approximation the
solution to the orbital part of the problem has the general form

0-1 0 0 0 O
1 0 0 0O 0 o0
0O 0 O0-1 0 O
19 =1 _ (=T . . . . _
g1 = (0%)" and S is the unit symplectic matrix defined by S = 00 1 0 0 0
O 0 0 0 0 -1
0O 0 0O 0 1 0
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() = 2 {Ak(9) Bls) + Aop(s) Tnls) (3.61)

k=I111IT

2y

where again the Ay (s) are the amplitudes for the orbital modes k but are now s dependent stochastic
variables. It was pointed out earlier that the electron beam size is determined by the balance between
quantum diffusion and radiation damping. Because of the statistical character of the radiation, the only
relevant quantities which can be evaluated are moments of statistical distributions. The equilibrium
values of the beam dimensions can be calculated from eqn. (3.61) using the expression originally given

by Chao [Ch79, MRS3, Bb91, EMR99]

55rchy° vps|?
(afy = 22 f o

= ds 3.62
Bvamear 107 (3.62)

which is independent of azimuth s and where the ay are the radiation damping constants

T
A = —
Tk

= —273m{dv; ), (ke {I,II,1IT}) (3.63)

with T' the revolution time and 75 the radiation damping times. Further, the dv; are the complex
tune shifts caused by the (non-symplectic) damping.

Moreover, in the linear approximation 7(#;s) is given by a simple expression in terms of (un-
damped!) eigenvectors and amplitudes [Ma85, BHR92]

(i s) — no(s) = (ﬂ(gfsg): > {ApBi(s) + A_g B_g(s)} (3.64)

k=I111IT

where the amplitudes are determined by the position in phase space @ through (3.60). Recall from our
previous heuristic picture that the non—flip spin motion is not directly affected by the radiation, but
only indirectly through the orbital motion. The explicit dependence of 72 on 4 can be seen by writing
eqn. (3.64) as

( g(?if ) ) = -2 ?Re{ S dd(s) - 5 (s) S}ﬁ(s) = Hayyei(s) (3.65)
(u’ 8) k=IIIIII
The linearized version of the spin—orbit coupling function, given in the (g, 70, i) frame reads [Mag5]

on
%(5)

i v T - ms @E = -28m D vy W (3.66)
k=IIIIII k=IIIIII

Note that to first order the spin—orbit coupling function does not depend on the phase space position
@. Each term in the sum in (3.66) essentially describes the product of the sensitivity of an orbit
amplitude to a fractional energy change (v};) with the sensitivity of 7 to that orbit amplitude ().

The linearization of 7 and % has the effect that only resonances of the first order can be reproduced
(cf. eqn. (3.44))
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Vo=m+mivr+ mirvir + mrrr Vi

where |my| + |myr| + |mrrr] = 1. These arise from the denominator matrix in eqn. (3.59). Observe

that the theory is only valid for /a2 + 32 <« 1.

Finally, the depolarization rate in this approximation is given using eqn. (3.25) by

T 55V3 rey hl 1 > (%m > vz5(s)wkj(s)) ds (3.67)

demtin 36 m C |p(5)|3]‘:1,2 k=1 11,117

The linear formulation presented here is usually called the SLIM formalism since it makes use of the
8 x 8 matrix and the eigenvectors introduced by Chao [Ch81a, Ch81b]in the code SLIM. There, instead
of being used to describe 7 the matrices and eigenvectors are used to estimate the depolarization rate
for spins which are initially on the closed orbit and diffuse away from 7g, but the same expression as

1 is obtained.
p,lin

in eqn. (3.67) for 7

3.2.2 Alternative formulations of the linear radiative spin theory

Until now our description of coupled linear spin—orbit motion has been carried out using the particle
p. Pz . Pz

1 p 1 1 p 1
orbit dynamics can be gained by rewriting the SLIM formalism in terms of “betatron—dispersion”
coordinates, namely by defining

coordinates @ = (z,2', 2,2/, (,0) ~ ( £, 5). However, additional valuable insight into spin—

rg = ¢ — 0Dy, zg = z—6Ds3 (3.68)

Here D = (D1, Da, D3, Dy) is the dispersion vector ?° and z3, 25 are the free betatron oscillations
about the instantaneous orbit § Dy 3(s). The corresponding 8 X 8 matrix formalism is obtained by
making a canonical transformation of the coordinates thus [BR99]

i=K-a (3.69)
where
1 0 0 0 0 —D
0 1 0 0 0 —D
0o 0o 1 0 0 -Ds
K= 0o o o 1 0o -n (3.70)
Dy, =Dy D3 —Dy 1 0
o 0 0 0 0 1

For instance the new 6 x 6 orbit transfer matrix M is obtained via

2075 is the periodic solution of the linearized equations of motion for (x, %, z, %) when 6 = 1 and without the RF

cavities.
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M(s1,80) = K(s1) M(s1,s0) - K™ (s0) (3.71)
= op(s) = K(s) Or(s) (3.72)

and the corresponding matrix for the spin, é, is given by

G(s1,50) = G(s1,50) - K™ (s0) (3.73)

The spin components of the eigenvectors can now be expressed as

—

B(s) = —[Ds+C8) = M| Gs+Cs)Tuls) ¥k e{l, 11,111} (3.74)

Note that the eigenvalues (tunes) are unchanged under this transformation, and that @y = . As
a result of the separation of the transverse coordinates into betatron and dispersion contributions,
columns 1 — 4 of G for a magnet only contain terms depending on the betatron coordinates, whereas
the sixth column contains terms depending on the dispersion. This circumstance can be used when
analyzing the origin of first order resonances.

Spin—orbit coupling can now also be discussed in terms of é, but the use of betatron—dispersion
coordinates also allows us to discuss spin—orbit coupling directly in terms of Courant—Snyder pa-
rameters. Assuming now that the transverse phase space planes are decoupled, then & in the linear
approximation can be decomposed into its contributions due to radial betatron (z3), vertical betatron
(z3) and longitudinal (s) motion

— —

S(a;s) =1 5%(5; s) + 525(5; s) 4 0y (15 5) (3.75)

In analogy with our previous decomposition into amplitudes and eigen modes (see eqn. (3.40) and
accompanying text) we rewrite this as

. 1 .

Glis) =1 52 (AriGri(9)+A5-j(s)) Vi€ fwp 25,5} (3.76)

where flij are new orbit amplitudes for the modes j. By taking into account only the dominant
contributions, namely from the quadrupoles, we are left with [CY81, BS86, BR99]

51955(5) = (ay+ 1) g(s)1/Bz(s) etia(s) o,
Giop(s) = —(ay+1)g(s) /Ba(s) X g, (3.77)
Seal9) = (ay + 1) g(s) [e2Dals) = xD(5)] V1)
where g = %—E(Q%) L, are the normalized quadrupole field gradients. We define the one—turn

linear spin—orbit coupling integrals as
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Jan(s) = / e [ (') + §in(s)] - Bxy (1)
e X ~
Jeo(s) = / [i0() + i o(s)] - Bep (1) (3.78)

Jas(s) = / e [io (') + i In(s)] - Ba(s) s’

An accelerator lattice is said to be linearly spin matched at an azimuth sq if for all & € {+a, +z, s}
the Ji(s0) vanish. These spin matching conditions are equivalent to requiring that G (s+C s) tx(s) = 0
in eqn. (3.74) for one turn, starting at s = sy (see also eqn. (3.59)). Spin matching in terms of the G
matrix will be discussed in Chapter 4. The relevance of the spin—orbit coupling integrals is illustrated
by the fact that in the betatron—dispersion formalism, and considering just the effect of quadrupoles,
eqn. (3.66) becomes

on 1 N = *
S5 =1 3%m Y [1i0(5) + ilo(s)]” Ax(s) (3.79)
k=txx,tz,+ts
where
eFita(s) —D,(s) £ t{a,(s)D,(s) + B(s)D, (s
Marls) = e,y D) HeulID) 59D )
¢ - fe(s)
eFiv=(s) —D,(s) x i{a.(s)D.(s) + B.(s) D,/ (s
¢ - f:(s)
e:l:iws(s)
Arsls) = —gmmg — Je )
Thus %(50) vanishes if the lattice is linearly spin matched at so. Note that o and 8 appearing in
the third factor in the first two equations above are the Courant—Snyder parameters and should not

be confused with the spin variables introduced in eqn. (3.50). The expression for 22 in eqn. (3.79) in

terms of spin—orbit coupling integrals is identical to the expression for the vector Jgiven by Chao and
Yokoya [CY81] in their calculation of spin diffusion with respect to 7.

3.2.3 Synchrotron sidebands

The depolarization rate associated with sidebands of isolated parent resonances, vy = m £ v, is
approximately proportional to the depolarization rate of the parent resonance. For example, using
betatron—dispersion coordinates, one finds that the modification, due to sidebands, to the depolar-
ization rate associated with an isolated parent betatron resonance can be represented symbolically
as 21

A = A B(&mg
Tl ——— = ol Y (&5 ms) 5
P (v £ ) v (vo £ vy £ msvy)

me=—00

(3.81)

2! Analogous but different formulae can also be derived for the effect of synchrotron sidebands of a parent first order
synchrotron resonance.

41



where A is an energy dependent factor originating in the non-resonant factors in eqn. (3.79) when
evaluating the depolarization rate using eqn. (3.25). The B(&;ms)’s, which are called enhancement
factors, contain modified Bessel functions [}, |(§) and I}, 41 (£) depending on the modulation index

2
£ = (Q_’Lb‘ﬂ) . The explicit expression for B({;ms) can be found in [Ma90, Ma92]. See also the

derivation in [Yo83]. The underlying strength parameter £ increases strongly with energy and energy
spread. Using HERA parameters, we find that £ & 1 (with ay = 62.5, 05 ~ 11072 and v; ~ 0.06).
Taking £ = 1 we find the values 0.88, 0.72 and 0.27 for B(&;0), B(&;1) and B(&;2) respectively. For
& = 2 the corresponding values would be 1.17, 1.02 and 0.58. We see that B(&;m) falls off as |my]
increases, but also that as £ increases higher order sidebands become more and more significant. In
any case it is clear that synchrotron sidebands are important for HERA. It should be emphasized that
this approximation for synchrotron sidebands is based on the assumption that the parent resonances
are well separated, and does not account for interference effects. But it is nevertheless a useful guide.
An alternative model for treating synchrotron sidebands is presented in Chapter 7.

3.2.4 Higher order Monte Carlo simulations — SITROS

The linear approximation which is the basis for the SLIM formalism, as has been emphasized, only
reproduces first order resonances. This is equivalent to saying that in the SLIM approximation the
w at different azimuths commute. However, we know from the multiple integrals discussed earlier
in this chapter that we cannot neglect non—commutation. The sideband effect is a good example of
this. In order to get a realistic picture of the spin dynamics in a storage ring it is therefore necessary
to go to higher order. But as we have seen, most of the codes available for the calculation of high
order spin—orbit motion are either not customized for radiating particles and/or require very large
computing capacity. What we need is an algorithm where these shortcomings have been overcome by
some reasonable simplifying assumptions and a code that can calculate the equilibrium polarization
for electrons.

The SLIM family of programs as well as SMILE, SODOM and SPRINT are all based on calculations
of the quantities 7 and % in the Derbenev-Kondratenko formula (3.20). A more pragmatic way
of treating spin polarization in rings is employed in the Monte Carlo tracking code SITROS. Here
the central concept is the estimation of the depolarization time from tracking data of a sample of
test particles with spins attached to them, under the influence of radiation damping and stochastic
excitation of the orbit motion. Hence SITROS simulates the heuristic model of spin diffusion that
I pictured earlier. The SITROS code was originally written and described by Kewisch [Ke85]. A
presentation of the code and the approximations used in the calculations can also be found in [B694],
but for the sake of clarity the main concepts and connections to relevant underlying physics will be
repeated here. An account of recent updates to the program is given in Appendix C.

In SITROS an ensemble of electrons (positrons) is tracked in the electromagnetic fields of a storage
ring for many turns. The tracking takes place in two stages. First only orbital tracking is performed,
to establish an equilibrium phase space distribution, and in a second stage spin motion is added.
The basic equations of motion for the orbit and the spin are given in Appendix A: eqs. (A.1) with
(A.2) and (A.13). Performing direct integration of these equations for many particles over thousands of
turns in an accelerator is not practical and therefore some form of transfer matrix formalism should be
adopted. In SITROS, the transformation of the orbital coordinates through the main lattice elements
is represented by 6 x 6 first order maps with built in damping, i.e. § dependent effects corresponding
to the term REP in eqn. (A.2) are taken into account. The nonlinearities in the lattice (sextupoles
and beam-beam effects) are included as thin lens kicks. In order to reduce the computing time, the
ring structure in SITROS is divided into sections. The elements in a section of the ring are lumped
together such that the individual orbit and spin maps are concatenated into just one map for the orbit
and one map for the spin, representing the entire section. Therefore stochastic radiation can only take
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place between the sections. The subdivision is chosen by the user, but requires that at least one dipole
(or combined function magnet) is contained in each division.

The radiation damping built into the orbit matrices of SITROS reflects the non—Hamiltonian
character of the problem and implies non—symplecticity. For a pure dipole field, the smooth averaged
radiation leads to a damping of the sixth orbital coordinate & (transverse recoils affecting 2’ and 2/
are ignored), whereas in combined function magnets the dissipation can cause antidamping of the
transverse motion. The phases and voltages of the accelerating cavities are set so that the energy lost
in the bending fields is compensated by the average energy gain in the cavities. The weak radiation
coming from quadrupoles, sextupoles and solenoids is neglected. The stochastic part of the synchrotron
radiation process, SR in Appendix A, is usually modelled as a white noise process with the properties
given in eqn. (A.11)

(6R)Y = 0
(R (s) R ()) = orT L s g

24v/3me |p(s)|°

SITROS approximates the stochastic radiation effects by emitting a small number of “high energy”
photons, which in practice means that a random kick chosen from a truncated centered Gaussian
distribution is given to the energy offset coordinate ¢ at the beginning of each section. The tracking is
started with all particles on the closed orbit. From our simple diffusion model with damping and noise,
assuming that all initial transients have died away, we expect the beam size oy (k € {I,11,111}) to

develop with time as [He97]
lin t
or(t) ~ o™ ]1—exp(——) (3.82)
Tk
lin

where 0" and 7; are beam size and damping time for mode k from linear theory (egs. (3.62) and
(3.63)). Writing the random energy change Ad as a product of a strength factor, K, and a random
variable, n, an estimate for the excitation strength needed at the radiation points in the tracking to
reproduce the correct beam dimensions is given by [B694]

. T(6?%)
K= ooV

(n*) = 1- \% o <_%) (3.83)

provided that the centered Gaussian random distribution, ¢(7) describing the emissions has unit
variance and is cut off at n. standard deviations. In SITROS the cut off is made at n. = 1. Here
(62 ) and { »* ) are the second moments of the energy offset variable § and the random variable 5
respectively, Np is the number of radiation points, erf( ) is the error function [AS70], and 7" is again
the revolution time. Note the explicit use of the index s in 7y, indicating an uncoupled or only weakly
coupled optic. To make sure that the model, with only a restricted number of radiators representing
the stochastic part of the radiation process, returns the expected beam sizes, the excitation strength
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is adjusted during the tracking. The simulated rms beam size 22 in one dimension, preferably in the

longitudinal plane, is monitored during the tracking and compared with the predicted value from
linear theory o,/ at fixed time intervals, which are taken to be multiples of the damping time in that

plane. If the tracked rms beam size has not converged to the linear value for a given K at the end of
tracked _ lzn) /O.lzn

lin

the time interval, the excitation strength is modified by subtracting from it f, (o (
where f, is an appropriately chosen scale factor.

The SITROS section matrices describing the transformations of the orbital coordinates in the
tracking contain the lattice nonlinearities up to second order. This means that an input particle
trajectory is described by a 28 component vector X(z) made up of all first and second order monomials
of the phase space coordinates with respect to the closed orbit, plus an entry for the closed orbit itself

X(z) = (1 v, 2 2,2 0,8, 2% 2 , 28, K(S) (3.84)

Thus the section matrices, relating the output phase space coordinates to the input X(z) vector, are
of dimension 6 X 28 and consist of the differential quotients of the 6 output first order monomials
with respect to the 28 input first and second order monomials. The section matrices are calculated
prior to the “real” tracking in a “test” tracking of a set of particles through the sections, starting
at representative positions. £1¢ is the pragmatic choice used in SITROS. Counting all possible sign
combinations at the starting point, 73 test trajectories are needed. The test trajectories are obtained
by using 6 x 6 matrices for the linear elements and nonlinear kicks from the sextupoles. An analogous
method is used for the determination of the coefficients of the transfer maps for the spin motion in
Chapter 5.

The spin transformations in SITROS are represented using a quarternion formalism, which is
closely connected to SU(2) spinor algebra. In this formalism, the basic quantity is the unit—quarternion

defined as

= — ® P
7 = (q0,01,92,93) = (COS 5+ Sin 5(]) (3.85)
with ||g]] = 1. The rotation angle ¢ and the unit vector ¢ are related to the spin precession vector

Q= > Q;é; (j€{x,z 5}), integrated over some short distance As for which Q ~ const. , through

o = [ Igas
As

Q ds
g = Vijed{x, z s} (3.86)

H/ G ds|

The spin transformation across a lattice element in the language of unit—-quarternions is given by the
composition of two quarternions and can be expressed as a product of a real 4 X 4 matrix with an
initial quarternion

(y =z, z,s) where (y) =0 (the closed orbit).
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q1 _ g1 90 —43 Q2 q1 (3.87)
q2 92 43 4o —q1 92
93 /¢ 93 =492 @1 9o J; .\ 43 /;

A summary of the rules for quarternion algebra and a discussion on its relation to the SO(3) formalism
and SU(2) spinor algebra is given in [Vo00]. See also [Mo84].

We have seen earlier that even in the case of linear orbit motion, the spin motion is nonlinear (cf.
eqn. (3.51)). To handle these nonlinearities economically, the following approximations are made in

SITROS

e For dipoles there is only a minor dependence of Q on the transverse coordinates (introduced
by the weak focusing of these magnets). The phase space dependence can therefore to a good
approximation be averaged over the element length. The dipole fields due to correction coils and
to orbit offsets with respect to the centres of quadrupoles and sextupoles are also treated in this
way.

e lLor quadrupoles and higher order multipoles (mainly sextupoles) the phase space dependence of
Q cannot be neglected. See, for example, eqn. (3.33). On the other hand, the spin rotations in
these magnets are usually small and rotations around different axes in a magnet can therefore be
treated as if they would commute. For purely transverse fields the following relationship between
the spin rotation and the particle deflection hold: [Qds = (ay+ 1) (=A%, Az’,0)". Note that
the spin rotation experienced in solenoid end fields and due to the (linearized) beam-beam effect
is given by this same expression.

The tracking in SITROS is typically done for an energy range of 441 MeV (spanning the interval of one
integer in av). For this the quarternion spin maps, parametrized as second order polynomials in the
orbital coordinates at each energy step, and the orbit maps for the central energy point 23 are combined

—

into a matrix of dimension (6 + 4 - Ng) x 28, multiplying onto the vector (X(z);17 .. .,X(Q);NE)T,
where N is the number of energy steps. The parametrization of the maps leads to extra artificial
nonsymplecticity in the orbital maps. Moreover it changes the length of the spin quarternions slightly,
thereby violating the orthogonality of the rotation matrices. ?* The additional nonsymplecticity is
usually quite small compared to the damping related nonsymplecticity and can be neglected, but the
unitarity of the spin quarternions must be restored in each step by normalizing them to avoid an
unphysical blowup or shrinking of the spin vectors during the course of the multi—turn tracking.

Although the spin transformations through individual lattice elements as well as the concatenated
transformations for sections of the ring in SITROS are described by quarternions and compositions
thereof, which are new quarternions, the actual spin transport across a section is carried out by using
a 3 x 3 rotation. Given a spin vector S = (Ss, Sz, Ss), the transformation across a section of the ring,
represented by the quarternion map ¢ is

S; = R,S; (3.88)
B+a—L ae-90p a6+ oe
R, = 2| oa+aoe @+E-3 we—on (3.89)

B0 — 092 9302 90 g5 +4¢3 — 1

22The change in the orbital maps for this energy range is negligible.
2 Recall that the unitarity or, equivalent, orthogonality condition for the unit—quarternion simply reads llgll = 1.
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The final spin tracking in SITROS is carried out with the phase space distribution in equilibrium
with all spins initially parallel to the stable closed orbit spin solution 7fig. Then the polarization with
respect to 7g(s,.p) at some observation point s, , is monitored for a large number of turns. In this way
it is possible to get an estimate of the depolarization rate and by combining it with the polarization
build—up rate eqn. (3.19) an estimate for the equilibrium polarization is obtained (eqn. (3.26))

Tdep T
Peq = PBKS T = PBKS
TBI\"S Tdep

DK

BKS

In practice, the depolarization rate is obtained from the tracking data via a fit of the relation

(P, (o) —In(Pr, (1)

—1/q. Tdep .
“Ut) = — vie{l,...,Ny) (3.90)
where
AL
PTdep (tl) = PBKSN—P Z; Sj (tz) : ﬁo(So.p) (3.91)
]:

Here t; = g forall i € {1,..., N7}, where N7 is the number of tracking turns, and Np is the number

of particles.

The sectioning technique used in SITROS has the obvious disadvantage of potentially poor repre-
sentation of the nonlinearities in the optic and the stochastic radiation process. These disadvantages
have become apparent in calculations with SITROS for the HERA luminosity upgrade electron op-
tic. For this optic the small number of sections used in past calculations for HERA [Li88, B694] (a
few times 10) is not enough to accurately reproduce the equilibrium beam sizes and to calculate the
equilibrium polarization. The maximum number of allowed sections has therefore been increased so
that each section (and hence radiation point) contains only one dipole or combined function magnet
in HERA. Moreover, the spin representation in the parametrized maps now contains the quarternion
components instead of spins parametrized in the vector-angle representation, which was implemented
in an older version of the code. For more details on recent upgrades of SITROS, see Appendix C.

The SITROS package consists of a number of modules, each with its own main program (named
SITA, SITB, SITC, SITD, SITE and SITF), that is responsible for a part of the algorithm. A flow
diagram illustrating the connections between the different parts can be found in Appendix C. The
tasks of the different modules can be summarized as follows:

e In SITA a PETROS [Ke78] optic file (with or without distortions, corrections and harmonic
bumps — see next chapter) is read and the basic optic parameters, such as optical functions,
closed orbit and emittances are calculated using linear orbit theory. g is computed as well

as the asymptotic polarization P, . and the polarization build-up time 7, ., for the chosen

energy points. Section matrices for the orbit and the spin are constructed in the way previously

described.

e The starting value for the excitation strength K is set in SITB. Other quantities needed for the
tracking are also initialized here, among them the number of particles N, the starting particle
distributions (all particles set on the closed orbit as default) and the beam-beam parameters.

e The first stage of the tracking is carried out in SITC. The particle orbits are tracked for a few
damping times, typically 5000 turns, in order to achieve the correct equilibrium beam sizes.
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e Simultaneous spin and orbit tracking is performed in SITD, starting as mentioned with all spins
initially parallel to fg. For each of typically 5000 tracking turns the projections of the individual
spin vectors onto the 7ig basis vector at the starting azimuth are noted and an ensemble average
is calculated.

e Finally in SITE, an estimate of the depolarization time 7, is evaluated from the tracking data
and P, can be calculated from eqn. (3.26).

o SITFE differs from the other modules in that it is a “stand—alone” program, calculating the
polarization in the linear approximation, using the SLIM technique.
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Chapter 4

HERA Polarization in Light of the
Upgrade

4.1 Electron polarization — experience gathered at HERA

In the last chapter we have learned that the electron polarization in a storage ring such as HERA
is the result of a competition between radiation induced build—up due to the Sokolov—Ternov effect
and spin diffusion. At HERA the polarization reaches equilibrium in a few tens of minutes. It has
been argued that this equilibrium polarization should be nearly parallel to the n—axis, which in turn is
closely aligned along fig, except very close to resonances. In a perfectly planar ring without solenoids
Ng is vertical. Vertical electron beam polarization was first observed in HERA in November 1991,
and polarization values of over 70 % were achieved only a few months later after dedicated machine
tuning [Bb95].

As pointed out in Chapter 1, most of the high energy physics that can be done with polarized beams
requires polarization in the beam direction, i.e. longitudinal polarization. This is achieved by bringing
the natural transverse polarization of the arcs into the longitudinal direction at the interaction points
using special magnet arrangements — so called spin rotators. Since the generation and maintenance
of the naturally occurring polarization requires that the polarization direction be vertical in the arcs,
spins rotated into the longitudinal direction at an IP must be rotated back to the vertical direction
before entering the next machine arc. Spin rotators therefore always come in pairs. The provision of
longitudinally polarized et/~ beams for the collider experiments was one of the features of the original
HERA design. After successful operation with vertically polarized beams, a first pair of spin rotators
of the Buon-Steffen Mini-Rotator type [BS86] was installed in the East straight section of HERA in
1993-94 to serve the HERMES experiment with longitudinal spin polarization. A rotator consists of a
chain of interleaved horizontal and vertical bending magnets, replacing two ordinary bending magnets
at the end of the regular arc structure on either side of the IP. The vertical bending magnets of the
two rotators in the pair form closed bumps on each side of the 1P, the left and the right side bumps
being asymmetric with respect to the IP. The HERA rotators are designed to operate in an energy
range from 26.8 GeV to 39 GeV and they allow the change of spin helicity at the IP by reversing the
signs of the vertical bumps. To facilitate this the magnets are mounted on remotely controlled jacks,
so that the magnet elevation follows the vertical profile of the orbit, allowing operation within the
specified energy range. The adjustment of the horizontal geometry necessary for changes in the beam
energy greater than +100 MeV must however be performed manually. An illustration of the magnet
lattice and the spin transformations in the rotator region on the upstream (left) side of the East IP is
seen in Figure 4.1.

49



! 69.7081m \ 96.01bm—>1

Figure 4.1: The left half of the rotator pair in the East. The magnets BH03 and BH02 are not
an integral part of the rotator, but are needed to complete the spin rotation into the longitudinal
direction. On the opposite side of the IP a similar magnet arrangement with reversed radial fields
(BF and BG magnets) brings the polarization back to the vertical direction. Courtesy of M. Wendt.

A characteristic of dipole spin rotators is their effect on the maximum attainable equilibrium
polarization. In a perfectly flat ring (without solenoids) P o =92.38 %, but in a ring with rotators
this upper limit is decreased since iy is not antiparallel to the magnetic field at all positions along
the closed orbit. See eqn. (3.17). The main part of this drop comes from the tilt of fg in the rotator
region itself, but for rings with dipole fields in the “straight sections” (such as in the HERA upgrade
lattice) these sections also contribute to this loss. For HERA at a nominal energy of 27.5 GeV the
drop is about 3% for one pair of rotators. Hence, the starting condition for attaining a high level of
spin polarization in a ring containing spin rotators is worse than in a ring without rotators. To this
comes the effects of spin diffusion for particles in the fields of a real accelerator.

Spin diffusion can be particularly strong in a ring with spin rotators. One reason is that in the
section between the rotators in a pair, ng is horizontal and can hence be considered to be maximally
tilted from the vertical. I will elaborate on the implications of a tilted 7p in the following pages.
Another reason is that synchrotron radiation emitted in the rotators, where the vertical bends create
a local vertical dispersion bump, excites vertical betatron oscillations. To achieve the highest possible
polarization for the experiments, the detrimental effects of spin diffusion have to be minimized. This
can be accomplished through the procedures of spin matching described in [BR99]. In practice spin
matching is carried out in stages. Using available quadrupoles, not only should the usual optical
conditions be fulfilled, but also additional requirements have to be met, forcing the spin—orbit coupling
to vanish in the sense to be explained below. This is the first stage in setting up a spin matched optic.
The method is called strong synchro—beta spin matching and is based on linearized spin—orbit theory
for perfectly aligned machines. To illustrate the concept of strong linear synchro—beta spin matching
and at the same time facilitate the description of the analysis carried out in Chapter 6 I will remind
the reader here of some basic facts.

1
Jin

minimized. By eqn. (3.67) this is equivalent to saying that v, (k€ {I,II,1I1})or thepcomponents

of Wy, should be minimized at azimuths where W is large. The v}, determine the orbit excitation

caused by synchrotron radiation (cf. eqs. (3.61) and (3.62)). In a ring with no transverse inter-mode
coupling vj;5 usually vanishes in the arcs, since there the vertical dispersion D, vanishes. However,

From the discussion in Section 3.2 it is clear that to maximize the polarization, 7~ must be

in rings with spin rotators vj;; does not vanish in the rotator regions, if the rotators contain vertical
bends. The vj; on the other hand, generally does not vanish in the arcs since the horizontal dispersion
D, # 0. Finally v};;5 essentially never vanishes. The conclusion to draw from this is that one should

* |2
at least try to minimize @ for azimuths in the ring where ||:(k§)||3 gives a substantial contribution
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to Tc;;,lin Examination of eqn. (3.59) shows that the spin eigenvectors Wy for k € {I, 11,111} are
proportional to the one—turn G matrix. The strong spin matching therefore boils down to bringing
the elements of G(sy,s;) to zero for the appropriate regions (going from azimuth s; to s¢) or, if that
is not possible, minimizing the product G(sy,s;) - Ux(s;). Now, since in a perfectly flat ring without
solenoids g is vertical, the vertical components of the two remaining base vectors of the periodic spin
frame, 1. and l;, are zero. By inspection of the G matrix elements for horizontal bends and combined
function magnets, quadrupoles and RF cavities (see for instance [Bb85b]) we find that in the absence
of coupling, columns 1, 2, 5 and 6 of the one-turn G(s + C, s) vanish. Moreover, the one-turn orbit

matrix and its corresponding eigenvectors have the general structure
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where x’s symbolize nonzero components. Hence, by eqn. (3.59) @j(s) and @yjs(s) are zero in this
case, and we already know that vj;; = v}; vanishes in an uncoupled ring without rotators. The
depolarization rate Tc;;,lin is therefore automatically zero. In rings with rotators, the 90° tilt of 7 in
the region between the rotators in a pair results in additional nonzero entries in the G matrix for this
region for G, and G,. Thus the one-turn G, (s+ C,s) and G,(s+ C, s), in addition to G,(s+ C, s),
can be nonzero for any dipole inside or outside the rotator region. Observe that the one-turn elements
of G, and G, everywhere in the ring arise solely from the rotator region, since #g is vertical in the
arcs. The task of synchro—beta spin matching of rings with rotators in terms of the G matrix can be

summarized as follows !

e Minimize G, G, and G, for the region between the rotators in a pair.

e Minimize G, for an arc, i.e. from the centre of one rotator to the centre of the next rotator.

A section of a ring which has been spin matched according to these guidelines is said to be spin
transparent. Note that the use of the G matrix for spin matching emphasizes the local nature of spin
transparency. At DESY the SPINOR code [HS85] is traditionally used for designing the spin matched
HERA optics in the presence of rotators, making the lattice spin transparent by fulfilling all the above
conditions.

Creating a spin transparent optic for the perfectly aligned machine is usually not enough to assure
a high degree of polarization. There is a limit to the precision with which the machine magnets in a
real ring can be aligned and positioned with respect to the design values. Modern storage rings are
equipped with beam position monitors and correction coils so that the closed orbit can be directly
measured and corrected. Nevertheless, even after careful orbit corrections have been applied, there
will always be a residual distortion of the closed orbit caused by the misalignments, field errors and
their corrections. This will generate a tilt §7g of the periodic closed orbit spin solution 7y from its
nominal direction. In HERA with transverse alignment tolerances of 0.3 mm, an rms value of dng of

'This is a very general recipe and it should be pointed out that each case has to be treated individually, taking
into account such things as ring (a)symmetries and number of independently powered quadrupoles available. For
example in HERA we do not try to spin match between radiating dipoles in the straight sections, but only across
whole straight sections. [ will return to this point when discussing results of polarization simulations for the HERA
luminosity upgrade in Chapter 6.
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the order of 30 — 40 mrad is expected after standard orbit corrections. Simulations show that in such
a situation, even with a good (strong synchro-beta) spin matched optic, the polarization is usually
very low and of no practical value to the experiments. This is simply so because in a real ring with
misalignments and errors the spin match of the perfectly aligned ring is broken! In a ring with tilted
Ng in the arcs, the elements of columns 1, 2, 5 and 6 of the one-turn G matrix are generally non—zero.
Equivalently, the spin-orbit coupling integrals Ji, and Jis in eqn. (3.78) become non-zero due to this
tilt. Synchrotron and horizontal betatron oscillations can therefore contribute to the spin diffusion.
It is found numerically that the term in Ji, related to the horizontal dispersion dominates. Further
examples of how the various terms contribute to the depolarization will be given in Chapter 6. To
counteract the sometimes strong spin diffusion connected to the tilt of 7y a dedicated minimization
of the distortion 79 is needed. This is the second step of the spin matching. If there would be
enough beam position monitors (BPMs) and correction coils in the lattice so that each quadrupole
would have its own BPM and correction coil, and the positions of the BPMs with respect to the
quadrupoles would be well known (from, for example, beam-based calibration [Sa99]), one could
minimize the combined vertical kick applied to the orbit by each quadrupole and its correction coil,
in effect reducing the tilt of 7y deterministically [BB94]. 2 However in practice, this is usually not the
case and therefore some empirical correction scheme has to be applied. The method used at HERA
for optimizing the polarization in a ring with orbit distortions is called harmonic closed orbit spin
matching and is described in [Bb85a, Bb94]. The technique was first developed for and applied to the
et/~ storage ring PETRA [RS85], but has since been improved for HERA. Introducing the notation
0ng = dngy, ™M + Ongy i, where the tilt of 7ig from the design orientation is expressed in terms of the
periodic frame (7q, i, i) calculated on the design closed orbit, §7ig can be expressed as

. C e12mps/C
5n0m (S) — 1 57101(8) = —1 g Zp: fpp—iyo (42)

where the f, are the Fourier coefficients of a “spin—orbit function” f(s) = fi(s) — ¢ fa(s) given by
1 st -
fp — 5 / f(S/) e~ 12mps /C ds'

and

1+avyg
B 140

S ) ( L le L ) ey EC
= Fsxe - a7 — — | AB, (1 + ayo)

—Mys —M, —M, F
f2 °\ AB, (14 avo)

where the AB, (y = z, 2, s) are field errors and 4 is the deviation of the six—dimensional (distorted)
closed orbit from the design orbit. The principle of the harmonic spin—orbit correction scheme is to use
a small number of vertical correction coils to reduce the rms value of the §7g distortion by minimizing
the most detrimental harmonics in the above expression. Before the shutdown for the upgrade of
HERA a total of eight closed vertical orbit bumps, the “harmonic bumps”, located in the arcs of the
machine, were used to control the real and imaginary parts of the harmonics —1, 0, 1 and 2 of f,
found to be the most important in simulations. Closed bumps, consisting of three vertical correction
coils each, have been used in order to avoid perturbing the vertical orbit everywhere and creating
vertical dispersion. Moreover, in this way the luminosity is not effected. The optimal settings of the
bump amplitudes are found through empirical tuning by observing the polarization. To this end, fast

2Such “kick minimization” will not be efficient if the ring dipoles are significantly tilted.
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polarimeters are of utmost importance. The harmonic closed orbit spin matching used in HERA 1
was able to reduce the rms value of §7¢ to 10 — 20 mrad and greatly improved the polarization. This
can be understood by recalling that the depolarization associated with a tilt of g roughly scales as
§n2, due to the term (%)2 in the depolarization rate, eqn. (3.25). In the years 1995-2000 HERA had
the capability to routinely deliver longitudinally spin polarized et/~ to HERMES, with polarization
values lying between 50 and 60 % and with peak values reaching 65 %. The HERA electron ring is so
far the only high energy ring that gives access to longitudinal spin polarization.

The polarization in HERA is measured at two locations in the ring: in the West straight section,
where the polarization direction is vertical, and in the East straight section close to HERMES, where
the polarization direction is almost longitudinal. These devices are briefly described in Section 4.3.

4.2 Impact of the upgrade on polarization

Spin Rotator H1
(New)

TPOL
Upgraded | Spin Rotator

HERMES

LPOL
(Upgraded)

electrons

Spin Rotator
(New)

Figure 4.2: Schematic representation of HERA—e after the Luminosity Upgrade.

As we have seen in Chapter 2, the luminosity upgrade of HERA will have a profound impact on
the lattices of the proton and e*/~ rings. By now it should be clear that since the spin and orbital
dynamics are intimately connected, the changes implemented to influence the orbital dynamics in
favour of higher luminosity will have repercussions on the spin motion. In this section these changes
will be discussed further with emphasis on their importance for operation with polarized et/~ beams.

Two additional pairs of spin rotators have been available for inclusion in the ring since 1997.
These have, at the time of writing, been installed at the beginnings and ends of the North and South
straight sections respectively, giving access to longitudinal et/~ spin polarization at the colliding beam
experiments H1 and ZEUS. Due to the lack of space in the interaction regions the anti—solenoids,
previously used to compensate for the effects of the experimental solenoids on orbit and spin motion,
will be removed. > This calls for an alternative solution. In the tight layouts of the new interaction
zones the superconducting separator magnets GO and GG are placed partially inside the detector

®A discussion on the effects of (uncompensated) solenoids on the polarization is found in Chapter 6.
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solenoids, giving rise to overlapping magnetic fields. The positions of the GO and GG magnets with
respect to the detectors are shown in Figures 4.3. and 4.4. This has some unpleasant effects on the
orbit and spin motion. The increased horizontal and vertical phase advances, from 60° to 72°, and
the shift of the RF frequency to reduce the horizontal emittance will also influence the polarization.
The new interaction region quadrupoles are stronger than the old ones and the design is no longer
mirror symmetric with respect to the IPs. As a result of these changes the new e™ and e~ optics are
subject to tougher constraints than previously and the asymmetries in the lattice make spin matching
an intricate business. It should be pointed out that a good spin match becomes especially important
with additional rotators operating in the ring, because of the effects described earlier in this chapter.
Another area expected to have a significant impact on the polarization is the interaction with the high
intensity proton beam. The construction of optical solutions that permit a high degree of e*/~ spin
polarization in the upgraded HERA presents many challenges. A basic requirement for calculating
the polarization is the ability to model the complicated field configurations in the interaction regions.
A detailed description of how this problem has been solved is given in Chapter 5.
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Figure 4.3: The H1 solenoid with the overlapping machine magnets. Courtesy of H. D. Briick.

4.3 Polarimetry at HERA

In the past, two polarimeters have been used to measure the electron spin polarization in HERA,
measuring transverse and longitudinal beam polarization in the West and East straight sections re-
spectively. 4 The two devices rely on the same basic physical principle: spin dependent Compton

*Recall that although the direction of the polarization can vary around the ring, the value of the polarization is the

same at all azimuths.
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Overview of the /EUS Detector
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Figure 4.4: The ZEUS solenoid with the overlapping machine magnets. Courtesy of U. Schneekloth.

scattering of circularly polarized laser light off polarized et/~. However they differ in construction
and the measurement techniques employed [Bb93, Be0Oa] and therefore complement each other.

After the luminosity upgrade, with two more spin rotator pairs installed in the HERA lattice, the
default operation mode for HERMES, H1 and ZEUS will be with longitudinally polarized et/=. Spin
dependent physics will become an integral part of the programme of the colliding beam experiments
in addition to HERMES, where this has been the case since the startup of the experiment. Access to
longitudinal et/~ spin polarization in combination with a luminosity increase by a factor of about 5
opens up new possibilities for studying the physics of the electroweak and strong interactions. Precision
measurements to permit tests of physics beyond the Standard Model will also become feasible. In these
new studies, measured quantities such as structure functions and asymmetries will be very sensitive to
the beam polarization. The monitoring of the spin polarization will thus become as important for H1
and ZEUS as monitoring luminosity. Given an accuracy of the luminosity measurements of 1 — 2 %,
the polarization measurements after the upgrade should be capable of a precision of AP/P < 2 %
for P = 50 — 70 %. Measures will have to be taken so that continuous, reliable beam polarization
measurements are available throughout the HERA collision programme. It should be pointed out
that the physics experiments done at H1 and ZEUS are based on the colliding bunches only, whereas
at HERMES all electron bunches are used. A system of polarimeters should therefore be able to
separately measure the polarization of the colliding and the non—colliding bunches. In the old setup,
only one of the polarimeters (the longitudinal polarimeter) was able to accomplish this.

Parallel to the work done by the Luminosity Upgrade group, a special working group, “the Po-
larization 2000 Project” group, has been looking into the potential for upgrading the existing HERA
polarimeters to meet these requirements.
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4.3.1 Transverse Polarimeter

Located in the HERA West straight section, where the nominal polarization direction is vertical, the
transverse polarimeter (TPOL) measures the vertical component of the electron polarization. The
polarimeter became operational in 1991 and until the summer of 1999 it was the primary device for
measurement of polarization in HERA. TPOL measures spatial asymmetries in the vertical plane of the
distribution of single backscattered Compton photons arising when circularly polarized photons scatter
off vertically polarized electrons. The shift of the mean vertical position of the photon distribution,
when switching between left (L) and right (R) circular laser light polarization, is proportional to
the vertical polarization component P, of the electrons. In particular at the position of the photon
detector, 65 m away from the point of interaction, the photon spot size is of the order of 0.3 mm in the
vertical plane and the shift between the centroids is typically about 140 um. The vertical positions of
the photons are recorded with a vertically segmented calorimeter by energy sharing in the upper and
lower halves. By forming the shower energy asymmetry n = (Eyp — Edown)/(Eup + Edown), Where 1 is
related to the vertical position through a parametrization, P, can be obtained through the difference
of the mean values () when switching the light polarization

e tn — pagym,(e,) (1.3)

Here ASs is the difference in the circular polarization of the laser light. II,(F,) is the so called
analyzing power, which depends on the Compton cross section as well as detector and electron beam

An(E,) = L

parameters and has to be checked through calibration.

An alternative method has been developed, in which the measured energy distributions in the
calorimeter are used, and an asymmetry is formed by comparing distributions for left and right polar-
ized laser light. The systematic errors of the two methods are of different nature: the means method
is dominated by the spatial calibration of the calorimeter, whereas the asymmetry method is mostly
sensitive to the exact knowledge of the interaction point of the lepton and laser beams.

Since precise knowledge of polarization is so important, the absolute value delivered by a po-
larimeter must be checked through calibration. Before the shutdown for the upgrade, the calibration
of TPOL was relying on experimental data through rise time measurements. In such a measure-
ment the electron beam is deliberately depolarized by means of a radial RF—field and the subsequent
build—up of the polarization is recorded. The asymptotic polarization (P, ) from the fit mentioned in
Chapter 3 is then used to rescale the measured asymptotic polarization. An example of a rise time
curve is given in Figure 4.5.

The rise time calibration method is time consuming and requires dedicated beam time under stable
machine conditions. No recent measurements have been made and it is desirable that alternative
methods be found, so that the calibration of the polarimeter can be done independently of rise time
measurements. A new method to improve the use of the TPOL data has been proposed in which a
position sensitive detector in front of TPOL could be used as an in—situ device to calibrate the energy
— position relation, parametrized in the so called 1 — y transformation (in a coordinate system where
y refers to the vertical direction). A silicon strip detector is currently under development for this
purpose and the goal is to have it installed at the time of turn on of HERA II in summer 2001.

Recent studies have resulted in a much improved understanding of the detector calorimeter and
the energy distributions as a function of the polarization. Together with an improved description of
the spatial calibration this has allowed a recalibration of TPOL and the systematic errors are now
approaching the 1% level [BeOOb]. Up to now, the errors from the asymmetry method have been
slightly larger, favouring the means method.

The most extensive upgrade of TPOL concerns the data acquisition (DAQ) system. With the old
DAQ system used before the shutdown, TPOL was only capable of measuring the average polarization

56



HERA-e Polarimeter on Sun Apr 18 18:27 1999

70 T T T T T T T T T
Transver X x
60 PO
S 50
& 40+t ]
B
2 30+ s
8 !
e 20 : i
10 | % i
*
0 1 1 1 1 1 1 1 1 >§I 1 1 1
Time[h] 20 22 0 2 4 6 8 10 12 14 16 18

Figure 4.5: An example of the electron polarization in HERA as a function of time, as measured
by the transverse (TPOL) and longitudinal (LPOL) polarimeters. Note that as expected TPOL and
LPOL deliver the same value for the polarization within errors.

of all the electron bunches in the ring. Experience with the longitudinal polarimeter (LPOL) shows
that colliding and non—colliding bunches can have different polarization patterns and that the values
obtained depend strongly on the tuning of the machine. The provision of fast and flexible systems,
capable of measuring the polarization of any combination of bunches is therefore a key issue for the
polarimetry in HERA after the upgrade. The new DAQ for TPOL has been designed with these
considerations in mind. The new system will enable TPOL to measure the polarization bunch—by—
bunch, with a statistical accuracy close to 1% per bunch in 15 minutes and about 1% accuracy for
all colliding bunches in 1 minute. The work on the new system has now reached a mature state and it
has been demonstrated that it allows the measurement of the polarization of individual bunches. The
goal is to have a debugged and operational system for TPOL at the start of experimental data taking
in 2001.

4.3.2 Longitudinal Polarimeter

The determination of the electron polarization with an absolute accuracy of 1 % requires approximately
10% scattered photons. The detection of individual photons is referred to as the “single photon”
method. It can be used if the background from beam-gas bremsstrahlung is low. At the position of
TPOL in the West straight section this is the case, and TPOL is operating in this mode. In cases
where the background is large, the “multi photon” method is preferred. By using a pulsed, high power
laser to produce thousands of backscattered photons for each interaction with an electron bunch, the
Compton scattering can be made to dominate over the background.

In 1996 a second polarimeter built by the HERMES collaboration was taken into operation at
HERA. This polarimeter measures the longitudinal component of the et/ polarization, P,, ® in the
region between the HERMES spin rotators. Unfortunately the bremsstrahlung background rate in the
HERMES straight section is relatively high at the position of LPOL, so the polarimeter is designed to
operate in the multi photon mode. The polarization measurement is based upon large asymmetries in
the energy distributions of the backscattered photons. A high intensity pulsed Nd:YAG laser delivers
photons whose interactions with individual electron bunches are detected. The energy weighted cross

5Note that in Chapter 6 the symbol P, refers to the polarization associated with longitudinal orbital motion in the
SLIM formalism.
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sections of the backscattered Compton photons — about 1000 per laser pulse — are then used to
extract the value of the longitudinal polarization. The expression for the energy weighted asymmetry

A reads

A = AS3PS; (4.4)
where S; is the analyzing power, given by
S,=SL=5R - and S»—/Em”(d—")»Er(E)dE i=L,R (4.5)
S_SL+SR7 [ Emln dE K3 1 - 1 *

and r(F) is the energy response function. The longitudinal polarimeter, LPOL, is capable of measuring
the polarization of single bunches, small groups of bunches or all the electron bunches in the ring. The
background, when running in the multi-photon mode, is negligible.

The longitudinal polarimeter has been subject to especially intense research, motivated by problems
of understanding the calibration of the device during the first years of operation. A significant effort
undertaken by the LPOL group ¢ of the HERMES experiment has led to substantial progress in
reproducing theoretically expected asymmetries and in understanding the physics of the calorimeter.
In the summer of 1999 it was possible for the first time to calibrate LPOL independently of TPOL,
making it a stand alone, fully calibrated polarization measurement station. Since then, the polarimeter
has delivered data with exceptional reliability and very good accuracy. Nonetheless, there is still
room for improvement. The design of the calorimeter used for LPOL suffers from some intrinsic
problems that limit the statistical precision. It has therefore been decided to replace the existing
crystal calorimeter with a sampling calorimeter for operation after the upgrade, that should have a
better energy resolution and a more linear response. The new model has been built and tested and
the results are promising.

One of the major advantages of LPOL over TPOL is that it has a higher analyzing power. The
timing of the high intensity pulsed laser for LPOL on the other hand, makes the operation of this
polarimeter more difficult. It is generally believed that the ultimate precision in polarization measure-
ment will be delivered by a polarimeter which measures longitudinal polarization in the single photon
mode. This mode has several advantages, the most important being the large asymmetries at the
Compton edge and the precise knowledge of the expected energy spectra, which facilitate calorimeter
calibration and help in understanding various detector effects. The main disadvantage is the sen-
sitivity to the beam—gas background. For operation in the multi-photon mode such background is
not important, but the interpretation of the detected energy spectra is less straightforward. The
most severe impediment for operation of an LPOL in the single photon mode is the high continuous
laser power needed to obtain a sufficient photon flux in order that essentially one Compton photon
is backscattered from each bunch in the machine. Following a design originating at the CEBAF ring
at the Thomas Jefferson laboratory [Fa0l], the LPOL laser system will be supplemented by a more
powerful system consisting of a Fabry—Perot cavity. Recent numerical studies [PZ00] show that in a
single or few photon mode the problems with the large background rates in the LPOL area can be
overcome. With the Fabry—Perot laser power enhancement system, it should be possible to measure
the polarization with a statistical and systematic precision of better than 1% per bunch per minute.

SUniversity of Freiburg, University of Michigan and DESY, Hamburg.
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Chapter 5

Models for the new Interaction Regions

5.1 Sandwich model for SLIM/SLICK

The new interaction regions of the luminosity upgraded HERA have been described in some detail in
Chapter 2. In particular, the unconventional solution of placing the beam separation magnets partially
inside the solenoids of the colliding beam experiments has been emphasized. It is clear that such a
lattice layout requires special treatment when modelling to fit any standard optics computer code.
None of the optic codes or codes for calculating and optimizing the polarization in common use at
DESY contain mixed element types such as solenoid 4 dipole or solenoid 4+ combined function magnet,
so ways must be found to incorporate such special elements. The situation is further complicated by
the fact that the design orbit inside the experimental solenoids will be curved, due to the bending
action of the separator magnets. See Figure 5.1 and the discussion below. Two different approaches
have been used to model these unusual features. The first method simply amounts to building mixed
elements out of existing magnet types. This is the sandwich model described in this section. A
more fundamental way of describing the influence of a complicated magnetic field structure on a
charged particle, is to perform numerical tracking of the particle through that structure, integrating
the equations of motion. With properly chosen initial conditions, maps for orbit and spin motion can
be constructed. This is the subject of the next section.

To get a first estimate for the polarization expected with the upgraded HERA the spin—orbit code
SLICK [Bb00], has been modified. As a first step, in order to minimize the changes to the code, the
regions with overlapping solenoid, combined function magnet and corrector fields have been described
as series of interleaved thin slices of these magnet types which we call “sandwiches”. The separator
magnets on the left and right hand sides of the IP complete/start the bending onto/away from the
straight, head—on, collision direction at the IP inside the experimental solenoids. The design orbit
inside the solenoids is therefore curved in the horizontal plane. In particular, for this work, the design
orbit is defined just by the curvature in the separator magnets and has no torsion due to the solenoids.
A curved design orbit implies that the beam enters and leaves the straight solenoids with a radial
offset and angle. The particles on the design orbit will therefore be subject to radial field components
from the solenoid end fields which will kick the beam, mainly in the vertical direction. Furthermore,
in the interior of the solenoid, radial fields will effectively be present due to the curvature, which will
cause a disturbance to the electron orbits as well as to the spin.

In the sandwich model, two different representations of the radial solenoid fields have been com-
pared. The first and simplest way of representing the fields on the design orbit is to interleave thin
corrector coil slices with slices of combined function magnet (or quadrupole or dipole) and ordinary
solenoid slices. The strengths of the slices are scaled so as to maintain the correct total field integrals.
The corrector coils simulate the kicks mentioned in the previous paragraph. However, to preserve the
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Figure 5.1: Schematic picture of the North interaction region, indicating the positions of the innermost
magnets with respect to the H1 solenoid. Also shown, in another scale, is the curved design orbit in
the horizontal plane.

symplecticity of the matrices for SLIM type programs — which use the orbit variables z, ', z, 2/
— the solenoid slices must include their radial end fields. But then the exit radial end field of a
solenoid slice is separated by the combined function slice from the entry radial end field of the next
solenoid slice. However, if the combined function slice is replaced by a zero length effective magnet
treated in the thin lens approximation, its matrix commutes with the surrounding radial end field
matrices (see eqn. (5.1) below) and these latter then “annihilate” each other. Symplecticity is thereby
maintained and unphysical solenoid “internal” radial end field effects are avoided — but at the cost of
using a thin lens representation for the combined function magnets. A large number of slices is then
needed to maintain accuracy in this region of strong focusing. If one is just interested in some purely
optical matters this should be acceptable. This is one of the approaches used for the coupling studies
discussed in Section 6.1.1.

However, zero length for a combined function slice implies infinite curvature and then the effects
that depend explicitly on the curvature of the design orbit, such as the radiation, need to be handled
in a special way in the computer codes. This can be arranged, but there would still be problems with
the representation of the spin motion. In particular, the commutation of the matrices mentioned above
does not feed through to the spin motion since the spin basis, which appears in the G matrices, rotates
in the combined function slices. Thus, so far, a solution employing many slices of finite thickness has
been used which is a compromise between the need to adequately describe the optic and the spin and
the need to maintain finite curvature in the combined function magnets. In practice, the slice length
has been varied from a few mm up to about 100 mm, all leading to similar results for the orbit as
well as the spin motion. In any case, we are still subject to the uncertainties in the exact form of the
physical solenoid fields in the overlap regions.

The second method uses the enlarged transfer matrix Mryr (eqs. (3.46) and (3.47)). In this
approach the effects of the lateral and angular offsets of the solenoids with respect to the design orbit
are introduced using the seventh column. In this way no artificial elements need to be introduced in
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the representation. Using a hard edge approximation for the fields at the ends of a solenoid, the 7 x 7
transfer matrix of a solenoid with a longitudinal central field of length [ takes the form [Bb&85b, GR00]

Msol - Meacit : Mcentral : Mentrance
S 1-C a, (§—Rl)+a.(1-C)
1 o 0 e 0 0 T
o ¢ 0 S 00 ap (€= 1) + .S
0 _17—36 1 % 0 0 oex(C—l)—l—Roez(S—Rl)
Mcentral -
0 -8 0 € 00 —aS+a.(C—1)
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
01 % 00 0 +R (2 ai +1la,)
0 0 1 0 0 0 0
Mentrance/eacit = %R 0 0 1 0 0 :FR (2 ai’ — lal’) (51)
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

where R = %—%BS'“ (Bi:2 s the longitudinal solenoid field on the axis), & = sin(R!) and C = cos(RI).

long ng
The quantities a, . and a, , are the transverse offsets and tilt angles respectively. The relatively simple
form in (5.1) is due to the linear dependence on radius of the radial end fields. See the first line in
eqn. (5.15). It has been verified in simulations using SLIM/SLICK that the results of spin-orbit
calculations using the two versions of the sandwich model are in good agreement.

In the case of an optic with closed orbit distortions, the second method exploiting the seventh
column of the enlarged transfer matrix becomes impractical or at least unnecessarily complicated. It
requires that the matrix elements are reevaluated twice: first the motion is described with respect to
the curved design trajectory and in a second iteration the distorted closed orbit with respect to this
curved trajectory has to be found. The matrix elements will then be given with respect to this new
(translated and distorted) closed orbit. The treatment of closed orbit distortions in the current DESY
versions of SLIM and SLICK is not sufficiently complete, as it does not allow for direct displacements
or strength deviations of the lattice elements, but only treats closed orbit distortions created by
powering correction coils. Therefore another program from the SLIM family, SITF in combination
with PETROS [Ke78] has been used for the study of the luminosity upgrade optic when applying
realistic closed orbit distortions.

In the sandwich model the H1 and ZEUS solenoids are described by box shaped fields, i.e. constant
longitudinal fields with hard edge end fields. This is an acceptable representation for the central parts
of the solenoids, but for the end fields the approximation is crude. Concerns have risen that the
spin motion could be very sensitive to the details of the solenoid fields, especially the end fields.
Calculations should therefore be based upon better knowledge of, and an improved representation of
the fields. To this end, measured field maps of the experimental solenoids have been used as a basis
when constructing an improved model for the upgrade IRs.
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5.2 Maps from numerical integration

The sandwich model presented in the previous section is attractive in its simplicity and it is also quite
general — all magnet types defined in an optics code can in principle be used in a sandwich construction
to represent optical elements overlapping each other without modifying software. Nevertheless, the
model has some serious shortcomings as we have seen, and in order to overcome these an improved
representation of the mixed fields is required.

A better description can be obtained by numerically integrating the equations of orbit and spin
motion using measured fields and casting the solutions in matrix form. Using the fact that the transfer
matrix is just the matrix of linearized (constant) partial differentials of the output coordinates with
respect to the input coordinates — i.e. the Jacobian of the linear part of the map, numerical matrices
can be constructed from numerical integration data using a small number of test trajectories. In
particular the M and the G matrices in the SLIM approximation can be calculated in this way.
The numerical integrations can be carried out using some standard integration scheme like fourth
order Runge-Kutta or an Adams algorithm. By tracking particles with different sufficiently small
initial offsets A with respect to the design orbit, very good approximations to linear maps for regions
with arbitrarily complicated field structure can readily be computed. This then is the way adopted for
improving on the sandwich model of the overlapping fields of the luminosity upgrade and for providing
maps suitable for implementation into SLICK.

The design orbit around the IP is depicted in Figure 5.2, which is explained in more detail later.
In Figure 5.2 particle positions transverse to the design orbit are denoted by & and Z and the distance
along the design orbit in Figure 5.2 is denoted by 5. For convenience we will temporarily adopt
that notation here for describing the calculation of the maps. The equations for the orbital motion !
(A.8) and (A.9) and those for the spin motion eqn. (A.14) with (A.15 — A.17) are integrated using
a Runge-Kutta scheme with adaptive stepsize control (RK45) from Numerical Recipes [Pr92]. A
total of 10 initial phase space vectors at 5o: @, = (&, @', z, 2/, [, §) = (A, 0, 0, 0, 0, 0),
(0, £A,,0,0,0,0), (0,0, £A3, 0,0, 0), (0, 0,0, £A4 0, 0), (0,0,0,0, 0, +Ag)and
the design orbit (0, 0, 0, 0, 0, 0) are tracked across the IR magnets, starting outside of the solenoid
at the left side of the GO magnet. The elements of the linear transfer maps are derived column wise
by constructing differential quotients of the output and input phase space coordinates with respect to
the design orbit, much in the same way as the section matrices in SITROS are derived. For example
the first column of the map M(51, So) from [Sp, §1] is given by

51 51 51 51 51 75 51 51

M(s. s T, 1] = 1
(51750) [7/7 ]26{1,...,6} ( 2|A1| ) 2|A1| ) 2|A1| ) 2|A1| ) 2|A1| )

el —a; wlb—al i -z M -i -
: 0 (5.2)

2

The superscripts “+”7 and “—” on the output coordinates appertain to particles starting with position

+A; at 55. The sixth element (5;1' - 552)/2 |A1] = 0, since no accelerating fields are present around

the IP. The other columns of M (51, g) are constructed in an obvious analogous way except for column
5: in the absence of accelerating fields element (5,5) = 1 and the other elements of column 5 are zero.

For the spin part of the representation, for each initial phase space vector a set of three mutually
orthogonal spin vectors needs to be tracked. The information is stored in a 3 x 3 rotation matrix Ry,
which describes the spin rotations on the reference trajectory (Oth order spin transfer maps), and ten
matrices Rz, which give the dependence of the spin rotations on the initial phase space coordinates ;.
Taken together these matrices provide the necessary information needed to construct the G matrices
for SLICK. The relationship between the 3 x 3 rotation matrices and the G matrix is found by making

'Note that the orbital variables in Appendix A do not carry tildes ~ since there the equations are meant to be generic.
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the following observations, valid in the linear approximation: suppose that at the input (beginning)
of an element we are given the components of the non—periodic spin basns (o, mo27 102) An initial
spin vector S is then transformed into Sf by the rotation matrix Ry, Sf = Ry, S Assume now
that we put S parallel to ng;. Then for linearized spin motion, and denoting the spin basis at the
final phase space point by (7, iy, iof) we have

~

Sy = Rg o,
= ﬁ0f+(éa-ﬁi) mof—l—(éﬁ-ﬁi) Zof (5.3)

where G, and ég in the second line are the row vectors of the G matrix. Compare eqs. (3.29),
eqs. (3.52) and (3.56) and recall that in the SLIM code 1 = 0 for almost all of the ring, except at the
end of the lattice, so that the non—periodic and the periodic spin bases coincide for most of the ring.
The mg; and loZ are transported from s; to sy by Rg: gy = Rgmg; and lof =Ry 102- To get the

rows of the G matrix we need the projection of (Rgz, fg;) on 7y and lof

G-t = (Rovioi) (Rg i) = ml; (RTRy) o

Gs-it; = (RoiOi)T(R@. noi) = 13; (R§ Ra,) o (5.4)

The individual components of G, and ég are finally derived by taking #@; to be successively the 10
starting vectors given above and averaging the values appertaining to the £A starting offsets.

The numerically derived orbit matrices and the spin 3 x 3 rotation matrices are calculated with a
separate code for some chosen number of energy points. However, before these numerical maps can
be implemented into SLICK, it must be ensured that the orbit maps are symplectic, as radiation is
not included at this stage of the calculations, and that the spin maps are orthogonal. The chosen
Runge-Kutta integrator is not symplectic, but the deviation from symplecticity is so small that it can
be taken care of after the integration. > The orthogonality of the spin maps from the integrator is
sufficient, so that the elements of R3£3 Rsy3 — I are less than 510715, The symplecticity of the orbit
maps is restored using a method based on mixed variable generating functions. > An example of this
is given in Appendix D. The construction of the G matrices from the numerical Ry and Rz, matrices
according to eqn. (5.4) is done in-line in SLICK. For a typical energy scan, covering one unit in a7,
a large number of orbit and spin matrices (of the order of one to several thousand) have to be stored
and handled within the program. The numerical mapping of the HERA interaction regions has been
subdivided into five segments: one map for a left and a right part of the GO magnet (together with
possible overlap from the solenoid), two maps for solenoid pieces straddling the IPs and one map for
the GG magnet, respectively. The main reason for this is the need to maintain a basic flexibility for
diagnostic purposes. The code has been adapted so that all parts of it recognize and treat the special
elements in the correct way. This is the first time that something like this has been attempted for
extending analytical spin—orbit calculations to include complicated, non—standard field configurations.

ZNote that to preserve and demonstrate symplecticity for numerical maps of sections which begin and end inside
solenoid fields, artificial radial end fields are inserted in analogy with the practice for the sandwich model. However,
the effects of an output end field and a subsequent input end field cancel when the maps are concatenated. See
Section 5.2.1 also.

®The magnitude of the symplecticity breaking for a matrix M is given by the deviation from 0 of MTSM — S,
where S is the unit symplectic matrix from Section 3.2.1, and is a matrix with elements less than 107° for the
numerical orbit maps before application of the generating functions method. The “symplectification” brings this
number down to < 5107, The numerical precision in the integration varies between the different regions, but is
generally set as close as possible to machine precision (10_16)7 and should therefore not affect the symplecticity.
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In experimental high energy physics, a detailed knowledge of the magnetic fields in the detector area
is crucial for an accurate determination of the momenta and scattering angles of charged particles.
For HERA, the magnetic fields of the experimental solenoids in H1 and ZEUS were measured in
1989/1990 [Ne90, Ho93] with high precision, before commissioning the experiments. The data from
the measurements are stored in field maps, covering a longitudinal range of 7 metres (H1) and 8.5
metres (ZEUS). At a “coarse level” (0.5 % measurement precision) the H1 magnetic field possesses
axial symmetry, i.e. By = 0 with ¢ the azimuthal coordinate in a cylindrical coordinate system.
In addition the field has a left-right mirror symmetry, with respect to the plane of symmetry (s.p.)
perpendicular to the magnetic axis. It should be observed that this plane of symmetry does not cross
the magnetic axis at the IP, but is shifted in the longitudinal direction by 1.125 metres. See Figure 5.1.
The H1 field measurements unfortunately only cover the central part of the field and do not extend out
through the end—caps of the iron return yoke. Therefore, the knowledge of the fringe fields is poor and
an extrapolation has to be made in order to estimate these fields. In the ZEUS detector area a large
amount of magnetic material, mostly needed for shielding of sensitive detector equipment, modifies
the field from the main solenoid. In particular the regions near the ends of the superconducting coil
exhibit strong field inhomogeneities. Some of the tracking devices are located in these regions and
therefore the magnetic field measurements were carried out with detail here also. The ZEUS field also
exhibits a longitudinal asymmetry with respect to the IP, but much smaller than for H1, namely 0.05
metres and in the opposite direction.

To use the measured solenoid field data in the luminosity upgrade spin—orbit calculations, the
measurements are summarized by parametrizations to be described in the next section. But before we
turn our attention to the representation of the solenoid fields in the numerical maps, some coordinate
systems will be defined that link the particle motion with the field values at various points in configu-
ration space. In the following the symbol o will be used to represent the distance along the magnetic
axis of a solenoid. The H1 field map is given in a cylindrical coordinate system with the origin fixed
at the point of symmetry on the magnetic axis, ng = g(r, ¢,0), and with the positive o—axis in the
direction of the proton beam. The direction of the field is opposite to the direction of the et/~ beam.
A trivial transformation brings the field data into the form g(xs, Zs,05), Where (2, 25, 05) is a fixed
rightfhanded Cartesian coordinate system. See Figure 5.2. The ZEUS field map data is in the form
BZEUS
fields, on the other hand, are described in a curvilinear coordinate system that moves along the design
orbit together with a fictive ideal particle (see Appendix A). Imagine for a moment that we fix this

= g(—ws, zs, —0s), With respect to our coordinate system. Particles moving in these solenoid

moving coordinate system on the curved design orbit at the point of entrance to the GO magnet,
as seen by the electrons. We refer to this curved coordinate frame as the (Z, z, §) system, and label
the snapshot of it at the entrance of GO with “»”. There is no vertical curvature in the interaction
regions, so that K, = 0 and the design trajectory lies in the horizontal plane. Recall (Chapter 2)
that by design the collisions take place at some small distance away from the solenoid axis, where
the magnitude of the shift depends on which IP and lepton species is under consideration. To make
these features clear in our description, yet another fixed coordinate system (z, z, §) is introduced, in
which a particle position is given with respect to the distance from and along the beam axis inside
the solenoid. From the geometry on the left side of the IP we find the following relations between the
coordinates of the various frames:

Ty = T — Tshft
zs = Z (5.5)
0s = o — Us.p.

E(%,2,8) = — (peo — (pao + @) cos (@m - ))

Paco
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Figure 5.2: The design trajectory in the vicinity of the IP. The various coordinate systems used to
describe the solenoid fields and the particle trajectories are illustrated.
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#(3,3,5) = 2 (5.6)

N . o s
6($7 = S) = Pco Sln(@oin) - (pGO + $) sin (@zn - )

Paco

where pge is the radius of curvature in the GO magnet and ¢;, is the total bending angle in GO.
The numerical values for the longitudinal shifts of the symmetry plane away from the position of the
IP are with our conventions oy, s¢ = —1.125 m for H1 and o4,5 = 40.05 m for ZEUS. The distance
from the entrance of the GO magnet to the plane of symmetry measured along the solenoid axis is
Osp. = Paosin(pi,) + di + osppt , where dy is the distance from the exit of GO up to the IP. At
H1 collisions between protons and electrons take place on the solenoid axis, whereas a horizontal
shift of the beam trajectories of x4, = 7.5 mm towards the centre of the ring is introduced when
positrons are collided with the protons. At ZEUS the distance between the axis and the collision
point is z4 ¢ = 10 mm with electrons and 4,5, = 17.5 mm with positrons. The shift direction of
the beams with respect to the solenoid axis is the same as at H1. In the calculations presented in
Chapter 6, a slightly different shift value at ZEUS for the electron case has been used (2, = 4 mm),
corresponding to an intermediate version of the upgrade IR geometry. This will be commented on
later. On the right hand side of the IP the coordinates are related in similar ways:

r(%,2,8) = — — icosg_do
x(xvzvs) = (IOGG (IOGG‘|‘ ) (pGG ))

2(2,%,3) = 2 (5.7)
§—dy

Paa

o(%,2,5) = (pas+@)sin ( ) + pao sin(pin) + di + do

Here psg and dy are the radius of curvature of the GG magnet and the distance from the IP to the
entrance of GG, respectively. The dy is the distance along the curved design trajectory from the
entrance of GO to the entrance of GG. Using the above coordinate transformations we now have the
means to transform the solenoid fields from functions of fixed coordinates, with their origins on the
solenoid axes, to functions of the curvilinear system, with respect to which the particle motion is
described. From the field maps and the relations (5.5 - 5.7) we get

B(zs, z5,05) = Blas(3,2,9),2:(%,2,8),04(2, 2,5)) (5.8)
with components B = (Bs,,B..,B,,) in the straight coordinate system (z;, z5,05). We are interested
in the components of B in the curved system (Z, z, §). The base vectors of these two coordinate systems
are related by a simple rotation:

B = (BsB:Bs) T =R (e(3) Blay, 2 04) (5.9)

(%,2,9)
On the left side of the IP
cosp(8) 0 —sin(3) -

R (p(35) = 0 1 0 where o(8) = in —
sin(5) 0 cosp(s)

(5.10)

Paco
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and on the right side of the IP

cosp(§) 0 sin@(3) 5 dy
R(p(5) = 0 1 0 where o(8) = . (5.11)
—sin(5) 0 cose(3)

With the transformed solenoid fields, using the above formulae, we are now in a position to perform
Runge-Kutta integrations across the new IRs with respect to the design orbit and we finally come to
the representations of the H1 and ZEUS fields.

5.2.1 H1 and ZEUS solenoid field models

For spin and orbit tracking the incomplete knowledge of the H1 solenoid fields requires that the
measured information be complemented by an extrapolation of the data. This has been done by
modelling the field as the superposition of the fields from two solenoids, according to an analytical
expression given in [BB96, FG97]

0+ p 0 — D

S o
bz \/p32+(a+p2)2 \/p32+(a—p2)2

v ZE( o+ps B 0 —DPs )
Ps 2 2 2 2
\/p6 + (o + ps) \/pe + (o — ps)

This model gives a parametrization of the axial field in terms of the longitudinal coordinate, where
the free parameters can be used to fit the measured data. A fit to the data with MINUIT [Ja94] gives

(5.12)

pr=2.629, py=4.131, ps=1.638, ps=—0.01468, ps=0.6613, ps=0.4658

The H1 longitudinal field on the solenoid axis from the field map can be seen in Figure 5.3 together
with a fitted parametrization using eqn. (5.12). In the figure, vertical lines indicate the extent of the
field measurement between the solenoid end—cap regions. In the region covered by the measurements
the fit is clearly good.

Assuming perfect rotational symmetry around the magnetic axis, the parametrized longitudinal
field on the solenoid axis is sufficient for determination of all other field components via Maxwell’s
equations, expressing the components through simple Taylor expansions [FR73]. An estimation of the
unknown end fields is then possible. Moreover, the parametrization of the field has the advantage over
a method relying on interpolation of the field map data of higher computational speed. Accordingly, in
order to fulfill Maxwell’s equations, only the measured on—axis longitudinal field has been incorporated
(even in regions where the measurement data contain information on the transverse fields) and away
from the solenoid axis the radial and longitudinal field components are given by

Br = Z b2n—|—1(U) T‘2n+1
n=0

B, = > by (o)r® (5.13)
n=0
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Figure 5.3: On-axis H1 solenoid field used in the numerical calculations. The crosses are the measured
data from the H1 field map and the solid curve is a fit to this data using eqn. (5.12). The vertical
lines indicate the limits of the measurements and the positions of the d—function radial end fields in

model A;y.

where the following recursive relationships hold

n+1

-1 n
b2n-|—1(0') = (2n(_|_ 2;(27@” )2 bé2 = Vne {07 17 27 e }
_1 n+1 n
bansalc) = W b2t Wne{0,1.2,..) (5.14)

The implementation into the code for numerical matrix retrieval only includes the constant and
linear terms of the Taylor expansions, the justification for this being the smallness of the higher order
terms for particles travelling at a modest distance from the solenoid axis and increased computational
speed, avoiding complicated analytical expressions and numerical ripple from quickly oscillating terms.
Retaining just the zeroth and first order terms in eqn. (5.13) we are left with

B, = bi(o)r = —%bol(a)r
B, = bo(o) (5.15)

The resulting parametrization of the H1 solenoid field is depicted in Figures 5.4 to 5.6.

We now discuss three different ways of describing the H1 fields at and beyond the limits of the
measurements. The first, called hard edge model Ay, has the parametrization (5.12) but hard edge
cut offs at the positions given in Figure 5.3 and a resulting total integrated longitudinal field of

/Bgda = 7.64169 Tm
H1

However more recent information and field calculations with the POISSON code [Fe99] have shown
that this value underestimates the H1 integrated field by about 8% so that one should have
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/Bgda = 8.266 Tm
H1

Thus we have defined a second hard edge model. This again has the parametrization (5.12)
but hard edges at positions set to give the larger integral. We refer to this as hard a edge model
As. In mathematical terms the longitudinal fields of models A; and Ay can be written as B_; =
B,(0)6©(c — 1) [l — ©(c — 02)] where O is the Heaviside step function, and the radial end fields
appear as é—function kicks at 0 = o1 and o = 09, using eqn. (5.15).

A physical solenoid field will of course not exhibit such a behaviour, but have a smooth decline over
some distance comparable to the size of the hole for the beam pipe in the iron return yoke. Therefore
a more realistic model, model B, reflecting this fact has been constructed. This uses parametrization
(5.12) together with a linear fall off of the end fields arranged so as to give the the field integral of
8.266 Tm. Field calculations with OPERA2D * in the end field regions support this assumption, see
Figure 5.7.

In summary, the various models used to represent the H1 field in the polarization calculations are as
follows. All the numerical map models use the first order field approximation according to eqn. (5.15).
The results of calculations of orbital and spin motion are presented in Chapter 6.

e The sandwich model with a field integral of 8.266 Tm, using the “box—field approximation”, i.e.
the hard edge model where all solenoid slices have the same strength.

e Numerical map model A;. Hard edge cutoff using the lower estimate of the H1 field integral:
7.642 Tm. See Figure 5.3.

e Numerical map model A,. Hard edge cutoff using the higher estimate of the H1 field integral:
8.266 Tm. See Figure 5.7.

e Numerical map model B. Linear fall off model using the higher estimate of the H1 field integral.
See Figure 5.8.

The ZEUS field measurement data has been treated in a manner similar to the H1 field data. To
fit the data to an analytical expression, only a single solenoid term is needed. As the solenoid field
was measured out to a greater distance from the centre point, including the fringe field regions, the
fall off of the field and the shape of the end fields are known. Therefore only one end field model has
been considered for the numerical map derivations, the hard edge cutoff as illustrated in Figure 5.9.
Note in particular that the field overlap with the machine magnets is smaller, as is the integrated field
strength compared to H1. The ZEUS longitudinal asymmetry with respect to the IP is also quite
small. For the numerical calculations, the radial field components on the solenoid axis originating

from magnetic material close to the iron return yoke have been neglected, since their magnitude is
small, < 400 Gauss. The ZEUS field integral on axis is

/ B,do = 4.45409 Tm

ZEUS

The ZEUS field has been parametrized using the form

*The Opera2D calculations were performed by M. Marx with the purpose of studying some details of the magnetic
field close the the solenoid end—caps. The shape and magnitude of the central part of the field was of minor
importance, suggesting an explanation for the disagreement with the field map data in this region.
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Figure 5.4: The H1 solenoid on—axis longitudinal field and the first two derivatives thereof, using the
expansion (5.14) with the parametrization (5.12) where B, = bg(0,). See Figure 5.2 for the definition
of the longitudinal variable o,.

B, = ﬂ( otp 7P ) (5.16)
7 P2 2 2 2 2 '
\/p3 + (0 + p2) \/p3 + (0 = p2)

with MINUIT fit parameters
p1 = 1.166, pp; = 1.364, p3=0.8815

The longitudinal and radial field components are once again given by eqn. (5.15). Calculations using
the numerical map model for ZEUS are presented in Chapter 6.

5.2.2 Implementation into SITROS

The method used to create numerical maps, representing the overlapping fields in the new interaction
regions, for implementation into SLIM/SLICK can with some modifications also be used to create
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Figure 5.5: The H1 solenoid longitudinal field as given by the first order Taylor coefficients of a
parametrized fit, using eqn. (5.12), to the on-axis measured longitudinal field. The cylindrical coor-
dinates r and o, are defined in Figure 5.2.

Figure 5.6: The H1 solenoid radial field as given by the first order Taylor coeflicients of a parametrized
fit, using eqn. (5.12) together with (5.15), to the on—axis measured longitudinal field. The cylindrical
coordinates r and o, are defined in Figure 5.2

maps for SITROS. For SITF, the linear part of SITROS, it is (almost) straightforward, whereas for
the tracking part of SITROS a few points must be noted.

First of all, the orbit maps in SITROS contain damping and hence are not symplectic. The
SLIM/SLICK maps should therefore in principle be recalculated before using them in SITROS, taking
the Fy—dependent antidamping of the combined function magnets into account. For a large ring such
as HERA, the contribution to the damping from a few magnets in the interaction regions, although
having strong fields, is not prominent. Switching the damping off in the GO and GG magnets changes
the damping partition numbers by less than 0.5%. The nondamped matrices from SLIM/SLICK
can thus be used as a good approximation to the real damped maps for these few elements with
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Figure 5.7: On—axis H1 solenoid field. The crosses are the measured data from the H1 field map and
the solid curve is a fit to this data using eqn. (5.12). The vertical lines indicate the positions of the
d—function radial end fields in model Ay. The dashed line is a field calculation made with OPERA2D
for studying the field near the end—caps.
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Figure 5.8: The H1 solenoid longitudinal field (measured data fitted to eqn. (5.12)) with an assumed
linear fall off of field in the end regions: model B.

solenoid overlap. Furthermore, SITROS is built upon a matrix formalism where the nonlinearities
up to second order in the orbital coordinates are accounted for. When constructing numerical maps
for SITROS, all different two—combinations of the phase space coordinates at the starting positions
should be traced across the map sections. However, the nonlinear effects in the mixed field sections,
related to the solenoid end fields, are expected to be small compared to the total nonlinearity of the
rest of the ring and could as a first attempt be ignored for the orbital motion. Considering the fact
that the overlapping interaction region magnets only amount to a small fraction of the total number
of magnets in the ring, such an approximation seems reasonable.

In contrast to SLIM/SLICK and SITF, where the spin transformations on the design and closed
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Figure 5.9: On-axis ZEUS solenoid field used in the numerical calculations. The crosses are the
measured data from the ZEUS field map and the solid curve is a fit to this data using eqn. (5.16).
The vertical lines indicate the positions of the é—function radial end fields used in the model.

orbits are represented by the 3 x 3 rotation matrices, SITROS uses the quarternion description. Recall
the definition of the unit-quarternion in Chapter 3, relation (3.85). The quarternions needed for the
mapping of the spin motion through the overlapping elements in the HERA upgrade interaction
regions could in principle be derived directly through integration in slices of the Q rotation vector
(see eqn. (3.86) and eqs. (A.15 — A.17)) over the elements. However, for describing these long (thick)
complex field regions, it is more convenient to use the rotation matrices evaluated for SLIM/SLICK
and derive an approximation to the quarternions needed for SITROS.

It can be shown [Vo00] that for every rotation matrix R € SO(3) there exists a quaternion ¢ =

(cos 5, 8in %(j) representing the same transformation. The correspondence between the representations
is not one—to—one since the quarternion g~ = (cos &, —sin %(j) is also a realization of R. Adopting for

simplicity the positive sign for sin £4 as our preferred sign convention, the conversion from rotation
matrices to quarternions is given by

g = %\/trace(R)—l—l

o €ijk Rk i
o= €{1,2,3 5.17
% 2¢/trace(R) + 1 ied } ( )

where ¢;;; is the anti-symmetric Levi-Civita tensor. If trace(R) = —1 so that ¢y = 0 there is still a
non—vanishing

Rym + 1
= N 1 (5.18)

9 2

for some m € {1,2,3}. The underlining of the indices indicate that they are not subject to contraction.

We then have
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+ _ Ttmg .
=5k iEm (5.19)

Given the information at hand, we can write down the quarternion transformations as a truncated
power expansion in the orbital coordinates

- 0q on « , 9@ o0 ., , 9q oq
¢ = G@o+t4 A$+8x'A$+8z AZ+8Z'AZ+8£ Al + 95 A (5.20)

where 8—%A€ = 0. The zeroth order quarternions gg, corresponding to the Rgs, and the partial
differentials of the first order quarternions ¢;, corresponding to the Rys, are calculated in-line in
SITROS using eqgs. (5.17 — 5.19). After summation of the terms in the expansion (5.20) the unitarity
of the reconstructed quarternions must be restored by renormalization. Note that in the case of an
optic with orbit distortions I have reverted to the sandwich model for practical reasons. See comments
in Chapter 6.
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Chapter 6

Polarization calculations for the

upgraded HERA

6.1 Limitations and remedies

The luminosity upgrade of HERA is a major undertaking that has far reaching consequences for the
electron machine. A brief introduction to the most important changes was given in Chapter 2 and
Chapter 4. After having discussed the basic concepts of radiative spin polarization theory in Chapter 3
and the models introduced for describing the overlapping field structures in the new interaction regions
in Chapter 5, we are now in a position to investigate the effects of the upgrade on the spin polarization.

The upgrade lattice is designed to allow collisions between protons and et/ at the nominal HERA
energies of 30 GeV for et/ and 820 GeV for protons. Since it was demonstrated during 1998 machine
operation that the proton ring can be run with sufficient safety margin at 920 GeV, the proton energy
after the upgrade will (at least initially) be set to this value. For the et/~ beam the upper energy
limit, as was mentioned earlier, is set by the maximum tolerable energy loss per turn and by reliability
considerations. The lower energy limit is set by the spin rotators at about 26.8 GeV where the
horizontal geometry in the tunnel is the limiting factor. The need to achieve a high level of spin
polarization further restricts the choice of e™/~ beam energy. In order to stay away from detrimental
depolarizing resonances, the working point should be chosen such that the spin tune vg is set to a half-
integer value. The presence of the experiment solenoids and the spin rotators in the lattice introduces
a shift of the spin tune away from av, where the shift related to the rotators is dominating and is about
Avg = 0.05 per pair at these energies. F = 27.474 GeV is therefore the smallest energy compatible
with HERA operation with three pairs of rotators, corresponding to vy = 62.5. The corresponding
energy in the old lattice with only one pair of rotators is £/ = 27.519 GeV.

For electron spin polarization, the main concerns for the upgrade are the effects of the uncompen-
sated experiment solenoids and the influence from the overlapping fields in the interaction regions. A
non—compensated solenoid in the lattice introduces coupling between horizontal and vertical betatron
motion and thereby increases the vertical beam size. In addition it causes a tilt of 7. From eqn. (3.8)
we see that for a particle travelling in a magnetic field of magnitude B), parallel to its velocity, the

spin S precesses around the beam direction by an angle

Ab = M/Bn(s)ds (6.1)

ym
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The H1 solenoid for example, with its integrated field strength of 8.27 Tm would, if not compensated,
tilt an initially vertical spin by about 90 mrad at 27.5 GeV. ! Under such conditions the radiative
polarization would be overwhelmed by depolarization. With the installation of spin rotators around
the North and the South interaction zones, the design direction of g will be longitudinal at the
IPs. The disturbance of the polarization from the uncompensated solenoids in this case is less severe,
but nonetheless important. In particular particles which due to betatron motion travel through the
solenoid at an angle 2’ or 2’ with respect to the solenoid axis, assuming for simplicity that the particle
trajectories are straight lines in the solenoid 2, will experience kicks to their spin from the longitudinal
field in the solenoid centre, and additional kicks in the solenoid end fields when the particles traverse
these fields with a transverse offset. For these particles the spin matching conditions are broken. This
can be understood in terms of the G matrix since these particles pick up nonzero contributions in
columns 2 and 4 (central solenoid fields) and 1 and 3 (end fields) respectively, and these nonzero terms
hence contribute to the spin diffusion. Note that for particles travelling with a fixed offset (z or z)
through solenoid end fields, the end field contributions at the entrance and exit of the solenoid cancel.
In the old design the effects of the experiment solenoids were almost completely compensated by anti—
solenoids. The inevitable removal of these devices in the new design requires that the problems are
solved in a different way. The situation in the interaction regions is further complicated by the overlap
of the solenoid fields with the fields of the final focus magnets and by the lack of mirror symmetry.

Due to the larger integrated field strength of the H1 solenoid compared to the ZEUS solenoid,
a larger longitudinal asymmetry and a more extensive overlap, most of the work on calculating the
influence of the mixed fields in the new interaction regions on orbit and spin motion has concentrated
on the North IR. For cases where both solenoids are included in the calculations, this will be explicitly
mentioned. The particular optic that will be studied in the following sections is one of several revisions
for the upgrade IRs and will be referred to as the Rev3.2 optic.

6.1.1 Coupling compensation

In the absence of compensating solenoids the inter—plane coupling in the new HERA design has to
be minimized by other means. As a figure of merit, the ratio of the generalized vertical emittance
to the horizontal one is about 6.9 % in this design with an uncompensated H1 solenoid overlapping
with the GO and GG final focus magnets 2, as compared to the nominal value of 2.4 % in a lattice
with three pairs of rotators, but with no solenoids. Following the successful implementation in several
other machines (for example ISR and LEP) a solution utilizing skew quadrupoles has been adopted
for HERA 1I. I will now give a summary of some theoretical methods for describing orbital coupling,
which suggest ways to find the positions and relative strengths of the skew quadrupoles needed, and
present some results based on these methods for the upgraded HERA electron optic.

The equations of motion (A.8) and (A.9) for the transverse particle coordinates in the presence of
solenoids and skew quadrupoles can be written as *

"+ (g+K2)r = (N+R)z+2R
'~ (g-K2)z = (N-R')z—2Ra (6.2)

'Note that the resulting tilt in the machine arcs, looking at the closed solution for a half-integer spin tune, is about
45 mrad.

%i.e. ignoring the small twist of the beam generated by the solenocid and ignoring the weak focusing in the solenoid

®The value depends on the solenoid model; the stated value is for the sandwich model.

*To arrive at this form, the equations have been linearized following [MR82a] and Maxwell’s equations have been
used.

76



where

I(l’,z = iE{Bz,x}xZZZO

ec@B ec 0B,
g = { }xZOZ }xZO

Fo ' Ox
1 ec 8B 8BZ
N= 2F, " Oz 0z B Ja=s=0

1ec
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We will need the notation introduced here for the following discussion. As a consequence of coupling
between the transverse oscillation modes some of the horizontal dispersion will couple into the vertical
plane, i.e. there will be generation of spurious vertical dispersion, which can be hazardous for the
polarization. This however is not the case if the solenoid and its compensating skew quadrupoles
are located in places where D, = 0. In HERA the experiment solenoids are located at positions
where D, ~ 0. The skew quadrupoles should therefore be placed at positions in the lattice where the
horizontal dispersion is minimal. Moreover, since in general the coupling terms will only vanish in the
region outside the coupling source (solenoid) and the compensating elements (skew quadrupoles in our
case), for the overall machine optic it is desirable to have a local compensation of the coupling. > Hence
the skew quadrupoles should be located as close as possible to the solenoids. In the following 1 will
refer to the “region of interest” when discussing the region to be decoupled upstream and downstream
of an experimental solenoid, between the outermost skew quadrupoles.

In the absence of coupling the 4 x 4 transfer matrix m for the transverse motion has a block
diagonal form (cf. eqn. (4.1)) along any section of the ring, but when coupling is introduced the
off diagonal blocks are no longer identically zero. Unlike the case of machine alignment errors, the
perturbation due to an experiment solenoid is in principle known, so that the magnet may be included
in the optic and one can look for settings for the skew quadrupoles which minimize the off-diagonal
blocks of the transfer matrix. This will be referred to as the “matrix method”. At this stage of the
calculations in setting up an uncoupled optic, the radiation effects are usually not taken into account
so that the transfer matrices obey the symplecticity condition m? S m=S. The symplecticity ensures
that only one of the off-diagonal blocks needs to be minimized, so that the number of free parameters
is reduced to four. The minimum number of skew quadrupoles needed to force the off-diagonal blocks
to zero is therefore four.

For the luminosity upgrade it has been decided to incorporate skew quadrupole windings in the
final focus magnets GO and GG. At least one more pair of skew quadrupoles further out in the
lattice is needed, but because of the limited strength of the “inner” skew components in GO and
GG a solution with two more pairs has been chosen. In this way the extra freedom of choice in
the settings can be used to suppress the vertical dispersion generated by the solenoids and the skew
quadrupoles themselves. The choice of positions of the skew quadrupoles will be explained later in
the text. Table 6.1 summarizes the settings of the six skew quadrupoles for the North IR. These were
obtained using the six free parameters to minimize the sum of squares of the off-diagonal elements of
the 4 x 4 part of the transfer matrix M for this region of interest and in addition the generation of
vertical dispersion, i.e. requiring

Vs ML 3P + wy M1, 4T + ws M2, 3% 4 w4 M [2,4]° + w5 M3, 61 + we M[4,6]* = 0

where wy, ws, ..., wg are weight factors. By weighting the dispersion compensation by a factor of 100
more than the coupling compensation an almost complete reduction of the spurious vertical dispersion

5In this treatment we will ignore any coupling related to machine magnet misalignments.
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Vertical dispersion [cm]

is accomplished, while still acquiring good coupling compensation. See Figure 6.1. However, as can
be seen in Table 6.1 the skew quadrupole settings found for the various end field models of H1 have
large variations. This is most likely due to the fact that the magnitude of D, caused by the solenoid
perturbation is quite modest to begin with: the solenoid contribution to the vertical dispersion is
AD?™ ~ 2.2 mm, which should be compared with the much larger contribution from orbit distortions.
See tables in Section 6.3. The system is therefore underdetermined.

Al A2 B

QSKN1 | 0.00035 | 0.00020 | -0.00263
QSKN2 | 0.00064 | 0.00068 | -0.00070
QSKON | 0.00107 | 0.00038 | -0.00010
QSKGN | -0.00763 | -0.00768 | -0.00008
QSKN3 | -0.00165 | -0.00214 | -0.00772
QSKN4 | -0.00003 | 0.00008 | 0.00165

Table 6.1: Skew quadrupole settings in the North IR, using 6 individually powered magnets (coils).

Comparison between various end field models for H1. The integrated strengths are in m™?.
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Figure 6.1: Vertical dispersion function in the North—West octant for the Rev3.2 e~ lattice including
the H1 solenoid (end field model A;) and local orbit correction. The IP North is at 4751.862 m. Ob-
serve that the 20 cm spikes correspond to the (design) vertical dispersion at the vertical bend magnets
in the rotators. Left: No skew quadrupole compensation. Right: Skew quadrupole compensation with
a relative weight factor of 100 favouring dispersion compensation over coupling compensation.

To get a better idea of how important the modelling of the solenoid end fields is and how this
affects the skew quadrupole settings, the coupling minimization has been repeated using only the
“outer” four skew quadrupoles and minimizing just the coupling, hence requiring

Vs ML 3P + wy M1, 47 + w5 M2, 3] + wy M [2,4% = 0

The results are summarized in Table 6.2. In this table “crude” refers to a sandwiching made with
only nine solenoid slices (and the same number of quadrupole and correction coil slices), whereas
“thin quads” refers to a model where the focusing action is represented by a larger number of thin
lens quadrupoles. In all cases the ratio of the vertical emittance to the horizontal one is reduced to
2.4 %. As can be seen, the variation in settings is now much reduced as compared to the six parameter
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case and the agreement between the calculations made with the numerical IR maps and the sandwich
model is also good. In the following calculations, the skew quadrupole windings on GO and GG have
therefore been excluded and only the outer four skew quadrupoles are used.

maps maps maps | sandwich | sandwich
Ay Ay B crude thin quads
QSKNT1 | -0.0024 | -0.0027 | -0.0027 | -0.0026 -0.0025
QSKN2 | 0.0004 | -0.0010 | -0.0009 | 0.0010 -0.0003
QSKN3 | -0.0069 | -0.0079 | -0.0079 | -0.0073 -0.0073
QSKN4 | 0.0017 | 0.0017 | 0.0017 0.0019 0.0017

Table 6.2: Skew quadrupole settings in the North IR, using 4 individually powered magnets. Com-

parison between various end field models for H1. The integrated strengths are in m~1.

It should be noted that the settings of the skew quadrupoles presented here can only be used as
a guide for how to power these magnets in the real machine. Even without taking further sources of
coupling into account (due to, for instance, random roll-angles of the quadrupoles), one should be
prepared to perform an empirical optimization. In particular, a straight forward minimization of the
off diagonal blocks as in the matrix method does not tell anything about how the individual skew
quadrupoles influence the coupling. It is therefore necessary to find ways to disentangle the effects
that the individual skew quadrupoles have on the beam and to devise “orthogonal control knobs” for
them. In order to find such knobs we have looked into a few different approaches, in particular two
perturbative methods due to Guignard [Gu76] and Bassetti [Ba79] respectively.

A Perturbative harmonic approach (Guignard)

Guignard has formulated the solution to the problem of linear transverse betatron coupling utilizing
a perturbative method. In his treatment the solutions of the uncoupled equations of motion are used
to construct the solutions for the coupled case by the method of variation of constants. Owing to the
periodicity in machine azimuth of the perturbing Hamiltonian, the perturbation can be expanded in
a Fourier series and Guignard performs a detailed analysis of the two most important harmonics (p*)
associated with the linear sum (+) and difference (—) resonances. In the presence of pure solenoid and
skew quadrupole fields and neglecting terms in R? (see eqn. (6.2)), the real and imaginary parts of

these Fourier components are given in terms of the Courant—Snyder parameters [CS58] 3 and o = —%/
by
C
Re(+) = io/\/ﬂlﬁz {Iv + R(% - %)]cos(w) + R(é - ﬁ—lz) sin(¢+) } ds
1 ¢ 1 1
S _ Yo A2y _R(— _
Im(+) = - / VBBAIN + R = F)]sin(u*) = R(g- - 5) cos(uh) s
(6.3)
C
Re(-) = — / VTN + B(GE = S cos(v7) + R+ ) sin(v7)  ds
1 ¢ 1 1
o~ _ %_ Qz iy - R _
Im(-) = 0/ VBBAIN + RO = F)]sin(v7) = R(g+ 5) cos(u7) s



with 5

¢i =fip £ — (Ve v ‘|‘pi)g
where i, and 1. are the horizontal and vertical betatron phase advances, and pT is the closest integer
to —(vy £ v,). Also with this formalism one finds that at least four skew quadrupoles are needed for
the compensation, although these then have a somewhat different function as compared to the four
emerging from the matrix method. In principle, an exact compensation of the perturbation would
require the compensation of all harmonics and therefore an infinite number of skew quadrupoles.
However, this is only apparently in contradiction with the matrix method. The matrix method is
aiming at getting decoupled motion outside the region of interest, whereas the harmonic approach
is minimizing the perturbation everywhere along the ring (in our case by requiring the four most
important harmonics of the perturbation to vanish). For this reason one does not in general expect
the two approaches to be equivalent. Note the analogy with the closed orbit case, where the effect of
a local kick can be either confined to a short region by powering two coils close to the disturbance,
forming a local “orbit bump”, or can be minimized by correcting the most important Fourier harmonics
of the resulting closed orbit, thus reducing the orbit distortion everywhere around the ring.

The Guignard approach is useful for recognizing the optimal locations for the skew quadrupoles.
Indeed, to keep the integrated strengths of the skew quadrupoles small and to have the possibility of
correcting all four coefficients one should look for places where sin(¥*) and cos(¢¥) are not all small.
For example, since the phase advances across the upgraded low beta regions are approximately equal
to 7 in both planes, all sine terms will (nearly) vanish for positions close to the IPs. Taking this
into consideration, together with the condition D, ~ 0 on the horizontal dispersion (the dispersion
functions in the upgrade IRs can be seen in Figure 2.3) and additional space restrictions due to the
proton ring magnets, the number of choices of suitable positions is very limited. For the HERA-e
luminosity upgraded optic the most convenient locations have turned out to be at £116.3 m and
+124.5 m from the IPs, and (if used) near the IPs by placing the skew quadruple windings on GO
and GG on the “outer halves” i.e. on the left half of GO and on the right half of GG.

From eqn. (6.3) it is clear that for a fully symmetric IR design the solenoid would be compensated by
two pairs of antisymmetric skew quadrupoles, leading to only two independent knobs. It is worth noting
that this result also holds for the matrix approach. For HERA the interesting aspect of the Guignard
approach is that owing to the orthogonality of the Fourier components and their linear dependence on
the skew quadrupole strengths, it is possible to choose four sets of skew quadrupole strengths, such that
when the strengths in a set are scaled, the corresponding harmonic is scaled by the same factor without
changing the other three harmonics. The scale factors are the “orthogonal knobs” or “skew bumps”
for the Guignard formalism needed for the empirical optimization mentioned above. In practice
the relationships (“excitation ratios”) between the skew quadrupole strengths required to excite one
harmonic at a time and leaving the others unchanged are trivially obtained by solving eqn. (6.3) for
Re(+) = 1 with Sm(4) = Re(—) = Sm(—) = 0, Im(+) = 1 with Re(+) = Re(—) = Sm(—) = 0 and
so on. Although the one—turn transfer matrix is not fully decoupled with this choice, calculations with
SLIM/SLICK show that the residual effects of the remaining coupling on the beam dynamics and
the polarization are very small. See Figure 6.11. It should however be mentioned that the remaining
distortion of the vertical dispersion after compensation with four skew quadrupoles is AD.™ ~ 7 mm
(including the distortion introduced by the skew quadrupoles themselves), i.e. larger than before the
correction, since with only four skew quadrupoles this distortion cannot be controlled. The value is
nevertheless small compared to the value associated with closed orbit distortions, as we will see.

B Perturbative approach (Bassetti)

Although the transfer matrix is not explicitly mentioned, Bassetti is actually considering the transfer
matrix through the region of interest. In a first order approximation he finds that the block diagonal
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elements are unchanged by the coupling perturbation and that the off-diagonal elements may be
expressed as linear combinations of the unperturbed block diagonal elements, the coefficients of such
combinations being given by the integrals on the right hand side of eqn. (6.3) with ¥* = pu, £ u..
Therefore block—diagonalization of the matrix in the Bassetti formulation amounts to requiring the
integrals in (6.3), with “Bassetti phases” instead of “Guignard phases”, to be zero. Owing to the
specific form of the functions to be integrated in eqn. (6.3), the Bassetti approach also leads to four

orthogonal “knobs”.

By comparing the Bassetti and the Guignard formulas we see that for v, +v, = p* and v, — v, =
p~ the two approaches are equivalent. However, in practice these conditions can never be satisfied
simultaneously. It is therefore better to say that the approaches are equivalent when the region of
interest is short. In that case (v, £ v, —I—pi)% ~ const. When the region of interest is short the two
approaches are also conceptually equivalent. For the luminosity upgrade Rev3.2 e~ optic a comparison
between the skew quadrupole settings needed for the North IR, using the matrix minimization, the
Guignard and the Bassetti methods is given in Table 6.3 (simulations done with SLIM, using the
sandwich mode with 34 solenoid slices). Indeed one finds that the matrix method and the Bassetti
approach give very similar, although not identical, results.

matrix method | Bassetti | Guignard
QSKN1 -0.00257 -0.00254 | -0.00231
QSKN2 0.00024 0.00025 | 0.00028
QSKN3 -0.00747 -0.00739 | -0.00649
QSKN4 0.00178 0.00175 | 0.00146

Table 6.3: Skew quadrupole settings in the North IR, comparing values found for the matrix method,
1

the Bassetti and the Guignard approaches respectively. The integrated strengths are in m™".

A minimization of the four harmonics in eqn. (6.3) minimizes the overall perturbation of the
Hamiltonian of the system. It should therefore be possible to use any observable as a figure of merit.
One such observable is the betatron tune, whose measurement is available at any storage ring. By
using the perturbative approach it is possible to show (see for instance [RW88]) that in the presence
of coupling sources the horizontal and vertical motions both contain the same two frequencies, vy and

vrr. When 2 ~ 19 = 19 19 and 2 being the unperturbed tunes, these frequencies, which are the

xr z

actually measurable ones, differ from each other and from the unperturbed tune »° by an amount
which depends on the coupling strength. Therefore decoupling is achieved when it is possible to set
the machine quadrupoles so that the measurable tunes are equal. Another suitable observable is the
tilt of the beam cross section. Indeed when the radial and vertical motions are uncoupled the beam
cross section is an ellipse with axes aligned along the z and z axes, reflecting the fact that the & and
z coordinates of the particles are independent. In the presence of coupling the beam ellipse is tilted
and the tilt angle, for a given perturbation, is a function of the machine azimuth. The measurement
of the tilt of the beam ellipse is therefore also a measure of the machine coupling. In HERA the
beam cross section can be observed at the synchrotron light monitor (SLM) in the North-West arc,
at the experiment luminosity monitors and at the transverse polarimeter. It is worth noting that a
monitoring of the beam ellipse tilt merely at one azimuth in the machine would be insufficient.

This way of correcting the coupling through empirical adjustment of the four coefficients in
eqn. (6.3) has been simulated with SLIM for the Rev3.2 e~ upgrade optic in the presence of the H1
solenoid (using the sandwich model). For each harmonic the strength of QSKNT1, the skew quadrupole
located at -124.5 m (the “leading quadrupole”), has been varied and the observables described above
have been recorded. The strengths of the remaining three skew quadrupoles are slaved to the strength
of QSKN1 through the excitation ratios. Figures 6.2 to 6.4 show these chosen observables plotted
against the integrated strength of QSKNI for the harmonics Re(4), Re(—) and Im(—). The nom-
inal tunes (without the solenoid) are pushed rather close together and are v,(unp) = 54.149 and
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v.(unp) = 51.167. © When the solenoid is switched on the tunes move apart to v; = 54.143 and
vy = 51.174. The minimum tune separation is obtained by setting the skew quadrupoles to the val-
ues quoted in Table 6.4. This table also gives values obtained by analytically solving eqn. (6.3) with
the Bassetti definition of 1»*. Note that the optimal settings found by looking at the minimum tune
separation are in good agreement with the values found at the minimum value of the rms beam ellipse
tilt. We note that the coefficient Im(—) in Table 6.4 shows the largest deviation. For Sm(+), which is
relatively small, the scanning did not give any minimum. This can be understood by noting that the
tunes are far away from the sum resonance. In fact the minimum for Re(+) is also not pronounced.
The result from the scanning indicates that in practice, the only coefficients that are expected to be
measurable are the Re(—) and Im(—), in consistency with the fact that HERA is operated close to
the difference resonance.

For the sake of consistency, the results presented above on the coupling minimization using the
Bassetti and Guignard approaches are all obtained using the sandwich model in SLIM, since a complete
set of results for the mixed maps in SLICK is not at hand. It should be pointed out however that
the calculations have been cross checked using both methods for the major part of the results and
that the results are consistent. The values found for the skew quadrupole settings are not the same
with the sandwich model and with the numerical maps, but they both indicate that the optimization
method is feasible.

QSKN1
“analytical” scan
Re(+) 0.00030 0.00027
Sm(+) -0.00008 -
Re(—) -0.00160 -0.00160
Sm(—) -0.00115 -0.00100

Table 6.4: Contributions from the real and imaginary parts of the coupling coefficients to the settings of
the first (upstream) of the four skew quadrupoles, compared to the corresponding contributions found
by scanning each of the four skew quadrupole bumps and looking at some suitable observable(s). The

integrated strengths are in m™1.

C Transfer matrix measurement

Finally, we have considered the possibility of “measuring” the actual transfer matrix M of an
experiment solenoid once it is switched on. The basic idea is simple. One excites orbit oscillations
with a correction coil upstream of the solenoid and measures the beam position at the BPM’s just
before and after the solenoid. Knowing the initial (¢) and final (f) coordinates at the solenoid entrance
and exit the transfer matrix can be retrieved in a way similar to the way the numerical maps were
calculated in Chapter 5. However, since the particle slopes cannot in general be measured they must
be computed by making a fit to the measured position data. The closed orbit in an error free region
can always be fitted by a free betatron oscillation, therefore the normal HERA correction coils may
be used and one can work on difference closed orbits instead of single pass data. The procedure can
be summarized as follows:

e Excite one coil upstream of the solenoid

e F'it difference orbits by using the BPMs between the coil and the solenoid
RN ($27 $/27 227 Z/z)

5The label “unp”, meaning “unperturbed”, on v, and v, is equivalent to the superscript 0 used earlier.
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Figure 6.2: A few observables plotted against the integrated strength of QSKNI1 for the Re(+) har-
monic, when minimizing the coupling in the Rev3.2 e™ lattice including the H1 solenoid (sandwich
model). Top: Nominal (without solenoid) and perturbed tunes (with solenoid). Middle: Tune differ-
ence. Bottom: The rms beam ellipse tilt around the ring, and the beam ellipse tilt at the SLM.
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Figure 6.3: A few observables plotted against the integrated strength of QSKNI1 for the Re(—) har-
monic, when minimizing the coupling in the Rev3.2 e™ lattice including the H1 solenoid (sandwich
model). Top: Nominal (without solenoid) and perturbed tunes (with solenoid). Middle: Tune differ-
ence. Bottom: The rms beam ellipse tilt around the ring, and the beam ellipse tilt at the SLM.
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Figure 6.4: A few observables plotted against the integrated strength of QSKN1 for the Sm(—) har-
monic, when minimizing the coupling in the Rev3.2 e™ lattice including the H1 solenoid (sandwich
model). Top: Nominal (without solenoid) and perturbed tunes (with solenoid). Middle: Tune differ-
ence. Bottom: The rms beam ellipse tilt around the ring, and the beam ellipse tilt at the SLM.
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o I'it difference orbits downstream of the solenoid
— (af, 2! 2f )

e Repeat the process for 3 more coils to get a 16 X 16 equation system in the transfer matrix

elements
W= Aiex160
with
&= (xf, 2 2 2 2
and
7= (M[l,1],1\/[[1,2],...,M[Q,1],1\/[[2,2],...,1\/[[4,4])
where

AL = (b, a5, 2,40, 0)
A[2,5] = (0,0,0,0,a%, 25, 24, 41,0, ..0)

A16,7]=(0,...,0, 2%, o, 2, 24" Vjied{l,..., 16}

e By inverting the A matrix (which is not singular if coils with a phase difference Ap, . # nrw,
where n is integer, are used) the solenoid transfer matrix elements are obtained, and the matrix
M can subsequently be fed into a program minimizing the coupling with, for instance, the matrix
method.

At first sight one needs at least four different orbits in order to determine the 16 matrix elements, but
the symplecticity condition reduces the number of the free parameters to 10. Moreover, as we are only
interested in the off-diagonal elements, using only two coils is sufficient to determine the elements
MT[1,3], M[1,4], M[2,3] and M [2,4]. The HERA BPMs are capable of resolving orbit differences of
the order of 0.05 mm. It is possible to find suitable coils among the already existing ones which,
with a moderate excitation in one transverse plane, produce an rms change of the orbit in the other
transverse plane that can be measured [Gi01]. Hence, this kind of measurement technique to arrive at
the solenoid transfer matrix should be feasible in HERA. In particular since the experiment solenoid
fields are not ramped, the measurements can be carried out at injection energy (12 GeV), reducing the
amplitude of the coil kicks by a factor 2.3. However the overlapping GO and GG magnets are ramped,
and measurements carried out at this energy must therefore be compared with relevant theory at the
same energy.

6.1.2 Correction of distorted IR design trajectories

The radial fields experienced by particles on or close to the design orbit inside the solenoids, due to the
off-axis design orbit inside the solenoids in the new design, mainly give rise to a vertical distortion of
the orbits. To compensate for this and avoid a closed orbit distortion propagating from the interaction
regions out into the arcs, a local compensation, utilizing the correction coil windings on the GO and
GG magnets has been devised. The shape and magnitude of the distortion was first calculated with
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a simple code, solving the equations of motion for orbit and spin (T-BMT equation) in a general
3—dimensional field [Gi01]. A systematic study borrowing ideas from the numerical map code for
the overlapping fields in the interaction regions has subsequently been performed, investigating the
optimal excitations of the correction coils in various configurations in the software. Particles starting
on the design orbit on the upstream (left) side of the solenoids have been tracked across the interaction
regions North and South and the strengths of the correction coils have been varied in a least squares fit
program so as to minimize the expressions \/wq #2 + wy (¢)? + w3 22 + w4 (2/)? or \Jwq 22 + wy (27)2,
where again wy, ws, w3 and w4 are weight factors. The coordinates x, 2/, 2, 2’ were calculated at the
exit of the GG magnet while the number of free parameters was set to four — two horizontal and two
vertical coils — or more often just two (vertical). The skew dipole windings are placed on the right half
of GO and on the left half of GG, which is favourable for the economy in powering both these coils
and the skew quadrupole coils on the remaining halves of the superconducting magnets. Solutions
have been found for H1 and ZEUS, given the restriction that only skew dipole fields, i.e. coils with
horizontal fields correcting for motion in the vertical plane are available. A summary of the calculated
settings for the vertical correction coils VGOR (GO right side) and VGGL (GG left side) in the North
and the South for electrons and positrons is given in Table 6.5. A comparison between different end
field models for the H1 solenoid is also given.

The uncompensated electron trajectory in the North interaction region, assuming that the H1
solenoid field can be modelled as having a linear fall off in the end field regions (end field model B) is
shown in Figure 6.5. After compensation of the orbit distortion with the skew dipole windings on GO
and GG, the trajectory is a closed “hump” in the vertical plane as seen in Figure 6.6. The residual
uncompensated horizontal motion is very small in amplitude and can be taken care of by the ordinary
correction coils in the lattice; on the scale of the vertical hump it can barely be seen in the figure.

[l uncompensated trajectory in North IR
0.1 b
I GO H1—solenoid GG
0
+ I=) horizontal
+ motion
—0.1
—02
0.3 L vertical
r motion
_ L [ [ [ | | | |
04 /% 4 ) 0 2 4 B (m]

Figure 6.5: Uncompensated electron trajectory (w.r.t. design orbit) in the North interaction region,
using H1 solenoid end field model B. 87



. . maximum orbit excursion
skew dipole settings .
after corrections
VGOR VGGL horizontal vertical
[prad] | [prad] [pm] [pm ]
=
North
model A; 52.8 -2.15 0.28 16
model A, 67.2 -7.15 0.29 22
model B 67.2 -4.68 0.25 22
South
(-4.96) (7.80) (-0.036) (-1.2)
-15.0 20.2 -0.087 -3.0
et
North
model A; 9.23 -53.3 4.0 -65
model A, | -0.90 -54.2 4.2 -69
model B 1.06 -63.7 3.5 -68
South
28.1 -36.2 -0.15 5.1

Table 6.5: Skew dipole settings, and maximum orbit excursions after corrections of the orbit distortion
introduced by the overlapping solenoid — combined function magnet fields in the new IRs. For electrons
and applying the sandwich models, the rms vertical orbit shift before corrections is 1.2 mm and the
rms horizontal shift is 0.13 mm. The dominant shift comes from H1 since the small overlap of the
ZEUS solenoid field with GO and GG has almost no influence. In order to simplify the calculations,
the lengths of the skew dipole windings in the models are 1.6 m for VGOR and 0.65 m for VGGL (half
of the lengths of the parent magnets), which is a few centimeters longer than the actual coils. For the
case of e” in the South, two sets of values are given. The first ones in parenthesis are for a transverse
offset of 24,7+ = 4 mm used in the polarization calculations in this chapter (where this particular value
belongs to an older version of the optic) and the second ones are evaluated for 24 = 10 mm, which
is the offset in the Rev3.2 e~ optic.
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Figure 6.6: Compensated electron trajectory (w.r.t. design orbit) in the North interaction region,
using H1 solenoid end field model B.

6.1.3 Local ny tilt correction

Due to the overlap of the GO and GG magnet fields with the experiment solenoids, the nominal
particle direction and 7y are not perfectly parallel to the central solenoid fields when entering these
magnets. Moreover, as we have seen in Chapter 5, the H1 solenoid has a longitudinal asymmetry of
1.125 m with respect to the IP North. Together with the uncompensated orbit distortion originating
in this region, this generates an rms fg tilt of 8.8 mrad from the vertical in the arcs at 27.474 GeV.
To further illustrate the impact that this region has on the spin motion, a list of the spin components
at the entrance and “exit” (at a position symmetric to the entrance, from the optical point of view)
of the uncompensated H1 solenoid of a spin, initially vertical along the arc upstream of the IP North,
is given in Table 6.6.

entrance | exit | exit (nominal)
S, | -0.490 | 0.490 0.490
S, | 0872 | 0.871 0.872
S. | 0.000 |-0.006 0.000

Table 6.6: Spin components at the entrance and exit of the H1 solenoid of a spin vertical in the arcs
with the input rotator magnet fields set to their nominal values for 27.474 GeV. Exit (nominal) refers
to a case where the solenoid is absent.

After applying orbit corrections as described above, the rms tilt is reduced to 3.2 mrad. The
remaining ng tilt from the vertical in the arcs can be compensated for by an asymmetrical retuning
of the vertical bending magnets in the spin rotators, using the already existing vertical correction
coils in these magnets. This will only be necessary for the rotators straddling the North IP. With
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asymmetrically retuned rotators, the tilt is reduced to a fraction of a milliradian.

6.1.4 Spin matching in the new lattice

Due to the asymmetries in the new IRs, the whole section between the centres of the rotators in
a pair must be considered when designing the optics and doing spin matching. In a symmetric IR
only half the section, from the IP up to the centre of one of the rotators in a pair needs to be taken
into account. As indicated earlier, with the relatively large particle energy in HERA it is hoped that
the experiment solenoids can be treated as perturbations. They have therefore been ignored when
designing the new optics and establishing the spin match. © Then in the absence of solenoids and
setting the rotator magnets to their nominal strengths for 27.474 GeV, 17 matching conditions —
12 for the optic and 5 for spin matching — must be fulfilled in the new IR design, which should be
compared to the 9 matching conditions required in the old machine [Gi01]. Matching the new lattice
has therefore been a tedious task. Figure 6.7 shows a schematic representation of the synchro—beta spin
matching conditions required to obtain a spin matched HERA after the upgrade. Compare with the
general recipe given in Chapter 4. In particular by choosing Iy to be vertical and 7y to be horizontal
in the IR the elements G[1,1],G][1,2],G2,3],G[2,4] and G[1,6] must vanish [BR99]. In order to
fulfill all matching conditions in the latest version of the IR design (Rev3.2), it has been necessary to
independently power all quadrupoles left and right of the IPs up to the rotators, requiring 14 extra
power supplies. In the starting phase however, only 7 of them will be available.

Gy=G,=G¢=0

Figure 6.7: Spin matching conditions in the HERA upgrade lattice. The shaded ellipses represent the
rotators.

Subsequent spin matching of the optics in the presence of the solenoids has in reality turned out to
be exceedingly difficult. A mutual compensation of the H1 and ZEUS solenoids is not feasible either,
mainly since this would require the phase advances between the two IPs to be multiples of .

"Also the cavities are ignored in the spin match since they have little effect on the spin motion.
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6.2 Polarization in the non—distorted machine

Now that the orbit distortions have been dealt with, and the spin matching strategy for the luminosity
upgrade optics has been explained, we are ready to discuss the polarization in the new lattice. The
results will be presented in the following order: first calculations made with SLICK for the non—
distorted machine will be presented and comparisons between the various end field models, including
the sandwich model, for the H1 solenoid will be made. Thereafter follows a qualitative analysis of
the underlying causes of polarization reduction related to synchro—betatron motion in the new lattice.
In particular the effects of artificially switching off elements in the G matrix for various sections of
the ring will be studied. An estimate of the opening angle between n and #g, close to a resonance,
from SLICK calculations will also be given. The next section investigates the effects of closed orbit
distortions and misalignments, followed by a section dealing with the effect of the RF frequency shift
on the polarization. In the last section a discussion of the influence on the polarization of the beam—
beam interaction is given. All polarization calculations presented below are calculated for the e case.
A spin matched et optic for the upgrade also exists. The results are qualitatively similar to the e~
results and will therefore not be discussed further.

The polarization calculated with SLICK for the non—distorted Rev3.2 e~ optic (without solenoids)
in the presence of 3 pairs of rotators is presented in Figure 6.8. The lattice has been spin matched as
well as possible at the central energy of the interval shown according to the strategy described in the
previous section. The solid line in the figure corresponds to the total (linearized) polarization whereas
the dotted and dashed lines refer to the polarization related to the individual degrees of freedom of
the orbital motion, for an energy scan covering one integer in avy. The abscissa has triple labeling
to emphasize the dependence of the polarization on energy, av and spin tune, respectively. In many
circumstances it is advantageous to plot the polarization versus av or the spin tune, for instance when
identifying resonances, but for our context it is sufficient to indicate the polarization dependence on
energy. Therefore in the following pictures only the energy will be given on the abscissa. The large
resonance dips appearing in Figure 6.8 at F/ = 27.28 GeV and F = 27.665 GeV correspond to the first
order resonances vy = 62 4 v and vy = 63 — v, respectively. The less pronounced dips correspond
to vg = m=E v, and vy = m £ v,. The maximum polarization in the energy range 27.25 — 27.69
GeV is (as expected) obtained for vy &~ 62.5 and is 77.2 %. The polarization is, as seen, limited by
the synchrotron motion, and more fundamentally by the loss related to the presence of the rotators
(recall Chapter 4), setting the upper limit to 83.2 % at 27.474 GeV. Note that the widths of the
betatron resonances are exaggerated due to the finite energy step size (in this and following pictures
AFE = 0.005 GeV). By turning off the G matrix for the straight sections it is found that the relatively
strong vertical betatron resonance at I/ = 27.605 GeV is related to a breaking of the energy dependent
spin match in the arcs at that energy.

Figure 6.9 shows what happens to the polarization when the experiment solenoids are included in
the calculations. In the top left picture the H1 solenoid (end field model A;) is strongly perturbing
the polarization and causing a wide “hole” in the polarization Ps related to the synchrotron mode
to develop on each side of the central energy point, because of the tilt of g in the arcs. In terms
of the spin—orbit coupling integrals this can be understood as originating in a large contribution to
Jis in eqn. (3.78) from this tilt in combination with the horizontal dispersion in the arcs. After
correction of the ng tilt by asymmetrically retuning the vertical bend magnets in the North rotators
the polarization recovers but is now limited by betatron motion in the solenoid and skew quadrupoles
and by propagation of the local distortions caused by the presence of the solenoid. Applying orbit and
coupling corrections brings the polarization up to 70.8 %. By including also the ZEUS solenoid in the
calculations, the polarization again drops by about 2.3 % for central energies. Note that as mentioned
earlier asymmetrical rotator settings are only needed in the North. Finally it should be observed that
the dips occurring at integer values of vy (close to the outer edges in the top left picture and on the
left hand side in the top right and bottom left pictures) are related to a decrease in strength of the
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Figure 6.8: Polarization vs. energy (a7y) {spin tune} for the Rev3.2 e~ nominal lattice with 3 pairs of
rotators using standard settings.

Sokolov—Ternov driving term, caused by the strong tilt of 7y at these energies resulting from imperfect
asymmetric rotator retuning. In reality these dips are very narrow, but the finite energy “binning”
used in the scan produces an artificial broadening.

In Figure 6.10 a comparison between the various end field models for the H1 solenoid described
in Chapter 5 is made. It is seen that the differences in the polarization between the models after
orbit, coupling and #g tilt corrections have been applied are negligible, except for a “shoulder” for
the polarization associated with longitudinal orbit motion on the right hand side in the lower two
plots. The total polarization at the central energy point for the sandwich model is 68.1 %, for end
field model Ay 70.5 %, for end field model A, 69.7 % and for end field model B 69.2 %. A closer study
of the resonance patterns indeed shows that the various models are not identical and that end field
model A; with its lower integrated field strength deviates most from the others. This suggests that
the knowledge of the integrated field strength is in fact more important for the determination of the
polarization than the exact knowledge of the shape of the end fields. However for the determination
of the optical corrections mentioned above the end fields do play an important role.

Figure 6.11, already discussed in the previous section, shows that the polarization is rather insensitive
to the coupling correction scheme adopted.

Figures 6.12 to 6.14 give examples of how SLIM/SLICK can be used in diagnosing which parts
of the lattice are most troublesome for the polarization. In Figure 6.12 (left) the spin—orbit coupling
has been deactivated in the whole of the ring, except in the East straight section, by switching off
the G matrix for all quadrupoles, skew quadrupoles and combined function magnets. ® It is clearly
seen that the polarization is limited by the longitudinal mode, reflecting the impact of an imperfect
spin match related to the horizontal dispersion in the East straight section, which is due to inherent

8 Again the effect of the cavities can be ignored since it is anyway small.
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Figure 6.9: Polarization vs. energy for the Rev3.2 e~ lattice. Top left: Lattice including H1 solenoid.
No corrections of orbit distortions and coupling. Standard rotator settings. Top right: Lattice includ-
ing H1 solenoid. No corrections of orbit distortions and coupling. Asymmetric rotator settings around
the North IR. Bottom left: Lattice including H1 solenoid. Local corrections of orbit distortions and
coupling included. Asymmetric rotator settings around the North IR. Bottom right: Lattice including
H1 and ZEUS solenoids. Local orbit and coupling corrections included for the North and South IRs.
Asymmetric rotator settings around the North IR and standard rotator settings around the South IR.
In all these calculations end field model A; was assumed for the H1 solenoid.
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Top left: Sandwich model.

End field model Ay. Bottom right: End field model B.
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Figure 6.11: Polarization vs. energy for the Rev3.2 e~ lattice including the H1 solenoid (end field model
Ay). Left: Local coupling compensation carried out with the matrix method (4 skew quadrupoles).
Right: Local coupling compensation carried out with the Guignard method (4 skew quadrupoles).
These pictures look identical, but a careful examination show that they are not!

limitations on the distribution of the dipoles in the East straight section. ? In the right picture the
spin—orbit coupling in the central part of the H1 solenoid has been turned on and new resonances
are seen to appear, although the solenoid is locally compensated for (orbit compensation and ng tilt
compensation are active). The next two pictures, Figure 6.13, show the polarization achieved when the
ZEUS solenoid is included in the calculations, but H1 not. In the left picture the spin—orbit coupling is
active in the whole machine, whereas in the right picture the spin—orbit coupling is allowed to act only
in the South straight section. This should be compared with the polarization in the nominal lattice,
Figure 6.8, and with Figure 6.10 where only H1 is included. As can be seen, the ZEUS solenoid has a
much smaller impact on the polarization than H1. Note that the loss in polarization directly related to
ZEUS is separated out in the right picture and amounts to an enhancement of the betatron resonances,
in agreement with expectations raised at the the beginning of this chapter. The last series of pictures
in this block, Figure 6.14, again shows the polarization when only H1 is taken into account in the
calculations. In these pictures the spin—orbit coupling is active only in the North straight section, and
the polarization is limited by the horizontal motion. In the top left picture, a broad P, resonance is
dominating the pattern. When the spin—orbit coupling is switched off in the solenoid, this resonance
is suppressed and the polarization recovers (top right picture). To investigate the importance of the
solenoid radial end fields, the spin-orbit coupling is activated for these end fields (bottom picture),
whereas the spin—orbit coupling is still switched off for the longitudinal field component. We note that
the main limitation on the polarization comes from the horizontal betatron motion in the central part
of the solenoid field, whereas the end fields contribute to a partial cancellation of the contribution to
the P, resonance from the GO and GG magnets.

An investigation has also been made on how important the radiation from the combined function
magnets in the North and South IRs are. By doubling or halving, and even turning the radiation off in
the strongest combined function magnets, situated at large f—function locations in these regions, it is
found that the polarization, at least at the linear level, is basically uneffected. Hence one can conclude

°This imperfect spin match in the East straight section is also the source of the strong first order synchrotron
resonances in Figure 6.8. If a dispersion spin match could be established in the Fast, these resonances would
disappear and the polarization at 27.474 GeV would be above 80 % in that figure. Likewise it was always possible
to get good spin matches with the various “pre-Upgrade” optics for the case when all three interaction regions were
layed out as then planned for the North and South [Bb01, Bb90, BS8&6].
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that the radiation from a small number of magnets in the IRs, although strong, has a marginal effect
on the overall spin—orbit dynamics, compared to the radiation from the arcs. This fact has been used
when implementing the numerical maps in SITROS, see Chapter 5.
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Figure 6.12: Polarization vs. energy for the Rev3.2 e lattice including the H1 solenoid (end field
model Ay). Left: Spin-orbit coupling active only in the East straight section. Right: Same as left, but
with stronger vertical mode resonances and additional resonances appearing in the horizontal mode
due to switched on spin—orbit coupling in the central part of the H1 solenoid.
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Figure 6.13: Polarization vs. energy for the Rev3.2 e~ lattice including the ZEUS solenoid. Left:
Spin—orbit coupling active in the whole ring. Right: Spin—orbit coupling active only in the South
straight section (including the ZEUS solenoid).

In order to further emphasize the importance of the spin—orbit coupling for the polarization, a
series of three-dimensional plots, created from energy scans made with SLICK, illustrating the energy

\2
and azimuth dependence of the term ﬁ % (g—g) in the Derbenev—-Kondratenko formula for the HERA
upgrade lattice is given in Figures 6.15 to 6.17. A few qualitative features of the plots will be pointed
out here. In the first illustration, Figure 6.15, the above term is plotted (for dipoles and combined

function magnets (CFs) where ﬁ # 0) for the case of the nominal Rev3.2 e~ lattice, and is compared

with the polarization calculated for the same case. Two broken “fences” stretching along the machine
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Figure 6.14: Polarization vs. energy for the Rev3.2 e~ lattice including the H1 solenoid (end field
model Ay). Top left: Spin-orbit coupling active only in the North straight section (including the
H1 solenoid). Top right: Same as left, but with spin-orbit coupling active only in the GO and GG
magnets (i.e. not in the solenoid) in the North straight section. Bottom: Same as above, but without
spin—orbit coupling just for the longitudinal part of the H1 solenoid.
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azimuth (s = 0 corresponds to the East IP) at 27.28 GeV and 27.665 GeV can be clearly seen,
corresponding to the strong synchrotron resonances centred at these energies. The gaps in the fences
correspond to the straight sections, whereas the tips close to the gaps are related to the rotator dipoles.
Note the peaks close to the centre of these gaps for azimuths around 1584 m (South IP) and 4752
m (North IP), indicating the positions of the GO and GG magnets. The pronounced spikes in the
fences around 3440 m are due to the strong, short dipoles in the injection section (see Figure 1.1).
Peaks can also be seen rising from the background pattern at about 27.6 GeV, related to the vertical
betatron resonance at this energy and appearing, as expected, just at the azimuths corresponding to
the positions of the rotator bend magnets where v}y # 0 since D, # 0. It should be observed that
the vertical scale in the bottom plot is arbitrary and the data should only be regarded as a relative
measure for how strong the spin diffusion in the various magnets and at various energies is. The reason
for this is the high sensitivity of the amplitude to the chosen energy binning in the scan. If the spin
diffusion term is plotted for an energy point that happens to hit a resonance condition precisely, the
corresponding peak can be very much enhanced and dominate the picture completely. This may not
be the case for the “mirror resonance”, thus giving the false impression that the resonances should
have very different strengths. Care must therefore be taken when choosing the energy binning and
plotting such pictures. Note that the sensitivity to the energy binning is suppressed in the polarization
plots, where one turn averages (cf. eqn. (3.20)) are taken.

Figure 6.16 illustrates what happens when the spin matching is broken by switching off the entire
G matrix for a pair of quadrupoles in the South—West arc, close to the rotator, where the vertical
beta—function is relatively large. The polarization is much decreased by the strong enhancement of
the vertical betatron resonances and corresponding large peaks can be seen in the bottom plot for the
spin diffusion related to vertical motion. The last figure in the series, Figure 6.17, has been added for
completeness and shows how the spin diffusion term looks for the Rev3.2 e~ lattice, including the H1
(end field model B) and ZEUS solenoids. Note the more rugged structure of the “fence”, and the extra
spikes appearing, on the left side in the picture compared to the corresponding one in Figure 6.15,
and compare this to the more smooth looking fence on the right side. This may be understood as
being related to the larger influence on spin—orbit motion from the non-ramped solenoids at the low
energy side. The effect can also be seen in the polarization (top plot) for instance by observing that
the lower energy P, resonance is wider than the corresponding resonance on the high energy side.

In Chapter 3 it was pointed out that the measured polarization contains a factor (72), and a factor
P, which is the same over all phase space and which depends on the azimuthal and phase space

average of #(%)2. It was claimed that (), ~ 7 even close to resonances owing to the smallness

of the rms angle ©; 5,) between 7 and 7g. We are now in a position to check this latter assertion
in SLIM approximation for HERA and in the process present a novel way of exploiting knowledge
of O .40)- As an example I will focus on the vg = 62 4 vs resonance in Figure 6.8 at an energy of
E = 27.29 GeV, three quarters down the resonance dip where the polarization is P = 16.1 %. In the
SLIM approximation the rms opening angle O, . syn due to the synchrotron motion is \/{(a* + 5?)),
for the « and 3 associated with the synchrotron mode in eqn. (3.64). Its calculation needs the |A;s|?
given by eqn. (3.62). In the arc dipoles one finds that O (,70),syn 18 almost azimuth independent and
has the value ~ 2.85-107% at this energy. So (f), ~ fip as claimed. But this does not mean that % is

small, since this rms opening angle is associated with a relative energy spread of o5 ~ 1-1073! Then a
®,. -
(7,70 ),syn

o )2 which is ~ 8.1. This number is of a magnitude similar

first estimate of (2%)? is given by (
to that of (%)2 = 5.8 calculated analytically in SLICK at the same positions in the ring. Using this
estimate, and the rough approximation P, , =~ Hﬁ% one finds P, = 0.14.(c.f. eqn. (3.20)).
This emphasizes in concrete terms that although the opening angle is small, in our case 2.85 mrad,
it appertains to a small energy spread, so that the depolarization can be large. In order to account
for a polarization of 16.1 % in geometric terms, i.e. only on the basis of the opening angle, this angle

would need to be of the order of 80° in order to get a small enough |(%) |. In Chapter 7 I will further
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elaborate on this point in connection with an extension of an idealized model for synchrotron sideband
resonances.

6.3 Closed orbit distortions and misalignments

To get an estimate of the polarization that can be achieved in the real HERA machine after the lumi-
nosity upgrade, the effects of random misalignment errors of the machine magnets must be included in
the study. In the presence of random transverse quadrupole displacements for example, the expected

rms value of the closed orbit distortion is related to the rms quadrupole displacement, 5;1uad, by [Bo70]

1
rms __ : Z 25quad — 6.4
v MWHMMZW gil (y=2,2) (6.4)

where the m; are the number of quadrupoles in family ¢, L; are the lengths of these quadrupoles,

and once again g; = %—%(Q%) Z_ _, are the normalized quadrupole field gradients. A similar but

somewhat more complicated expression holds for the distorted dispersion ADy™*. The effect of such
errors on the polarization is, as we already know, mainly due to the tilt of fg in the arcs. Recall
the expression (4.2) for this tilt. The error induced 7 tilt causes a massive broadening of the first
order v, resonances, pulling down the polarization at central energies (close to half integer avy). This
is reminiscent of the effect introduced by a non—compensated solenoid as in the top left picture of
Figure 6.9, only much more pronounced. Since in the new optic the quadrupoles and sextupoles are
stronger than in the old one, we expect to see larger closed orbit distortions as well as larger distortions
of the dispersion and of 7ig. From the discussion in Chapter 4 we understand the importance of a good
fg tilt correction. This will be further emphasized in what follows.

6.3.1 Investigations without solenoids

For our studies we have initially considered the Rev3.2 e~ lattice with three pairs of rotators, but
excluding the experiment solenoids. The investigation covers the cases of random horizontal and
of 5;@1“ad = 5§1uad = 0.3 mm with cuts at

three standard deviations of the error distributions. In some cases a quadrupole roll-angle error of 0.35

vertical quadrupole displacements with assumed rms values

mrad rms value has been added. No dipole rolls or field errors have been considered. The polarization
calculations have been carried out with SITF. The results of the simulations are summarized in
Tables 6.7 to 6.9. These tables are all organized in two blocks. In the upper blocks the rms orbit and
dispersion distortions, the beam emittances and the rms values for the tilt of 7g, together with the
expected polarization at the linear level (total and individual modes) are presented, after standard
orbit corrections have been carried out. In the lower blocks the rms tilts of 7p and the corresponding
polarizations are shown, when in addition 7 tilt correction using the harmonic bumps (see Chapter 4)
has been applied. All calculations are carried out at the energy F = 27.474 GeV.

In Table 6.7 results averaging over 10 random seeds for the case of quadrupole displacements in
both transverse planes are displayed. Note that the orbit has been corrected down to 0.7 mm in both
planes. In some cases the distortion of the dispersion is quite large and the values therefore have a
large spread. Note in particular that the AD, (y = z,z) due to closed orbit distortions is much larger
than the distortion introduced by the overlapping fields in the new IRs. The unperturbed emittances
are £, = 27.0 nm rad and £, = 0.75 nm rad, respectively. As can be seen by comparing with the table,
there is some blowup of the vertical emittance when the distortions are included. The average tilt of
no is about 5 - 10 mrad larger than in the old optic (for orbit corrections down to about 1 mm in both
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After usual orbit corrections
277 [mm] | ADI™ [mm] | e, [nmrad] 5 [mrad] | Puy (%] ];x E?%
2% [mm] | ADI™* [mm] | - [nmrad] o |mra lin | 70 PZ [(72]
0.71£0.09 | 35+£12 | 262+ 15 24£65
0.71 + 0.17 19 + 14 1.16 + 0.40 303 £ 11.7 | 142+ 98 | 74.8 & 4.6
13.4 £ 9.9
With harmonic bumps in addition
P, [%]
St [mrad] | Prn [%] P, [%]
P, [%]
70.5 £ 7.0
15,7+ 3.9 | 69552 | 73.5+ 54
66.7 £ 9.0

Table 6.7: Expected rms value of 6729 and polarization (linear) in presence of random quadrupole
transverse alignment errors for the Rev3.2 e~ lattice (without solenoids). Average over 10 random
seeds.

planes), as is the spread in the tilt angles. In order to get the same order of magnitude of tilt as in the
old optic, a more careful orbit correction has been necessary (see above). To bring the tilt down to the
10 - 20 mrad level 4, 6 or often 8 harmonic bumps (depending on the seed) have been used, whereas
in the old optic 4 harmonic bumps were always sufficient. After the harmonic bump correction, the
polarization levels for the three degrees of freedom are similar, which is in contrast with the previous
design in which the polarization related to the longitudinal oscillation mode was clearly limiting. It
should be mentioned that we have noticed that in some cases the polarization is limited by a large
horizontal dispersion distortion around the North and South IPs, reflected by non-zero contributions
in G;. It is therefore sensible for operation after the upgrade to have a dedicated dispersion correction
algorithm, based on, for instance, MICADO or Singular Value Decomposition (SVD) [Pr92].

In Table 6.8 a comparison between various corrections applied to one particular realization of ma-
chine distortions is made. It can be seen that even with 8 harmonic bumps operating, the polarization
reaches just 65 % with an orbit correction down to about 1 mm in both planes. Note that the rms
dispersion distortion in this case is quite large, and that with 8 harmonic bumps a local vertical orbit
distortion of more than 10 mm is generated. In order to reach a polarization level above 70 % for this
seed, the orbit has to be corrected to better than 0.8 mm in both planes and the tilt must be brought
down below 15 mrad, requiring the use of 8 harmonic bumps.

Table 6.9 shows the results of a study where in addition to the random quadrupole displacements,
quadrupole roll-angle errors have been allowed (average over 6 seeds). The strategy by orbit and 7g
tilt correction has been to reach the same order of magnitude of tilt after harmonic bump correction
as in the case without roll-angle errors. Also here a variation in the number of applied harmonic
bumps has been employed. As can be seen, the orbit correction is very stringent and even with a final
average tilt of 16.2 mrad the average total polarization does not reach 62 %, perhaps indicating that
harmonic bump correction is not very effective in the presence of roll-angle errors.

6.3.2 Investigations with solenoids

In the previous section we concluded that the differences in the polarization at the linear level between
the various end field models for the numerical maps and the sandwich model are small. It has therefore
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After usual orbit corrections
277 [mm] | ADJ™ [mm] | ¢, [nmrad | 570 [mrad] | Pry [%] ]]}’ %?%
rms rms 0 lin 0 z 0
zrms [mm] | AD?™* [mm] | €2 [nmrad] P, [%]
1.0 88 29.8 7
1.9 24 111 39.8 5.6 75.1
5.7
1.0 88 29.8 7
19 24 111 39.8 5.6 75.1
5.7
0.7 41 29.1 7
0.8 10 1.17 34.7 7.4 76.8
7.4
0.7 41 29.1 7
0.8 10 1.17 34.7 7.4 76.8
7.4
With harmonic bumps in addition
P [%)]
§ig [mrad] | Py, [%] | P [%] | Az2vmP [mm] | #h
P [%]
74.4
22.7 56.5 77.3 6.6 4
58.5
71.4
20.0 65.1 73.9 10.7 8
69.2
75.7
17.8 65.6 77.0 5.9 4
67.6
69.4
14.0 72.3 69.4 5.2 8
77.8

Table 6.8: Comparison of rms value of d7g and polarization (linear) in presence of errors for one
particular random seed after application of various corrections. Rev3.2 e~ lattice (without solenoids).
Observe that the top and bottom blocks of the table should be read as if the bottom block would be
the continuation of the top block on the right hand side.
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After usual orbit corrections
277 [mm] | ADI™ [mm] | e, [nmrad] 5y [mrad] | P, [%] ]]}’ %?%
275 [mm] | ADJ™ [mm] | € [nmrad] fo Lmra i L7 PZ [(72]
0.64 +0.06 | 32+ 18 274+ 1.4 725+ 10.8
0.51 + 0.03 1344  |0920 +0.196 | 324 £80 | 88 L5471 784+ 2.6
87+ 5.3
With harmonic bumps in addition
P, [%]
St [mrad] | Py, [%] P, [%]
P, [%]
70.4 £+ 11.3
162 +23 [ 619+ 120 | 77.3+ 2.0
59.0 £+ 14.7

Table 6.9: Expected rms value of 6729 and polarization (linear) in presence of random quadrupole
transverse alignment errors and quadrupole rolls for the Rev3.2 e lattice (without solenoids). Average
over 6 random seeds.

been decided to stick to the sandwich model, thereby allowing PETROS — the code traditionally used
at DESY for simulating the effects on orbital motion of random errors and also their correction — to
remain unchanged. Using SITF and SITROS a study of the polarization in the presence of random
quadrupole displacements in the Rev3.2 e~ lattice, including the H1 and ZEUS solenoids, has been
carried out. The results are displayed in Table 6.10 and Figure 6.18.

In order to give a representative picture of the polarization that can be expected in HERA after
the upgrade, the simulated orbit corrections have been made down to the realistic level of about 0.8
mm in both planes. Moreover, with the inclusion of the solenoids, guided by the experience gained
in the studies without them and after some initial testing, it has been decided to investigate the
effects of adding further harmonic bumps. The results collected in Table 6.10 include simulations for
8 random seeds where the highest polarization (at the linear level), comparing the use of 4, 8 and
16 harmonic bumps for each seed, have been selected. With an average rms fg tilt of 14.8 mrad
the linear polarization calculated with SITF reaches 63.8 % after harmonic bump correction. Note
that a dedicated dispersion correction (using MICADO in PETROS) has been applied for most of
the seeds to minimize the dispersion distortion. For the calculation of the effects of higher order
resonances, SITROS has been used to track an ensemble of typically 100 — 350 particles for 10 000
turns: first 5000 turns to reach orbital equilibrium and then additionally 5000 turns to monitor the
depolarization. The number of particles has been chosen such that the tracked emittances (in practice
the beam sizes are monitored) have been able to converge to the analytically calculated ones from the
first program module, while still keeping the tracking time within “reasonable” limits. '© Averaged
over the 8 random seeds for quadrupole displacement, the polarization from the SITROS trackings
for the Rev3.2 e~ lattice, including the H1 and ZEUS solenoids (using the sandwich model), reaches
57.0 %. Figure 6.18 shows energy scans made with SITF and SITROS for a typical random seed
(bottom plots), and for comparison, scans made for the non-distorted optic, including the solenoids
(top plots). Note that one can see evidence in the right pictures of the expected sidebands and that

1%As an example of the computation time needed to make an energy scan with the updated SITROS code, it should
be mentioned that the SITROS polarization data plotted in Figure 6.18, obtained in trackings with 250 particles
(which is certainly not excessive), have required about 4 1/2 days of CPU time per scan on a Sun Ultra—1 Sparc
cluster. However, the simulations clearly point out the aspects that need to be considered.
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After usual orbit corrections
277 [mm] | ADI™ [mm] | e, [nmrad] S [mrad] | Pis, [%] ]]}’ F?%
275 [mm] | AD;™* [mm] | €2 [nmrad] fo Lmra fin L0 PZ [(72]
0.86 4+ 0.16 | 28 + 20 27.5 + 1.6 66.6 + 4.4
0.78 + 0.15 14+ 6 1.07 + 0.25 329476 | 103 £ 55| 74.2 4+ 3.1
10.8 £ 6.2
With harmonic bumps in addition
P [%] analyt track
X & €2 [nmrad] | €% [nmrad ]
5n0 [mrad] ]Dhn [%] Pz [%] gznalyt [nm rad] 87,‘27’(1ck [nm rad] Pnonlin [%]
P [%]
6T.1£3.8 ) ooq 413 32.2 + 3.3
148+ 14 | 63.8 &+ 2.1 |72.74 3.7 1.31 + 0.41 1.43 + 0.48 57.0 £ 3.2
71.5 4+ 1.5

Table 6.10: Expected rms value of 679 and polarization (linear and higher order) in presence of random
quadrupole transverse alignment errors for the Rev3.2 e~ lattice including the H1 and Zeus solenoids,
using the sandwich model. Average over 8 random seeds.

the separation of these sidebands corresponds to the synchrotron tune, vs; ~ 0.06. This is the case
since SITROS deals with three-dimensional spin motion, which leads to higher order resonances. Note
also the pronounced overlap of the first order resonances in the (left) SITF pictures. Because of this
overlap we do not expect the simple model in Chapter 3 for describing synchrotron sidebands to be
reliable, and hence we see that we need the SITROS program.

The higher order polarization in the case of the ideal optic with solenoids using the sandwich model
is 61.0 %. It must be emphasized that this value is 6.4 % lower than the value obtained using the
numerical maps in SITROS (end field model B), whereas the difference at the linear level (SITF) is
only 1.5 %. It is therefore likely that the estimate for the polarization obtained with SITROS using
the sandwich model is too low by a few, up to maybe 5, percent. In principle, many more distortion
seeds should be investigated to improve the statistics, but due to the time consuming corrections this
has not been possible for this work. However, the simulations clearly point out the aspects that need
to be considered, in order to achieve polarization levels around 55-60 % in the luminosity upgraded
HERA. These can be summarized as follows:

e The closed orbit must be corrected down to ~ 0.7 mm. This may require the use of beam—based
calibration techniques.

e A dedicated dispersion correction is probably needed to keep the dispersion distortion minimal.

e A good coupling compensation is necessary, which can be achieved using some of the techniques
described in Section 6.1.1.

e As many as 16 harmonic bumps may be needed to correct the ng tilt caused by the random
distortions.

6.4 Effect of RF frequency shift on the polarization

In Chapter 2 it was explained that in order to achieve a horizontal emittance of 20 nm rad for the e/~
beam after the luminosity upgrade, besides an increase of the phase advances in the FODO cells from
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60° to 72°, it is planned to operate the machine with a RF frequency offset of about 4250 Hz. '! This
corresponds to an energy offset of about —0.1 %, where the energy—frequency relationship is given via

AL viv? Afrr
B2E =~ frF

(6.5)

and where the square of the v at transition, v2, is 1833 for the 72°/72° optic. The energy offset implies,
through the horizontal dispersion, that the horizontal closed orbit shift will be nonzero by design. In
particular on average there will be an inward radial offset of the et/~ beam in the quadrupoles in
the arcs. Hence there will be a redistribution of the partition numbers, according to the Robinson
Theorem, such that the horizontal emittance is decreased, whereas the bunch length and the energy
spread are increased. We must now consider the implications for et/~ polarization. By noting that
the horizontal offset in the ring sextupoles will cause these magnets to act as additional quadrupoles,
an increased spin diffusion might be expected. However this contribution will be much smaller than
that due to standard closed orbit distortions. This has indeed been confirmed in simulations. By
introducing an equivalent energy shift according to eqn. (6.5), simulations including such a RF shift
have been made with SITF [Gi01]. The results can be studied in Figure 6.19. Note the overall sideways
shift of the resonance structures in the right hand side pictures, because of the energy shift of about 25
MeV. As can be seen the effect of the RF frequency shift on the maximum polarization is small, even
for the case of realistic orbit distortions. To vindicate these findings, and to rule out that non—linear
effects could have a detrimental effect on the polarization due to the RF shift, dedicated machine
studies were carried out in a specially prepared 72°/72° optic in HERA before the shutdown [Ho00b].
The results from these studies are encouraging. In particular the increased energy spread did not
cause any problems due to enhanced sideband resonances.

6.5 Beam-beam effects on spin

In Chapter 2 the influence of the beam—beam interaction at H1 and ZEUS on the luminosity after
the upgrade was discussed. It was pointed out that the beam—beam forces are very nonlinear, but
that for small amplitudes the interaction of the counter—rotating beams mainly causes betatron tune
shifts. A self—consistent picture of the beam—beam interaction is not easy to formulate, and it is even
more difficult to make analytical estimates of the impact on the polarization. In addition to the tune
shifts, tune spread effects and possible distortions of the beam distributions complicate the situation
and the spins of individual particles are affected both directly by the beam—beam forces and indirectly
through the trajectory distortion.

Until 1996 no clear evidence of beam—beam effects on polarization had been observed in HERA.
In that year the proton ring 3; was lowered from 0.7 m to 0.5 m (balanced by a reduction of 37,
in 1997). Moreover the proton beam current has been steadily increasing over the years. From the
Autumn of 1996, when proton currents approaching 100 mA became routine, the resultant larger
beam—beam forces started to have a marked effect on the polarization. By studying the polarization
of single bunches, as measured by LPOL, it became apparent that the colliding and non—colliding
bunches can have different polarization values [Be00Oa]. See Figure 6.20. This has been interpreted as
the colliding and non—colliding bunches having different betatron tunes, so that one of these groups of
bunches can be close to some depolarizing spin—orbit resonance (probably a synchrotron sideband of
a parent resonance) and therefore have a lower polarization. The polarization of the colliding bunches
can usually be improved by compensating for the tune shifts by adjusting the arc quadrupoles, thereby
avoiding depolarizing resonances. However, it should be noted that even after tune compensation the

"Without the RF frequency shift the horizontal emittance in the 72°/72° optic is €, = 27 nmrad.
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polarization in the presence of the beam—beam effect is lower than for the case of a single beam, due to
the breaking of the straight section spin match. This is illustrated by comparing Figures 6.8 and 6.9
(bottom right) with Figure 6.21, where the polarization calculated with SLICK in the presence of an
artificial “beam—beam lens”, and after tune compensation, is shown for the Rev3.2 e~ lattice. The
tune shifts stated correspond to a proton current of 110 mA. A variation of the polarization of the
colliding bunches, across a group of such bunches, has also been observed and has been attributed
to a variation in the synchrotron tune, caused by dynamic beam loading effects in the RF cavities.
Apart from the sensitivity to orbital tunes, it has been noted that in the presence of the beam—beam
effect the rise time of polarization after injection is sometimes larger than that expected from standard
radiative polarization theory, and that the polarization level is sometimes insensitive to the settings
of the harmonics of the harmonic closed orbit correction scheme [Gi01].

The effect of the beam—beam interaction on the electron polarization for HERA I has been studied
by Boége and Limberg [BL95] using SITROS. Strong depolarization was predicted, but such strong
depolarization has not been confirmed by measurements. Even after updating the SITROS code
(see Appendix C) it made pessimistic predictions. Therefore realistic simulations of beam-beam
depolarization seem to be unexpectedly difficult and would probably need to be the subject of a
separate project. It has however been confirmed by Fourier analysis of SITROS tracking data, that
SITROS reproduces the correct linear (incoherent) tune shifts.
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Figure 6.15: Top: Polarization vs. energy for the Rev3.2 e~ nominal lattice. Bottom: The (linearized)
Derbenev—Kondratenko spin diffusion term plotted in dipoles and combined function magnets vs.

energy and ring azimuth for the same case.
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Figure 6.16: Top: Polarization vs. energy for the Rev3.2 e~ nominal lattice with broken (vertical) spin
match in the South-West quadrant. Bottom: The (linearized) Derbenev—Kondratenko spin diffusion
term plotted in dipoles and combined function magnets vs. energy and ring azimuth for the same

case.
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Figure 6.17: Top: Polarization vs. energy for the Rev3.2 e~ lattice with H1 (end field model B)
and ZEUS solenoids. Bottom: The (linearized) Derbenev—Kondratenko spin diffusion term plotted in

dipoles and combined function magnets vs. energy and ring azimuth for the same case.
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Figure 6.18: Polarization vs. energy for the Rev3.2 e~ lattice including the H1 and ZEUS solenoids,

using the sandwich model.

Top left: Linear polarization (SITF), ideal optic.

Top right: Higher

order polarization (SITROS), ideal optic. Bottom left: Linear polarization (SITF), typical case with
distortions. Bottom right: Higher order polarization (SITROS), typical case with distortions.
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Figure 6.19: Polarization vs. energy for the Rev3.2 e~ lattice. Top left: Nominal lattice (no distortions,
no RF shift). Top right: Nominal lattice with A frr = 4250 Hz. Bottom left: Optic with realistic
distortions, no RF shift. Bottom right: Optic with realistic distortions and A frr = 4250 Hz. The
strong broadening of the v; resonances when the RF shift is applied is due to a tilt of g, caused
by an energy mismatch of the rotator settings, resulting from the particular way the shift has been

implemented in the code.
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Figure 6.20: Example on the difference in polarization of the colliding and non—colliding bunches, as
measured by LPOL [Be00a]. Courtesy of W. Lorenzon.
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Figure 6.21: Polarization vs. energy for the Rev3.2 e~ lattice with linear beam—beam effect at the
North and South IPs. The incoherent tune shifts (Avg = 0.027 and Avf = 0.041 per IP) have been
compensated for by adjusting the currents of the main quadrupoles (i.e. the arc quadrupoles). Left:
Nominal lattice. Right: Lattice including the H1 (end field model Ay) and ZEUS solenoids.
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Chapter 7

A Unitary Model of Spin

Depolarization

It was pointed out in Chapter 3 that the synchrotron part of the term 79 - & in the equation of
spin motion represents a modulation of the instantaneous rate of spin precession around 79 due to
energy oscillations and it was explained that this leads to the generation of synchrotron sidebands of
parent resonances. A brief presentation of the main result from the Yokoya—Mane approximations for
synchrotron sidebands of first order parent betatron resonances was given.

The Yokoya—Mane approximation is a perturbative approach for treating isolated resonances, that
does not account for interference between parent resonances. From the SLICK and SITF results for
HERA presented in Chapter 6 (see for instance Figure 6.9 and the left side pictures in Figure 6.18) it
is clear that the criterion of well separated parent resonances is not fulfilled in a realistic description
of HERA. This model is therefore restricted in applicability. Moreover, the model does not preserve
the length of spin vectors in the spin transformations, i.e. it does not preserve unitarity in an SU(2)
representation. In principle one could use this model anyway and try to retrieve the main higher
order resonances and this has been done for a particular HERA optic by Boge [B694]. It is found that
the Yokoya—Mane approximate model for synchrotron sidebands is useful to get a rough view of the
resonance structure, but it is not adequate for predicting the absolute polarization level because of
the limitations mentioned. There is therefore no real substitute for SITROS tracking calculations or
the use of SODOM [Y092] mentioned in Chapter 3.

An alternative method for describing higher order spin motion which is based on a simple picture
and thereby has the potential to provide physical insight can be found in [BL96, Le97]. However,
the method presented in those texts has been applied incorrectly to et/~ polarization. The object
of this chapter is to outline how one can nevertheless in principle still take advantage of this model
if one combines it with a correct understanding of radiative depolarization theory. At this point I
would like to remind the reader of the discussion on the opening angle between 7% and #g in Chapter 6.
By using this opening angle, as calculated by SLICK, it was possible to get a rough estimate for the
spin—orbit coupling function % in the Derbenev—Kondratenko formula. We know from linear eigen—
theory (see eqn. (3.64)) that the spin components of the eigenvectors, Wy, are needed to calculate this
opening angle. By working in the betatron—dispersion formalism, and considering for simplicity only
the effect of quadrupoles, we find that the expression for these eigenvectors, eqn. (3.74), contains the
one-turn integrals in eqn. (3.78). If we now make a Fourier expansion of the integrands and evaluate
these integrals we find that the result is a sum of terms containing resonance factors of the kind
1/(vk £ vo — p), with integer p. Then the Wy diverge at v, + vy = p for some integer p giving an
infinite opening angle so that the perturbative treatment is completely invalid. General solutions for
the spin motion also diverge. The reason is clear. At such a resonant condition, a corresponding term
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expi2ws(vy £ vp — p)/C in the Fourier expansion becomes 1 and the integral for the first order spin
solution in eqn. (3.33) increases linearly and indefinitely with distance [Yo83, BR99, Vo00]. The rate
of divergence is proportional the p-th Fourier coefficient.

However, it is possible to construct a better model, which is unitary, for calculating the opening
angle and handling resonance. The key to this lies in the following observation: close to a resonance
the spin motion is almost coherent with the orbital motion and it is dominated by a single harmonic
component equivalent to a field rotating in a plane perpendicular to fng. In the (ﬁo,mo,io) frame
this corresponds to the spins’ seeing an almost stationary field, which rotates the spins away from 7y.
The situation is analogous to that encountered in nuclear magnetic resonance (NMR) experiments,
where the radio frequency field acting on the spins is decomposed into two constant fields counter—
rotating with the same frequencies [Ab61]. Studying the spin motion close to a spin—orbit resonance
and selecting one harmonic, amounts to decomposing the field seen by the particles due to motion on
synchro—betatron trajectories into two components, and selecting one of them. The Fourier coeflicient
for the selected harmonic gives the strength of the chosen rotating field component. By making a
transformation into a frame rotating with this component, an exactly solvable model for describing
the spin motion can be obtained. See for instance [Bu87, Ma8&8, Ma92, Le97, Vo00]. This is the so
called single resonance model which will be briefly described below. Here, for the sake of the following
argumentation I will follow the presentation in [BL96, 1e97], but change the notation for certain
quantities, in order not to cause confusion and break with previously introduced notation. Note that
in these texts the spin motion is described in terms of two component spinors ¥ with S = (U,
and where & is a three component vector of Pauli matrices, 6 = (01, 02,03). For a brief introduction
to spinor algebra see [Mo84].

7.1 The single resonance model (SRM)

In terms of spinors, and using the generalized machine azimuth 8 = zcﬁ instead of s as the independent

variable, the T-BMT spin equation of motion in the presence of a single harmonic becomes

dW 1 ay —e T80
B - 3 ( e KO " v (7.1)
2z

where K is the resonance tune and ¢, is the strength (resonance strength) for the harmonic and
is proportional to the K—th harmonic in the Fourier expansion. ! Here, we assume that even if 7
is tilted slightly from the vertical, the closed orbit spin tune v is still given by avy to a very good
approximation. Note that although this equation resembles a Schrédinger equation for the spinor, we
are not invoking quantum mechanics here. Instead we are just using an SU(2) representation for the
real vector .

By making a transformation to the resonance precession frame (RPF) discussed above, using

:

Ui () = exK0o2y(p) (7.2)

the spinor equation of motion takes the form

'For a mathematical definition of resonance strength, see for example [BR99, Vo00, Ho00a]. The concept of resonance
strength is most important for the acceleration of polarized protons.
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where eg and ¢ are the real and imaginary parts of €,., and we have introduced the prozimity parameter
k = K — av. ? The solution to this equation is given by

\I/K(Of) _ e;—[eRcrl—eIcrz-l-ﬁcrs](@f—@i)\I;K(gi) = 6%/\(6’;‘—9@‘)%'5’\1;]((02.) (7.4)

where A = /k? + |¢,.|? and

1
N, = X(GR£—61§—|—52) (7.5)

This vector represents a stationary rotation axis in the RPF. When we transform back into the original

accelerator coordinate system 3, using the inverse of the transformation (7.2), we find that f, maps
back into a T-BMT solution

(leyclcos(0 +,) e sin(F8 + x,) ) (7.6)

S| =

where x, = arctan(e;/er) accounts for the arbitrariness of the betatron phase. The vector 7 in
the accelerator frame is an explicit function of the betatron phase at each azimuth and is, in fact,
independent of azimuth. In other words we have constructed the Derbenev—Kondratenko n—axis
for the SRM. It is interesting to note that this expression for # can be derived using the SMILE
algorithm [Ma92], where the potentially divergent resonant factors in the SMILE perturbation series
sum up to give the non—divergent expression (7.6). The tilt of # from 7y is arccos(x/A) and this
reaches 7/2 when x = 0, i.e. when ay = K. Once we know the statistical distribution of ¢, for an
ensemble we can calculate the ©; 5.y (Chapter 6) for the SRM.

If we know how to express the sensitivity of the betatron amplitude and the phase to energy jumps,
the SRM also allows us to calculate the derivative % needed in the Derbenev-Kondratenko formula.
By comparison with the perturbative Yokoya—Mane approach, we expect this sensitivity to be given by
the bracket containing Courant-Snyder parameters in eqn. (3.80). See for instance eqn. (3.3) in [Yo83].
However, one then needs a model for this function and that requires extra assumptions.

The SRM can also be extended to describe synchrotron sidebands of parent resonances [BL96, Le97].
The model developed in those texts is based on the assumption that the separations of the resonances
studied are larger than their widths, but not exceedingly larger. Although not stated explicitly, it is
assumed that the resonances are considered pairwise, where one of the resonances is a parent betatron
resonance and the other is a synchrotron sideband. Furthermore, it is assumed that when we are close
in tune space to the second resonance the tilt of 7 due to the first resonance is small, i.e. close to
this second resonance 7 is nearly aligned along 7 if the sideband effect is weak. The equation of spin
motion that is studied in the above texts is then

2Note that the symbol & in some other descriptions of the SRM [Vo00, Ho0O0Oa] denotes the resonance position in tune
space.

®In [BL96, Le97] a righthanded coordinate system (%, 8, 2), where the particles are assumed to travel counter—clockwise
is assumed.
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subject to the specified restrictions. By applying a series of spin transformations to eqn. (7.7), given
in [BL96] by the eqs. (23) — (27), the spinor is brought step by step from the machine frame into
the RPF of the K5 resonance. In this frame, the spinor equation can be solved analytically and the
expression for 7 in the accelerator frame is given by

=

1 . -
Ry (lefeos(K,0 4 x,) s 6] sin(K,0 + X, ) , £,) (7.8)
2
where k, = K, —ay and A\, = |/k% + |¢,|?, and where the ~ sign indicates that approximations corre-
sponding to the above assumptions have been made. This expression is reminiscent of the expression
for the parent resonance in the usual SRM.

The model just described has been termed the “nearly overlapping resonance model”, and it has
been used in [BL96, Le97] to explain measurements at IUCE of the residual time averaged vertical
proton polarization that would be measured by a polarimeter if a beam of vertically polarized protons
were injected. The same parametrization was applied to e/~ polarization measurements at SPEAR.
However, for SPEAR, that is clearly a misuse of the model. It should now be clear from Chapter 3 that
such an approach is wholly inappropriate for the electrons in SPEAR — which became polarized by
the Sokolov—Ternov effect. However, in the next section I will show how this model can be developed
for discussing et/~ polarization near a synchrotron sideband. In particular, we need an estimate of
the rate of depolarization. To distinguish between the original model and the extended model I will
call the latter the “double resonance model”. In contrast to the situation at HERA the resonances in
SPEAR were quite well separated. See Figure 7.1. So the SRM and double resonance models have a
chance to be relevant.

7.2 The double resonance model

We will now be more specific. We note that 7z in eqn. (7.8) is an explicit function of the phase by
virtue of the term K38 + v, in the arguments of the sine and cosine terms. As was mentioned earlier,
if we know how to relate the amplitudes and phases to the energy, we are in a position to calculate
the derivative %. Since we are generally interested in synchrotron sidebands of parent betatron
resonances, the natural starting point is to write down the expression for the energy deviation due
to synchrotron oscillations. The eqn. (8) in [BL96] is such an expression. However, this particular
expression lacks an arbitrary synchrotron phase factor, which will now be added in. I will also define
a generalized length variable , conjugate to the energy offset variable § ~ %, and write

0 = acos(vs+ xs) = acosps
asin(vgd 4+ xs) = asin s (7.9)

[
|

where @ is the synchrotron amplitude and y; is the missing phase factor. The naive perturbation
strength given in eqn. (13) in [BL96] is accordingly modified to include this phase factor
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K
Meg=—00

2 A
Here I have introduced the symbol { = ﬁ—;}:ﬂ (replacing the symbol g used in [BL96, Le97]). For high

energy e/~ machines, the Lorentz 3 ~ 1 and the rms ( is essentially equal to /€ from Chapter 3.
For SPEAR in the energy range that we are considering the rms ¢ is about 0.4. Following the
argumentation in [BL96], with the aim of applying the emerging formulae initially to fit measured
data from machines for which ¢ < 1, we apply the small argument expansion for the Bessel functions,
and focus on the first order synchrotron sidebands for which the resonant tunes are given by K =+ v,.
If the strength of the parent resonance is given by €,, a first order sideband then has the strength
€, & 3Ce,. Inserting this estimate for the resonance strength in eqn. (7.8) and using (7.9) we get

=

2

(%Cel cos(K8 + 1), %Cel sin (K6 + ), 52)

c,acos(K0+ ), c asin(K8+ ), "52)

M = e ]
T~ T~

[N

¢ {5 cos K6 — (sin KO} , € {5 sin K@ + ( cos KO} , /@2) (7.11)

where A, = /K2 4 |¢,|? and where I have introduced ¢, = £%%¢ .

If we now take the partial derivative of this expression with respect to 9, keeping ¢, fixed and
average around the ring we obtain the following expression

oy, | J(c§52—clAg)2+c§5zé2+cf52mg -

AS

The expression for 7, in eqn. (7.11) and generally also in eqn. (7.8) contains the resonance strength ¢,

of the parent resonance, and to obtain the complete expression for aaif we would need, as in the case
of the simple SRM, the partial derivative of ¢, with respect to 6. This would deliver a term additional

to that obtained by differentiating 7, with €, fixed. The diffusion term (88%)2 would then acquire an
extra quadratic term and a “cross term”. Since at this stage of the argument we have no model for the
derivative of ¢, we ignore the extra terms and work with the expression in eqn. (7.12). Nevertheless,
this estimate of the spin—orbit coupling function puts us in a position to point at a misconception

occurring in the reference texts [BL96, Le97].

As already mentioned, the nearly overlapping resonance model presented in [BL96, Le97] has
been used to explain measured et beam polarization data from SPEAR, first published in [Jo83].
In the paper [BL96] and in the book [Le97], the strengths of the spin—orbit resonances present in
these data have been attributed entirely to the C082(®<7¢L77¢L0>) = k%/A?. As we have stated, this would
be appropriate for protons but not for electrons. We have also seen in Chapter 6 that at HERA,
attributing the measured polarization to Cos(®< >) leads to opening angles of tens of degrees, instead
of milliradians.

7¢1‘77¢7‘0

Instead we need (%)2 ! Close to the first order synchrotron sidebands this can be calculated with

eqn. (7.12).
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To illustrate this point I will choose a particular parent resonance from the SPEAR data and
use the corresponding values for the resonance strength given by the fit to the data in [BL96, Le97]
which was based on equating the measured polarization to 0.92 - C082(®<ﬁ7ﬁ0>). As an estimate for
the synchrotron amplitude I will initially use the value quoted in these references, v/6 05 = 2.1-1073,
and choose the representative phase space point § = ¢ = /6 o5, but this value is not critical for my
illustration. In fact a smaller value based on ¢s5/v/2, for example, would illustrate my point even
better. The parent resonance I choose is that with vg = 3 4+ v, situated at F = 3.648 GeV, see
Figure 7.1. This resonance was presumably driven by a tilted 7y resulting from imperfections. If I
now insert the parameters from the original fit in [BL96] I find that for the lower sideband resonance
at about 3.63 GeV and for k, = 1-1072, corresponding to a position in tune space halfway down the
11 (aﬁ

2
resonance, g %) is of the order of 250%! at this particular position in phase space. Clearly, from

\2
the data from the SPEAR measurements [Jo83] cited in [BL96], halfway down this resonance 1% (g?)

must be of the order of one. So although this estimate is based on just one position in phase space, it
is clear that the strength parameters from [BL96, Le97] applied to this case do not make any sense.
The value of ¢, = €(34,,1 = 0.008 is probably massively overestimated as a result of attributing the
measured polarization to the opening angle. Moreover, it is now clear that there is little point in being

2
concerned about the absence of extra terms while the simplest estimate of % (g—?) is so large.

This analysis has been preliminary, but we could now go further and develop the full expression

N2
for <%(g—7§) ) including the rms values of €, and of its derivative with respect to 6. Then a fit to the
data might deliver values for these quantities. This will be the subject of future work and, as is often

the case with simple models [He97], this investigation has already been of pedagogical value.

The obvious conclusion from this discussion is that it is misleading to treat e/~ spins in the
same way that one would treat proton spins. et/~ spins diffuse due to synchrotron radiation and
polarization builds up via the Sokolov—Ternov effect. Proton spins are subject to neither of these
effects. This discussion shows how to proceed correctly.

~I T T T l T T T H l T T T T I T I<
1.00
v - SPEAR ﬁ 4
L J
0.75 L @ ]
i ¢ ;
Lo} - B
o
E 0.50 — .
[« W - J
~ - i
[a - 5 i
025 — s —
I ® ]
0.00 — ] =] ® ]
-1 'l A1 A l L 1 1 i 1 1 i i 1 ] A 1
3.55 3.6 3.65
E (GeV)

Figure 7.1: The polarization as a function of energy for single e™ beam in SPEAR. The circles with
error bars are data from measurements originally presented in [Jo83]. The solid line is a “fit to the
eye” using the nearly overlapping resonance model presented in [BL96, Le97]. Source [BLI6].
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Chapter 8

Conclusions

The luminosity upgrade project of HERA will make operation with longitudinally polarized et/=
beams more difficult than in the past. Polarization is only one of the aspects of running HERA after
the upgrade, but it is still very important. The interest in longitudinal et/~ polarization is illustrated
by the large amount of time and effort spent by the polarimetry groups to upgrade the TPOL and
LPOL, and by the installation of the spin rotators for H1 and ZEUS. Tracking simulations including
realistic orbit distortions, and an estimate of the influence of the beam—beam interaction based on past
experience, suggest that, despite the complicated field mixture in the new IRs and the uncompensated
experiment solenoids, it is possible to achieve longitudinal polarization after the upgrade at the 50 %
level with three pairs of spin rotators operating. This however requires very well corrected orbits
and, as mentioned in Chapter 6, perhaps also a dedicated dispersion correction and use of additional
harmonic bumps. It should be pointed out that the presence of the three rotator pairs, one of them
being asymmetrically retuned, and the extra constraints set by the asymmetries in the new lattice will
make tuning for high polarization after the upgrade especially difficult. Various effects influencing the
polarization may also be difficult to disentangle in practice. The diagnostic checks made with SLICK,
using various models for the overlapping field regions in the new IRs, described in Chapter 6 can then
be of guidance. It has been shown for the first time how to construct numerical symplectic orbits maps
and numerical orthogonal spin maps for the complicated fields at the detectors and include them in
the standard programs for calculating polarization.

Since the beam—beam effect can lead to stronger depolarization in the upgraded HERA, it will be
important for the future to get the beam-beam simulations in SITROS (or in alternative software)
under control, in order to better understand and master the underlying dynamics. This will probably
be the subject of a separate project, for which there unfortunately has been no time during the
completion of this thesis.

In the last section of this work, it has been demonstrated how to use a simple, unitarity preserv-
ing model of synchrotron sidebands to derive an analytical expression for the % in the Derbenev—
Kondratenko formula. It has been demonstrated that a previous treatment was incomplete, and it
has been shown how that treatment can be improved.
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Appendix A

Equations of motion

A.1 Orbit motion

The equations of motion for a relativistic charged particle of rest mass m in an external electric field
£, and external magnetic field B, are given by the Abraham-Lorentz relation [Ja98, AMT78]

(A.1)

and the term émd is the radiation reaction force, which can be written as the sum

R,uq= RP +6R (A.2)

where

is the continuous contribution to the energy loss due to synchrotron radiation emission which, in
this formalism leads to damping of the orbital motion. The vector SR is the stochastic component
describing the quantum fluctuations of the radiation field and ultimately leads to excitation of the
orbital amplitudes.

In order to describe the particle motion in an accelerator it is customary to revert to a coordinate
system in which the dynamical variables are small. This is achieved by introducing the design orbit
7o and writing the general particle position as

iz, z,8) = To(s) + xé, + z€, (A.3)

where s is the arc length (azimuth) along this design orbit. The unit vectors é, and é, are mutually
orthogonal and locally normal to the design orbit. It is assumed that sections of the design orbit lie
either in the horizontal or in the vertical plane. In either case é, is in the horizontal plane whereas é.
is in the vertical plane. Together with a third unit vector é,, tangent to the design orbit and pointing
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Figure A.1: Coordinate system used to describe particle motion in circular accelerators.

in the direction of motion, these unit vectors form a righthanded orthogonal “tripod”. See Figure A.1.
Note that even with solenoids in the machine lattice there is no torsion on the design orbit.! The
energy of the general particle is given in terms of the design energy Fy by introducing a small energy
offset parameter 6 = AE/Fy : IV = Ey (14 ). We now make a change of the independent variable
from time ¢ to arc length s via

d dsdl d v d
G dldids = Tds (A4)

where [ is the path length and di/dt = v ~ ¢ is the velocity of an ultra—relativistic particle, and make
use of the relations

dFO déx N déz N dés N N
—=é,, —=K,6,, — =K.,é,, =-K,é, — K,é, A5
ds ¢ ds ¢ ds ¢ ds ¢ ¢ ( )

where the curvatures K, and K, are related to the transverse magnetic fields on the design orbit

and Fy through K, = %—%Bio and K, = —%—EB?O (with KK, = 0). The first two derivatives of the

position vector 7 then become

Pz,z,8) = dléz+2'é,+ (1 + 2K, +2K.) és (A.6)
Pz, z,8) = (w" - K,(1+2K,) )éx + (z" - K. (14 :zK.,) )éz
+ (oK + 2K 420Ky + 22K e, (A7)

Furthermore, we need the quantity I = ||7'|| = /(1 + 2K, + zK.)? 4+ (2/)2 + (¢/)2. The motion of a
particle can now be described in terms of the coordinates (z, a2/, z, 2/, (,§). Assuming that the particles
are travelling in a region where there are no electric fields (£ = 0) and, for the moment, disregarding

'For a more elaborate discussion on accelerator coordinates, where the relation of the above reference frame to the
Frenet—Serret coordinate system is explained, see [Vo0O0] or [Ho00a].

122



radiation (set érad = 0) it can be demonstrated that the complete equations of motion in the two
transverse planes transform to [MR82a]?

((1 +aK,+z2K.) (e K, + 'Ky 4+ 2K+ 2/K,) + 2’2" + z’z”) 2!
(142K, + zK,)? + (/)2 + (2')?
ecy/(1+aK, +2K,)2+ (2/)2 + (2')?
Fo (14 96)

2 = K, (14+2K,)+

(+B, — (14 2K, + 2K.) B.) (A.8)

((1 +aK,+z2K.) (e K, + 'Ky 4+ 2K+ 2/K.) + 2’2" + z’z”) 2
(142K, +2K,)?2+ (2')? + (2')?
ecy/(1+aK, +2K,)2+ (2/)2 + (2')?
Fo (14 96)

2= K, (14 2K.)+

+ (14 2K, + 2K.) B — ' B,) (A.9)

Linear optical calculations are based on the linearized form of these equations [MR82a, MR&3].

For electrons the effects of radiation must be included. It is customary to represent the stochastic
part of the radiation as a Gaussian white noise process. The full linearized equations of motion for
x, 2’ z, 2/ and § are given in [MR82a, MR83]. For example, the linearized equation of motion for §
in a horizontal dipole on the design orbit is

3—5 = 201K25 +0R (A.10)
S

where the (combined) symbol® §R represents the noise and has the properties

(6R) = 0
557 hy®

(6R(s) 6R(s) ) i

K> 8(s — &) (A.11)

The term —2C7 K28 with Cy = %re'y?’ represents the damping. The strengths of the noise and damping

terms can be derived from the radiation reaction force émd given above [Bb91]. The equations of
motion for the transverse coordinates also contain damping terms [MR83, EMR99]. But the transverse
beam size remains finite owing to feedthrough of the noise from the longitudinal coordinate to the
transverse coordinates via the dispersion.

A.2 Spin motion

The motion of §, the normalized centre-of-mass spin expectation value of a relativistic charged
non-radiating particle, in external electric and magnetic fields is given by the Thomas—-BMT equa-
tion [Th27, BMT59]

S = o4
i QL (7t xS (A.12)
2In the cited paper by Mais and Ripken the orbital equations of motion have been derived in the linear approzimation,

i.e. by linearization of the equations with respect to the small quantities z, &', z, 2z’ and 4.
®The multiple use of the symbol & should not lead to confusion here.

123



with

9 -
- € 1 A SR ~y . &
QBMT:—%((1+Q7)B—1+7§(TB)T—(a’y+r)rxc—2)

In the above equation the fields and the derivative of the position vector, 7 are given in the laboratory
frame. The a = (g — 2)/2 is the gyromagnetic anomaly and + is the Lorentz factor. By changing the
independent variable from time ¢ to arc length s according to relation (A.4) and using the definitions
n (A.5), the T-BMT equation can be written as

d ~ ~
df ST =8, eu+ 8, s+ Sy e + (Kuéy — Kpé) x S (A.13)

The last term, (K,é, — K€é.) x S, appears because of the change of orientation of the coordinate
system. It is the contribution to the spin motion from the rotation of the ideal partlcle co— movmg
coordinate frame. We will represent this here by Q, x S. Rearranging and introducing Q=0,-0,,
where € = I'Jv QBMT ~ l'/e QBMT describes the spin motion with respect to s in the laboratory
frame, we get

Q(i;8)x S=8,"¢,+ 5. ¢, 4+ S, &, (A.14)

—

The individual components of the Q rotation vector, in the case of no electric field (£ = 0), and with

v =70 (14 ) now read [MR82b]*

ec

Q, = 5 (142K, +2K,)?2+ (2')? + (2')?
0
PEE— 0 r = = = - z .
1+46 ﬁJﬂo (14+ 2K, + 2K,)? + (2)2 + (2')?
Q. = —;— (142K, + 2K.)2 4+ ()2 + ()2
0
1 a2 (142K, +z2K,)Bs+a'B, + /B, )7 )
(<1 5 a%) b= L%; ( I+ ek, + 2K.)2+ ()% + (z')Z) T (A9)
TrsT 70
Q, = —;— (142K, + 2K.)2 4+ ()2 + ()2
0
( 1 5 ayd ((1 +aK,+ 2K.) Bs + 2'B, + Z/BZ) (142K, +z2K,)
) A
1+6 HL(SJWO (1+ 2K, + 2K,)2 + (2/)2 + (2/)?

(A.17)

where z, 2/, z, 2’ and § are solutions of the orbital equations of motion.

*Again, in the original derivation of Mais and Ripken the equations have been derived in the linear approximation of
small orbital coordinates z, ', z, 2’ and small energy offset . For a nonlinear treatment by the same authors, see
for instance [BMS86].
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Appendix B

Characteristic times of processes

logyo T [sec]

-10

Figure B.1: Characteristic time scales in a typical 25 GeV electron storage ring [Mo84]. Legend: p
bending radius, X. = Compton wavelength, r. = classical electron radius, v = betatron tune, a
fine structure constant, a = gyromagnetic anomaly. Although it is desirable that 74 > 10 7,, this

difficult to achieve in practice.
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Appendix C

Updates of the SITROS code

SITA SITD SITE
Orbit& Spin | ———>

Matrix Setup Tracking

Postprocessing

A

SITB SITC SITF
Tracking —_— Orbit Linear Polarization
Initialization Tracking Calculation

Figure C.1: Flow diagram of the SITROS code.

Listed below are the updates introduced and errors corrected in SITF and SITROS:
SITF:

e Resolved the confusion in the program concerning the use of damped and undamped eigenvectors
(the DODAMP = T or F option). The eigenvector needed in the calculations of the linear
approximation of 7, eqn. (3.64), and the partial derivative with respect to &, eqn. (3.66), are the
undamped eigenvectors, whereas for the damping time calculations, obviously the damping has
to be switched on. Note also that the closed orbit is calculated with the damping on.

1

lo(s)I°

e The vertical bends’ contribution to in the emittance calculation were omitted, but has

now been added.

e The arc dipoles should in principle be sliced up to get a sufficient sampling for the optical
calculations. In the current version this option is omitted, since it causes trouble in the routine
preparing for the tracking (SITA) where the linear calculations from SITF are repeated. In
other words, this is a known artifact that should be addressed at some point. Without the extra
slicing the emittance in SITF is off from the analytical value by a few percent.

e The erroneous calculation of the polarization time for the case with the rotators turned on has
been corrected.
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e The G matrix for the solenoid was not correctly implemented, but this has now been corrected.
In fact, the whole implementation of the solenoids into the code was suspect, but it should be
noted that up to now solenoids were generally not used with the program for HERA, since they
were considered to be perfectly compensated by the “anti—solenoids”.

SITROS:

e An erroneous definition of the rms beamsize in the emittance calculation has been corrected.

e The number of radiation points has been enlarged so that the radiation now takes place in every
dipole and combined function magnet. This was necessary in order to reproduce the correct
emittance in the luminosity upgrade optic.

e The representation of the spin components in the tracking has been changed from the vector—
angle representation to a pure quarternion representation. Before that, a mixture of representa-
tions was used.

e The solenoid end fields were missing in the spin representation for the tracking — they have
now been correctly introduced.

e Corrections in the beam—beam implementation have been made where the most important up-
date is the introduction of the missing direct beam—beam spin kick.
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Appendix D

Symplectification of maps via
generating functions

The four most common generating functions of classical mechanics relate the generalized positions ¢
and conjugate momenta j before (¢) and after (f) a canonical transformation via

(Zﬂjf - 8",‘7_8'} Fl(_)ﬂ_)f)
q_)i?_)f i FQ(_)ZF _)f)

=

=

A~~~ —

S

e e e e
—~ —~ —~ —~
o o 9 U
e~ w \] =
e e e e

=

If, by integration, any of these generating functions can be found, it will by definition represent
a symplectic transformation. This property of the generating functions can be used to construct
transformations that restore the symplecticity of nearly symplectic matrices [Ho94].

Consider a nearly symplectic linear map Mgy that transports the vector @ = (z, p,, 2, p, (, §)
from azimuth s; to sy so that ﬁsf = Megyst;,. Rearrange the phase space vector such that the
positions and momenta are sorted as follows: (¢,p) = («, 2,(, ps, p-,0) and write the matrix M in
terms of four submatrices

-(28) - (9)-(28)(8) e

Suppose that we choose I, as our candidate for the transformation. With the aid of eqs. (D.2)
and (D.5) and after some simple algebraic manipulations we arrive at a partial differential equation
problem for the coordinates in terms of the matrix elements

() - (en)(s 1) (%)

!Note the use of the true canonical coordinates here.
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By introducing the notation

At ~A~'B a b
( CA-! -CA-'B+D ) B ( c d ) (D-8)

and integrating eqn. (D.7) to obtain I, — provided that A~! exists — it can be shown that one
possible solution to the matrix equation defined in (D.5) is given by

(qv) _ 2(a+d")” ~(a+d") (b4 b7) (q)
i)~ \(ere@rd)™ —flet)atd) T (b+bT) (o’ +d)

A B ; _(
= S = %) = M4 (D.9)
C D Di Di
where by virtue of the canonical transformation introduced via F3 in the intermediate step, the matrix
M is symplectic. Hence we have “symplectified” M.
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