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Abstra
t

HERA is the high energy ele
tron(positron){proton 
ollider at Deuts
hes Elektronen{Syn
hrotron

(DESY) in Hamburg. Following eight years of su

essful running, �ve of whi
h were with a longitudi-

nally spin polarized ele
tron(positron) beam for the HERMES experiment, the rings have now been

modi�ed to in
rease the luminosity by a fa
tor of about �ve and spin rotators have been installed for

the H1 and ZEUS experiments. The modi�
ations involve nonstandard 
on�gurations of overlapping

magneti
 �elds and other aspe
ts whi
h have profound impli
ations for the polarization. This the-

sis addresses the problem of 
al
ulating the polarization in the upgraded ma
hine and the measures

needed to maintain the polarization. A 
entral topi
 is the 
onstru
tion of realisti
 spin{orbit trans-

port maps for the regions of overlapping �elds and their implementation in existing software. This

is the �rst time that 
al
ulations with su
h �elds have been possible. Using the upgraded software,


al
ulations are presented for the polarization that 
an be expe
ted in the upgraded ma
hine and an

analysis is made of the 
ontributions to depolarization from the various parts of the ma
hine. It is


on
luded that about 50 % polarization should be possible. The key issues for tuning the ma
hine are

dis
ussed. The last 
hapter deals with a separate topi
, namely how to exploit a simple unitary model

of spin motion to des
ribe ele
tron depolarization and thereby expose a mis
on
eption appearing in

the literature.

Des
riptors

ele
tron polarization, luminosity upgrade, overlapping �elds, spin rotators, numeri
al spin{orbit maps,

spin diagnosti
s, unitary model
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Chapter 1

Introdu
tion

HERA is a 6.3 km long ele
tron(positron)/proton double ring 
ollider situated at Deuts
hes Elektronen

Syn
hrotron, DESY, in Hamburg, Germany. The ma
hine was 
ommissioned during 1991 and has been

providing luminosity sin
e June 1992. The ele
tron(positron) beam

1

is a

elerated to an energy of

27.5 GeV and, sin
e 1998, the proton beam energy used for routine operation has been 920 GeV. The

ring has four experimental regions. The beams 
ollide head{on at two intera
tion points, IP North

and IP South, where the H1 and ZEUS experiments are lo
ated. Two further experimental stations

make separate use of the e

+=�

and proton beams. HERMES, whi
h is lo
ated in the East straight

se
tion, has sin
e 1995 utilized the longitudinally polarized e

+=�

beam in 
ollisions with a polarized

gas target. The relatively new (1998) HERA B experiment, lo
ated in the West straight se
tion, uses

the proton beam halo intera
ting with a wire target. The physi
s studied at HERA spans a wide �eld

in
luding probing the internal stru
ture of the proton and studies of the fundamental intera
tions

between parti
les (H1 and ZEUS), measurements aiming to resolve the spin distributions of quarks

and gluons in nu
leons

2

(HERMES), and studies of CP{violation in B{meson systems (HERA B).

The layout of HERA and the pre-a

elerators is depi
ted in Figure 1.

The instantaneous polarization ve
tor of an ensemble of N parti
les is de�ned as the ensemble

average of the spin expe
tation values

~

S

i

(8 i 2 f1; : : : ; Ng) through

~

P (t) �

1

N

2

�h

N

X

i=1

~

S

i

(t) = h

~

S i

ens

; (1.1)

and the fa
t that it is possible to have polarized beams for HERMES is rooted in a dis
overy made

at the beginning of the 1960's. In 1961 Ternov, Loskutov and Korovina [TLK62℄ made the �rst

predi
tion of radiation indu
ed polarization of ele
trons and positrons, 
aused by the quantum emission

of syn
hrotron radiation when these parti
les travel in ele
tromagneti
 �elds. This work was followed

up a 
ouple of years later by Sokolov and Ternov [ST64℄. A

ording to their theory, ele
trons 
ir
ulating

in the magneti
 guide �eld of a storage ring gradually be
ome polarized antiparallel to the �eld,

whereas positrons be
ome polarized parallel to the �eld. This naturally o

uring polarization has been

termed \verti
al" or \transverse" polarization. Experiments soon followed and transverse, radiation

indu
ed polarization was �rst reported measured at the ACO storage ring in Orsay and at VEPP{2

in Novosibirsk [Be68, Ba72℄. Sin
e then high levels of verti
al polarization in e

+=�

beams have been

obtained at several high energy ma
hines [Bb96℄. This is largely due to work done in the late 70's

and early 80's, espe
ially at DESY [Ch81a, Br82, MR83, RS85, Bb85a℄, 
ontributing to the pra
ti
al

1

In the following the abbreviation e

+=�

will be used to denote positrons and/or ele
trons.

2

protons and neutrons
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realization of verti
ally, radiatively polarized beams, despite the inherent polarization limitations in

real ma
hines.

Unfortunately, although verti
al polarization is useful as a means of making very pre
ise beam

energy 
alibrations (see for instan
e [Ar92℄), it is not very attra
tive to experimentalists studying

e � p 
ollisions. They require longitudinal polarization instead. This means that the natural verti
al

polarization must be rotated into the longitudinal dire
tion just before an intera
tion point and then

ba
k to the verti
al just after the intera
tion point, using spe
ial magnet 
on�gurations. A spe
i�


kind of su
h so 
alled spin rotators will be des
ribed in some detail in Chapter 4. With the aid

of spin rotators and with the implementation of a spe
ially designed ma
hine opti
 fa
ilitating high

polarization, using a te
hnique whi
h is also des
ribed in Chapter 4, longitudinal radiative ele
tron

polarization was a
hieved for the �rst time in the history of storage ring physi
s at the East IP of

HERA in May 1994 [Bb95℄. As already mentioned, HERMES has been using this unique feature of

HERA sin
e 1995 to study the spin stru
ture of the nu
leon. The spin of the nu
leon 
an be broken

down into four 
omponents

s

N

�h

=

1

2

=

1

2

(�q

v

+�q

s

) + �g + L

orb

where �q

v

is the 
ontribution from the valen
e quarks, �q

s


omes from the sea quarks, �g is the

gluon polarization and L

orb

is a possible 
ontribution from the orbital angular momentum of the

partons. Measurements with HERMES have 
on�rmed the original �ndings by the European Muon

Collaboration (EMC) at CERN from 1988 [EMC88℄ that the total spin 
arried by the quarks only

amounts to about 30 % of the nu
leon spin. A spe
ial aspe
t of the HERMES experiment is that it,

by the dete
tion of the s
attered hadrons in 
oin
iden
e with the s
attered leptons from deep inelasti


s
attering (DIS) pro
esses, o�ers the possibility to pin down the spin 
ontributions of the various

quark 
avours to the spin of the nu
leon. Furthermore HERMES has been the �rst high energy

physi
s experiment able to perform dire
t measurements of the gluon polarization. Cru
ial for these

experiments is, apart from a highly spe
ialized target and dete
tor system, the provision of the high


urrent longitudinally polarized e

+=�

HERA beam. The eÆ
a
y by these measurements for a given

luminosity (see next 
hapter) s
ales like P

2

b

where P

b

is the beam polarization.

As a tool for studying the internal stru
ture of nu
leons HERMES is, with its �xed target, limited

to pro
esses with 
entre of mass energies (

p

s) little more than 7 GeV. This has to be 
ompared with

the 
ollision experiments H1 and ZEUS where

p

s � 300 GeV. Over the years, sin
e these experiments

started to 
olle
t data, H1 and ZEUS have 
ontributed to the wealth of knowledge in elementary

parti
le physi
s, espe
ially on the inner stru
ture of the proton and on the fundamental intera
tions

between parti
les. DIS measurements at H1 and ZEUS show dire
tly for the �rst time that at high

momentum transfers, with Q

2

values

3

above 10

4

GeV

2

, the ele
tromagneti
 and weak for
es be
ome

similar in strength [S
98℄. However, despite the ex
ellent performan
e of HERA in re
ent years (see

Figure 2.1 in Chapter 2), the relatively low intera
tion rate has pre
luded detailed investigation of this

hitherto unexplored high Q

2

region. An extension to smaller x

B

, whi
h is the fra
tional momentum


arried by the stru
k quark in a DIS s
attering pro
ess (the so 
alled Bj�rken s
aling variable), would

open up new windows to QCD dynami
s. There has therefore been a strong interest in in
reasing

the kinemati
 range of the HERA experiments. The need for higher intera
tion rates has led to the

de
ision to laun
h a luminosity upgrade of HERA. This requires the measures des
ribed in Chapter 2.

The opportunity has also been taken to install two more pairs of spin rotators to serve H1 and ZEUS

with longitudinal e

+=�

beam polarization.

There is also interest in storing polarized proton beams in HERA, whi
h would add substantially

to the physi
s potential of the 
ollider. See [IRK96, pp99℄. This however would require major and

3

Q

2

is the negative square of the 4{momentum transfer.
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ostly modi�
ations to both the prea

elerators and to HERA, and a de
ision on whether or not this

will be implemented has not yet been taken. A study of the feasibility of providing polarized proton

beams for HERA is given in [Vo00, Ho00a℄.

This work is not a do
ument on high energy physi
s, but instead presents a study of the impli
ations

of the HERA luminosity upgrade on the e

+=�

polarization and suggested measures needed to obtain

a high degree of longitudinal polarization for H1 and ZEUS and, in addition, maintain the high

polarization for HERMES after the upgrade. The reader interested in the high energy physi
s should


onsult the literature from the HERA experiments.

The work is stru
tured as follows. Chapter 2 gives an overview of the luminosity upgrade proje
t

and presents the most important ma
hine parameters in this upgrade. In Chapter 3 an introdu
tion

to the ne
essary theoreti
al 
on
epts for des
ribing radiative spin polarization is given. A summary

of the experien
e gathered at HERA on operation with e

+=�

polarization and a presentation of the

impa
t that the upgrade will have on the latter is found in Chapter 4. The HERA polarimeters

and their upgrade are also presented in Chapter 4. Methods developed for modelling the 
ompli
ated

�eld 
on�gurations in the new intera
tion regions are des
ribed in Chapter 5. Polarization 
al
ulations

made for the upgraded HERA using these models in various 
omputer 
odes are presented in Chapter 6.

Chapter 7 
ontains an alternative model for des
ribing polarization resonan
e phenomena, appli
able

under 
ertain 
onditions, and is an extension of an earlier study to whi
h the author has 
ontributed.

Finally, the 
on
lusions are presented in Chapter 8.

A few words on 
onventions 
hosen for this thesis are in order. For Cartesian 
oordinates, the

generi
 labelling (x; z; s) is used for right{handed systems. Note that this implies that quantities

referring to the verti
al plane are labeled with a z, whereas many authors prefer to use y. Variable

length ve
tors are symbolized by arrows (e.g.

~

P ), whereas unit ve
tors are symbolized by \hats"

(e.g.

^

P ).

4

SI units are used throughout. In Chapter 7 it was not possible to set the Pauli matri
es

o

urring in some exponents in boldfa
e font. Due to the �nite number of Latin and Greek letters, the

same symbols are sometimes used for di�erent physi
al and mathemati
al quantities. The meaning

should however always be 
lear from the 
ontext.

4

Note that the quantity â whi
h o

urs in Chapter 7 is not a unit ve
tor, but the symbol has been used so as to agree

with a notation from the literature.
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Chapter 2

The HERA Luminosity Upgrade

Proje
t

2.1 General

The HERA 
ollider is a unique fa
ility, the �rst of its kind, bringing high energy 
harged parti
le beams

of totally di�erent spe
ies into 
ollision. The performan
e of HERA has steadily improved sin
e the

startup and has now rea
hed or surpassed design goals for most key parameters. The luminosity

delivered by HERA to the 
olliding beam experiments over the years illustrates this progress well, see

Figure 2.1. In 2000 the peak luminosity ex
eeded the design value of 1:5 �10

31


m

�2

s

�1

. The averaged

spe
i�
 luminosity per bun
h of 7:4 � 10

29


m

�2

s

�1

mA

�2

a
hieved in the same year is more than

twi
e the original design value. The 
orresponding integrated luminosity delivered by HERA rea
hed

a value 
lose to 70 pb

�1

.

Figure 2.1: Integrated luminosity delivered by HERA to ZEUS versus time.

The margin for pushing these numbers further, given the original layout of the ma
hine, has today

largely been exhausted. As indi
ated in Chapter 1, there has however been a strong interest from
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the users to widen the domain of physi
s a

essible with HERA. During a workshop in 1995/1996 on

\Future Physi
s at HERA" [IRK96℄ a dis
ussion was held 
on
erning the �elds of high energy physi
s

that 
ould be rea
hed within the potential of an upgraded HERA, if the ma
hine 
ould deliver an

integrated luminosity of 1 fb

�1

over an operational period of �ve years. Su
h a luminosity would make

possible unique and sensitive tests of ele
troweak physi
s, QCD and physi
s beyond the Standard

Model. Furthermore, the availability of longitudinally polarized ele
tron and positron beams at the


olliding beam experiments would add important features to the physi
s potential of the a

elerator.

In order to mat
h the investigations of the user groups, the HERA workshop also in
luded a

working group looking into the ma
hine aspe
ts of a luminosity upgrade of HERA. The 
on
lusion

arrived at by this group was that the most promising way of a
hieving the desired luminosity in
rease

would be to re
onstru
t the intera
tion regions (IRs) so as to allow a substantial de
rease of the �{

fun
tions of the beams in both transverse planes at the intera
tion points. A preliminary version of

su
h a redesign of the IRs was layed out in the pro
eedings.

The work on the redesign of the HERA IRs and 
onne
ted issues was 
ontinued after the \Future

Physi
s at HERA" workshop by physi
ists from the DESY ma
hine group and members of the H1

and ZEUS 
ollaborations. Many di�erent issues have been addressed su
h as magnet design and


onstru
tion, latti
e design, syn
hrotron radiation absorbers, va
uum systems, me
hani
al support

stru
tures, instrumentation, e

+=�

beam stability, and polarization. The goal of the luminosity upgrade

proje
t has been to devise a ma
hine that allows an in
rease of the luminosity by a fa
tor of about

5 
ompared to the original HERA design, while still delivering a high degree of longitudinal spin

polarization to the HERMES experiment and, additionally, delivering longitudinal polarization to H1

and ZEUS. The proje
t was oÆ
ially approved in De
ember 1997 and in September 2000 HERA was

shut down for the rebuilding of the ma
hine in a

ordan
e with the new design.

2.2 Upgrade 
on
ept and parameters

The HERA luminosity upgrade is des
ribed in detail in a proje
t design report fromAugust 1998 [S
98℄.

To put the following 
hapters in 
ontext, and espe
ially Chapter 6 that 
ontains dis
ussions on, and

results of, polarization simulations for the HERA{e upgrade latti
e, the general 
on
ept and the most

important parameters of the luminosity upgrade will be presented here.

Apart from the beam energies the most important parameter at a 
olliding beam fa
ility, as far as

high energy physi
s is 
on
erned, is the 
ounting rate, R. The 
ounting rate for a parti
ular pro
ess

is expressed in terms of the luminosity L , whi
h des
ribes the geometry and 
hara
teristi
s of the

in
ident beams, by

R = �LA (2.1)

The quantity � is the total 
ross se
tion for the pro
ess and A is the 
orresponding a

eptan
e of the

dete
tor. The luminosity of HERA 
an be written as

L =

N

e

N

p

N

b;
ol

f

rev

2�

q

�

2

xe

+ �

2

xp

q

�

2

ze

+ �

2

zp

(2.2)

where N

e

is the number of leptons per bun
h, N

p

is the number of protons per bun
h, N

b;
ol

is the

number of 
olliding bun
hes per beam

1

, f

rev

is the revolution frequen
y and �

x;z;e;p

are the rms beam

1

In HERA a small number of non{
olliding \pilot" bun
hes are used for ba
kground 
orre
tion of the luminosity

measurement.
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sizes at the IP of the lepton and proton beams respe
tively. In order to understand the 
on
ept 
hosen

for boosting the luminosity in HERA, it is instru
tive to write the luminosity in terms of the quantities

limiting it.

The beam dynami
s in an e

+=�

ring is strongly in
uen
ed by the emission of syn
hrotron radiation.

Moreover, the energy lost per turn by an ele
tron(positron) s
ales like E

4

where E is the energy. Thus

the a
hievable e

+=�

energy and the beam 
urrent I

e

= eN

e

N

b;tot

f

rev

(where N

b;tot

is the total number

of lepton bun
hes, in
luding pilot bun
hes) are restri
ted by the available RF power. Measures have

been taken to soften this 
onstraint in HERA by installing more RF a

elerating 
avities, but the high


osts asso
iated with a major upgrade of the RF system prevents this option from being extended

further. At the highest energies there are also diÆ
ulties in obtaining stable beam 
onditions for the

design 
urrent of 58 mA. In pra
ti
e this means that the operating e

+=�

energy in HERA after the

upgrade will be lower than the design value of 30 GeV. However, the need for longitudinally polarized

beams puts a lower limit on the e

+=�

beam energy of approximately 27 GeV. I will elaborate on this

point in Chapter 6.

For high energy physi
s an in
rease in luminosity is often equivalent to an in
rease in the energy.

In 1998 the proton beam energy was su

essfully in
reased from the original design value of 820 GeV

to 920 GeV. A further in
rease bringing the energy up to 1 TeV is not feasible however, sin
e the

super
ondu
ting proton magnets 
annot be operated with suÆ
ient safety at su
h high energy levels.

Owing to spa
e 
harge e�e
ts in the inje
tor 
hain, espe
ially in DESY III, the number of protons

per bun
h is restri
ted. The maximum beam \brightness", given here as N

p

="

p

N

, with "

p

N

being the

normalized proton beam emittan
e, therefore poses another limitation to the attainable luminosity in

HERA.

The experien
e a

umulated from years of running 
olliders su
h as HERA shows that mat
hing

of the e

+=�

and proton beam sizes, as well as alignment of the beams at the IPs, are 
ru
ial for

the luminosity [BW93℄. Mat
hing and alignment are ne
essary for redu
ing the nonlinear e�e
ts of

the beam{beam intera
tion. In parti
ular the proton beam in HERA su�ers if the mat
hing is poor,

leading to emittan
e blowup, short lifetimes and large ba
kgrounds. Hen
e

�

�

ye

= �

�

yp

=

q

"

ye

�

ye

=

q

"

yp

�

yp

= �

�

y

(2.3)

where � is the envelope fun
tion of Courant and Snyder [CS58℄ and "

y;e;p

are the e

+=�

and proton

beam emittan
es, respe
tively. The general subs
ript y is used to denote either the horizontal plane x,

or the verti
al plane z. The supers
ript * is the 
onventional way of denoting a beam opti
al quantity

at an IP. Imposing the restri
tion (2.3), together with the fa
t that "

xp

' "

zp

, on the proton emittan
e

enables the luminosity to be reexpressed thus

L =




p

4�e

I

e

q

�

�

xp

�

�

zp

N

p

"

p

N

(2.4)

where 


p

is the proton Lorentz fa
tor.

From the above argumentation it is 
lear that the only feasible way to in
rease the luminosity is to

de
rease the proton �{fun
tions at the IPs, and thus due to (2.3), the e

+=�

size at the IPs. However

the �{fun
tions in a drift spa
e in
rease quadrati
ally with distan
e s from the IP a

ording to

�

y

(s) = �

�

y

(0) +

s

2

�

�

y

(0)

(2.5)

�

�

is therefore limited from below by the need to a

ommodate the peaks of the transverse beam

dimensions in the �nal fo
us magnets within the available aperture. Furthermore if �

�

is made too
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small, the �

y

in the fo
using quadrupoles will be so large that the ne
essary 
hromati
ity 
orre
tion

be
omes diÆ
ult.

It is important for the beam stability that the beams are separated early after 
ollision. Moreover

the e

+=�

beam must not be exposed to the strong fo
using �elds from the proton quadrupoles. In

HERA, head{on 
ollisions are a
hieved by bending the in
oming e

+=�

beam into the path of the

proton beam and then bending it out again after 
ollision. This 
ollision s
heme is 
arried over to

the new design. To a
hieve the strong fo
using needed for small beam sizes at the IPs, and to obtain

the early separation required, a solution employing super
ondu
ting separator magnets with gradient

�elds has been 
hosen. Su
h magnets have the advantage that they 
an be built with small outer

dimensions while retaining relatively large apertures, thereby enabling them to be pla
ed partially

inside the experimental dete
tors | an un
onventional solution. Note that the new IR design does

not leave any spa
e for the \anti{solenoids" whi
h in the previous layout 
ompensated for the e�e
ts

of the experimental solenoids on orbit and spin motion. Part of this 
ompensation will be taken over

by 
orre
tion 
oils 
ontained within the super
ondu
ting magnets.

The �rst proton magnets are pla
ed 11 m from the IPs. At this position the beams are separated

by about 60 mm, whi
h is suÆ
ient to a

ommodate the �rst of the two proton septum quadrupoles.

The maximum tolerable �{fun
tions at this lo
ation, together with the apertures of the separator

magnets, determine the minimum value of the proton �

�

y

. The tight design, together with the mat
hing


ondition, makes the horizontal e

+=�

beam size 
riti
al. However, it is planned to redu
e the horizontal

e

+=�

emittan
e in HERA from 41 nm rad to 20 nmrad, thereby allowing an aperture of 20 �

x

to be

maintained. The ne
essary emittan
e redu
tion 
an be a
hieved by in
reasing the fo
using in the ar
s

or by 
hanging the damping partition numbers via a small shift of the RF frequen
y. Simulations

show [Ho99℄ that a 
ombination of these two methods is advantageous. In the 
hosen solution the

phase advan
e per FODO 
ell is in
reased from the pre{upgrade value of 60

Æ

to 72

Æ

and simultaneously

the RF frequen
y is in
reased by about 250 Hz. For this 
hoi
e of parameters the dynami
 aperture

is preserved. A dis
ussion on the impa
t of the RF frequen
y shift on the polarization 
an be found

in Chapter 6, Se
tion 6.4.

A lower limitation on the proton beam size also 
omes from the so 
alled \hourglass e�e
t".

Following eqn. (2.5), if the smallest of the proton �

�

y

is 
omparable to the proton bun
h length �

s

,

the transverse dimension of the proton bun
h varies strongly as the bun
h passes through the IP. The

average transverse dimension seen by an on{
oming e

+=�

bun
h 
an therefore be mu
h larger than

that suggested by the �

�

y

, so that the gain in luminosity from the shrinking beam waist is 
ountera
ted

by a loss from the broadening bun
h tails.

Another important issue already mentioned is the beam{beam e�e
t. Ea
h time the ele
trons

(positrons) 
ollide with the 
ounter{rotating proton beam, the parti
les are de
e
ted by the ele
tro-

magneti
 for
es of the on{
oming bun
hes. These for
es are very nonlinear fun
tions of the transverse

parti
le positions, but for small amplitudes the e�e
t is merely a shift of the betatron tunes. This is

quanti�ed by the in
oherent linear beam{beam tune shifts. The shifts per IP are given by

��

e

y

=

r

e

N

p

�

e

y

2�


e

(�

p

x

+ �

p

z

)�

p

y

(2.6)

��

p

y

=

r

p

N

e

�

p

y

2�


p

(�

e

x

+ �

e

z

)�

e

y

(2.7)

where r

e

and r

p

are the 
lassi
al ele
tron and proton radii respe
tively. Re
ent measurements in

HERA [Bi99℄ indi
ate that the smaller emittan
es and higher beam 
urrents

2

foreseen in the HERA

2

The original design 
urrent for the e

+=�

beam of 58 mA has been kept as the goal for the upgrade. HERA has so

far operated at a maximum of 86% of this 
urrent.
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upgrade 
an be tolerated without loss of luminosity. Note that the beam{beam tune shifts will be

signi�
antly higher than in the old opti
. In parti
ular the verti
al tune shift of the e

+=�

beam will be

large, ��

e

z

= 0:052 per IP. The betatron tune shifts and the nonlinear 
ontributions from the beam{

beam for
e in
uen
e the spin motion, and are therefore potential sour
es of depolarization. Further

dis
ussion on the topi
 is found in Chapter 6, Se
tion 6.5.

The strong �elds in the new IRs lead to strong syn
hrotron radiation emission from the e

+=�

beam,

an important 
onsideration that has required spe
ial attention during magnet and absorber design.

The average bending radius of the separation magnets is de
reased from the original 1200 m to 400 m

and an estimated 28 kW of syn
hrotron radiation power will be produ
ed in the dete
tor areas. No


ollimation of the syn
hrotron radiation is possible in these regions implying that the geometry must

be fashioned in a way that allows the radiation fan to pass through the dete
tor areas with minimal

losses and enter regions where it 
an be absorbed. The \warm" �nal fo
us magnets will therefore have

gaps between the 
oils to let the syn
hrotron radiation through, and the �rst absorber will be lo
ated

at 11m from the IPs. To prote
t beamline and dete
tor 
omponents from damage in 
ase of spurious

radiation losses in the dete
tor areas, an extensive programme of measurement and 
orre
tion of the

orbit in the IRs is foreseen.
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Figure 2.2: New intera
tion region layout. In the pi
ture the e

+=�

are moving from left to right and

the protons are moving from right to left.

The layout of the two upgraded intera
tion regions is illustrated in Figure 2.2. The super
ondu
ting

separator magnets mentioned earlier (GO and GG) are pla
ed inside the 
olliding beam dete
tors (not

shown here, see instead the illustrations in Figures 5.1, 4.3 and 4.4) at a distan
e of 2 m on either side

of the IPs. The geometry on the left side (upstream for the e

+=�

beam ) and right side (downstream)

di�ers, owing to asymmetries in dete
tor 
omponent arrangements and the need to a

ommodate the

syn
hrotron radiation fan on the downstream side. The layout is identi
al for both the North and

South IRs. On the left side the 3.2 m long 
ombined fun
tion magnet, GO, provides the ne
essary �nal

fo
using and a 8.2 mrad de
e
tion to the e

+=�

beam. The right hand 
ounterpart, GG, is only 1.3 m

long and will nominally be used for de
e
tion only. Following this magnet are two normal
ondu
ting


ombined fun
tion magnets of type QI, and one of type QJ. On the left side one of the QIs is missing.
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LUMINOSITY UPGRADE DESIGN 2000 ( average )

e-Beam p-Beam e-Beam p-Beam e-Beam p-Beam

E [ GeV ℄ 27.5 920 30 820 27.5 920

I [mA ℄ 58 140 58 160 45 95

N

ppb

(N

e

or N

p

) � 10

10

4.0 10.3 3.6 10.1 3.1 7.0

N

b;tot

189 180 210 210 189 180

N

b;
ol

174 174 210 210 174 174

�

x

[ nm rad ℄ 20

5000

�


48

6000

�


41

5000

�


�

z

/�

x

0.17 1 0.05 1 0.1 1

�

�

x

[m ℄ 0.63 2.45 2.2 10.0 0.9 7.0

�

�

z

[m ℄ 0.26 0.18 0.9 1.0 0.6 0.5

�

x

� �

z

[�m

2

℄ 112� 30 112� 30 325� 46 262� 83 192� 50 189� 50

�

s

[mm ℄ 10.3 191 8.3 200 (85) 11.2 191

��

x

/ IP 0.034 0.0015 0.019 8 � 10

�4

0.012 0.0012

��

z

/ IP 0.052 4 � 10

�4

0.024 6 � 10

�4

0.029 3 � 10

�4

min. aperture [�

x

℄ 20 12 23 16 14 10

L

s

[ 
m

�2

s

�1

mA

�2

℄ 1:8 � 10

30

3:4 � 10

29

7:4 � 10

29

L [ 
m

�2

s

�1

℄ 7:5 � 10

31

1:5 � 10

31

1:5 � 10

31

Table 2.1: Luminosity upgrade parameters 
ompared with the original design values and the averaged

values for 2000 before the shutdown.

The GO magnet and the �rst QI on the right hand side are rotated around their midpoints in the

horizontal plane by �4:1 mrad and +2:4 mrad respe
tively, to �t the apertures of the experiment

dete
tors. The GG magnet is shifted outwards by 20 mm with respe
t to the dete
tor axis (H1 and

ZEUS) to provide the ne
essary spa
e for the syn
hrotron radiation fan.

In the 
entre of the QJ magnet, at 9.5 m from the IP, the beam envelopes are 
ompletely separated.

The �rst proton septum quadrupole, QM, lo
ated at 11 m is followed by a se
ond QM, three QN type

quadrupoles and two QA type quadrupoles. These proton magnets are spe
ially designed to provide

spa
e for the e

+=�

beam and for the syn
hrotron radiation fan. The magnets that follow are all

of HERA standard types. In the ele
tron ring, the �rst standard fo
using element after the IR


ombined fun
tion magnets is found at 55 m. A total of 4 new super
ondu
ting magnets and 56 new

normal
ondu
ting magnets is needed for the luminosity upgrade.

An important feature of HERA I has been the possibility to 
ollide the proton beam with either

ele
trons or positrons. This possibility is maintained in the upgraded ma
hine. The swit
hing between

lepton types will however be more diÆ
ult than in the old design. A 
hange from ele
trons to positrons

(or vi
e versa) requires the polarity of the separation magnets to be swit
hed. This 
auses a disturban
e

of the traje
tory and opti
 of the proton beam. While the opti
al errors 
an be 
ompensated by


hanging quadrupole 
urrents, there 
an be no lo
al 
ompensation of the proton traje
tory by dedi
ated

dipoles due to la
k of spa
e. Instead, some of the e

+=�

low{� magnets must be repositioned. In the

solution adopted, the IPs are shifted horizontally with respe
t to the magneti
 axes of the �nal fo
us

super
ondu
ting magnets as well as with respe
t to the dete
tor solenoids, the shift depending on

lepton type and experiment solenoid.

By implementing the modi�
ations des
ribed above the goal of the upgrade programme, an in
rease

of the HERA luminosity by a fa
tor of about 5, should be a
hieved. Table 2.1 summarizes the most

important parameters of the luminosity upgrade. A 
omparison is also made with the original design

and the beam parameters used immediately before the shutdown. The opti
al fun
tions in the IRs for

the upgrade latti
e and the latti
e used in the year 2000 runs are illustrated in Figures 2.3 and 2.4.
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Figure 2.3: Opti
al fun
tions for the e

�

in the luminosity upgraded IRs. The boxes indi
ate magnet

positions.
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Figure 2.4: Opti
al fun
tions for the e
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ate magnet

positions.
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Chapter 3

Radiative Spin Polarization

3.1 Phenomenology

The theory of radiative spin polarization in storage rings is now fairly well understood and has been

treated in many publi
ations. However, even for linear orbital motion the evaluation of the polarization

from the resulting formulae 
an be a diÆ
ult task in pra
ti
al 
ases. In the presen
e of strong

nonlinearities in the orbital motion, as for example in the 
ase of the beam{beam intera
tion, there

is no analyti
al formalism. The aim of this se
tion is to give an overview of the subje
t and to

develop the terminology that will be used throughout this thesis to des
ribe the physi
s of polarized

ele
tron and positron beams in storage rings. In parti
ular I want to provide the ne
essary theoreti
al

ba
kground in preparation for des
ribing the impa
t that the luminosity upgrade will have on the e

+=�

beam polarization in HERA. Comparisons with non{radiative polarization theory and other relevant

observations will be made.

The starting point for our des
ription of polarized ele
trons in a storage ring is the 
on
ept of

spin{
ip syn
hrotron radiation emission, the 
elebrated Sokolov{Ternov e�e
t [ST64℄. When ele
trons

(positrons) are moving on 
urved orbits, su
h as those pres
ribed by the magneti
 guide �elds of a

storage ring, they emit syn
hrotron radiation. By 
al
ulating transition rates in terms of exa
t Dira


wavefun
tions for ele
trons moving in a homogenous magneti
 �eld, it is found that a very small

fra
tion of the emitted photons will 
ause a spin{
ip between the \up" and \down" quantum states of

the ele
trons' spin. For ele
trons with spins initially aligned along the magneti
 �eld the probabilities

for transitions from the up{to{down state and down{to{up state di�er, leading to the build{up of

polarization antiparallel to the �eld. Positrons be
ome polarized parallel to the �eld. The transition

rates for ele
trons are

W

"#

=

5

p

3

16

r

e
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mj�j
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�

1 +

8
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3

�
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#"

=

5

p
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�h

mj�j
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�

1�

8

5

p

3

�

(3.1)

where the arrows indi
ate the relative dire
tions of the spin in the initial and �nal states. For positrons

plus and minus signs are inter
hanged here and elsewhere. An initially unpolarized stored e

+=�

beam

gradually be
omes polarized following the exponential law

P

ST

(t) = P

eq;ST

�

1� e

�t=�

ST

�

(3.2)
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where the maximum attainable (equilibrium) polarization is given by

P

eq;ST

=

W

"#

�W

#"

W

"#

+W

#"

=

8

5

p

3

' 0:9238 (3.3)

and the build{up rate is

�

�1

ST

=

5

p

3

8

r

e




5

�h

mj�j

3

(3.4)

Here � is the (lo
al) radius of 
urvature of the orbit, and the other symbols have their usual de�nitions.

It should be emphasized that due to the smallness of the spin{
ip transition probability

1

, the time

s
ale of polarization build{up is large 
ompared to other pro
esses taking pla
e, su
h as syn
hro{

betatron os
illations and radiation damping. The build{up rate depends strongly on energy (


5

) and

bending radius (�

�3

). Its re
ipro
al, the build{up time �

ST

, is typi
ally of the order of minutes or

hours. For HERA at an operating energy of 27.5 GeV is �

ST

� 40 min.

A generalization of the Sokolov{Ternov build{up rate to ele
trons moving in arbitrary magneti


�eld 
on�gurations and with spins initially aligned along an arbitrary unit ve
tor

^

�, has been given

by Baier and Katkov using semi
lassi
al methods [BK67℄

�

�1

BK

= �

�1

ST

�

1�

2

9

(

^

� � ŝ)

2

�

(3.5)

where ŝ denotes the dire
tion of motion.

A se
ond fundamental property of an ele
tron (positron) moving in the ele
tromagneti
 guide �elds

of a storage ring is the spin pre
ession. This physi
al phenomenon also applies to other parti
les, su
h

as protons and deuterons in whi
h 
ases syn
hrotron radiation emission is normally negligible so that

spin{
ip indu
ed polarization is usually not observed.

Negle
ting radiation, the evolution of the 
entre{of{mass spin expe
tation value,

b

S,

2

of a rel-

ativisti
 
harged parti
le moving in the ele
tromagneti
 �elds of a storage ring is 
ontained in the

Thomas{Bargmann{Mi
hel{Telegdi (T{BMT) equation [Th27, BMT59℄

d

b

S

dt

=

~




BMT

(~r;

_

~r; t)�

b

S (3.6)

where

~




BMT

= �

e
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(1 + a
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~

B �
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1 + 
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�

_

~r �

~

B

�

_

~r �

�

a
 +




1 + 


�

_

~r �

~

E




2

!

~




BMT

is the spin pre
ession ve
tor evaluated in the laboratory frame, with time t used as the in-

dependent variable.

~

B and

~

E are the magneti
 and ele
tri
 �elds given in this frame. The position

ve
tor ~r and its time derivative

_

~r evolve a

ording to the Lorentz equation [Ja98℄. The parameter

1

For the HERA ele
tron ring at an energy of E � 27.5 GeV, the ratio of the probabilities

�

spin�flip rad:

�

non�flip rad:

is of the

order 1 � 10

�10

.

2

For the rest of this thesis we will work with the ve
tor

b

S =

2

�h

~

S. This ve
tor will often be referred to as simply

\the spin".
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a = (g � 2)=2 is the parti
le's gyromagneti
 anomaly, whi
h for ele
trons and positrons has the nu-

meri
al value a � 0:0011597, while for protons the value is approximately 1.7928. In the proton 
ase,

the symbol G instead of a is 
ommonly used to represent the gyromagneti
 anomaly. By expressing

the T{BMT equation in terms of 
omponents perpendi
ular and parallel to the parti
le momentum

~p and 
omparing with the Lorentz equation of motion (ignoring the ele
tri
 �elds, whi
h normally in

storage rings are non{zero only in the a

elerating 
avities)

d~p

dt

= �

e


m

~

B

?

� ~p (3.7)

d

b

S

dt

' �

e


m

�

(1 + a
)

~

B

?

+ (1 + a)

~

B

k

�

�

b

S (3.8)

several 
on
lusions 
an be drawn. From eqs. (3.7) and (3.8) it is seen that for motion perpendi
ular

to the �eld, the spin pre
ession around

~

B

?

is a fa
tor (1 + a
) larger than the 
orresponding orbit

de
e
tion

Æ�

spin

= (1 + a
) Æ�

orbit

(3.9)

The term \1" 
orresponds to the relativisti
 
y
lotron frequen
y, !




= �

eB

?


m

, and is eliminated in

a transformation to a frame rotating with the parti
le orbit a

ording to eqn. (3.7). The remaining

fa
tor a
, whi
h is referred to as the na��ve spin tune, is simply the instantaneous rate of pre
ession

in the rotating frame. In a perfe
tly 
at ring, while parti
les 
omplete a full turn with 2� of orbit

de
e
tion, the spins are rotated a
 times around the verti
al dire
tion with respe
t to the orbit.

Inspe
tion of eqn. (3.8) also reveals that the pre
ession rate around a �xed transverse �eld at high

energies is essentially independent of energy (1=
 � 1), whereas for longitudinal �elds (as in solenoids)

the pre
ession rate is inversely proportional to the energy, an important observation when it 
omes

to the design of spin manipulating devi
es su
h as spin rotators and Siberian Snakes [Mo84℄. For

spin motion in purely transverse magneti
 �elds a few more points 
an be noted using HERA as an

example:

� Relation (3.9) implies that an orbit de
e
tion angle of 1 mrad in a transverse magneti
 �eld

for ele
trons (positrons) operated at the HERA nominal energy of 27.5 GeV gives rise to a spin

rotation of approximately 3:6

Æ

. For protons operated at 920 GeV the same orbit de
e
tion leads

to a spin rotation of 100

Æ

.

� The na��ve spin tune a
 in
reases for ele
trons (positrons) by one unit every �E � 441 MeV

(=

m

e




2

a

), whereas for protons the 
orresponding value is �E � 523 MeV (=

m

p




2

G

). For

HERA{e at 27.5 GeV, a
 � 62:5.

� For a �xed transverse orbit de
e
tion (and hen
e �xed ratio

~

B

?

=
), the spin pre
ession rate

in
reases linearly with energy. Spin motion is therefore more sensitive to (transverse) orbit

distortions at higher energies.

The laboratory frame, in whi
h the T{BMT equation was originally derived, is not a suitable

referen
e frame for the des
ription of orbital motion in 
ir
ular a

elerators. Therefore, as a standard

pro
edure, a transformation is made to a referen
e frame where the parti
les are des
ribed with

respe
t to a moving 
urvilinear 
oordinate system, asso
iated with a �
titious ideal parti
le. The

six dimensional ve
tor des
ribing the parti
le positions in phase spa
e in this referen
e frame will be

denoted by ~u. Here we will 
hoose the 
oordinates su
h that ~u � (x; x

0

; z; z

0

; `; Æ), where x; x

0

; z; z

0

are
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the horizontal and verti
al (transverse) positions and dire
tions and `; Æ are the longitudinal deviation

and fra
tional energy deviation with respe
t to the syn
hronous parti
le (at the 
entre of the bun
h)

respe
tively. At high energies the 
oordinate pairs (x; x

0

), (z; z

0

) and (`; Æ) are nearly 
anoni
ally


onjugate and we 
an write x

0

'

p

x

p

and z

0

'

p

z

p

, ex
ept inside solenoids where these relationships

have to be repla
ed by x

0

'

p

x

p

+ z

e


2E

0

B

d:o

s

and z

0

'

p

z

p

� x

e


2E

0

B

d:o

s

, where

~

B

d:o

=

�

B

d:o

x

;B

d:o

z

;B

d:o

s

�

is the magneti
 �eld on the design orbit.

3

The 
hange of 
oordinates means that

~




BMT

(~r;

_

~r; t) must

be transformed to a 
orresponding

~


(~u; s), where s is the distan
e along the design orbit, and that

the 
omponents of the spin ve
tors now refer to the 
urvilinear 
oordinate system

b

S = (S

x

; S

z

; S

s

)

T

.

The details of the transformation are outlined in Appendix A. After transformation to 
urvilinear


oordinates, the T{BMT equation of spin motion reads as

d

b

S

ds

=

~


(~u; s)�

b

S (3.10)

Further insight into the impli
ations of the T{BMT equation 
an be gained by writing the rotation

ve
tor

~


 as

~


(~u; s) =

~





:o

+ ~!

s:b

(3.11)

The ve
tor

~





:o


ontains the �elds along the periodi
 
losed orbit and satis�es the periodi
ity 
ondition

~





:o

(s+ C) =

~





:o

(s), where C is the 
ir
umferen
e of the ring. This 
an be written as

~





:o

=

~




d:o

+

~!

imp

, where

~




d:o


ontains the design �elds and ~!

imp

represents the e�e
ts of magnet misalignments,


orre
tion �elds et
. along the 
losed orbit. The term ~!

s:b


ontains the 
ontribution due to syn
hrotron

and/or betatron motion with respe
t to the 
losed orbit. This term is in general not one{turn periodi
.

Sin
e the length j

b

Sj is invariant during pre
ession, the most intuitive way of representing the spin

evolution in a storage ring is through the real orthogonal 3�3 rotation matri
es of the SO(3) group.

4

In this formalism it is 
onvenient to parametrize the rotations via the unit rotation axis r̂ and the

rotation angle '. However, it is often more eÆ
ient to use other representations for the spin rotations,

espe
ially for spin tra
king. We will return to this point later on in the text. By introdu
ing the

anti{symmetri
 matrix


(~u; s) =

0

B

�

0 �


s




z




s

0 �


x

�


z




x

0

1

C

A

eqn. (3.10) 
an be expressed as

d

b

S

ds

= 
(~u; s)

b

S (3.12)

The solution to this ordinary di�erential equation (ODE) 
an be written in terms of an orthogonal

matrix R

~u

:

b

S(s) = R

~u

(s; s

i

)

b

S(s

i

) , for transport of a spin ve
tor

b

S from s

i

to s. In parti
ular, on

the 
losed orbit the equation of spin motion and its solution takes the form

d

b

S

ds

=

~





:o

�

b

S (3.13)

and

b

S(s) = R


:o

(s; s

i

)

b

S(s

i

) with R


:o

(s

i

; s

i

) = I (3.14)

3

Any momenta p that o

ur are now 
al
ulated in the 
urvilinear 
oordinate system.

4

The orthogonality 
ondition for SO(3) matri
es R is expressed as R

T

R = R

�1

R = I, where I is the (3� 3) unit

matrix.
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As the next step, we need to �nd the unit length periodi
 solution on the 
losed orbit. This is

a

omplished by solving the eigenvalue problem for the one turn rotation matrix: R


:o

(s+C; s)~r

�

(s) =

�

�

~r

�

(s). The solution we are looking for is the unit length eigenve
tor with unit eigenvalue. This

periodi
 solution is parallel to the e�e
tive one turn rotation axis, and away from resonan
es (see

eqn. (3.42) and the a

ompanying text) it is unique. It is denoted by n̂

0

in the literature

5

and is

a 
entral obje
t for the des
ription of polarization in storage rings. The remaining two eigenvalues

of the one turn rotation matrix form a 
omplex 
onjugate pair: e

�i2��

0

. The 
losed orbit spin tune

�

0

, appearing in the exponent, is the number of spin pre
essions around n̂

0

in one turn around the

ma
hine. For a perfe
tly aligned 
at ring without solenoids �

0

= a
. It should be noted that only

the fra
tional part of the spin tune 
an be extra
ted from the numeri
al values of the 
omplex pair

of eigenvalues. The integer part must be found by following the spin motion for one turn around the

ma
hine. For the de�nition of spin tune away from the 
losed orbit, see [VBH98℄. SuÆ
e it to say

that the spin tune at some arbitrary amplitude in phase spa
e 
annot be extra
ted as an eigenvalue

of some generalized eigenve
tor problem, sin
e parti
le orbits are not one{turn periodi
.

Just as a suitable 
oordinate frame is ne
essary for the des
ription of the orbital motion in storage

rings, an appropriate 
oordinate frame is needed for the des
ription of the spin motion. The unit

eigenve
tor n̂

0

of the one{turn spin rotation matrix on the 
losed orbit, together with the eigenve
tors

asso
iated with the 
omplex 
onjugate eigenvalue pair lend themselves to the 
onstru
tion of su
h a

frame. Writing the latter pair as m̂

0

� i

^

l

0

we 
an extra
t two new basis ve
tors m̂

0

and

^

l

0

whi
h are

both orthogonal to n̂

0

, m̂

0

=

^

l

0

� n̂

0

,

^

l

0

= n̂

0

� m̂

0

, and obey the relation

m̂

0

(s+ C) + i

^

l

0

(s + C) = e

i 2��

0

h

m̂

0

(s) + i

^

l

0

(s)

i

(3.15)

It should be observed that m̂

0

and

^

l

0

are solutions to the T{BMT equation on the 
losed orbit,

eqn. (3.13). With these new unit ve
tors, we have a righthanded 
oordinate system (n̂

0

; m̂

0

;

^

l

0

) in

whi
h spin motion 
an be des
ribed with respe
t to the \ideal parti
le" on the 
losed orbit. This spin

basis will be needed in Se
tion 3.2.

By studying the equation of motion of the spin expe
tation value in the syn
hrotron radiation

�eld one obtains the general evolution equation for the polarization given by Baier, Katkov and

Strakhovenko (BKS) [BKS70℄,

6

whi
h for motion on the 
losed orbit takes the form

 

d

~

P

dt

!

BKS

=

~





:o

(~r;

_

~r; t)�

~

P �

1

�

ST

(s)

�

~

P �

2

9

(

~

P � ŝ)ŝ+

8

5

p

3

^

b(s)

�

(3.16)

The �rst term on the right hand side des
ribes pre
ession and the se
ond term des
ribes radiative

build{up of polarization. This equation is valid under the simplifying assumption that even when a

syn
hrotron radiation photon is emitted, the parti
le stays on the 
losed orbit. The unit ve
tor

^

b is

perpendi
ular to both the velo
ity and the a

eleration,

^

b = (ŝ �

_

ŝ)=j

_

ŝj, and is the dire
tion of the

magneti
 �eld in the 
ase of no ele
tri
 �elds and motion perpendi
ular to the magneti
 �eld. Note

the di�eren
e in time s
ales of the terms in eqn. (3.16): the �rst term varies like �

rev

=a
 where �

rev

is the revolution time, whereas the 
hara
teristi
 time of the se
ond term, �

ST

, is many orders of

magnitude larger. This fa
t simpli�es the mathemati
al analysis of the spin motion, making averaging

te
hniques permissible. By integration of the BKS equation, and by letting t !1 the generalization

of the Sokolov{Ternov formula for the asymptoti
 ele
tron polarization in arbitrary magneti
 �eld


on�gurations along the 
losed orbit is obtained

5

In early publi
ations the notation n̂ is 
ommon. This is an unlu
ky 
hoi
e, sin
e the same symbol is also used for

the invariant spin �eld appearing in the Derbenev{Kondratenko formula (3.20).

6

Here we 
hoose t as the independent variable in 
onformity with the original paper.
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P

BKS

= P

ST

I

n̂

0

(s) �

^

b(s)

j�(s)j

3

ds

I

�

1�

2

9

(n̂

0

� ŝ)

2

�

j�(s)j

3

ds

(3.17)

and

~

P

BKS

= �P

BKS

n̂

0

(3.18)

The build{up rate is

�

�1

BKS

=

5

p

3

8

r

e




5

�h

m

1

C

I

�

1�

2

9

(n̂

0

� ŝ)

2

�

j�(s)j

3

ds (3.19)

At equilibrium, the polarization is aligned with n̂

0

on the 
losed orbit. In a perfe
tly 
at ring,

without solenoids, n̂

0

is verti
al. In rings 
ontaining verti
al bends (e.g. dipole spin rotators) there

are regions where jn̂

0

(s) �

^

b(s)j 6= 1 and the radiative polarization 
an usually not rea
h the 92.38% of

the Sokolov{Ternov formula. Nevertheless, the polarization is still parallel to n̂

0

.

Unfortunately in the inhomogeneous �elds of storage rings the Sokolov{Ternov e�e
t is a

om-

panied by depolarization. Soon after the dis
overy of radiative polarization is was realized that

syn
hrotron radiation not only 
reates polarization, but that it 
an also destroy the polarization! This

radiative depolarization was predi
ted in 1965 by Baier and Orlov [BO66℄ and a few years later it

was observed and studied for the �rst time at the ACO storage ring at Orsay [Be68℄. To 
omplete

this introdu
tion to the theory of ele
tron spin dynami
s the important matter of radiation indu
ed

depolarization will now be addressed.

In an ele
tron storage ring energy is 
ontinuously lost through the emission of syn
hrotron radiation

in the bending magnets. This, together with replenishment of energy loss by the RF 
avities leads

to a damping of the syn
hro{betatron motion. The emission of the individual syn
hrotron radiation

photons is a sto
hasti
 pro
ess. Ea
h photon emission is a

ompanied by a dis
ontinuous 
hange

in energy of the emitting ele
tron and a 
orresponding disturban
e of the ele
tron's traje
tory. For

the beam as a whole, the random disturban
es introdu
e noise into the syn
hrotron os
illations and

then via the dispersion into the betatron os
illations 
ausing a di�usion of all orbital amplitudes.

The 
lassi
al des
ription of the orbit dynami
s thus leads to sto
hasti
 di�erential equations [MR83,

EMR99℄ for the evolution of the dynami
al phase spa
e variables. The balan
e between radiation

damping and di�usion determines the equilibrium ele
tron beam emittan
es. See Appendix A also.

The evolution of the ele
tron polarization shows some similarities with the orbit dynami
s. While

the syn
hrotron radiation emission gives rise to a polarization build{up through the Sokolov{Ternov

e�e
t, whi
h is the spin dynami
al parallel to orbital damping, the sto
hasti
 nature of the individual

emissions 
an bring spin di�usion. Photon emission imparts both transverse and longitudinal re
oils

to the ele
tron, so that the ele
tron 
hanges its position in phase spa
e. However, sin
e a photon is

typi
ally emitted within an angle 1=
 with respe
t to the dire
tion of the ele
tron the e�e
t of the

longitudinal re
oil, i.e. the energy jump, dominates. The transverse re
oil is therefore often negle
ted

in 
al
ulations. In the motion that follows after every su
h emission event, the ele
trons will experien
e

�elds in the quadrupoles (and higher order multipoles) that appear to 
ontain a sto
hasti
 
omponent.

Imagining, in a 
lassi
al sense, that the spins are passengers on the ele
trons, the sto
hasti
 journey will

impart sto
hasti
 pre
essions to the spins through the term ~!

s:b

of the T{BMT equation (eqs. (3.10)

and (3.11)). If after a photon emission, the ele
tron would eventually return to its original phase spa
e

position, owing to the damping, the spin would not point in the same dire
tion as before the emission.

For an initially fully polarized ensemble of ele
trons, the 
umulative e�e
t on the polarization of a large

number of un
orrelated photon emission events is an in
oherent summation of disturban
es resulting

in a spread of the spin ve
tors and de
reased polarization.
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This is a na��ve pi
ture, but nevertheless instru
tive. It emphasizes that the orbit dynami
s has a

strong in
uen
e on the spin motion and also that the ele
tron polarization a
hieved is the result of

a 
ompetition between the radiation indu
ed polarization due to the Sokolov{Ternov e�e
t and spin

di�usion. But spin is by nature a purely quantum me
hani
al 
on
ept. Therefore this des
ription of


lassi
al spin di�usion mixed with quantum me
hani
al spin{
ip should be repla
ed by an approa
h

unifying the various aspe
ts of ele
tron spin dynami
s. I will now outline how this 
an be a
hieved

by using more quantitative arguments to des
ribe the interplay between polarization build{up and

di�usion in e

+=�

storage rings.

The most elegant way to pro
eed is to 
onsider the stationary (i.e. equilibrium) polarization state

of the ma
hine. The beam phase spa
e density, w, is a fun
tion of the phase spa
e position ~u and

azimuth s: w(~u; s). If the beam is stable, the phase spa
e density of a bun
h is a periodi
 fun
tion of s

so that we 
an write w

eq

(~u; s) = w

eq

(~u; s+ C). Likewise at equilibrium the polarization at ea
h point

in phase spa
e should repeat itself from turn to turn,

~

P

eq

(~u; s) =

~

P

eq

(~u; s+C). Note that

~

P

eq

need not

in general be parallel to n̂

0

for ~u 6=

~

0. In the absen
e of spin{
ip syn
hrotron radiation spin motion is,

as we have seen, des
ribed by the T{BMT equation (3.6). In analogy with eqn. (3.16) we expe
t that

a general evolution equation for the polarization under the in
uen
e of sto
hasti
 radiation should


ontain a T{BMT like term. Moreover, be
ause of the time s
ales (and hen
e the strengths) of the

pro
esses involved this term is expe
ted to dominate the spin motion: The Sokolov{Ternov e�e
t and

the spin di�usion leading to depolarization operate on a time s
ale of minutes to hours, whereas the

radiation damping is measured in millise
onds and the spin pre
ession in fra
tions of mi
rose
onds. A

visual representation of 
hara
teristi
 time s
ales for a typi
al 25 GeV ele
tron storage ring is found

in Appendix B.

Be
ause of the dominan
e of the T{BMT term, the stationary polarization dire
tion

~

P

eq

=k

~

P

eq

k at

ea
h point in phase spa
e should, to a good approximation, be parallel to the dire
tion we would get

for a stationary (periodi
) polarization distribution without the radiative e�e
ts [BH01℄. We denote

this latter dire
tion by n̂

7

and by de�nition it satis�es the periodi
ity 
ondition n̂(~u; s) = n̂(~u; s+C).

The unit ve
tor �eld n̂(~u; s) obeys the T{BMT equation along parti
le traje
tories in the sense that

n̂(

~

M(~u; s); s+C) = R(~u; s) n̂(~u; s), where

~

M(~u; s) is the new phase spa
e ve
tor after one turn starting

at ~u and s and R(~u; s) is the 
orresponding spin transfer matrix. Observe that a spin initially parallel

to n̂ at some starting phase spa
e position ~u and azimuth s is generally not transformed into itself

in one turn around the ma
hine, whereas the whole �eld n̂(~u; s) is! We therefore 
all n̂(~u; s) the

invariant spin �eld [VBH98, Bb99℄. The ve
tor �eld n̂(~u; s) is uniquely de�ned

8

ex
ept at spin{orbit

resonan
es to be dis
ussed later. If a spin

b

S is followed along a phase spa
e traje
tory in the absen
e

of radiation, the s
alar produ
t

b

S � n̂ of

b

S with the lo
al n̂ is an invariant sin
e both ve
tors obey the

T{BMT pre
ession equation. Note that be
ause orbital motion is in general not one{turn periodi
,

n̂(~u; s) 
annot usually be derived as an eigenve
tor of the spin transfer matrix R(~u; s). On the other

hand n̂(~u; s) redu
es to n̂(

~

0; s) � n̂

0

(s) on the 
losed orbit, and of 
ourse n̂

0

(s) = n̂

0

(s + C). The

meaning of the invariant spin �eld is illustrated in Figure 3.1.

If we now in
lude the e�e
ts of radiation, following the treatments of either Derbenev and Kon-

dratenko [DK73℄ or Mane [Ma86a℄ we obtain the generalization of the BKS equation (3.16). Before

doing so, and again stressing the importan
e of time s
ales in the �eld of radiative spin polariza-

tion, it must be pointed out that under the assumption of \well behaved" integrable orbital motion,

the absolute value of the ele
tron polarization is essentially independent of azimuth and position in

phase spa
e. Negle
ting the e�e
t of transverse re
oil by photon emission

9

, the equilibrium ele
tron

polarization is given by

7

Sometimes n̂ will be referred to as the \n̂{axis".

8

For 
omments upon existen
e and uniqueness of n̂(~u; s), see for example [Bb99℄.

9

The e�e
t of transverse re
oil 
an also be in
luded but 
ontributes extra terms 
ontaining derivatives of n̂ w.r.t.

x

0

and z

0

whi
h are typi
ally a fa
tor 
 smaller than

�n̂

�Æ

[BR99℄.
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1

1

2

, δ)l

s

s + C

s

, n (u ; s ) u = (x, x’,z, z’,

Figure 3.1: The invariant spin �eld n̂(~u; s): an s{periodi
 unit ve
tor �eld at ea
h point in phase spa
e,

illustrated here for the same region of phase spa
e (solid line ellipses) at three di�erent azimuths.

The dashed ellipse indi
ates the rotation of parti
le phase spa
e asso
iated with a bun
h of parti
les

travelling around the a

elerator.

P

DK

= P

ST

I

D

1

j�(s)j

3

^

b �

�

n̂�

�n̂

�Æ

�E

s

ds

I

�

1

j�(s)j

3

�

1�

2

9

(n̂ � ŝ)

2

+

11

18

�

�n̂

�Æ

�

2

��

s

ds

(3.20)

and

h

~

P

DK

i

ens

= �P

DK

hn̂i

s

(3.21)

where h i

s

denotes an average over phase spa
e. The 
orresponding build{up rate is

�

�1

DK

=

5

p

3

8

r

e




5

�h

m

1

C

I

*

1�

2

9

(n̂ � ŝ)

2

+

11

18

�

�n̂

�Æ

�

2

j�(s)j

3

+

s

ds (3.22)

The ensemble average h i

ens

of the equilibrium polarization, eqn. (3.21) , is given by P

DK

times

the average a
ross phase spa
e of n̂(~u; s) at azimuth s, hn̂i

s

. The expressions di�er from those in

eqs. (3.17) and (3.19) by the in
lusion of terms with

�n̂

�Æ

and by the ex
hange of n̂

0

for n̂. The partial

derivative

�n̂

�Æ

is a measure of the 
hange of n̂ 
aused by the fra
tional energy jumps Æ.

10

Note that the

statement that the value of the polarization to a good approximation is the same at all phase spa
e

positions and azimuths does not generally hold true for protons, espe
ially at high energies. Even at

HERA energies, there is essentially no radiation from a proton beam and hen
e no me
hanism similar

to the \spin damping" of the Sokolov{Ternov e�e
t is in play. There is also only little ex
hange of

parti
les between di�erent phase spa
e tori. In fa
t the polarization times for proton beams are very

mu
h larger than for ele
tron beams, making self{polarization pra
ti
ally impossible. For instan
e the

build{up time in HERA{p at 920 GeV would be 7 � 10

10

years! It is therefore 
ustomary to inje
t a

prepolarized proton beam that is then a

elerated. Polarization lost at some orbital amplitudes during

10

The original notation used by Derbenev and Kondratenko for this derivative, 


�n̂

�


, is not used here sin
e it is open

to misinterpretation.
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the a

eleration 
annot be replenished, and the polarization 
an therefore vary a
ross the beam phase

spa
e. Furthermore hn̂i

s


an vary signi�
antly with the azimuth s [Vo00, Ho00a℄.

Far from resonan
es (see below) the invariant spin �eld n̂ is very nearly aligned along n̂

0

, hen
e

P

DK

hn̂i

s

� P

DK

n̂

0

(3.23)

but when the spin tune is suÆ
iently 
lose to a spin{orbit resonan
e (see next se
tion) the spin �eld

n̂(~u; s) starts to \open up". In our uni�ed model it is therefore not adequate to talk about di�usion

away from n̂

0

but away from n̂ instead. In e

+=�

beams the opening angle between n̂(~u; s) and n̂

0

(s)


an be tens of milliradians near resonan
es at a few tens of GeV and in
reases with parti
le amplitude

and na��ve spin tune a
. Observe that for ele
trons jhn̂i

s

j has a value 
lose to one even in the vi
inity

of resonan
es and the beam polarization is mainly in
uen
ed by the value of P

DK

. In the Derbenev{

Kondratenko{Mane formalism, the depolarization is quanti�ed by the square of the spin{orbit 
oupling

fun
tion

�n̂

�Æ

(~u; s), in the denominator of eqn. (3.20). To attain high polarization, (

�n̂

�Æ

)

2

has to be kept

small (� 1) in the dipole magnets of the ma
hine. Methods to a
hieve this are referred to as spin

mat
hing and amount to organizing the ma
hine opti
 in su
h a way that 
ertain 
riteria are ful�lled.

Details about several spin mat
hing s
hemes 
an be found in Chapter 4, Chapter 6 and [BR99℄.

Derbenev and Kondratenko derived their expression for the equilibrium polarization already in

1973 using a 
omplete semi{
lassi
al quantum me
hani
al treatment. It should be mentioned that it

took a long time before the impli
ations and 
orre
t usage of this formula were fully appre
iated by

the physi
s 
ommunity. Mane gave an important 
ontribution to the understanding of the underlying

physi
s when in 1987 he rederived the Derbenev{Kondratenko formula from a statisti
al viewpoint.

The evaluation of n̂(~u; s) and the partial derivative

�n̂

�Æ

(~u; s) are today the key tasks in most 
omputer

algorithms written for deriving the equilibrium polarization in storage rings. However, rewriting the

Derbenev{Kondratenko build{up rate (eqn. (3.22)) in the form

�

�1

DK

= �

�1

BKS

+ �

�1

dep

' �

�1

ST

+ �

�1

dep

(3.24)

where �

�1

dep

is the depolarization rate given by

�

�1

dep

=

5

p

3

8

r

e




5

�h

m

1

C

I

*

11

18

�

�n̂

�Æ

�

2

j�(s)j

3

+

s

ds (3.25)

suggests another route to arrive at the equilibrium ele
tron polarization, without introdu
ing the


on
ept of the invariant spin �eld n̂ ne
essary in the Derbenev{Kondratenko{Mane formalism. In

parti
ular �

dep


an be estimated by a spin{orbit tra
king simulation. This is the strategy adopted

in the Monte Carlo program SITROS [Ke85℄. The equilibrium polarization in this approximation is

extra
ted using eqs. (3.17) and (3.19) as

P

eq

' P

BKS

�

dep

�

BKS

+ �

dep

= P

BKS

�

DK

�

BKS

(3.26)

The 
ontribution from the usually small term

^

b �

�n̂

�Æ

in the numerator of the Derbenev{Kondratenko

formula is negle
ted here. This term represents a 
orrelation between the spin orientation and the

radiation power and it is normally negligible sin
e

�n̂

�Æ

is usually essentially perpendi
ular to the main

bending �eld. However in the 
ase of a ring with dipole spin rotators su
h as HERA

^

b �

�n̂

�Æ

6= 0 in

the rotator dipole �elds. In addition, sin
e in su
h a 
ase the periodi
 spin solution n̂

0

by design is

horizontal in some straight se
tions,

^

b �

�n̂

�Æ

need not vanish in any dipole in these \straight se
tions".
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This 
an lead to a build{up or \build{down" (i.e a shift) of polarization separate from the Sokolov{

Ternov e�e
t. The phenomenon is 
alled kineti
 polarization [Mo84℄ and is a manifestation of the

uni�ed treatment.

The time dependen
e of polarization build{up, starting from an initial polarization P

0

(for t � t

0

)

is given by

P (t) = hP

DK

i

ens

�

1� e

�(t�t

0

)=�

DK

�

+ P

0

e

�(t�t

0

)=�

DK

(3.27)

The formula 
an be used in 
ombination with eqn. (3.26) to 
alibrate polarimeters. In su
h a rise time


alibration (a short des
ription of the pro
edure is given in Se
tion 4.3) the polarization is measured

as a fun
tion of time and the parameters P

eq

, �

DK

and P

0

are �tted to the expression in (3.27). The

measurements should be made with a 
at ma
hine to minimize the e�e
t of the kineti
 polarization,

whi
h in pra
ti
e is diÆ
ult to predi
t with high a

ura
y.

An intuitive way of understanding depolarization and spin di�usion, but now in terms of the n̂{

axis, may be gained through the following visualization. See Figure 3.2. Consider an ele
tron with

spin ve
tor

b

S aligned along n̂(~u; s) at some initial phase spa
e position ~u

0

: S

n

= j

b

S � n̂j = 1. Suppose

that the ele
tron undergoes a sto
hasti
 photon emission. After the emission (whi
h 
an be regarded

as an instantaneous pro
ess sin
e �




� �=

 � 10

�10

s), the spin �nds itself at a new phase spa
e

position ~u

1

due to the ele
tron re
oil. At this new position, the spin �eld ve
tor n̂ is generally pointing

in some other dire
tion 
ompared to the dire
tion of n̂ at the initial phase spa
e point. The spin ve
tor

b

S on the other hand has not 
hanged dire
tion. The proje
tion of

b

S upon n̂ is therefore de
reased:

S

n

= j

b

S � n̂j < 1. Usually the angle between

b

S and n̂ 
reated by su
h a dis
ontinuous jump is small,

unless we are 
lose to a spin{orbit resonan
e. At the new phase spa
e position

b

S, obeying the T{BMT

equation, will rotate around the stable spin solution n̂. After a short time, the ele
tron will emit

another photon. At the moment of emission the spin is pointing in a dire
tion determined by the 
one

of rotation and the exa
t emission time. The proje
tion of

b

S upon n̂ may be in
reased or de
reased

following the se
ond re
oil, depending on the dire
tion of n̂ at the ele
tron's new phase spa
e point.

The result of a large number of su
h sto
hasti
 emission events is a random walk where the total

probability of a de
rease of S

n

results in an exponential de
ay of the polarization.

The above pi
ture of spin di�usion has overseen an important fa
tor, namely the damping. Without

damping, the orbital phase spa
e would grow inde�nitely and no polarization 
ould be observed. In

general, following a disturban
e, an ele
tron beam will return to its original phase spa
e distribution

after a few damping times.

11

The damping is a slow pro
ess, 
ompared to the time s
ale of photon

emission and the e�e
tive 
hange of orbital amplitude of individual ele
trons due to damping 
an

therefore be regarded as being adiabati
. In [Ho00a℄ a proof is given that S

n

= j

b

S � n̂j is an adiabati


invariant along a parti
le traje
tory when a parameter su
h as orbit amplitude 
hanges slowly. Thus

the angle between the spin ve
tor and n̂ is essentially \lo
ked" as the ele
tron slowly moves towards

lower amplitudes under the damping.

3.2 Methods of 
al
ulation

In the previous se
tion we have brie
y tou
hed upon di�erent philosophies for the 
al
ulation of

the equilibrium polarization for ele
trons in storage rings. We have learned of the 
entral role for

estimating the polarization played by the 
al
ulation of n̂ and of

11

18

(

�n̂

�Æ

)

2

in the dipoles, where the

11

This property 
an be understood by studying the Fokker{Plan
k equation for the evolution of the ele
tron phase

spa
e density [Bb91, Ri89℄.
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Figure 3.2: A simple model illustrating spin di�usion away from n̂. At time t

0

a photon (
) is emitted

and the parti
le makes a dis
ontinous jump in phase spa
e due to the re
oil. In the time interval t

1

to t

2

the parti
le 
oordinates 
hanges smoothly as the parti
le travels from azimuth s

1

to s

2

under

the in
uen
e of syn
hro{betatron motion and damping. At time t

2

another photon is emitted. The

in
uen
e on the parti
le spin during these pro
esses is des
ribed in the text. Observe that the spread of

n̂(~u; s) has been exaggerated in the pi
ture (assuming that we are not 
lose to a spin{orbit resonan
e).

radiation takes pla
e. To pro
eed further, we need to dis
uss ways to integrate spins along non{

periodi
 orbital traje
tories, so that we 
an 
al
ulate these quantities. The starting point for this is

the T{BMT equation of spin motion (3.10) or (3.12)

d

b

S

ds

=

~


(~u; s)�

b

S = 
(~u; s)

b

S

Sin
e the elements of 
 depend on the phase spa
e position ~u, so does the spin motion and it is in

general not possible to �nd analyti
al solutions for all initial orbital 
onditions. In the spirit of the

treatment of orbital motion with respe
t to the 
losed orbit, to fa
ilitate perturbation 
al
ulations,

we separate

~


(~u; s) into a periodi
 part

~




0

(s) and a small part ~!(~u; s) due to the syn
hro{betatron

motion, as in eqn. (3.11)

~


(~u; s) =

~




0

(s) + ~!(~u; s) (3.28)

We now re
all that we expe
t the polarization

~

P

eq

(~u; s) to be 
losely aligned along n̂ and that away

from resonan
es (see eqn. (3.42) or (3.44)) n̂ is nearly parallel to n̂

0

. We therefore write the general

solution to the T{BMT equation in the form

b

S( ) = 


0

( ) n̂

0

(s) + �

0

( ) m̂

0

(s) + �

0

( )

^

l

0

(s) (3.29)
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where the spin variables �

0

=

b

S � m̂

0

and �

0

=

b

S �

^

l

0

are expe
ted to be small, so that 


0

=

b

S � n̂

0

=

q

1� �

2

0

� �

2

0

� 1.

12

To obtain the equations of motion for �

0

, �

0

and 


0

we write the above equation

as

b

S ! R

T

0

b

S, where

R

0

=

0

B

�

n̂

0

x

m̂

0

x

^

l

0

x

n̂

0

z

m̂

0

z

^

l

0

z

n̂

0

s

m̂

0

s

^

l

0

s

1

C

A

(3.30)

This transformation implies the 
ompanion transformation


 ! W = R

T

0


R

0

+

dR

T

0

ds

R

0

= R

T

0

!!!R

0

(3.31)

for whi
h the orthogonality of R

0

has been used. The matrix !!! is here the anti{symmetri
 matrix of


omponents in ~!, in analogy with 
(~u; s) in eqn. (3.12). In an a

elerator

~




0

is normally pie
ewise


onstant and one{turn periodi
 to a good approximation and the derivation of R

0

is hen
e straightfor-

ward (
f. eqn. (3.14) and following text). After the transformation we are left with a 
oupled system

of nonlinear di�erential equations in the spin 
omponents �

0

, �

0

and 


0

d

ds

�

R

T

0

b

S

�

= W

�

R

T

0

b

S

�

()

d

ds

0

B

�




0

�

0

�

0

1

C

A

=

0

B

�

0 �

^

l

0

� ~! m̂

0

� ~!

^

l

0

� ~! 0 �n̂

0

� ~!

�m̂

0

� ~! n̂

0

� ~! 0

1

C

A

0

B

�




0

�

0

�

0

1

C

A

(3.32)

The nonlinearities are buried in the dependen
e of ~! on phase spa
e position ~u and the fa
t that only

two of the spin variables 
an vary independently. Moreover, sin
e ~! depends on s, the W{matri
es


al
ulated at di�erent azimuths do not 
ommute. A perturbative solution to (3.32) 
an be found in

the form of an azimuth{ordered

13

exponential, analogous to the von Neumann expansion in quantum

me
hani
s [Ne55℄
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�
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+
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+
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0
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#
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1

C
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i

(3.33)

12

The empty bra
es indi
ate the dependen
e of

b

S and 


0

; �

0

; �

0

on the initial 
oordinates and the transport therefrom,

( ) = (~u

i

; s; s

i

)

13

here implied by the operator A
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However we are interested in a spe
ial solution to the T{BMT equation, namely n̂. There are

a handful of methods available for the derivation of this quantity. In order to illustrate the origin

of spin{orbit resonan
e stru
tures I will 
on
entrate mainly on one of them, namely the perturba-

tive SMILE formalism by Mane [Ma86b℄. Before embarking on this, I should mention a few of the

other s
hemes. Two newer non{perturbative methods are espe
ially interesting. The SPRINT algo-

rithm [Vo00, Ho00a℄ 
omputes an approximation of n̂ using a te
hnique developed by Heinemann and

Ho�st�atter 
alled strobos
opi
 averaging [HH96℄. In the SPRINT 
ode, multi{turn spin{orbit tra
king

is performed for linearized orbital motion, but fully nonlinear spin motion and all orders of resonan
e

(see below) emerge automati
ally. The 
ode has been optimized for the spin{orbit tra
king of protons

but unfortunately la
ks a des
ription of the features spe
i�
 to radiating parti
les su
h as ele
trons.

At the moment the 
ode does not handle the 
al
ulation of

�n̂

�Æ

(~u; s). In the SODOM algorithm [Yo92℄

n̂ is represented by a spinor 	

n̂

.

14

By utilizing the periodi
ity 
ondition n̂(~u; s) = n̂(~u; s+C) and the


orresponding periodi
ity 
ondition for the one{turn 2�2 spinor transfer matrix T on a syn
hro{beta

orbit

T(�

k

)	

n̂

(�

k

) = e

� i �

~u

=2

	

n̂

(�

k

+ 2��

k

) 8 k 2 fx; z; sg (3.34)

where the �

k

are the initial orbital phases, �

k

are the tunes of the three orbital degrees of freedom

k, and �

~u

is the so 
alled amplitude dependent spin tune [Vo00, Ho00a℄, an eigen problem in the

Fourier 
omponents of T(�

k

) and 	

n̂

(�

k

) 
an be formulated. The Fourier 
oeÆ
ients are obtained

numeri
ally from spin{orbit tra
king data and the eigenve
tor of Fourier 
omponents of n̂ allows the

invariant spin �eld to be re
onstru
ted. By 
onstru
ting n̂ at many points in phase spa
e

�n̂

�Æ

(~u; s)


an be obtained by numeri
al di�erentiation. However, in order to 
al
ulate this derivative at the

nodes of a suÆ
iently �ne phase spa
e mesh, so that reliable results 
an be extra
ted for its use in the

Derbenev{Kondratenko formula, very large 
omputer power is needed. The same holds true if this

derivative is to be 
al
ulated with the SPRINT 
ode. Ways to derive n̂ using Lie algebrai
 methods

have also been developed [Yo87, EY94, BG98℄.

Now, let us return to the SMILE algorithm. Following Mane [Ma86b℄ we de�ne the spheri
al


omponents

V

0

= 


0

; V

�

=

1

p

2

(�

0

� i�

0

) (3.35)

and write

!

0

= n̂

0

� ~! ; !

�

=

�

m̂

0

� i

^

l

0

�

� ~! (3.36)

whi
h leads to the form

d

ds
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�
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=
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B

B

B
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!

+
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�

!

�
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2

0

!

+

p

2

0

!

�

p

2

!

0

1

C

C

C

C

A

0

B

�

V

+

V

0

V

�

1

C

A

= i

�

~! �

~

J

�

T

0

B

�

V

+

V

0

V

�

1

C

A

(3.37)

for the equation of motion for the 
omponents of n̂, where

~

J is a ve
tor of spin{1 angular momentum

matri
es. The solution for n̂ is then given in the form of a von Neumann expansion as

14

For an introdu
tion to SU(2) spinor algebra, see [Mo84℄.
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(s) = lim

�!0

+

A exp

�

i

Z

s

�1

�
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~
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�

T

e

�s

0

ds

0

�

0

B

�

0

1

0

1

C

A

(3.38)

where the in
lusion of the damping fa
tor e

�s

0

(� > 0 ) ensures that the solution n̂ has the 
orre
t

periodi
ity property n̂(~u; s) = n̂(~u; s + C). The in
orporation of the damping fa
tor 
an also be

interpreted in terms of the adiabati
 invarian
e of S

n

= j

b

S � n̂j. Suppose that we start at \�1" with

a spin aligned parallel to n̂

0

on the 
losed orbit. As the spin evolution is followed (tra
ked) forward

in time, the orbit amplitude is slowly in
reased until it rea
hes full size. Provided that the in
rease of

the orbit amplitude is slow enough, the spin will stay aligned with, and be an approximation of, the

pre{established invariant spin �eld n̂(~u; s) during this anti{damping pro
edure.

To illustrate the properties of the derived ve
tor �eld a perturbative expansion in powers of ~! is

made and we will look at the stru
ture of the integrals for the �rst few orders. In order to emphasize

the key features I will restri
t the des
ription to the 
ase of linear orbital motion and be quite symboli
.

To �rst order in ~! eqn. (3.38) reads

0

B

�

V

+

V

0

V

�

1

C

A

(s) =

1

0

B

�

0

1

0

1

C

A

+ lim

�!0

+

i

p

2

Z

s

�1

0

B

�

�!

+

0

!

�

1

C

A

e

�s

0

ds

0

(3.39)

Note that in the linear approximation ~! is linear in the orbital amplitudes, A

k

, and we 
an write

~! =

1

P

k

A

k

~!

k

, where now k 2 f1; : : : ; 6g labels the six orbital normal modes. Due to the quasi{

periodi
ity of the syn
hro{betatron os
illations and the rotation of the spin basis, the integrand is a

quasi{periodi
 fun
tion obeying !

k�

(s+ C) = e

i 2�(�

k

��

0

)

!

k�

(s) for ea
h k, so that

15

V
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(s) =

1
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+
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+
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(3.40)

In this parti
ular perturbation expansion, we see that in the �rst order terms (of whi
h there are six)

the summation of the geometri
al series of phase fa
tors leads to �rst order resonan
e denominators.

If the expansion is taken to se
ond or higher order, similar resonan
e denominators will emerge. For

example, at se
ond order and with an obvious notation

0

B

�

V

+

V

0

V

�

1

C

A

2

(s) = lim

�!0

+

i

Z

s

�1

�

~! �

~

J

�

T

0

B

�

V

0

+

V

0

0

V

0

�

1

C

A

1

e

�s

0

ds

0

(3.41)

15

Note that the periodi
ity 
ondition for the 
omponents !

k0

read as !

k0

(s+ C) = e

i 2��

k

!

k0

(s).
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Observe that as before ea
h nonzero element in

�

~! �

~

J

�

T

is a sum of 6 terms and the V

�;0

are themselves

sums of 6 terms (
f. eqn. (3.40)). At se
ond order we therefore have 6� 6 = 36 groups of integrals.

16

In analogy with the �rst order 
ase, ea
h integral from �1 to s 
an be written as a sum of one

turn integrals. Then, owing to the quasi{periodi
ity of the integrand one �nds that in addition to

the �rst order resonan
e denominators 
ontained in the �rst order V 's in the integrand, ea
h of the

terms a
quires a se
ond order resonan
e denominator of the kind exp [ i 2�(

P

k

m

k

�

k

� �

0

) ℄� 1 with

P

jm

k

j = 2. In the same way higher order resonan
e denominators emerge from the integration of

terms 
ontaining resonan
e denominators of all lower orders.

Note that when the perturbative solution is transformed ba
k into the ma
hine 
oordinates, it

satis�es the periodi
ity 
ondition n̂(~u; s) = n̂(~u; s + C) order by order. The resonan
e denominators

appearing in this perturbative formulation 
learly show, as expe
ted, that when the spin motion is


oherent with the orbital motion the n̂{axis is strongly tilted away from n̂

0

and the spin motion

be
omes extremely sensitive to small 
hanges in the orbit variables. Then

�n̂

�Æ

(~u; s) 
an be large so

that spin di�usion 
an be strong. In this perturbation theory the resonan
e 
ondition is written as

�

0

= m+m

x

�

x

+m

z

�

z

+m

s

�

s

(3.42)

where the m's are integers and the �'s are the tunes of the three orbital modes. The appearan
e of

�

0

in the resonan
e 
ondition (3.42) is an artifa
t of the perturbative treatment. A non{perturbative

treatment would deliver the 
ondition � = m + m

x

�

x

+ m

z

�

z

+ m

s

�

s

where � is the amplitude

dependent spin tune [VBH98, Vo00, Ho00a℄ and 
an di�er from �

0

. At HERA energies the di�eren
e

is negligible.

The resonan
es 
an be 
lassi�ed into several groups. Syn
hro{betatron resonan
es with jm

x

j +

jm

z

j+ jm

s

j 6= 0 are sometimes referred to as \intrinsi
 resonan
es". The integer jm

x

j+ jm

z

j+ jm

s

j is


alled the order of the resonan
e. Hen
e the 
ondition jm

x

j+ jm

z

j+ jm

s

j = 1 
orresponds to �rst order

resonan
es whi
h, as we have seen, emerge from �rst order integrals as in eqn. (3.40). Another type

of resonan
e may appear when �

0

= integer, i.e. a zeroth order resonan
e in the adopted terminology.

In a real storage ring unavoidable magnet misalignments and �eld errors give rise to horizontal and

longitudinal �elds on the 
losed orbit, that 
ause n̂

0

to tilt away from its nominal dire
tion. This tilt is

espe
ially large near su
h \integer resonan
es". If �

0

would be an integer, the one{turn spin rotation

matrix evaluated on the 
losed orbit would be a unit matrix and n̂

0

(s) would not be unique. Note that

this kind of zeroth order resonan
e (
alled \imperfe
tion resonan
es" in the �eld of polarized protons)

does not appear here, be
ause we are 
al
ulating depolarization rates with respe
t to n̂

0

(or n̂) at a

�xed energy or for a narrow range of energies.

17

The e�e
ts of 
losed orbit distortions are therefore

best a

ounted for already in the 
al
ulation of n̂

0

. A loss of polarization may nonetheless appear at

integer values of �

0

, be
ause a strong tilt of n̂

0

away from its nominal dire
tion 
an 
ause terms in the

so 
alled G matrix (see Se
tion 3.2.1 and Chapter 4) to swit
h on and lead to strong depolarization

related to the syn
hrotron motion. An example of this 
an be seen in Chapter 6, Figure 6.9 (top left)

where the broad �rst order syn
hrotron resonan
es have swept away the polarization at the positions

of integer �

0

. Moreover, very 
lose to integer values of �

0

imperfe
tions 
an 
ause n̂

0

to be so strongly

tilted away from the verti
al in the ar
s that the numerator in eqn. (3.17) be
omes small. Then the

Sokolov{Ternov e�e
t itself be
omes weak and the attainable polarization is small independently of

depolarization e�e
ts. This is also illustrated in Figure 6.9.

In pra
ti
e the dominant higher order resonan
es are the syn
hrotron sidebands of �rst order parent

betatron resonan
es

16

Note that, be
ause of the multipli
ation in these integrals of terms linear in A

k

, the

 

V

+

V

0

V

�

!

2

is se
ond order in

the orbital amplitude.

17

But the imperfe
tion resonan
es are important for the a

eleration of polarized protons.
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�

0

= m� �

y

+m

s

�

s

(3.43)

(re
all the generi
 use of the symbol �

y

, representing either �

x

or �

z

). These originate in the syn
hrotron

part of the term n̂

0

�~! in eqn. (3.32) (see also eqn. (3.51) and the paragraph following), whi
h represents

a modulation of the instantaneous rate of spin pre
ession around n̂

0

due to energy os
illations. More

details on syn
hrotron sidebands and estimates of their strengths will be given in Se
tion 3.2.3 but

sin
e we have been dis
ussing integer resonan
es, it is already appropriate to point out here that

syn
hrotron sidebands of parent �rst order syn
hrotron resonan
es 
an also o

ur and that they 
an

produ
e integer resonan
es [Ma90, Ma92, Yo83, Yo92℄. But these 
an o

ur even in the absen
e of

imperfe
tions, namely if the ring is not properly spin mat
hed for syn
hrotron motion.

So far in our treatment the simplifying assumption has been made that the horizontal, verti
al

and longitudinal os
illation modes of the parti
les are un
oupled. However, in pra
ti
e a more or less

strong inter{mode 
oupling always exists and the perturbative spin{orbit resonan
e 
riterion be
omes

�

0

= m+m

I

�

I

+m

II

�

II

+m

III

�

III

(3.44)

where �

I

, �

II

and �

III

are the orbit eigentunes in the presen
e of 
oupling. At this point, it should be

emphasized that neither 
oupling nor in
lusion of higher order terms in ~!, viz. nonlinear �elds, are a

prerequisite for the o

urren
e of higher order resonan
es. The dominant 
ontribution to all orders

instead 
omes from non
ommutation between spin rotations around di�erent axes. The in
uen
e of

non
ommutation is manifested in the nontrivial stru
ture of the azimuth{ordered integrals used for

the perturbative derivation of n̂(~u; s) just summarized.

18

Observe also that the higher order integrals

des
ribe the 
ombined e�e
ts of independent orbital modes.

Equation 3.38 has been implemented by Mane in the SMILE 
ode. The SMILE perturbation

expansion is a power series in the orbital amplitudes, whi
h after averaging over the beam distribution

be
omes a series in the emittan
es. It is a uni�ed approa
h where all resonan
es are treated on equal

footing. Unfortunately the algorithm su�ers from 
onvergen
e problems at large a
 and is therefore

not a pra
ti
ally useful tool for 
al
ulations of n̂ and its partial derivative

�n̂

�Æ

at HERA energies.

3.2.1 Linear approximation | the SLIM formalism

As we have seen, solving the general equation of spin motion (3.10) with the purpose of �nding the

spe
ial solution n̂, and being able to 
al
ulate

�n̂

�Æ

, 
an be far from trivial. It is therefore valuable

to approximate by formulating a simpli�ed problem equivalent to �rst order SMILE, for whi
h it is

possible to �nd 
losed analyti
al solutions. This is a
hieved by linearizing the orbit and the spin

motion. Here I will follow the route layed out in [MR83℄ and start with the orbit motion.

In Appendix A a presentation of the Abraham{Lorentz equation of motion is made, and the

design orbit referen
e traje
tory is introdu
ed. The linear formalism I will dis
uss here is based upon

an extension of the well known 6� 6 matrix formalism for des
ribing parti
le motion through latti
e

elements, in whi
h a transformation to the 
losed orbit as a new referen
e traje
tory is made. In the

absen
e of radiation, the transport of a phase spa
e ve
tor ~u from azimuth s

0

to s

1


an be des
ribed

by a symple
ti
, i.e. phase spa
e volume preserving, transfer matrix M. Introdu
ing the notation

~

X(s

0

) = ~u

s=s

0

and

~

X(s

1

) = ~u

s=s

1

this transport is given by

~

X(s

1

) =M(s

1

; s

0

)

~

X(s

0

) (3.45)

18

An alternative, but equivalent perturbation formulation is given in [BHR92℄.
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The periodi
 
losed orbit in a 
ir
ular a

elerator is generally not identi
al with the design orbit.

RF 
avities are ne
essary in the latti
e to 
ompensate for the radiation losses, mainly o

urring in

the ar
s. This 
auses the azimuthal variation of the energy of the 
ir
ulating parti
les to attain a

\sawtooth" shape. A real ma
hine always su�ers from misalignments of the magnets and 
ompen-

sation magnets are therefore usually needed. There 
an also be other perturbing �elds in the latti
e


oming from insertion devi
es, experimental stations, beam ki
kers for inje
tion et
. By extending

the six{dimensional phase spa
e ve
tor with a seventh 
omponent equal to unity,

~

X

7

� (~u; 1), and


orrespondingly enlarging the transfer matrixM

6�6

!M

7�7

, the 
losed orbit 
an be 
al
ulated. The

transformation through a latti
e element then reads as

~

X

7

(s

1

) = M

7�7

(s

1

; s

0

)

~

X

7

(s

0

) (3.46)

M

7�7

=

 

M

6�6

~

N

6

0 1

!

(3.47)

where the ve
tor

~

N

6

depends on the perturbing ele
tromagneti
 �elds along the design orbit. Imposing

the periodi
ity 
ondition:

~

X

7

(s

0

+C) =

~

X

7

(s

0

) gives for the 
losed orbit ve
tor at the initial position

s

0

~

X

0

(s

0

) =

�

I�M

6�6

(s

0

+ C; s

0

)

�

�1

~

N

6

(s

0

+ C; s

0

) (3.48)

By using eqn. (3.46) the 
losed orbit X

0

(s) 
an be found at every position in the latti
e. In prin
iple

the sextupoles have to be in
luded in the 
al
ulation of the 
losed orbit. This gives rise to a nonlinear

problem and it has to be solved by iteration. The elements of the enlarged transfer matrix M

7�7

for

various magnet types 
an be found in [Ch79℄ or [MR83℄. With the knowledge of the 
losed orbit, the

syn
hro{betatron os
illations 
an be des
ribed using this periodi
 orbit as a new referen
e traje
tory.

Already in Se
tion 3.1 a de
omposition of the spin motion into a 
losed orbit 
ontribution and

a syn
hro{beta 
ontribution was introdu
ed, and at the beginning of this se
tion a transformation

was made to a frame rotating with the spin on the 
losed orbit, so that the spin evolution 
ould

be des
ribed in terms of the small quantities �

0

and �

0

. The parti
ular spin basis 
hosen for that

dis
ussion however is not one{turn periodi
, but for the following des
ription we will need a periodi


spin basis. Su
h a spin basis 
an most easily be 
onstru
ted from the non{periodi
 basis (n̂

0

; m̂

0

;

^

l

0

)

by introdu
ing an additional ba
kward rotation around n̂

0

by an angle  

0

(s) thus

m̂(s) + i

^

l(s) = e

�i 

0

(s)

h

m̂

0

(s) + i

^

l

0

(s)

i

(3.49)

and requiring that  

0

(s+ C)�  

0

(s) = 2��

0

. The new unit ve
tors m̂ and

^

l, together with n̂

0

, then

form a s{periodi
 righthanded set (n̂

0

; m̂;

^

l ) with period C. The n̂{axis 
an be expressed in terms of

this new spin basis as

n̂(~u; s) = 
(~u; s) n̂

0

(s) + �(~u; s) m̂(s) + �(~u; s)

^

l(s) (3.50)

with 
 =

p

1� �

2

� �

2

, where the 
, � and � are, like n̂, periodi
 in s at �xed ~u. The 
omponents �

and � satisfy the nonlinear system of di�erential equations (
ompare eqn. (3.32))

�

0

=

q

1� �

2

� �

2

~! �

^

l � � (n̂

0

� ~!) + �  

0

0

(s)

�

0

= �

q

1� �

2

� �

2

~! � m̂+ � (n̂

0

� ~!)� � 

0

0

(s) (3.51)
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Now, assuming that n̂ remains 
lose to n̂

0

(a reasonable assumption away from resonan
es, as pointed

out earlier), implying that � and � 
an be assumed to be small quantities, the above expressions 
an

be simpli�ed. In the approximation of linear orbit and spin motion, i.e. linearizing ~! in the orbital


oordinates su
h that ~! =

1

F

3�6

~u (equivalent to the ansatz ~! =

1

P

k

A

k

~!

k

used earlier), and dropping

terms of higher order in � and �, the di�erential equations for � and � redu
e to

�

0

= ~! �

^

l+ �  

0

0

�

0

= �~! � m̂� � 

0

0

(3.52)

whi
h 
an be straightforwardly solved. In this linear approximation the Derbenev{Kondratenko n̂{axis

is given by

n̂(~u; s) = n̂

0

(s) + �(~u; s) m̂(s) + �(~u; s)

^

l(s) (3.53)

valid as long as

p

�

2

+ �

2

� 1.

By 
ombining the orbit and spin des
riptions in a fashion that was �rst done by Chao [Ch81a℄,

we arrive at a 
ompa
t 8� 8 matrix notation. In this formalism the orbit and spin motions through

the various latti
e elements are represented by 8 � 8 matri
es a
ting on an 8{dimensional spin{orbit

\phase spa
e ve
tor" (~u; �; �)

T

, e�e
tively des
ribing the motion with respe
t to an 8{dimensional


losed orbit:

d

ds

0

B

�

~u

�

�

1

C

A

= A

8�8

0

B

�

~u

�

�

1

C

A

(3.54)

whereA

8�8

is a 
oeÆ
ient matrix, whose form is given for various ring elements for example in [MR83℄.

The general solution to this equation is written in terms of the 8� 8 transfer matrix

M

8�8

=

 

M

6�6

0

6�2

G

2�6

D

2�2

!

(3.55)

Re
all thatM

6�6

is a symple
ti
 matrix, des
ribing the \Hamiltonian part" of the orbital motion with

respe
t to the 
losed orbit. The radiation is taken into a

ount in a se
ond step of the 
al
ulations.

The G

2�6

matrix des
ribes the 
oupling of the spin variables to the orbital motion. It is the transfer

matrix of the spin variables � and �, giving the solution of the linearized equation (3.52)

 

�(s)

�(s)

!

= G

ij

X

j

(s

0

) +D

2�2

 

�(s

0

)

�(s

0

)

!

(3.56)

with

G

1j

=

��

�x

j

G

2j

=

��

�x

j

8 j 2 f1; : : : ; 6g

The elements G

ij

of the G matrix generally depend upon the orientation of the spin base ve
tors

^

l(s)

and m̂(s) as well as on 
hara
teristi
s of the �eld of the parti
ular latti
e element. For later use I

introdu
e the notationG = (G

x

;G

z

;G

s

), where theG

x

,G

z

andG

s

are 2�2 matri
es asso
iated with

the spin 
oupling to the orbital motion in the horizontal, verti
al and longitudinal planes, respe
tively.

The G matrix plays a vital role in some formulations of spin mat
hing 
onditions, see Chapter 4
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and [BR99℄. Examples of G matri
es for various magnet types are given in [Bb85b℄. This formalism

usually does not take into a

ount the weak Stern{Gerla
h for
es 
ausing the spin motion to a
t ba
k

on the orbital motion, hen
e the 0

6�2

in the last two 
olumns ofM

8�8

. The D

2�2

in the bottom right


orner is a rotation matrix related to the spin phase manipulation needed to satisfy the spin basis

periodi
ity requirement. We 
hoose to apply this ba
kward rotation � 

0

= 2��

0

to m̂

0

,

^

l

0

and G at

the end of ea
h turn.

D

2�2

(s+ C; s) =

 


os 2��

0

sin 2��

0

� sin 2��

0


os 2��

0

!

(3.57)

Solving the eigen problem posed by the one turn map: M

8�8

(s + C; s) ~q

�

(s) =

^

�

�

~q

�

(s), gives

eigenve
tors of the form

~q

k

(s) =

 

~v

k

(s)

~w

k

(s)

!

; ~q

�k

(s) = [~q

k

(s)℄

�

8 k 2 fI; II; IIIg

~q

k

(s) =

 

~

0

6

~w

k

(s)

!

; ~q

�k

(s) = [~q

k

(s)℄

�

k = IV (3.58)

The eigenve
tors asso
iated with the orbital motion, ~v

k

are normalized a

ording to ~v

y

�k

S~v

�k

= �i

19

,

whereas the spin parts of the eigenve
tors, ~w

k

are given by

~w

k

(s) = �

h

D(s + C; s)�

^

�

k

i

�1

G(s+ C; s)~v

k

(s) 8 k 2 fI; II; IIIg

~w

k

(s) =

1

p

2

 

1

�i

!

e

�i 

0

(s)

k = IV (3.59)

with

~w

�k

(s) = [~w

k

(s)℄

�

8 k 2 fI; II; III; IV g

The 
orresponding eigenvalues of M

8�8

(s + C; s) are

^

�

k

= e

i2��

k

, where �

k

are the orbital tunes

(k 2 fI; II; IIIg ) and �

IV

= �

0

; �

�k

= ��

k

( k 2 fI; II; III; IV g ).

In the absen
e of radiation

~u(s) =

X

k=I;II;III

fA

k

~v

k

(s) +A

�k

~v

�k

(s)g (3.60)

where the amplitudes A

k

are 
onstants of motion. However, the syn
hrotron radiation adds a non{

Hamiltonian part to the problem. But the radiation e�e
ts in a storage ring are usually weak (in

HERA for example the radiation losses in one turn are only a fra
tion of a per
ent of the total energy)

and 
an therefore be treated as a perturbation. Hen
e using perturbation theory the full problem,

in
luding radiation, 
an be solved and then [Ch79, MR83, EMR99℄ in the linear approximation the

solution to the orbital part of the problem has the general form

19

~v

y

= (~v

�

)

T

and S is the unit symple
ti
 matrix de�ned by S =

0

B

B

B

B

B

�

0 �1 0 0 0 0

1 0 0 0 0 0

0 0 0 �1 0 0

0 0 1 0 0 0

0 0 0 0 0 �1

0 0 0 0 1 0

1

C

C

C

C

C

A
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~u(s) =

X

k=I;II;III

fA

k

(s)~v

k

(s) +A

�k

(s)~v

�k

(s)g (3.61)

where again the A

k

(s) are the amplitudes for the orbital modes k but are now s dependent sto
hasti


variables. It was pointed out earlier that the ele
tron beam size is determined by the balan
e between

quantum di�usion and radiation damping. Be
ause of the statisti
al 
hara
ter of the radiation, the only

relevant quantities whi
h 
an be evaluated are moments of statisti
al distributions. The equilibrium

values of the beam dimensions 
an be 
al
ulated from eqn. (3.61) using the expression originally given

by Chao [Ch79, MR83, Bb91, EMR99℄

hjA

k

j

2

i =

55r

e

�h


5

48

p

3m
�

k

I

jv

k5

j

2

j�(s)j

3

ds (3.62)

whi
h is independent of azimuth s and where the �

k

are the radiation damping 
onstants

�

k

=

T

�

k

= �2�=mf ��

k

g; (k 2 fI; II; IIIg ) (3.63)

with T the revolution time and �

k

the radiation damping times. Further, the ��

k

are the 
omplex

tune shifts 
aused by the (non{symple
ti
) damping.

Moreover, in the linear approximation n̂(~u; s) is given by a simple expression in terms of (un-

damped!) eigenve
tors and amplitudes [Ma85, BHR92℄

n̂(~u; s)� n̂

0

(s) �

 

�(~u; s)

�(~u; s)

!

=

X

k=I;II;III

fA

k

~w

k

(s) +A

�k

~w

�k

(s)g (3.64)

where the amplitudes are determined by the position in phase spa
e ~u through (3.60). Re
all from our

previous heuristi
 pi
ture that the non{
ip spin motion is not dire
tly a�e
ted by the radiation, but

only indire
tly through the orbital motion. The expli
it dependen
e of n̂ on ~u 
an be seen by writing

eqn. (3.64) as

 

�(~u; s)

�(~u; s)

!

= �2<e

(

X

k=I;II;III

i ~w

k

(s) � ~v

y

k

(s)S

)

~u(s) = H

2�6

~u(s) (3.65)

The linearized version of the spin{orbit 
oupling fun
tion, given in the (n̂

0

; m̂;

^

l ) frame reads [Ma85℄

�n̂

�Æ

(s) � i

X

k=I;II;III

fv

�

k5

~w

k

� v

k5

~w

�

k

g = �2=m

X

k=I;II;III

v

�

k5

~w

k

(3.66)

Note that to �rst order the spin{orbit 
oupling fun
tion does not depend on the phase spa
e position

~u. Ea
h term in the sum in (3.66) essentially des
ribes the produ
t of the sensitivity of an orbit

amplitude to a fra
tional energy 
hange (v

�

k5

) with the sensitivity of n̂ to that orbit amplitude (~w

k

).

The linearization of n̂ and

�n̂

�Æ

has the e�e
t that only resonan
es of the �rst order 
an be reprodu
ed

(
f. eqn. (3.44))
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�

0

= m+m

I

�

I

+m

II

�

II

+m

III

�

III

where jm

I

j + jm

II

j + jm

III

j = 1. These arise from the denominator matrix in eqn. (3.59). Observe

that the theory is only valid for

p

�

2

+ �

2

� 1.

Finally, the depolarization rate in this approximation is given using eqn. (3.25) by

�

�1

dep;lin

=

55

p

3
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5

�h

m

1

C

I

1

j�(s)j

3

X

j=1;2

0

�

=m

X

k=I;II;III

v

�

k5

(s)w

kj

(s)

1

A

2

ds (3.67)

The linear formulation presented here is usually 
alled the SLIM formalism sin
e it makes use of the

8�8 matrix and the eigenve
tors introdu
ed by Chao [Ch81a, Ch81b℄ in the 
ode SLIM. There, instead

of being used to des
ribe n̂ the matri
es and eigenve
tors are used to estimate the depolarization rate

for spins whi
h are initially on the 
losed orbit and di�use away from n̂

0

, but the same expression as

in eqn. (3.67) for �

�1

dep;lin

is obtained.

3.2.2 Alternative formulations of the linear radiative spin theory

Until now our des
ription of 
oupled linear spin{orbit motion has been 
arried out using the parti
le


oordinates ~u � (x; x

0

; z; z

0

; `; Æ) '

�

x;

p

x

p

; z;

p

z

p

; `; Æ

�

. However, additional valuable insight into spin{

orbit dynami
s 
an be gained by rewriting the SLIM formalism in terms of \betatron{dispersion"


oordinates, namely by de�ning

x

�

= x� Æ D

1

; z

�

= z � Æ D

3

(3.68)

Here

~

D � (D

1

; D

2

; D

3

; D

4

) is the dispersion ve
tor

20

and x

�

, z

�

are the free betatron os
illations

about the instantaneous orbit Æ D

1;3

(s). The 
orresponding 8 � 8 matrix formalism is obtained by

making a 
anoni
al transformation of the 
oordinates thus [BR99℄

~

~u = K � ~u (3.69)

where

K(s) =

0

B

B

B

B

B

B

B

�

1 0 0 0 0 �D

1

0 1 0 0 0 �D

2

0 0 1 0 0 �D

3

0 0 0 1 0 �D

4

D

2

�D

1

D

3

�D

4

1 0

0 0 0 0 0 1

1

C

C

C

C

C

C

C

A

(3.70)

For instan
e the new 6� 6 orbit transfer matrix

~

M is obtained via

20

~

D is the periodi
 solution of the linearized equations of motion for

�

x;

p

x

p

; z;

p

z

p

�

when Æ = 1 and without the RF


avities.
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~

M(s

1

; s

0

) = K(s

1

) �M(s

1

; s

0

) �K

�1

(s

0

) (3.71)

=)

~

~v

k

(s) = K(s)~v

k

(s) (3.72)

and the 
orresponding matrix for the spin,

~

G, is given by

~

G(s

1

; s

0

) = G(s

1

; s

0

) �K

�1

(s

0

) (3.73)

The spin 
omponents of the eigenve
tors 
an now be expressed as

~

~w

k

(s) = �

h

D(s+ C; s)�

^

�

k

i

�1

~

G(s + C; s)

~

~v

k

(s) 8 k 2 fI; II; IIIg (3.74)

Note that the eigenvalues (tunes) are un
hanged under this transformation, and that

~

~w

k

= ~w

k

. As

a result of the separation of the transverse 
oordinates into betatron and dispersion 
ontributions,


olumns 1� 4 of

~

G for a magnet only 
ontain terms depending on the betatron 
oordinates, whereas

the sixth 
olumn 
ontains terms depending on the dispersion. This 
ir
umstan
e 
an be used when

analyzing the origin of �rst order resonan
es.

Spin{orbit 
oupling 
an now also be dis
ussed in terms of

~

G, but the use of betatron{dispersion


oordinates also allows us to dis
uss spin{orbit 
oupling dire
tly in terms of Courant{Snyder pa-

rameters. Assuming now that the transverse phase spa
e planes are de
oupled, then ~! in the linear

approximation 
an be de
omposed into its 
ontributions due to radial betatron (x

�

), verti
al betatron

(z

�

) and longitudinal (s) motion

~!(

~

~u; s) =

1

~

~!

x

�

(

~

~u; s) +

~

~!

z

�

(

~

~u; s) +

~

~!

s

(

~

~u; s) (3.75)

In analogy with our previous de
omposition into amplitudes and eigen modes (see eqn. (3.40) and

a

ompanying text) we rewrite this as

~!(

~

~u; s) =

1

1

2

X

j

�

~

A

+j

~

~!

+j

(s) +

~

A

�j

~

~!

�j

(s)

�

8 j 2 fx

�

; z

�

; sg (3.76)

where

~

A

�j

are new orbit amplitudes for the modes j. By taking into a

ount only the dominant


ontributions, namely from the quadrupoles, we are left with [CY81, BS86, BR99℄

~

~!

�x

�

(s) = (a
 + 1) g(s)

q

�

x

(s) e

�i 

x

(s)

ê

z

~

~!

�z

�

(s) = �(a
 + 1) g(s)

q

�

z

(s) e

�i 

z

(s)

ê

x

(3.77)

~

~!

�s

(s) = (a
 + 1) g(s) [ ê

z

D

x

(s)� ê

x

D

z

(s) ℄ e

�i 

s

(s)

where g =

e


E

0

�

�B

z

�x

�

x=z=0

are the normalized quadrupole �eld gradients. We de�ne the one{turn

linear spin{orbit 
oupling integrals as
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J

�x

(s) =

Z

s+C

s

h

m̂

0

(s

0

) + i

^

l

0

(s

0

)

i

�

~

~!

�x

�

(s

0

) ds

0

J

�z

(s) =

Z

s+C

s

h

m̂

0

(s

0

) + i

^

l

0

(s

0

)

i

�

~

~!

�z

�

(s

0

) ds

0

(3.78)

J

�s

(s) =

Z

s+C

s

h

m̂

0

(s

0

) + i

^

l

0

(s

0

)

i

�

~

~!

�s

(s

0

) ds

0

An a

elerator latti
e is said to be linearly spin mat
hed at an azimuth s

0

if for all k 2 f�x;�z;�sg

the J

k

(s

0

) vanish. These spin mat
hing 
onditions are equivalent to requiring that

~

G(s+C; s)

~

~v

k

(s) = 0

in eqn. (3.74) for one turn, starting at s = s

0

(see also eqn. (3.59)). Spin mat
hing in terms of the G

matrix will be dis
ussed in Chapter 4. The relevan
e of the spin{orbit 
oupling integrals is illustrated

by the fa
t that in the betatron{dispersion formalism, and 
onsidering just the e�e
t of quadrupoles,

eqn. (3.66) be
omes

�n̂

�Æ

(s) =

1

1

2

=m

X

k=�x;�z;�s

h

m̂

0

(s) + i

^

l

0

(s)

i

�

�

k

(s) (3.79)

where

�

�x

(s) =

e

�i 

x

(s)

e

i 2�[�

0

��

x

℄

� 1

J

�x

(s)

[�D

x

(s)� if�

x

(s)D

x

(s) + �

x

(s)D

x

0

(s)g℄

q

�

x

(s)

�

�z

(s) =

e

�i 

z

(s)

e

i 2�[�

0

��

z

℄

� 1

J

�z

(s)

[�D

z

(s)� if�

z

(s)D

z

(s) + �

z

(s)D

z

0

(s)g℄

q

�

z

(s)

(3.80)

�

�s

(s) =

e

�i 

s

(s)

e

i 2�[�

0

��

s

℄

� 1

J

�s

(s)

Thus

�n̂

�Æ

(s

0

) vanishes if the latti
e is linearly spin mat
hed at s

0

. Note that � and � appearing in

the third fa
tor in the �rst two equations above are the Courant{Snyder parameters and should not

be 
onfused with the spin variables introdu
ed in eqn. (3.50). The expression for

�n̂

�Æ

in eqn. (3.79) in

terms of spin{orbit 
oupling integrals is identi
al to the expression for the ve
tor

~

d given by Chao and

Yokoya [CY81℄ in their 
al
ulation of spin di�usion with respe
t to n̂

0

.

3.2.3 Syn
hrotron sidebands

The depolarization rate asso
iated with sidebands of isolated parent resonan
es, �

0

= m � �

y

, is

approximately proportional to the depolarization rate of the parent resonan
e. For example, using

betatron{dispersion 
oordinates, one �nds that the modi�
ation, due to sidebands, to the depolar-

ization rate asso
iated with an isolated parent betatron resonan
e 
an be represented symboli
ally

as

21

�

�1

dep

/

A

(�

0

� �

y

)

2

! �

�1

dep

/

1

X

m

s

=�1

AB(�;m

s

)

(�

0

� �

y

�m

s

�

s

)

2

(3.81)

21

Analogous but di�erent formulae 
an also be derived for the e�e
t of syn
hrotron sidebands of a parent �rst order

syn
hrotron resonan
e.
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where A is an energy dependent fa
tor originating in the non{resonant fa
tors in eqn. (3.79) when

evaluating the depolarization rate using eqn. (3.25). The B(�;m

s

)'s, whi
h are 
alled enhan
ement

fa
tors, 
ontain modi�ed Bessel fun
tions I

jm

s

j

(�) and I

jm

s

j+1

(�) depending on the modulation index

� =

�

a
 �

Æ

�

s

�

2

. The expli
it expression for B(�;m

s

) 
an be found in [Ma90, Ma92℄. See also the

derivation in [Yo83℄. The underlying strength parameter � in
reases strongly with energy and energy

spread. Using HERA parameters, we �nd that � � 1 (with a
 = 62:5, �

Æ

' 1 � 10

�3

and �

s

' 0:06).

Taking � = 1 we �nd the values 0.88, 0.72 and 0.27 for B(�; 0); B(�; 1) and B(�; 2) respe
tively. For

� = 2 the 
orresponding values would be 1.17, 1.02 and 0.58. We see that B(�;m

s

) falls o� as jm

s

j

in
reases, but also that as � in
reases higher order sidebands be
ome more and more signi�
ant. In

any 
ase it is 
lear that syn
hrotron sidebands are important for HERA. It should be emphasized that

this approximation for syn
hrotron sidebands is based on the assumption that the parent resonan
es

are well separated, and does not a

ount for interferen
e e�e
ts. But it is nevertheless a useful guide.

An alternative model for treating syn
hrotron sidebands is presented in Chapter 7.

3.2.4 Higher order Monte Carlo simulations | SITROS

The linear approximation whi
h is the basis for the SLIM formalism, as has been emphasized, only

reprodu
es �rst order resonan
es. This is equivalent to saying that in the SLIM approximation the

!!! at di�erent azimuths 
ommute. However, we know from the multiple integrals dis
ussed earlier

in this 
hapter that we 
annot negle
t non{
ommutation. The sideband e�e
t is a good example of

this. In order to get a realisti
 pi
ture of the spin dynami
s in a storage ring it is therefore ne
essary

to go to higher order. But as we have seen, most of the 
odes available for the 
al
ulation of high

order spin{orbit motion are either not 
ustomized for radiating parti
les and/or require very large


omputing 
apa
ity. What we need is an algorithm where these short
omings have been over
ome by

some reasonable simplifying assumptions and a 
ode that 
an 
al
ulate the equilibrium polarization

for ele
trons.

The SLIM family of programs as well as SMILE, SODOM and SPRINT are all based on 
al
ulations

of the quantities n̂ and

�n̂

�Æ

in the Derbenev{Kondratenko formula (3.20). A more pragmati
 way

of treating spin polarization in rings is employed in the Monte Carlo tra
king 
ode SITROS. Here

the 
entral 
on
ept is the estimation of the depolarization time from tra
king data of a sample of

test parti
les with spins atta
hed to them, under the in
uen
e of radiation damping and sto
hasti


ex
itation of the orbit motion. Hen
e SITROS simulates the heuristi
 model of spin di�usion that

I pi
tured earlier. The SITROS 
ode was originally written and des
ribed by Kewis
h [Ke85℄. A

presentation of the 
ode and the approximations used in the 
al
ulations 
an also be found in [B�o94℄,

but for the sake of 
larity the main 
on
epts and 
onne
tions to relevant underlying physi
s will be

repeated here. An a

ount of re
ent updates to the program is given in Appendix C.

In SITROS an ensemble of ele
trons (positrons) is tra
ked in the ele
tromagneti
 �elds of a storage

ring for many turns. The tra
king takes pla
e in two stages. First only orbital tra
king is performed,

to establish an equilibrium phase spa
e distribution, and in a se
ond stage spin motion is added.

The basi
 equations of motion for the orbit and the spin are given in Appendix A: eqs. (A.1) with

(A.2) and (A.13). Performing dire
t integration of these equations for many parti
les over thousands of

turns in an a

elerator is not pra
ti
al and therefore some form of transfer matrix formalism should be

adopted. In SITROS, the transformation of the orbital 
oordinates through the main latti
e elements

is represented by 6� 6 �rst order maps with built in damping, i.e. Æ dependent e�e
ts 
orresponding

to the term

~

R

D

in eqn. (A.2) are taken into a

ount. The nonlinearities in the latti
e (sextupoles

and beam{beam e�e
ts) are in
luded as thin lens ki
ks. In order to redu
e the 
omputing time, the

ring stru
ture in SITROS is divided into se
tions. The elements in a se
tion of the ring are lumped

together su
h that the individual orbit and spin maps are 
on
atenated into just one map for the orbit

and one map for the spin, representing the entire se
tion. Therefore sto
hasti
 radiation 
an only take
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pla
e between the se
tions. The subdivision is 
hosen by the user, but requires that at least one dipole

(or 
ombined fun
tion magnet) is 
ontained in ea
h division.

The radiation damping built into the orbit matri
es of SITROS re
e
ts the non{Hamiltonian


hara
ter of the problem and implies non{symple
ti
ity. For a pure dipole �eld, the smooth averaged

radiation leads to a damping of the sixth orbital 
oordinate Æ (transverse re
oils a�e
ting x

0

and z

0

are ignored), whereas in 
ombined fun
tion magnets the dissipation 
an 
ause antidamping of the

transverse motion. The phases and voltages of the a

elerating 
avities are set so that the energy lost

in the bending �elds is 
ompensated by the average energy gain in the 
avities. The weak radiation


oming from quadrupoles, sextupoles and solenoids is negle
ted. The sto
hasti
 part of the syn
hrotron

radiation pro
ess, Æ

~

R in Appendix A, is usually modelled as a white noise pro
ess with the properties

given in eqn. (A.11)

h Æ

~

R i = 0

h Æ

~

R(s) Æ

~

R(s

0

) i =

55r

e

�h


5

24

p

3m


1

j�(s)j

3

Æ(s� s

0

)

SITROS approximates the sto
hasti
 radiation e�e
ts by emitting a small number of \high energy"

photons, whi
h in pra
ti
e means that a random ki
k 
hosen from a trun
ated 
entered Gaussian

distribution is given to the energy o�set 
oordinate Æ at the beginning of ea
h se
tion. The tra
king is

started with all parti
les on the 
losed orbit. From our simple di�usion model with damping and noise,

assuming that all initial transients have died away, we expe
t the beam size �

k

(k 2 fI; II; IIIg) to

develop with time as [He97℄

�

k

(t) � �

lin

k

s

1� exp(�

t

�

k

) (3.82)

where �

lin

k

and �

k

are beam size and damping time for mode k from linear theory (eqs. (3.62) and

(3.63)). Writing the random energy 
hange �Æ as a produ
t of a strength fa
tor, K, and a random

variable, �, an estimate for the ex
itation strength needed at the radiation points in the tra
king to

reprodu
e the 
orre
t beam dimensions is given by [B�o94℄

K = 2

s

T h Æ

2

i

�

s

h �

2

iN

R

h �

2

i = 1�

n




p

2

exp

�

�

n

2




2

�

p

�

2

erf

�

n




p

2

�

(3.83)

provided that the 
entered Gaussian random distribution, g(�) des
ribing the emissions has unit

varian
e and is 
ut o� at n




standard deviations. In SITROS the 
ut o� is made at n




= 1. Here

h Æ

2

i and h �

2

i are the se
ond moments of the energy o�set variable Æ and the random variable �

respe
tively, N

R

is the number of radiation points, erf( ) is the error fun
tion [AS70℄, and T is again

the revolution time. Note the expli
it use of the index s in �

s

, indi
ating an un
oupled or only weakly


oupled opti
. To make sure that the model, with only a restri
ted number of radiators representing

the sto
hasti
 part of the radiation pro
ess, returns the expe
ted beam sizes, the ex
itation strength
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is adjusted during the tra
king. The simulated rms beam size

22

in one dimension, preferably in the

longitudinal plane, is monitored during the tra
king and 
ompared with the predi
ted value from

linear theory �

lin

y

at �xed time intervals, whi
h are taken to be multiples of the damping time in that

plane. If the tra
ked rms beam size has not 
onverged to the linear value for a given K at the end of

the time interval, the ex
itation strength is modi�ed by subtra
ting from it f

g

�

�

tra
ked

y

� �

lin

y

�

=�

lin

y

,

where f

g

is an appropriately 
hosen s
ale fa
tor.

The SITROS se
tion matri
es des
ribing the transformations of the orbital 
oordinates in the

tra
king 
ontain the latti
e nonlinearities up to se
ond order. This means that an input parti
le

traje
tory is des
ribed by a 28 
omponent ve
tor

~

X

(2)

made up of all �rst and se
ond order monomials

of the phase spa
e 
oordinates with respe
t to the 
losed orbit, plus an entry for the 
losed orbit itself

~

X

(2)

=

�

1; x; x

0

; z; z

0

; `; Æ; x

2

; x

02

; : : : ; z

0

Æ; `Æ

�

(3.84)

Thus the se
tion matri
es, relating the output phase spa
e 
oordinates to the input

~

X

(2)

ve
tor, are

of dimension 6 � 28 and 
onsist of the di�erential quotients of the 6 output �rst order monomials

with respe
t to the 28 input �rst and se
ond order monomials. The se
tion matri
es are 
al
ulated

prior to the \real" tra
king in a \test" tra
king of a set of parti
les through the se
tions, starting

at representative positions. �1� is the pragmati
 
hoi
e used in SITROS. Counting all possible sign


ombinations at the starting point, 73 test traje
tories are needed. The test traje
tories are obtained

by using 6� 6 matri
es for the linear elements and nonlinear ki
ks from the sextupoles. An analogous

method is used for the determination of the 
oeÆ
ients of the transfer maps for the spin motion in

Chapter 5.

The spin transformations in SITROS are represented using a quarternion formalism, whi
h is


losely 
onne
ted to SU(2) spinor algebra. In this formalism, the basi
 quantity is the unit{quarternion

de�ned as

�q � (q

0

; q

1

; q

2

; q

3

) �

�


os

'

2

; sin

'

2

q̂

�

(3.85)

with k�qk = 1. The rotation angle ' and the unit ve
tor q̂ are related to the spin pre
ession ve
tor

~


 =

P




j

ê

j

( j 2 fx; z; sg ), integrated over some short distan
e �s for whi
h

~


 � 
onst., through

' =

Z

�s

k

~


k ds

q̂

j

=

Z

�s




j

ds

k

Z

�s

~


dsk

8 j 2 fx; z; sg (3.86)

The spin transformation a
ross a latti
e element in the language of unit{quarternions is given by the


omposition of two quarternions and 
an be expressed as a produ
t of a real 4 � 4 matrix with an

initial quarternion

22

�

y

�

v

u

u

u

u

t

N

X

i=1

(y

i

� hyi)

2

N � 1

(y = x; z; s) where hyi = 0 (the 
losed orbit).
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A summary of the rules for quarternion algebra and a dis
ussion on its relation to the SO(3) formalism

and SU(2) spinor algebra is given in [Vo00℄. See also [Mo84℄.

We have seen earlier that even in the 
ase of linear orbit motion, the spin motion is nonlinear (
f.

eqn. (3.51)). To handle these nonlinearities e
onomi
ally, the following approximations are made in

SITROS

� For dipoles there is only a minor dependen
e of

~


 on the transverse 
oordinates (introdu
ed

by the weak fo
using of these magnets). The phase spa
e dependen
e 
an therefore to a good

approximation be averaged over the element length. The dipole �elds due to 
orre
tion 
oils and

to orbit o�sets with respe
t to the 
entres of quadrupoles and sextupoles are also treated in this

way.

� For quadrupoles and higher order multipoles (mainly sextupoles) the phase spa
e dependen
e of

~


 
annot be negle
ted. See, for example, eqn. (3.33). On the other hand, the spin rotations in

these magnets are usually small and rotations around di�erent axes in a magnet 
an therefore be

treated as if they would 
ommute. For purely transverse �elds the following relationship between

the spin rotation and the parti
le de
e
tion hold:

R

~


ds = (a
 + 1) (��z

0

;�x

0

; 0)

T

. Note that

the spin rotation experien
ed in solenoid end �elds and due to the (linearized) beam{beam e�e
t

is given by this same expression.

The tra
king in SITROS is typi
ally done for an energy range of 441 MeV (spanning the interval of one

integer in a
). For this the quarternion spin maps, parametrized as se
ond order polynomials in the

orbital 
oordinates at ea
h energy step, and the orbit maps for the 
entral energy point

23

are 
ombined

into a matrix of dimension (6 + 4 � N

E

) � 28, multiplying onto the ve
tor

�

~

X

(2);1

; : : : ;

~

X

(2);N

E

�

T

,

where N

E

is the number of energy steps. The parametrization of the maps leads to extra arti�
ial

nonsymple
ti
ity in the orbital maps. Moreover it 
hanges the length of the spin quarternions slightly,

thereby violating the orthogonality of the rotation matri
es.

24

The additional nonsymple
ti
ity is

usually quite small 
ompared to the damping related nonsymple
ti
ity and 
an be negle
ted, but the

unitarity of the spin quarternions must be restored in ea
h step by normalizing them to avoid an

unphysi
al blowup or shrinking of the spin ve
tors during the 
ourse of the multi{turn tra
king.

Although the spin transformations through individual latti
e elements as well as the 
on
atenated

transformations for se
tions of the ring in SITROS are des
ribed by quarternions and 
ompositions

thereof, whi
h are new quarternions, the a
tual spin transport a
ross a se
tion is 
arried out by using

a 3� 3 rotation. Given a spin ve
tor

b

S = (S

x

; S

z

; S

s

), the transformation a
ross a se
tion of the ring,

represented by the quarternion map �q is

b

S

f

= R

�q

b

S

i

(3.88)
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(3.89)

23

The 
hange in the orbital maps for this energy range is negligible.

24

Re
all that the unitarity or, equivalent, orthogonality 
ondition for the unit{quarternion simply reads k�qk = 1.
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The �nal spin tra
king in SITROS is 
arried out with the phase spa
e distribution in equilibrium

with all spins initially parallel to the stable 
losed orbit spin solution n̂

0

. Then the polarization with

respe
t to n̂

0

(s

o:p

) at some observation point s

o:p

is monitored for a large number of turns. In this way

it is possible to get an estimate of the depolarization rate and by 
ombining it with the polarization

build{up rate eqn. (3.19) an estimate for the equilibrium polarization is obtained (eqn. (3.26))

P

eq

' P

BKS

�

dep

�

BKS

+ �

dep

= P

BKS

�

DK

�

BKS

In pra
ti
e, the depolarization rate is obtained from the tra
king data via a �t of the relation

�

�1

dep

(t

i

) =

ln(P

�

dep

(t

0

))� ln(P

�

dep

(t

i

))

t

i

� t

0

8 i 2 f1; : : : ; N

T

g (3.90)

where

P

�

dep

(t

i

) = P

BKS

1

N

P

N

P

X

j=1

b

S

j

(t

i

) � n̂

0

(s

o:p

) (3.91)

Here t

i

=

i C




for all i 2 f1; : : : ; N

T

g, where N

T

is the number of tra
king turns, and N

P

is the number

of parti
les.

The se
tioning te
hnique used in SITROS has the obvious disadvantage of potentially poor repre-

sentation of the nonlinearities in the opti
 and the sto
hasti
 radiation pro
ess. These disadvantages

have be
ome apparent in 
al
ulations with SITROS for the HERA luminosity upgrade ele
tron op-

ti
. For this opti
 the small number of se
tions used in past 
al
ulations for HERA [Li88, B�o94℄ (a

few times 10) is not enough to a

urately reprodu
e the equilibrium beam sizes and to 
al
ulate the

equilibrium polarization. The maximum number of allowed se
tions has therefore been in
reased so

that ea
h se
tion (and hen
e radiation point) 
ontains only one dipole or 
ombined fun
tion magnet

in HERA. Moreover, the spin representation in the parametrized maps now 
ontains the quarternion


omponents instead of spins parametrized in the ve
tor{angle representation, whi
h was implemented

in an older version of the 
ode. For more details on re
ent upgrades of SITROS, see Appendix C.

The SITROS pa
kage 
onsists of a number of modules, ea
h with its own main program (named

SITA, SITB, SITC, SITD, SITE and SITF), that is responsible for a part of the algorithm. A 
ow

diagram illustrating the 
onne
tions between the di�erent parts 
an be found in Appendix C. The

tasks of the di�erent modules 
an be summarized as follows:

� In SITA a PETROS [Ke78℄ opti
 �le (with or without distortions, 
orre
tions and harmoni


bumps { see next 
hapter) is read and the basi
 opti
 parameters, su
h as opti
al fun
tions,


losed orbit and emittan
es are 
al
ulated using linear orbit theory. n̂

0

is 
omputed as well

as the asymptoti
 polarization P

BKS

and the polarization build{up time �

BKS

, for the 
hosen

energy points. Se
tion matri
es for the orbit and the spin are 
onstru
ted in the way previously

des
ribed.

� The starting value for the ex
itation strength K is set in SITB. Other quantities needed for the

tra
king are also initialized here, among them the number of parti
les N , the starting parti
le

distributions (all parti
les set on the 
losed orbit as default) and the beam{beam parameters.

� The �rst stage of the tra
king is 
arried out in SITC. The parti
le orbits are tra
ked for a few

damping times, typi
ally 5000 turns, in order to a
hieve the 
orre
t equilibrium beam sizes.
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� Simultaneous spin and orbit tra
king is performed in SITD, starting as mentioned with all spins

initially parallel to n̂

0

. For ea
h of typi
ally 5000 tra
king turns the proje
tions of the individual

spin ve
tors onto the n̂

0

basis ve
tor at the starting azimuth are noted and an ensemble average

is 
al
ulated.

� Finally in SITE, an estimate of the depolarization time �

dep

is evaluated from the tra
king data

and P

eq


an be 
al
ulated from eqn. (3.26).

� SITF di�ers from the other modules in that it is a \stand{alone" program, 
al
ulating the

polarization in the linear approximation, using the SLIM te
hnique.
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Chapter 4

HERA Polarization in Light of the

Upgrade

4.1 Ele
tron polarization | experien
e gathered at HERA

In the last 
hapter we have learned that the ele
tron polarization in a storage ring su
h as HERA

is the result of a 
ompetition between radiation indu
ed build{up due to the Sokolov{Ternov e�e
t

and spin di�usion. At HERA the polarization rea
hes equilibrium in a few tens of minutes. It has

been argued that this equilibrium polarization should be nearly parallel to the n̂{axis, whi
h in turn is


losely aligned along n̂

0

, ex
ept very 
lose to resonan
es. In a perfe
tly planar ring without solenoids

n̂

0

is verti
al. Verti
al ele
tron beam polarization was �rst observed in HERA in November 1991,

and polarization values of over 70% were a
hieved only a few months later after dedi
ated ma
hine

tuning [Bb95℄.

As pointed out in Chapter 1, most of the high energy physi
s that 
an be done with polarized beams

requires polarization in the beam dire
tion, i.e. longitudinal polarization. This is a
hieved by bringing

the natural transverse polarization of the ar
s into the longitudinal dire
tion at the intera
tion points

using spe
ial magnet arrangements | so 
alled spin rotators. Sin
e the generation and maintenan
e

of the naturally o

urring polarization requires that the polarization dire
tion be verti
al in the ar
s,

spins rotated into the longitudinal dire
tion at an IP must be rotated ba
k to the verti
al dire
tion

before entering the next ma
hine ar
. Spin rotators therefore always 
ome in pairs. The provision of

longitudinally polarized e

+=�

beams for the 
ollider experiments was one of the features of the original

HERA design. After su

essful operation with verti
ally polarized beams, a �rst pair of spin rotators

of the Buon{Ste�en Mini{Rotator type [BS86℄ was installed in the East straight se
tion of HERA in

1993{94 to serve the HERMES experiment with longitudinal spin polarization. A rotator 
onsists of a


hain of interleaved horizontal and verti
al bending magnets, repla
ing two ordinary bending magnets

at the end of the regular ar
 stru
ture on either side of the IP. The verti
al bending magnets of the

two rotators in the pair form 
losed bumps on ea
h side of the IP, the left and the right side bumps

being asymmetri
 with respe
t to the IP. The HERA rotators are designed to operate in an energy

range from 26.8 GeV to 39 GeV and they allow the 
hange of spin heli
ity at the IP by reversing the

signs of the verti
al bumps. To fa
ilitate this the magnets are mounted on remotely 
ontrolled ja
ks,

so that the magnet elevation follows the verti
al pro�le of the orbit, allowing operation within the

spe
i�ed energy range. The adjustment of the horizontal geometry ne
essary for 
hanges in the beam

energy greater than �100 MeV must however be performed manually. An illustration of the magnet

latti
e and the spin transformations in the rotator region on the upstream (left) side of the East IP is

seen in Figure 4.1.
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Figure 4.1: The left half of the rotator pair in the East. The magnets BH03 and BH02 are not

an integral part of the rotator, but are needed to 
omplete the spin rotation into the longitudinal

dire
tion. On the opposite side of the IP a similar magnet arrangement with reversed radial �elds

(BF and BG magnets) brings the polarization ba
k to the verti
al dire
tion. Courtesy of M. Wendt.

A 
hara
teristi
 of dipole spin rotators is their e�e
t on the maximum attainable equilibrium

polarization. In a perfe
tly 
at ring (without solenoids) P

eq;ST

= 92:38%, but in a ring with rotators

this upper limit is de
reased sin
e n̂

0

is not antiparallel to the magneti
 �eld at all positions along

the 
losed orbit. See eqn. (3.17). The main part of this drop 
omes from the tilt of n̂

0

in the rotator

region itself, but for rings with dipole �elds in the \straight se
tions" (su
h as in the HERA upgrade

latti
e) these se
tions also 
ontribute to this loss. For HERA at a nominal energy of 27.5 GeV the

drop is about 3% for one pair of rotators. Hen
e, the starting 
ondition for attaining a high level of

spin polarization in a ring 
ontaining spin rotators is worse than in a ring without rotators. To this


omes the e�e
ts of spin di�usion for parti
les in the �elds of a real a

elerator.

Spin di�usion 
an be parti
ularly strong in a ring with spin rotators. One reason is that in the

se
tion between the rotators in a pair, n̂

0

is horizontal and 
an hen
e be 
onsidered to be maximally

tilted from the verti
al. I will elaborate on the impli
ations of a tilted n̂

0

in the following pages.

Another reason is that syn
hrotron radiation emitted in the rotators, where the verti
al bends 
reate

a lo
al verti
al dispersion bump, ex
ites verti
al betatron os
illations. To a
hieve the highest possible

polarization for the experiments, the detrimental e�e
ts of spin di�usion have to be minimized. This


an be a

omplished through the pro
edures of spin mat
hing des
ribed in [BR99℄. In pra
ti
e spin

mat
hing is 
arried out in stages. Using available quadrupoles, not only should the usual opti
al


onditions be ful�lled, but also additional requirements have to be met, for
ing the spin{orbit 
oupling

to vanish in the sense to be explained below. This is the �rst stage in setting up a spin mat
hed opti
.

The method is 
alled strong syn
hro{beta spin mat
hing and is based on linearized spin{orbit theory

for perfe
tly aligned ma
hines. To illustrate the 
on
ept of strong linear syn
hro{beta spin mat
hing

and at the same time fa
ilitate the des
ription of the analysis 
arried out in Chapter 6 I will remind

the reader here of some basi
 fa
ts.

From the dis
ussion in Se
tion 3.2 it is 
lear that to maximize the polarization, �

�1

dep;lin

must be

minimized. By eqn. (3.67) this is equivalent to saying that v

�

k5

( k 2 fI; II; IIIg ) or the 
omponents

of ~w

k

should be minimized at azimuths where

1

j�(s)j

3

is large. The v

�

k5

determine the orbit ex
itation


aused by syn
hrotron radiation (
f. eqs. (3.61) and (3.62)). In a ring with no transverse inter{mode


oupling v

�

II5

usually vanishes in the ar
s, sin
e there the verti
al dispersion D

z

vanishes. However,

in rings with spin rotators v

�

II5

does not vanish in the rotator regions, if the rotators 
ontain verti
al

bends. The v

�

I5

on the other hand, generally does not vanish in the ar
s sin
e the horizontal dispersion

D

x

6= 0. Finally v

�

III5

essentially never vanishes. The 
on
lusion to draw from this is that one should

at least try to minimize ~w

k

for azimuths in the ring where

jv

�

k5

j

2

j�(s)j

3

gives a substantial 
ontribution
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to �

�1

dep;lin

. Examination of eqn. (3.59) shows that the spin eigenve
tors ~w

k

for k 2 fI; II; IIIg are

proportional to the one{turn G matrix. The strong spin mat
hing therefore boils down to bringing

the elements of G(s

f

; s

i

) to zero for the appropriate regions (going from azimuth s

i

to s

f

) or, if that

is not possible, minimizing the produ
t G(s

f

; s

i

) � ~v

k

(s

i

). Now, sin
e in a perfe
tly 
at ring without

solenoids n̂

0

is verti
al, the verti
al 
omponents of the two remaining base ve
tors of the periodi
 spin

frame, m̂

z

and

^

l

z

, are zero. By inspe
tion of the G matrix elements for horizontal bends and 
ombined

fun
tion magnets, quadrupoles and RF 
avities (see for instan
e [Bb85b℄) we �nd that in the absen
e

of 
oupling, 
olumns 1, 2, 5 and 6 of the one{turn G(s+ C; s) vanish. Moreover, the one{turn orbit

matrix and its 
orresponding eigenve
tors have the general stru
ture
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=
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(4.1)

where ?' s symbolize nonzero 
omponents. Hen
e, by eqn. (3.59) ~w

I

(s) and ~w

III

(s) are zero in this


ase, and we already know that v

�

II5

� v

�

z5

vanishes in an un
oupled ring without rotators. The

depolarization rate �

�1

dep;lin

is therefore automati
ally zero. In rings with rotators, the 90

Æ

tilt of n̂

0

in

the region between the rotators in a pair results in additional nonzero entries in the G matrix for this

region for G

x

and G

s

. Thus the one{turn G

x

(s+C; s) and G

s

(s+C; s), in addition to G

z

(s+C; s),


an be nonzero for any dipole inside or outside the rotator region. Observe that the one{turn elements

of G

x

and G

s

everywhere in the ring arise solely from the rotator region, sin
e n̂

0

is verti
al in the

ar
s. The task of syn
hro{beta spin mat
hing of rings with rotators in terms of the G matrix 
an be

summarized as follows

1

� Minimize G

x

, G

z

and G

s

for the region between the rotators in a pair.

� Minimize G

z

for an ar
, i.e. from the 
entre of one rotator to the 
entre of the next rotator.

A se
tion of a ring whi
h has been spin mat
hed a

ording to these guidelines is said to be spin

transparent. Note that the use of the G matrix for spin mat
hing emphasizes the lo
al nature of spin

transparen
y. At DESY the SPINOR 
ode [HS85℄ is traditionally used for designing the spin mat
hed

HERA opti
s in the presen
e of rotators, making the latti
e spin transparent by ful�lling all the above


onditions.

Creating a spin transparent opti
 for the perfe
tly aligned ma
hine is usually not enough to assure

a high degree of polarization. There is a limit to the pre
ision with whi
h the ma
hine magnets in a

real ring 
an be aligned and positioned with respe
t to the design values. Modern storage rings are

equipped with beam position monitors and 
orre
tion 
oils so that the 
losed orbit 
an be dire
tly

measured and 
orre
ted. Nevertheless, even after 
areful orbit 
orre
tions have been applied, there

will always be a residual distortion of the 
losed orbit 
aused by the misalignments, �eld errors and

their 
orre
tions. This will generate a tilt Æn̂

0

of the periodi
 
losed orbit spin solution n̂

0

from its

nominal dire
tion. In HERA with transverse alignment toleran
es of 0.3 mm, an rms value of Æn̂

0

of

1

This is a very general re
ipe and it should be pointed out that ea
h 
ase has to be treated individually, taking

into a

ount su
h things as ring (a)symmetries and number of independently powered quadrupoles available. For

example in HERA we do not try to spin mat
h between radiating dipoles in the straight se
tions, but only a
ross

whole straight se
tions. I will return to this point when dis
ussing results of polarization simulations for the HERA

luminosity upgrade in Chapter 6.
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the order of 30� 40 mrad is expe
ted after standard orbit 
orre
tions. Simulations show that in su
h

a situation, even with a good (strong syn
hro{beta) spin mat
hed opti
, the polarization is usually

very low and of no pra
ti
al value to the experiments. This is simply so be
ause in a real ring with

misalignments and errors the spin mat
h of the perfe
tly aligned ring is broken! In a ring with tilted

n̂

0

in the ar
s, the elements of 
olumns 1, 2, 5 and 6 of the one{turn G matrix are generally non{zero.

Equivalently, the spin{orbit 
oupling integrals J

�x

and J

�s

in eqn. (3.78) be
ome non{zero due to this

tilt. Syn
hrotron and horizontal betatron os
illations 
an therefore 
ontribute to the spin di�usion.

It is found numeri
ally that the term in J

�s

related to the horizontal dispersion dominates. Further

examples of how the various terms 
ontribute to the depolarization will be given in Chapter 6. To


ountera
t the sometimes strong spin di�usion 
onne
ted to the tilt of n̂

0

a dedi
ated minimization

of the distortion Æn̂

0

is needed. This is the se
ond step of the spin mat
hing. If there would be

enough beam position monitors (BPMs) and 
orre
tion 
oils in the latti
e so that ea
h quadrupole

would have its own BPM and 
orre
tion 
oil, and the positions of the BPMs with respe
t to the

quadrupoles would be well known (from, for example, beam{based 
alibration [Sa99℄), one 
ould

minimize the 
ombined verti
al ki
k applied to the orbit by ea
h quadrupole and its 
orre
tion 
oil,

in e�e
t redu
ing the tilt of n̂

0

deterministi
ally [BB94℄.

2

However in pra
ti
e, this is usually not the


ase and therefore some empiri
al 
orre
tion s
heme has to be applied. The method used at HERA

for optimizing the polarization in a ring with orbit distortions is 
alled harmoni
 
losed orbit spin

mat
hing and is des
ribed in [Bb85a, Bb94℄. The te
hnique was �rst developed for and applied to the

e

+=�

storage ring PETRA [RS85℄, but has sin
e been improved for HERA. Introdu
ing the notation

Æn̂

0

= Æn

0m

m̂ + Æn

0l

^

l, where the tilt of n̂

0

from the design orientation is expressed in terms of the

periodi
 frame (n̂

0

; m̂;

^

l ) 
al
ulated on the design 
losed orbit, Æn̂

0


an be expressed as

Æn

0m

(s)� i Æn

0l

(s) = �i

C

2�

X

p

f

p

e

i 2�ps=C

p� �

0

(4.2)

where the f

p

are the Fourier 
oeÆ
ients of a \spin{orbit fun
tion" f(s) = f

1

(s)� i f

2

(s) given by

f

p

=

1

C

Z
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s
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) e
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ds

0
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where the �B

y

(y = x; z; s) are �eld errors and ~u


:o

is the deviation of the six{dimensional (distorted)


losed orbit from the design orbit. The prin
iple of the harmoni
 spin{orbit 
orre
tion s
heme is to use

a small number of verti
al 
orre
tion 
oils to redu
e the rms value of the Æn̂

0

distortion by minimizing

the most detrimental harmoni
s in the above expression. Before the shutdown for the upgrade of

HERA a total of eight 
losed verti
al orbit bumps, the \harmoni
 bumps", lo
ated in the ar
s of the

ma
hine, were used to 
ontrol the real and imaginary parts of the harmoni
s �1, 0, 1 and 2 of f ,

found to be the most important in simulations. Closed bumps, 
onsisting of three verti
al 
orre
tion


oils ea
h, have been used in order to avoid perturbing the verti
al orbit everywhere and 
reating

verti
al dispersion. Moreover, in this way the luminosity is not e�e
ted. The optimal settings of the

bump amplitudes are found through empiri
al tuning by observing the polarization. To this end, fast

2

Su
h \ki
k minimization" will not be eÆ
ient if the ring dipoles are signi�
antly tilted.
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polarimeters are of utmost importan
e. The harmoni
 
losed orbit spin mat
hing used in HERA I

was able to redu
e the rms value of Æn̂

0

to 10 { 20 mrad and greatly improved the polarization. This


an be understood by re
alling that the depolarization asso
iated with a tilt of n̂

0

roughly s
ales as

Æn̂

2

0

, due to the term (

�n̂

�Æ

)

2

in the depolarization rate, eqn. (3.25). In the years 1995{2000 HERA had

the 
apability to routinely deliver longitudinally spin polarized e

+=�

to HERMES, with polarization

values lying between 50 and 60% and with peak values rea
hing 65%. The HERA ele
tron ring is so

far the only high energy ring that gives a

ess to longitudinal spin polarization.

The polarization in HERA is measured at two lo
ations in the ring: in the West straight se
tion,

where the polarization dire
tion is verti
al, and in the East straight se
tion 
lose to HERMES, where

the polarization dire
tion is almost longitudinal. These devi
es are brie
y des
ribed in Se
tion 4.3.

4.2 Impa
t of the upgrade on polarization

W

S

E

N

HERA B

H1

ZEUS

HERMES

LPOL

Spin Rotator

electrons

Spin Rotator

Spin Rotator
(New)

(New)

TPOL
Upgraded

(Upgraded)

Figure 4.2: S
hemati
 representation of HERA{e after the Luminosity Upgrade.

As we have seen in Chapter 2, the luminosity upgrade of HERA will have a profound impa
t on

the latti
es of the proton and e

+=�

rings. By now it should be 
lear that sin
e the spin and orbital

dynami
s are intimately 
onne
ted, the 
hanges implemented to in
uen
e the orbital dynami
s in

favour of higher luminosity will have reper
ussions on the spin motion. In this se
tion these 
hanges

will be dis
ussed further with emphasis on their importan
e for operation with polarized e

+=�

beams.

Two additional pairs of spin rotators have been available for in
lusion in the ring sin
e 1997.

These have, at the time of writing, been installed at the beginnings and ends of the North and South

straight se
tions respe
tively, giving a

ess to longitudinal e

+=�

spin polarization at the 
olliding beam

experiments H1 and ZEUS. Due to the la
k of spa
e in the intera
tion regions the anti{solenoids,

previously used to 
ompensate for the e�e
ts of the experimental solenoids on orbit and spin motion,

will be removed.

3

This 
alls for an alternative solution. In the tight layouts of the new intera
tion

zones the super
ondu
ting separator magnets GO and GG are pla
ed partially inside the dete
tor

3

A dis
ussion on the e�e
ts of (un
ompensated) solenoids on the polarization is found in Chapter 6.
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solenoids, giving rise to overlapping magneti
 �elds. The positions of the GO and GG magnets with

respe
t to the dete
tors are shown in Figures 4.3. and 4.4. This has some unpleasant e�e
ts on the

orbit and spin motion. The in
reased horizontal and verti
al phase advan
es, from 60

Æ

to 72

Æ

, and

the shift of the RF frequen
y to redu
e the horizontal emittan
e will also in
uen
e the polarization.

The new intera
tion region quadrupoles are stronger than the old ones and the design is no longer

mirror symmetri
 with respe
t to the IPs. As a result of these 
hanges the new e

+

and e

�

opti
s are

subje
t to tougher 
onstraints than previously and the asymmetries in the latti
e make spin mat
hing

an intri
ate business. It should be pointed out that a good spin mat
h be
omes espe
ially important

with additional rotators operating in the ring, be
ause of the e�e
ts des
ribed earlier in this 
hapter.

Another area expe
ted to have a signi�
ant impa
t on the polarization is the intera
tion with the high

intensity proton beam. The 
onstru
tion of opti
al solutions that permit a high degree of e

+=�

spin

polarization in the upgraded HERA presents many 
hallenges. A basi
 requirement for 
al
ulating

the polarization is the ability to model the 
ompli
ated �eld 
on�gurations in the intera
tion regions.

A detailed des
ription of how this problem has been solved is given in Chapter 5.

GO

�

�

�

��

GG

�

�

�

��

Figure 4.3: The H1 solenoid with the overlapping ma
hine magnets. Courtesy of H. D. Br�u
k.

4.3 Polarimetry at HERA

In the past, two polarimeters have been used to measure the ele
tron spin polarization in HERA,

measuring transverse and longitudinal beam polarization in the West and East straight se
tions re-

spe
tively.

4

The two devi
es rely on the same basi
 physi
al prin
iple: spin dependent Compton

4

Re
all that although the dire
tion of the polarization 
an vary around the ring, the value of the polarization is the

same at all azimuths.
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Figure 4.4: The ZEUS solenoid with the overlapping ma
hine magnets. Courtesy of U. S
hneekloth.

s
attering of 
ir
ularly polarized laser light o� polarized e

+=�

. However they di�er in 
onstru
tion

and the measurement te
hniques employed [Bb93, Be00a℄ and therefore 
omplement ea
h other.

After the luminosity upgrade, with two more spin rotator pairs installed in the HERA latti
e, the

default operation mode for HERMES, H1 and ZEUS will be with longitudinally polarized e

+=�

. Spin

dependent physi
s will be
ome an integral part of the programme of the 
olliding beam experiments

in addition to HERMES, where this has been the 
ase sin
e the startup of the experiment. A

ess to

longitudinal e

+=�

spin polarization in 
ombination with a luminosity in
rease by a fa
tor of about 5

opens up new possibilities for studying the physi
s of the ele
troweak and strong intera
tions. Pre
ision

measurements to permit tests of physi
s beyond the Standard Model will also be
ome feasible. In these

new studies, measured quantities su
h as stru
ture fun
tions and asymmetries will be very sensitive to

the beam polarization. The monitoring of the spin polarization will thus be
ome as important for H1

and ZEUS as monitoring luminosity. Given an a

ura
y of the luminosity measurements of 1� 2 %,

the polarization measurements after the upgrade should be 
apable of a pre
ision of �P=P � 2 %

for P = 50 � 70%. Measures will have to be taken so that 
ontinuous, reliable beam polarization

measurements are available throughout the HERA 
ollision programme. It should be pointed out

that the physi
s experiments done at H1 and ZEUS are based on the 
olliding bun
hes only, whereas

at HERMES all ele
tron bun
hes are used. A system of polarimeters should therefore be able to

separately measure the polarization of the 
olliding and the non{
olliding bun
hes. In the old setup,

only one of the polarimeters (the longitudinal polarimeter) was able to a

omplish this.

Parallel to the work done by the Luminosity Upgrade group, a spe
ial working group, \the Po-

larization 2000 Proje
t" group, has been looking into the potential for upgrading the existing HERA

polarimeters to meet these requirements.
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4.3.1 Transverse Polarimeter

Lo
ated in the HERA West straight se
tion, where the nominal polarization dire
tion is verti
al, the

transverse polarimeter (TPOL) measures the verti
al 
omponent of the ele
tron polarization. The

polarimeter be
ame operational in 1991 and until the summer of 1999 it was the primary devi
e for

measurement of polarization in HERA. TPOL measures spatial asymmetries in the verti
al plane of the

distribution of single ba
ks
attered Compton photons arising when 
ir
ularly polarized photons s
atter

o� verti
ally polarized ele
trons. The shift of the mean verti
al position of the photon distribution,

when swit
hing between left (L) and right (R) 
ir
ular laser light polarization, is proportional to

the verti
al polarization 
omponent P

z

of the ele
trons. In parti
ular at the position of the photon

dete
tor, 65m away from the point of intera
tion, the photon spot size is of the order of 0.3mm in the

verti
al plane and the shift between the 
entroids is typi
ally about 140�m. The verti
al positions of

the photons are re
orded with a verti
ally segmented 
alorimeter by energy sharing in the upper and

lower halves. By forming the shower energy asymmetry � = (E

up

�E

down

)=(E

up

+E

down

), where � is

related to the verti
al position through a parametrization, P

z


an be obtained through the di�eren
e

of the mean values h�i when swit
hing the light polarization

��(E




) =

h�i

L

� h�i

R

2

= P

z

�S

3

�

�

(E




) (4.3)

Here �S

3

is the di�eren
e in the 
ir
ular polarization of the laser light. �

�

(E




) is the so 
alled

analyzing power, whi
h depends on the Compton 
ross se
tion as well as dete
tor and ele
tron beam

parameters and has to be 
he
ked through 
alibration.

An alternative method has been developed, in whi
h the measured energy distributions in the


alorimeter are used, and an asymmetry is formed by 
omparing distributions for left and right polar-

ized laser light. The systemati
 errors of the two methods are of di�erent nature: the means method

is dominated by the spatial 
alibration of the 
alorimeter, whereas the asymmetry method is mostly

sensitive to the exa
t knowledge of the intera
tion point of the lepton and laser beams.

Sin
e pre
ise knowledge of polarization is so important, the absolute value delivered by a po-

larimeter must be 
he
ked through 
alibration. Before the shutdown for the upgrade, the 
alibration

of TPOL was relying on experimental data through rise time measurements. In su
h a measure-

ment the ele
tron beam is deliberately depolarized by means of a radial RF{�eld and the subsequent

build{up of the polarization is re
orded. The asymptoti
 polarization (P

eq

) from the �t mentioned in

Chapter 3 is then used to res
ale the measured asymptoti
 polarization. An example of a rise time


urve is given in Figure 4.5.

The rise time 
alibration method is time 
onsuming and requires dedi
ated beam time under stable

ma
hine 
onditions. No re
ent measurements have been made and it is desirable that alternative

methods be found, so that the 
alibration of the polarimeter 
an be done independently of rise time

measurements. A new method to improve the use of the TPOL data has been proposed in whi
h a

position sensitive dete
tor in front of TPOL 
ould be used as an in{situ devi
e to 
alibrate the energy

{ position relation, parametrized in the so 
alled � � y transformation (in a 
oordinate system where

y refers to the verti
al dire
tion). A sili
on strip dete
tor is 
urrently under development for this

purpose and the goal is to have it installed at the time of turn on of HERA II in summer 2001.

Re
ent studies have resulted in a mu
h improved understanding of the dete
tor 
alorimeter and

the energy distributions as a fun
tion of the polarization. Together with an improved des
ription of

the spatial 
alibration this has allowed a re
alibration of TPOL and the systemati
 errors are now

approa
hing the 1% level [Be00b℄. Up to now, the errors from the asymmetry method have been

slightly larger, favouring the means method.

The most extensive upgrade of TPOL 
on
erns the data a
quisition (DAQ) system. With the old

DAQ system used before the shutdown, TPOL was only 
apable of measuring the average polarization
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Figure 4.5: An example of the ele
tron polarization in HERA as a fun
tion of time, as measured

by the transverse (TPOL) and longitudinal (LPOL) polarimeters. Note that as expe
ted TPOL and

LPOL deliver the same value for the polarization within errors.

of all the ele
tron bun
hes in the ring. Experien
e with the longitudinal polarimeter (LPOL) shows

that 
olliding and non{
olliding bun
hes 
an have di�erent polarization patterns and that the values

obtained depend strongly on the tuning of the ma
hine. The provision of fast and 
exible systems,


apable of measuring the polarization of any 
ombination of bun
hes is therefore a key issue for the

polarimetry in HERA after the upgrade. The new DAQ for TPOL has been designed with these


onsiderations in mind. The new system will enable TPOL to measure the polarization bun
h{by{

bun
h, with a statisti
al a

ura
y 
lose to 1% per bun
h in 15 minutes and about 1% a

ura
y for

all 
olliding bun
hes in 1 minute. The work on the new system has now rea
hed a mature state and it

has been demonstrated that it allows the measurement of the polarization of individual bun
hes. The

goal is to have a debugged and operational system for TPOL at the start of experimental data taking

in 2001.

4.3.2 Longitudinal Polarimeter

The determination of the ele
tron polarization with an absolute a

ura
y of 1% requires approximately

10

6

s
attered photons. The dete
tion of individual photons is referred to as the \single photon"

method. It 
an be used if the ba
kground from beam{gas bremsstrahlung is low. At the position of

TPOL in the West straight se
tion this is the 
ase, and TPOL is operating in this mode. In 
ases

where the ba
kground is large, the \multi photon" method is preferred. By using a pulsed, high power

laser to produ
e thousands of ba
ks
attered photons for ea
h intera
tion with an ele
tron bun
h, the

Compton s
attering 
an be made to dominate over the ba
kground.

In 1996 a se
ond polarimeter built by the HERMES 
ollaboration was taken into operation at

HERA. This polarimeter measures the longitudinal 
omponent of the e

+=�

polarization, P

s

,

5

in the

region between the HERMES spin rotators. Unfortunately the bremsstrahlung ba
kground rate in the

HERMES straight se
tion is relatively high at the position of LPOL, so the polarimeter is designed to

operate in the multi photon mode. The polarization measurement is based upon large asymmetries in

the energy distributions of the ba
ks
attered photons. A high intensity pulsed Nd:YAG laser delivers

photons whose intera
tions with individual ele
tron bun
hes are dete
ted. The energy weighted 
ross

5

Note that in Chapter 6 the symbol P

s

refers to the polarization asso
iated with longitudinal orbital motion in the

SLIM formalism.
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se
tions of the ba
ks
attered Compton photons | about 1000 per laser pulse | are then used to

extra
t the value of the longitudinal polarization. The expression for the energy weighted asymmetry

A reads

A = �S

3

P

s

S

s

(4.4)

where S

s

is the analyzing power, given by

S

s

=

S

L

� S

R

S

L

+ S

R

; and S

i

=

Z

E

max

E

min

(

d�

dE

)

i

E r(E) dE ; i = L;R (4.5)

and r(E) is the energy response fun
tion. The longitudinal polarimeter, LPOL, is 
apable of measuring

the polarization of single bun
hes, small groups of bun
hes or all the ele
tron bun
hes in the ring. The

ba
kground, when running in the multi{photon mode, is negligible.

The longitudinal polarimeter has been subje
t to espe
ially intense resear
h, motivated by problems

of understanding the 
alibration of the devi
e during the �rst years of operation. A signi�
ant e�ort

undertaken by the LPOL group

6

of the HERMES experiment has led to substantial progress in

reprodu
ing theoreti
ally expe
ted asymmetries and in understanding the physi
s of the 
alorimeter.

In the summer of 1999 it was possible for the �rst time to 
alibrate LPOL independently of TPOL,

making it a stand alone, fully 
alibrated polarization measurement station. Sin
e then, the polarimeter

has delivered data with ex
eptional reliability and very good a

ura
y. Nonetheless, there is still

room for improvement. The design of the 
alorimeter used for LPOL su�ers from some intrinsi


problems that limit the statisti
al pre
ision. It has therefore been de
ided to repla
e the existing


rystal 
alorimeter with a sampling 
alorimeter for operation after the upgrade, that should have a

better energy resolution and a more linear response. The new model has been built and tested and

the results are promising.

One of the major advantages of LPOL over TPOL is that it has a higher analyzing power. The

timing of the high intensity pulsed laser for LPOL on the other hand, makes the operation of this

polarimeter more diÆ
ult. It is generally believed that the ultimate pre
ision in polarization measure-

ment will be delivered by a polarimeter whi
h measures longitudinal polarization in the single photon

mode. This mode has several advantages, the most important being the large asymmetries at the

Compton edge and the pre
ise knowledge of the expe
ted energy spe
tra, whi
h fa
ilitate 
alorimeter


alibration and help in understanding various dete
tor e�e
ts. The main disadvantage is the sen-

sitivity to the beam{gas ba
kground. For operation in the multi{photon mode su
h ba
kground is

not important, but the interpretation of the dete
ted energy spe
tra is less straightforward. The

most severe impediment for operation of an LPOL in the single photon mode is the high 
ontinuous

laser power needed to obtain a suÆ
ient photon 
ux in order that essentially one Compton photon

is ba
ks
attered from ea
h bun
h in the ma
hine. Following a design originating at the CEBAF ring

at the Thomas Je�erson laboratory [Fa01℄, the LPOL laser system will be supplemented by a more

powerful system 
onsisting of a Fabry{Perot 
avity. Re
ent numeri
al studies [PZ00℄ show that in a

single or few photon mode the problems with the large ba
kground rates in the LPOL area 
an be

over
ome. With the Fabry{Perot laser power enhan
ement system, it should be possible to measure

the polarization with a statisti
al and systemati
 pre
ision of better than 1% per bun
h per minute.

6

University of Freiburg, University of Mi
higan and DESY, Hamburg.
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Chapter 5

Models for the new Intera
tion Regions

5.1 Sandwi
h model for SLIM/SLICK

The new intera
tion regions of the luminosity upgraded HERA have been des
ribed in some detail in

Chapter 2. In parti
ular, the un
onventional solution of pla
ing the beam separation magnets partially

inside the solenoids of the 
olliding beam experiments has been emphasized. It is 
lear that su
h a

latti
e layout requires spe
ial treatment when modelling to �t any standard opti
s 
omputer 
ode.

None of the opti
 
odes or 
odes for 
al
ulating and optimizing the polarization in 
ommon use at

DESY 
ontain mixed element types su
h as solenoid+ dipole or solenoid+ 
ombined fun
tion magnet,

so ways must be found to in
orporate su
h spe
ial elements. The situation is further 
ompli
ated by

the fa
t that the design orbit inside the experimental solenoids will be 
urved, due to the bending

a
tion of the separator magnets. See Figure 5.1 and the dis
ussion below. Two di�erent approa
hes

have been used to model these unusual features. The �rst method simply amounts to building mixed

elements out of existing magnet types. This is the sandwi
h model des
ribed in this se
tion. A

more fundamental way of des
ribing the in
uen
e of a 
ompli
ated magneti
 �eld stru
ture on a


harged parti
le, is to perform numeri
al tra
king of the parti
le through that stru
ture, integrating

the equations of motion. With properly 
hosen initial 
onditions, maps for orbit and spin motion 
an

be 
onstru
ted. This is the subje
t of the next se
tion.

To get a �rst estimate for the polarization expe
ted with the upgraded HERA the spin{orbit 
ode

SLICK [Bb00℄, has been modi�ed. As a �rst step, in order to minimize the 
hanges to the 
ode, the

regions with overlapping solenoid, 
ombined fun
tion magnet and 
orre
tor �elds have been des
ribed

as series of interleaved thin sli
es of these magnet types whi
h we 
all \sandwi
hes". The separator

magnets on the left and right hand sides of the IP 
omplete/start the bending onto/away from the

straight, head{on, 
ollision dire
tion at the IP inside the experimental solenoids. The design orbit

inside the solenoids is therefore 
urved in the horizontal plane. In parti
ular, for this work, the design

orbit is de�ned just by the 
urvature in the separator magnets and has no torsion due to the solenoids.

A 
urved design orbit implies that the beam enters and leaves the straight solenoids with a radial

o�set and angle. The parti
les on the design orbit will therefore be subje
t to radial �eld 
omponents

from the solenoid end �elds whi
h will ki
k the beam, mainly in the verti
al dire
tion. Furthermore,

in the interior of the solenoid, radial �elds will e�e
tively be present due to the 
urvature, whi
h will


ause a disturban
e to the ele
tron orbits as well as to the spin.

In the sandwi
h model, two di�erent representations of the radial solenoid �elds have been 
om-

pared. The �rst and simplest way of representing the �elds on the design orbit is to interleave thin


orre
tor 
oil sli
es with sli
es of 
ombined fun
tion magnet (or quadrupole or dipole) and ordinary

solenoid sli
es. The strengths of the sli
es are s
aled so as to maintain the 
orre
t total �eld integrals.

The 
orre
tor 
oils simulate the ki
ks mentioned in the previous paragraph. However, to preserve the
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Figure 5.1: S
hemati
 pi
ture of the North intera
tion region, indi
ating the positions of the innermost

magnets with respe
t to the H1 solenoid. Also shown, in another s
ale, is the 
urved design orbit in

the horizontal plane.

symple
ti
ity of the matri
es for SLIM type programs | whi
h use the orbit variables x; x

0

; z; z

0

| the solenoid sli
es must in
lude their radial end �elds. But then the exit radial end �eld of a

solenoid sli
e is separated by the 
ombined fun
tion sli
e from the entry radial end �eld of the next

solenoid sli
e. However, if the 
ombined fun
tion sli
e is repla
ed by a zero length e�e
tive magnet

treated in the thin lens approximation, its matrix 
ommutes with the surrounding radial end �eld

matri
es (see eqn. (5.1) below) and these latter then \annihilate" ea
h other. Symple
ti
ity is thereby

maintained and unphysi
al solenoid \internal" radial end �eld e�e
ts are avoided | but at the 
ost of

using a thin lens representation for the 
ombined fun
tion magnets. A large number of sli
es is then

needed to maintain a

ura
y in this region of strong fo
using. If one is just interested in some purely

opti
al matters this should be a

eptable. This is one of the approa
hes used for the 
oupling studies

dis
ussed in Se
tion 6.1.1.

However, zero length for a 
ombined fun
tion sli
e implies in�nite 
urvature and then the e�e
ts

that depend expli
itly on the 
urvature of the design orbit, su
h as the radiation, need to be handled

in a spe
ial way in the 
omputer 
odes. This 
an be arranged, but there would still be problems with

the representation of the spin motion. In parti
ular, the 
ommutation of the matri
es mentioned above

does not feed through to the spin motion sin
e the spin basis, whi
h appears in theG matri
es, rotates

in the 
ombined fun
tion sli
es. Thus, so far, a solution employing many sli
es of �nite thi
kness has

been used whi
h is a 
ompromise between the need to adequately des
ribe the opti
 and the spin and

the need to maintain �nite 
urvature in the 
ombined fun
tion magnets. In pra
ti
e, the sli
e length

has been varied from a few mm up to about 100 mm, all leading to similar results for the orbit as

well as the spin motion. In any 
ase, we are still subje
t to the un
ertainties in the exa
t form of the

physi
al solenoid �elds in the overlap regions.

The se
ond method uses the enlarged transfer matrix M

7�7

(eqs. (3.46) and (3.47)). In this

approa
h the e�e
ts of the lateral and angular o�sets of the solenoids with respe
t to the design orbit

are introdu
ed using the seventh 
olumn. In this way no arti�
ial elements need to be introdu
ed in
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the representation. Using a hard edge approximation for the �elds at the ends of a solenoid, the 7� 7

transfer matrix of a solenoid with a longitudinal 
entral �eld of length l takes the form [Bb85b, GR00℄

M

sol

= M

exit

�M


entral

�M

entran
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=
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(5.1)

where R =

e


E

0

B

s:a

long

(B

s:a

long

is the longitudinal solenoid �eld on the axis), S = sin(Rl) and C = 
os(Rl).

The quantities a

x;z

and �

x;z

are the transverse o�sets and tilt angles respe
tively. The relatively simple

form in (5.1) is due to the linear dependen
e on radius of the radial end �elds. See the �rst line in

eqn. (5.15). It has been veri�ed in simulations using SLIM/SLICK that the results of spin{orbit


al
ulations using the two versions of the sandwi
h model are in good agreement.

In the 
ase of an opti
 with 
losed orbit distortions, the se
ond method exploiting the seventh


olumn of the enlarged transfer matrix be
omes impra
ti
al or at least unne
essarily 
ompli
ated. It

requires that the matrix elements are reevaluated twi
e: �rst the motion is des
ribed with respe
t to

the 
urved design traje
tory and in a se
ond iteration the distorted 
losed orbit with respe
t to this


urved traje
tory has to be found. The matrix elements will then be given with respe
t to this new

(translated and distorted) 
losed orbit. The treatment of 
losed orbit distortions in the 
urrent DESY

versions of SLIM and SLICK is not suÆ
iently 
omplete, as it does not allow for dire
t displa
ements

or strength deviations of the latti
e elements, but only treats 
losed orbit distortions 
reated by

powering 
orre
tion 
oils. Therefore another program from the SLIM family, SITF in 
ombination

with PETROS [Ke78℄ has been used for the study of the luminosity upgrade opti
 when applying

realisti
 
losed orbit distortions.

In the sandwi
h model the H1 and ZEUS solenoids are des
ribed by box shaped �elds, i.e. 
onstant

longitudinal �elds with hard edge end �elds. This is an a

eptable representation for the 
entral parts

of the solenoids, but for the end �elds the approximation is 
rude. Con
erns have risen that the

spin motion 
ould be very sensitive to the details of the solenoid �elds, espe
ially the end �elds.

Cal
ulations should therefore be based upon better knowledge of, and an improved representation of

the �elds. To this end, measured �eld maps of the experimental solenoids have been used as a basis

when 
onstru
ting an improved model for the upgrade IRs.
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5.2 Maps from numeri
al integration

The sandwi
h model presented in the previous se
tion is attra
tive in its simpli
ity and it is also quite

general | all magnet types de�ned in an opti
s 
ode 
an in prin
iple be used in a sandwi
h 
onstru
tion

to represent opti
al elements overlapping ea
h other without modifying software. Nevertheless, the

model has some serious short
omings as we have seen, and in order to over
ome these an improved

representation of the mixed �elds is required.

A better des
ription 
an be obtained by numeri
ally integrating the equations of orbit and spin

motion using measured �elds and 
asting the solutions in matrix form. Using the fa
t that the transfer

matrix is just the matrix of linearized (
onstant) partial di�erentials of the output 
oordinates with

respe
t to the input 
oordinates | i.e. the Ja
obian of the linear part of the map, numeri
al matri
es


an be 
onstru
ted from numeri
al integration data using a small number of test traje
tories. In

parti
ular the M and the G matri
es in the SLIM approximation 
an be 
al
ulated in this way.

The numeri
al integrations 
an be 
arried out using some standard integration s
heme like fourth

order Runge{Kutta or an Adams algorithm. By tra
king parti
les with di�erent suÆ
iently small

initial o�sets � with respe
t to the design orbit, very good approximations to linear maps for regions

with arbitrarily 
ompli
ated �eld stru
ture 
an readily be 
omputed. This then is the way adopted for

improving on the sandwi
h model of the overlapping �elds of the luminosity upgrade and for providing

maps suitable for implementation into SLICK.

The design orbit around the IP is depi
ted in Figure 5.2, whi
h is explained in more detail later.

In Figure 5.2 parti
le positions transverse to the design orbit are denoted by ~x and ~z and the distan
e

along the design orbit in Figure 5.2 is denoted by ~s. For 
onvenien
e we will temporarily adopt

that notation here for des
ribing the 
al
ulation of the maps. The equations for the orbital motion

1

(A.8) and (A.9) and those for the spin motion eqn. (A.14) with (A.15 { A.17) are integrated using

a Runge{Kutta s
heme with adaptive stepsize 
ontrol (RK45) from Numeri
al Re
ipes [Pr92℄. A

total of 10 initial phase spa
e ve
tors at ~s

0

: ~u

i

= (~x; ~x

0

; ~z; ~z

0

; l; Æ) = (��

1

; 0; 0; 0; 0; 0),

(0; ��

2

; 0; 0; 0; 0), (0; 0; ��

3

; 0; 0; 0), (0; 0; 0; ��

4

; 0; 0), (0; 0; 0; 0; 0; ��

6

) and

the design orbit (0; 0; 0; 0; 0; 0) are tra
ked a
ross the IR magnets, starting outside of the solenoid

at the left side of the GO magnet. The elements of the linear transfer maps are derived 
olumn wise

by 
onstru
ting di�erential quotients of the output and input phase spa
e 
oordinates with respe
t to

the design orbit, mu
h in the same way as the se
tion matri
es in SITROS are derived. For example

the �rst 
olumn of the map M(~s

1

; ~s

0

) from [~s

0

; ~s

1

℄ is given by

M(~s

1

; ~s

0

)

T

[i; 1℄

i2f1;:::;6g
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+
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1
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1
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;
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1
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1

j

;
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+

~s

1

� ~z

�

~s

1

2 j�

1
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;

~z

0+

~s

1

� ~z

0�
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1

2 j�

1

j

;
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+

~s

1

� `

�

~s

1

2 j�

1

j

; 0

!

(5.2)

The supers
ripts \+" and \�" on the output 
oordinates appertain to parti
les starting with position

��

1

at ~s

0

. The sixth element

�

Æ

+

~s

1

� Æ

�

~s

1

�

=2 j�

1

j � 0 , sin
e no a

elerating �elds are present around

the IP. The other 
olumns ofM(~s

1

; ~s

0

) are 
onstru
ted in an obvious analogous way ex
ept for 
olumn

5: in the absen
e of a

elerating �elds element (5; 5) = 1 and the other elements of 
olumn 5 are zero.

For the spin part of the representation, for ea
h initial phase spa
e ve
tor a set of three mutually

orthogonal spin ve
tors needs to be tra
ked. The information is stored in a 3� 3 rotation matrix R

0

,

whi
h des
ribes the spin rotations on the referen
e traje
tory (0

th

order spin transfer maps), and ten

matri
es R

~u

i

whi
h give the dependen
e of the spin rotations on the initial phase spa
e 
oordinates ~u

i

.

Taken together these matri
es provide the ne
essary information needed to 
onstru
t the G matri
es

for SLICK. The relationship between the 3�3 rotation matri
es and theG matrix is found by making

1

Note that the orbital variables in Appendix A do not 
arry tildes ~ sin
e there the equations are meant to be generi
.
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the following observations, valid in the linear approximation: suppose that at the input (beginning)

of an element we are given the 
omponents of the non{periodi
 spin basis (n̂

0 i

; m̂

0 i

;

^

l

0 i

). An initial

spin ve
tor

b

S

i

is then transformed into

b

S

f

by the rotation matrix R

~u

i

:

b

S

f

= R

~u

i

b

S

i

. Assume now

that we put

b

S

i

parallel to n̂

0 i

. Then for linearized spin motion, and denoting the spin basis at the

�nal phase spa
e point by (n̂

0f

; m̂

0f

;

^

l

0f

) we have

b

S

f

= R

~u

i

n̂

0 i

� n̂

0f

+ (

~

G

�

� ~u

i

) m̂

0f

+ (

~

G

�

� ~u

i

)

^

l

0f

(5.3)

where

~

G

�

and

~

G

�

in the se
ond line are the row ve
tors of the G matrix. Compare eqs. (3.29),

eqs. (3.52) and (3.56) and re
all that in the SLIM 
ode  

0

0

= 0 for almost all of the ring, ex
ept at the

end of the latti
e, so that the non{periodi
 and the periodi
 spin bases 
oin
ide for most of the ring.

The m̂

0 i

and

^

l

0 i

are transported from s

i

to s

f

by R

0

: m̂

0f

= R

0

m̂

0 i

and

^

l

0f

= R

0

^

l

0 i

. To get the

rows of the G matrix we need the proje
tion of (R

~u

i

n̂

0 i

) on m̂

0f

and

^

l

0f

~
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�
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i

=

�
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�
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=
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(5.4)

The individual 
omponents of

~

G

�

and

~

G

�

are �nally derived by taking ~u

i

to be su

essively the 10

starting ve
tors given above and averaging the values appertaining to the �� starting o�sets.

The numeri
ally derived orbit matri
es and the spin 3� 3 rotation matri
es are 
al
ulated with a

separate 
ode for some 
hosen number of energy points. However, before these numeri
al maps 
an

be implemented into SLICK, it must be ensured that the orbit maps are symple
ti
, as radiation is

not in
luded at this stage of the 
al
ulations, and that the spin maps are orthogonal. The 
hosen

Runge{Kutta integrator is not symple
ti
, but the deviation from symple
ti
ity is so small that it 
an

be taken 
are of after the integration.

2

The orthogonality of the spin maps from the integrator is

suÆ
ient, so that the elements of R

T

3�3

R

3�3

� I are less than 5 � 10

�15

. The symple
ti
ity of the orbit

maps is restored using a method based on mixed variable generating fun
tions.

3

An example of this

is given in Appendix D. The 
onstru
tion of the G matri
es from the numeri
al R

0

and R

~u

i

matri
es

a

ording to eqn. (5.4) is done in{line in SLICK. For a typi
al energy s
an, 
overing one unit in a
,

a large number of orbit and spin matri
es (of the order of one to several thousand) have to be stored

and handled within the program. The numeri
al mapping of the HERA intera
tion regions has been

subdivided into �ve segments: one map for a left and a right part of the GO magnet (together with

possible overlap from the solenoid), two maps for solenoid pie
es straddling the IPs and one map for

the GG magnet, respe
tively. The main reason for this is the need to maintain a basi
 
exibility for

diagnosti
 purposes. The 
ode has been adapted so that all parts of it re
ognize and treat the spe
ial

elements in the 
orre
t way. This is the �rst time that something like this has been attempted for

extending analyti
al spin{orbit 
al
ulations to in
lude 
ompli
ated, non{standard �eld 
on�gurations.

2

Note that to preserve and demonstrate symple
ti
ity for numeri
al maps of se
tions whi
h begin and end inside

solenoid �elds, arti�
ial radial end �elds are inserted in analogy with the pra
ti
e for the sandwi
h model. However,

the e�e
ts of an output end �eld and a subsequent input end �eld 
an
el when the maps are 
on
atenated. See

Se
tion 5.2.1 also.

3

The magnitude of the symple
ti
ity breaking for a matrix M is given by the deviation from 0 of M

T

SM � S,

where S is the unit symple
ti
 matrix from Se
tion 3.2.1, and is a matrix with elements less than 10

�5

for the

numeri
al orbit maps before appli
ation of the generating fun
tions method. The \symple
ti�
ation" brings this

number down to � 5 � 10

�14

. The numeri
al pre
ision in the integration varies between the di�erent regions, but is

generally set as 
lose as possible to ma
hine pre
ision (10

�16

), and should therefore not a�e
t the symple
ti
ity.

63



In experimental high energy physi
s, a detailed knowledge of the magneti
 �elds in the dete
tor area

is 
ru
ial for an a

urate determination of the momenta and s
attering angles of 
harged parti
les.

For HERA, the magneti
 �elds of the experimental solenoids in H1 and ZEUS were measured in

1989/1990 [Ne90, Ho93℄ with high pre
ision, before 
ommissioning the experiments. The data from

the measurements are stored in �eld maps, 
overing a longitudinal range of 7 metres (H1) and 8.5

metres (ZEUS). At a \
oarse level" (0:5 % measurement pre
ision) the H1 magneti
 �eld possesses

axial symmetry, i.e. B

�

= 0 with � the azimuthal 
oordinate in a 
ylindri
al 
oordinate system.

In addition the �eld has a left{right mirror symmetry, with respe
t to the plane of symmetry (s:p:)

perpendi
ular to the magneti
 axis. It should be observed that this plane of symmetry does not 
ross

the magneti
 axis at the IP, but is shifted in the longitudinal dire
tion by 1.125 metres. See Figure 5.1.

The H1 �eld measurements unfortunately only 
over the 
entral part of the �eld and do not extend out

through the end{
aps of the iron return yoke. Therefore, the knowledge of the fringe �elds is poor and

an extrapolation has to be made in order to estimate these �elds. In the ZEUS dete
tor area a large

amount of magneti
 material, mostly needed for shielding of sensitive dete
tor equipment, modi�es

the �eld from the main solenoid. In parti
ular the regions near the ends of the super
ondu
ting 
oil

exhibit strong �eld inhomogeneities. Some of the tra
king devi
es are lo
ated in these regions and

therefore the magneti
 �eld measurements were 
arried out with detail here also. The ZEUS �eld also

exhibits a longitudinal asymmetry with respe
t to the IP, but mu
h smaller than for H1, namely 0.05

metres and in the opposite dire
tion.

To use the measured solenoid �eld data in the luminosity upgrade spin{orbit 
al
ulations, the

measurements are summarized by parametrizations to be des
ribed in the next se
tion. But before we

turn our attention to the representation of the solenoid �elds in the numeri
al maps, some 
oordinate

systems will be de�ned that link the parti
le motion with the �eld values at various points in 
on�gu-

ration spa
e. In the following the symbol � will be used to represent the distan
e along the magneti


axis of a solenoid. The H1 �eld map is given in a 
ylindri
al 
oordinate system with the origin �xed

at the point of symmetry on the magneti
 axis,

~

B

H1

=

~

B(r; �; �), and with the positive �{axis in the

dire
tion of the proton beam. The dire
tion of the �eld is opposite to the dire
tion of the e

+=�

beam.

A trivial transformation brings the �eld data into the form

~

B(x

s

; z

s

; �

s

), where (x

s

; z

s

; �

s

) is a �xed

right{handed Cartesian 
oordinate system. See Figure 5.2. The ZEUS �eld map data is in the form

~

B

ZEUS

=

~

B(�x

s

; z

s

;��

s

), with respe
t to our 
oordinate system. Parti
les moving in these solenoid

�elds, on the other hand, are des
ribed in a 
urvilinear 
oordinate system that moves along the design

orbit together with a �
tive ideal parti
le (see Appendix A). Imagine for a moment that we �x this

moving 
oordinate system on the 
urved design orbit at the point of entran
e to the GO magnet,

as seen by the ele
trons. We refer to this 
urved 
oordinate frame as the (~x; ~z; ~s) system, and label

the snapshot of it at the entran
e of GO with \in". There is no verti
al 
urvature in the intera
tion

regions, so that K

z

= 0 and the design traje
tory lies in the horizontal plane. Re
all (Chapter 2)

that by design the 
ollisions take pla
e at some small distan
e away from the solenoid axis, where

the magnitude of the shift depends on whi
h IP and lepton spe
ies is under 
onsideration. To make

these features 
lear in our des
ription, yet another �xed 
oordinate system (�x; �z; �s) is introdu
ed, in

whi
h a parti
le position is given with respe
t to the distan
e from and along the beam axis inside

the solenoid. From the geometry on the left side of the IP we �nd the following relations between the


oordinates of the various frames:

x

s

= �x� x

shft

z

s

= �z (5.5)

�

s

= �� � �

s:p:

�x(~x; ~z; ~s) = �

�

�

GO

� (�

GO

+ ~x) 
os

�

'

in

�

~s

�

GO

��
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Figure 5.2: The design traje
tory in the vi
inity of the IP. The various 
oordinate systems used to

des
ribe the solenoid �elds and the parti
le traje
tories are illustrated.
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�z(~x; ~z; ~s) = ~z (5.6)

��(~x; ~z; ~s) = �

GO

sin('

in

)� (�

GO

+ ~x) sin

�

'

in

�

~s

�

GO

�

where �

GO

is the radius of 
urvature in the GO magnet and '

in

is the total bending angle in GO.

The numeri
al values for the longitudinal shifts of the symmetry plane away from the position of the

IP are with our 
onventions �

shft

= �1:125 m for H1 and �

shft

= +0:05 m for ZEUS. The distan
e

from the entran
e of the GO magnet to the plane of symmetry measured along the solenoid axis is

�

s:p:

= �

GO

sin('

in

) + d

1

+ �

shft

, where d

1

is the distan
e from the exit of GO up to the IP. At

H1 
ollisions between protons and ele
trons take pla
e on the solenoid axis, whereas a horizontal

shift of the beam traje
tories of x

shft

= 7:5 mm towards the 
entre of the ring is introdu
ed when

positrons are 
ollided with the protons. At ZEUS the distan
e between the axis and the 
ollision

point is x

shft

= 10 mm with ele
trons and x

shft

= 17:5 mm with positrons. The shift dire
tion of

the beams with respe
t to the solenoid axis is the same as at H1. In the 
al
ulations presented in

Chapter 6, a slightly di�erent shift value at ZEUS for the ele
tron 
ase has been used (x

shft

= 4 mm),


orresponding to an intermediate version of the upgrade IR geometry. This will be 
ommented on

later. On the right hand side of the IP the 
oordinates are related in similar ways:

�x(~x; ~z; ~s) = �

 

�

GG

� (�

GG

+ ~x) 
os

 

~s �

~

d

0

�

GG

!!

�z(~x; ~z; ~s) = ~z (5.7)

��(~x; ~z; ~s) = (�

GG

+ ~x) sin

 

~s �

~

d

0

�

GG

!

+ �

GO

sin('

in

) + d

1

+ d

2

Here �

GG

and d

2

are the radius of 
urvature of the GG magnet and the distan
e from the IP to the

entran
e of GG, respe
tively. The

~

d

0

is the distan
e along the 
urved design traje
tory from the

entran
e of GO to the entran
e of GG. Using the above 
oordinate transformations we now have the

means to transform the solenoid �elds from fun
tions of �xed 
oordinates, with their origins on the

solenoid axes, to fun
tions of the 
urvilinear system, with respe
t to whi
h the parti
le motion is

des
ribed. From the �eld maps and the relations (5.5 { 5.7) we get

~

B(x

s

; z

s

; �

s

) =

~

B(x

s

(~x; ~z; ~s); z

s

(~x; ~z; ~s); �

s

(~x; ~z; ~s)) (5.8)

with 
omponents

~

B = (B

x

s

;B

z

s

;B

�

s

) in the straight 
oordinate system (x

s

; z

s

; �

s

). We are interested

in the 
omponents of

~

B in the 
urved system (~x; ~z; ~s). The base ve
tors of these two 
oordinate systems

are related by a simple rotation:

~

e

B = (B

~x

;B

~z

;B

~s

)

T

(~x;~z;~s)

= R ('(~s))

~

B(x

s

; z

s

; �

s

)

T

(5.9)

On the left side of the IP

R ('(~s)) =

0

B

�


os'(~s) 0 � sin'(~s)

0 1 0

sin'(~s) 0 
os'(~s)

1

C

A

where '(~s) = '

in

�

~s

�

GO

(5.10)
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and on the right side of the IP

R ('(~s)) =

0

B

�


os'(~s) 0 sin'(~s)

0 1 0

� sin'(~s) 0 
os'(~s)

1

C

A

where '(~s) =

~s �

~

d

0

�

GG

: (5.11)

With the transformed solenoid �elds, using the above formulae, we are now in a position to perform

Runge{Kutta integrations a
ross the new IRs with respe
t to the design orbit and we �nally 
ome to

the representations of the H1 and ZEUS �elds.

5.2.1 H1 and ZEUS solenoid �eld models

For spin and orbit tra
king the in
omplete knowledge of the H1 solenoid �elds requires that the

measured information be 
omplemented by an extrapolation of the data. This has been done by

modelling the �eld as the superposition of the �elds from two solenoids, a

ording to an analyti
al

expression given in [BB96, FG97℄
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=
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�
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(5.12)

This model gives a parametrization of the axial �eld in terms of the longitudinal 
oordinate, where

the free parameters 
an be used to �t the measured data. A �t to the data with MINUIT [Ja94℄ gives

p

1

= 2:629; p

2

= 4:131; p

3

= 1:638; p

4

= � 0:01468; p

5

= 0:6613; p

6

= 0:4658

The H1 longitudinal �eld on the solenoid axis from the �eld map 
an be seen in Figure 5.3 together

with a �tted parametrization using eqn. (5.12). In the �gure, verti
al lines indi
ate the extent of the

�eld measurement between the solenoid end{
ap regions. In the region 
overed by the measurements

the �t is 
learly good.

Assuming perfe
t rotational symmetry around the magneti
 axis, the parametrized longitudinal

�eld on the solenoid axis is suÆ
ient for determination of all other �eld 
omponents via Maxwell's

equations, expressing the 
omponents through simple Taylor expansions [FR73℄. An estimation of the

unknown end �elds is then possible. Moreover, the parametrization of the �eld has the advantage over

a method relying on interpolation of the �eld map data of higher 
omputational speed. A

ordingly, in

order to ful�ll Maxwell's equations, only the measured on{axis longitudinal �eld has been in
orporated

(even in regions where the measurement data 
ontain information on the transverse �elds) and away

from the solenoid axis the radial and longitudinal �eld 
omponents are given by

B

r

=

1

X

n=0

b

2n+1

(�) r

2n+1

B

�

=

1

X

n=0

b

2n

(�) r

2n

(5.13)
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Figure 5.3: On{axis H1 solenoid �eld used in the numeri
al 
al
ulations. The 
rosses are the measured

data from the H1 �eld map and the solid 
urve is a �t to this data using eqn. (5.12). The verti
al

lines indi
ate the limits of the measurements and the positions of the Æ{fun
tion radial end �elds in

model A

1

.

where the following re
ursive relationships hold

b

2n+1

(�) =

(�1)

n+1

(2n+ 2)(2n!! )

2

b

(2n+1)

0

8 n 2 f0; 1; 2; : : :g

b

2n+2

(�) =

(�1)

n+1

((2n+ 2)!! )

2

b

(2n+2)

0

8 n 2 f0; 1; 2; : : :g (5.14)

The implementation into the 
ode for numeri
al matrix retrieval only in
ludes the 
onstant and

linear terms of the Taylor expansions, the justi�
ation for this being the smallness of the higher order

terms for parti
les travelling at a modest distan
e from the solenoid axis and in
reased 
omputational

speed, avoiding 
ompli
ated analyti
al expressions and numeri
al ripple from qui
kly os
illating terms.

Retaining just the zeroth and �rst order terms in eqn. (5.13) we are left with

B

r

= b

1

(�) r = �

1

2

b

0

0

(�) r

B

�

= b

0

(�) (5.15)

The resulting parametrization of the H1 solenoid �eld is depi
ted in Figures 5.4 to 5.6.

We now dis
uss three di�erent ways of des
ribing the H1 �elds at and beyond the limits of the

measurements. The �rst, 
alled hard edge model A

1

, has the parametrization (5.12) but hard edge


ut o�s at the positions given in Figure 5.3 and a resulting total integrated longitudinal �eld of

Z

H1

B

�

d� = 7:64169Tm

However more re
ent information and �eld 
al
ulations with the POISSON 
ode [Fe99℄ have shown

that this value underestimates the H1 integrated �eld by about 8% so that one should have
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Z

H1

B

�

d� = 8:266Tm

Thus we have de�ned a se
ond hard edge model. This again has the parametrization (5.12)

but hard edges at positions set to give the larger integral. We refer to this as hard a edge model

A

2

. In mathemati
al terms the longitudinal �elds of models A

1

and A

2


an be written as

~

B

�

=

B

�

(�) �̂�(� � �

1

) [1� �(� � �

2

)℄ where � is the Heaviside step fun
tion, and the radial end �elds

appear as Æ{fun
tion ki
ks at � = �

1

and � = �

2

, using eqn. (5.15).

A physi
al solenoid �eld will of 
ourse not exhibit su
h a behaviour, but have a smooth de
line over

some distan
e 
omparable to the size of the hole for the beam pipe in the iron return yoke. Therefore

a more realisti
 model, model B, re
e
ting this fa
t has been 
onstru
ted. This uses parametrization

(5.12) together with a linear fall o� of the end �elds arranged so as to give the the �eld integral of

8.266 Tm. Field 
al
ulations with OPERA2D

4

in the end �eld regions support this assumption, see

Figure 5.7.

In summary, the various models used to represent the H1 �eld in the polarization 
al
ulations are as

follows. All the numeri
al map models use the �rst order �eld approximation a

ording to eqn. (5.15).

The results of 
al
ulations of orbital and spin motion are presented in Chapter 6.

� The sandwi
h model with a �eld integral of 8:266 Tm, using the \box{�eld approximation", i.e.

the hard edge model where all solenoid sli
es have the same strength.

� Numeri
al map model A

1

. Hard edge 
uto� using the lower estimate of the H1 �eld integral:

7:642 Tm. See Figure 5.3.

� Numeri
al map model A

2

. Hard edge 
uto� using the higher estimate of the H1 �eld integral:

8:266 Tm. See Figure 5.7.

� Numeri
al map model B. Linear fall o� model using the higher estimate of the H1 �eld integral.

See Figure 5.8.

The ZEUS �eld measurement data has been treated in a manner similar to the H1 �eld data. To

�t the data to an analyti
al expression, only a single solenoid term is needed. As the solenoid �eld

was measured out to a greater distan
e from the 
entre point, in
luding the fringe �eld regions, the

fall o� of the �eld and the shape of the end �elds are known. Therefore only one end �eld model has

been 
onsidered for the numeri
al map derivations, the hard edge 
uto� as illustrated in Figure 5.9.

Note in parti
ular that the �eld overlap with the ma
hine magnets is smaller, as is the integrated �eld

strength 
ompared to H1. The ZEUS longitudinal asymmetry with respe
t to the IP is also quite

small. For the numeri
al 
al
ulations, the radial �eld 
omponents on the solenoid axis originating

from magneti
 material 
lose to the iron return yoke have been negle
ted, sin
e their magnitude is

small, < 400 Gauss. The ZEUS �eld integral on axis is

Z

ZEUS

B

�

d� = 4:45409Tm

The ZEUS �eld has been parametrized using the form

4

The Opera2D 
al
ulations were performed by M. Marx with the purpose of studying some details of the magneti


�eld 
lose the the solenoid end{
aps. The shape and magnitude of the 
entral part of the �eld was of minor

importan
e, suggesting an explanation for the disagreement with the �eld map data in this region.
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Figure 5.4: The H1 solenoid on{axis longitudinal �eld and the �rst two derivatives thereof, using the

expansion (5.14) with the parametrization (5.12) where B

�

= b

0

(�

0

). See Figure 5.2 for the de�nition

of the longitudinal variable �

0

.
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(5.16)

with MINUIT �t parameters

p

1

= 1:166; p

2

= 1:364; p

3

= 0:8815

The longitudinal and radial �eld 
omponents are on
e again given by eqn. (5.15). Cal
ulations using

the numeri
al map model for ZEUS are presented in Chapter 6.

5.2.2 Implementation into SITROS

The method used to 
reate numeri
al maps, representing the overlapping �elds in the new intera
tion

regions, for implementation into SLIM/SLICK 
an with some modi�
ations also be used to 
reate
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oordinates r and �

0

are de�ned in Figure 5.2

maps for SITROS. For SITF, the linear part of SITROS, it is (almost) straightforward, whereas for

the tra
king part of SITROS a few points must be noted.

First of all, the orbit maps in SITROS 
ontain damping and hen
e are not symple
ti
. The

SLIM/SLICK maps should therefore in prin
iple be re
al
ulated before using them in SITROS, taking

the E

0

{dependent antidamping of the 
ombined fun
tion magnets into a

ount. For a large ring su
h

as HERA, the 
ontribution to the damping from a few magnets in the intera
tion regions, although

having strong �elds, is not prominent. Swit
hing the damping o� in the GO and GG magnets 
hanges

the damping partition numbers by less than 0:5%. The nondamped matri
es from SLIM/SLICK


an thus be used as a good approximation to the real damped maps for these few elements with
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Figure 5.7: On{axis H1 solenoid �eld. The 
rosses are the measured data from the H1 �eld map and

the solid 
urve is a �t to this data using eqn. (5.12). The verti
al lines indi
ate the positions of the

Æ{fun
tion radial end �elds in model A

2

. The dashed line is a �eld 
al
ulation made with OPERA2D

for studying the �eld near the end{
aps.
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Figure 5.8: The H1 solenoid longitudinal �eld (measured data �tted to eqn. (5.12)) with an assumed

linear fall o� of �eld in the end regions: model B.

solenoid overlap. Furthermore, SITROS is built upon a matrix formalism where the nonlinearities

up to se
ond order in the orbital 
oordinates are a

ounted for. When 
onstru
ting numeri
al maps

for SITROS, all di�erent two{
ombinations of the phase spa
e 
oordinates at the starting positions

should be tra
ed a
ross the map se
tions. However, the nonlinear e�e
ts in the mixed �eld se
tions,

related to the solenoid end �elds, are expe
ted to be small 
ompared to the total nonlinearity of the

rest of the ring and 
ould as a �rst attempt be ignored for the orbital motion. Considering the fa
t

that the overlapping intera
tion region magnets only amount to a small fra
tion of the total number

of magnets in the ring, su
h an approximation seems reasonable.

In 
ontrast to SLIM/SLICK and SITF, where the spin transformations on the design and 
losed
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al 
al
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The verti
al lines indi
ate the positions of the Æ{fun
tion radial end �elds used in the model.

orbits are represented by the 3�3 rotation matri
es, SITROS uses the quarternion des
ription. Re
all

the de�nition of the unit{quarternion in Chapter 3, relation (3.85). The quarternions needed for the

mapping of the spin motion through the overlapping elements in the HERA upgrade intera
tion

regions 
ould in prin
iple be derived dire
tly through integration in sli
es of the

~


 rotation ve
tor

(see eqn. (3.86) and eqs. (A.15 { A.17)) over the elements. However, for des
ribing these long (thi
k)


omplex �eld regions, it is more 
onvenient to use the rotation matri
es evaluated for SLIM/SLICK

and derive an approximation to the quarternions needed for SITROS.

It 
an be shown [Vo00℄ that for every rotation matrix R 2 SO(3) there exists a quaternion �q =

�


os

'

2

; sin

'

2

q̂

�

representing the same transformation. The 
orresponden
e between the representations

is not one{to{one sin
e the quarternion �q

�

=

�


os

'

2

;� sin

'

2

q̂

�

is also a realization of R. Adopting for

simpli
ity the positive sign for sin

'

2

q̂ as our preferred sign 
onvention, the 
onversion from rotation

matri
es to quarternions is given by

q

0

=

1

2

q

tra
e(R) + 1

q

+

i

= �

�

ijk

R

jk

2

p

tra
e(R) + 1

8 i 2 f1; 2; 3g (5.17)

where �

ijk

is the anti{symmetri
 Levi{Civita tensor. If tra
e(R) = �1 so that q

0

= 0 there is still a

non{vanishing

q

+

m

=

s

R

mm

+ 1

2

(5.18)

for somem 2 f1; 2; 3g. The underlining of the indi
es indi
ate that they are not subje
t to 
ontra
tion.

We then have
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q

+

i

=

R

mi

2q

+

m

i 6= m (5.19)

Given the information at hand, we 
an write down the quarternion transformations as a trun
ated

power expansion in the orbital 
oordinates

�q = �q

0

+

��q

1

�x

�x+

��q

1

�x

0

�x

0

+

��q

1

�z

�z +

��q

1

�z

0

�z

0

+

��q

1

�`

�`+

��q

1

�Æ

�Æ (5.20)

where

��q

1

�`

�` � 0. The zeroth order quarternions �q

0

, 
orresponding to the R

0

's, and the partial

di�erentials of the �rst order quarternions �q

1

, 
orresponding to the R

~u

i

's, are 
al
ulated in{line in

SITROS using eqs. (5.17 { 5.19). After summation of the terms in the expansion (5.20) the unitarity

of the re
onstru
ted quarternions must be restored by renormalization. Note that in the 
ase of an

opti
 with orbit distortions I have reverted to the sandwi
h model for pra
ti
al reasons. See 
omments

in Chapter 6.
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Chapter 6

Polarization 
al
ulations for the

upgraded HERA

6.1 Limitations and remedies

The luminosity upgrade of HERA is a major undertaking that has far rea
hing 
onsequen
es for the

ele
tron ma
hine. A brief introdu
tion to the most important 
hanges was given in Chapter 2 and

Chapter 4. After having dis
ussed the basi
 
on
epts of radiative spin polarization theory in Chapter 3

and the models introdu
ed for des
ribing the overlapping �eld stru
tures in the new intera
tion regions

in Chapter 5, we are now in a position to investigate the e�e
ts of the upgrade on the spin polarization.

The upgrade latti
e is designed to allow 
ollisions between protons and e

+=�

at the nominal HERA

energies of 30 GeV for e

+=�

and 820 GeV for protons. Sin
e it was demonstrated during 1998 ma
hine

operation that the proton ring 
an be run with suÆ
ient safety margin at 920 GeV, the proton energy

after the upgrade will (at least initially) be set to this value. For the e

+=�

beam the upper energy

limit, as was mentioned earlier, is set by the maximum tolerable energy loss per turn and by reliability


onsiderations. The lower energy limit is set by the spin rotators at about 26.8 GeV where the

horizontal geometry in the tunnel is the limiting fa
tor. The need to a
hieve a high level of spin

polarization further restri
ts the 
hoi
e of e

+=�

beam energy. In order to stay away from detrimental

depolarizing resonan
es, the working point should be 
hosen su
h that the spin tune �

0

is set to a half{

integer value. The presen
e of the experiment solenoids and the spin rotators in the latti
e introdu
es

a shift of the spin tune away from a
, where the shift related to the rotators is dominating and is about

��

0

= 0:05 per pair at these energies. E = 27:474 GeV is therefore the smallest energy 
ompatible

with HERA operation with three pairs of rotators, 
orresponding to �

0

= 62:5. The 
orresponding

energy in the old latti
e with only one pair of rotators is E = 27:519 GeV.

For ele
tron spin polarization, the main 
on
erns for the upgrade are the e�e
ts of the un
ompen-

sated experiment solenoids and the in
uen
e from the overlapping �elds in the intera
tion regions. A

non{
ompensated solenoid in the latti
e introdu
es 
oupling between horizontal and verti
al betatron

motion and thereby in
reases the verti
al beam size. In addition it 
auses a tilt of n̂

0

. From eqn. (3.8)

we see that for a parti
le travelling in a magneti
 �eld of magnitude B

k

, parallel to its velo
ity, the

spin

b

S pre
esses around the beam dire
tion by an angle

�� =

(1 + a)e


m

Z

B

k

(s)ds (6.1)
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The H1 solenoid for example, with its integrated �eld strength of 8.27 Tm would, if not 
ompensated,

tilt an initially verti
al spin by about 90 mrad at 27.5 GeV.

1

Under su
h 
onditions the radiative

polarization would be overwhelmed by depolarization. With the installation of spin rotators around

the North and the South intera
tion zones, the design dire
tion of n̂

0

will be longitudinal at the

IPs. The disturban
e of the polarization from the un
ompensated solenoids in this 
ase is less severe,

but nonetheless important. In parti
ular parti
les whi
h due to betatron motion travel through the

solenoid at an angle x

0

or z

0

with respe
t to the solenoid axis, assuming for simpli
ity that the parti
le

traje
tories are straight lines in the solenoid

2

, will experien
e ki
ks to their spin from the longitudinal

�eld in the solenoid 
entre, and additional ki
ks in the solenoid end �elds when the parti
les traverse

these �elds with a transverse o�set. For these parti
les the spin mat
hing 
onditions are broken. This


an be understood in terms of the G matrix sin
e these parti
les pi
k up nonzero 
ontributions in


olumns 2 and 4 (
entral solenoid �elds) and 1 and 3 (end �elds) respe
tively, and these nonzero terms

hen
e 
ontribute to the spin di�usion. Note that for parti
les travelling with a �xed o�set (x or z)

through solenoid end �elds, the end �eld 
ontributions at the entran
e and exit of the solenoid 
an
el.

In the old design the e�e
ts of the experiment solenoids were almost 
ompletely 
ompensated by anti{

solenoids. The inevitable removal of these devi
es in the new design requires that the problems are

solved in a di�erent way. The situation in the intera
tion regions is further 
ompli
ated by the overlap

of the solenoid �elds with the �elds of the �nal fo
us magnets and by the la
k of mirror symmetry.

Due to the larger integrated �eld strength of the H1 solenoid 
ompared to the ZEUS solenoid,

a larger longitudinal asymmetry and a more extensive overlap, most of the work on 
al
ulating the

in
uen
e of the mixed �elds in the new intera
tion regions on orbit and spin motion has 
on
entrated

on the North IR. For 
ases where both solenoids are in
luded in the 
al
ulations, this will be expli
itly

mentioned. The parti
ular opti
 that will be studied in the following se
tions is one of several revisions

for the upgrade IRs and will be referred to as the Rev3.2 opti
.

6.1.1 Coupling 
ompensation

In the absen
e of 
ompensating solenoids the inter{plane 
oupling in the new HERA design has to

be minimized by other means. As a �gure of merit, the ratio of the generalized verti
al emittan
e

to the horizontal one is about 6.9 % in this design with an un
ompensated H1 solenoid overlapping

with the GO and GG �nal fo
us magnets

3

, as 
ompared to the nominal value of 2.4 % in a latti
e

with three pairs of rotators, but with no solenoids. Following the su

essful implementation in several

other ma
hines (for example ISR and LEP) a solution utilizing skew quadrupoles has been adopted

for HERA II. I will now give a summary of some theoreti
al methods for des
ribing orbital 
oupling,

whi
h suggest ways to �nd the positions and relative strengths of the skew quadrupoles needed, and

present some results based on these methods for the upgraded HERA ele
tron opti
.

The equations of motion (A.8) and (A.9) for the transverse parti
le 
oordinates in the presen
e of

solenoids and skew quadrupoles 
an be written as

4

x

00

+ ( g +K

2

x

) x = (N +R

0

) z + 2Rz

0

z

00

� ( g�K

2

z

) z = (N �R

0

) x� 2Rx

0

(6.2)

1

Note that the resulting tilt in the ma
hine ar
s, looking at the 
losed solution for a half{integer spin tune, is about

45 mrad.

2

i.e. ignoring the small twist of the beam generated by the solenoid and ignoring the weak fo
using in the solenoid

3

The value depends on the solenoid model; the stated value is for the sandwi
h model.

4

To arrive at this form, the equations have been linearized following [MR82a℄ and Maxwell's equations have been

used.
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We will need the notation introdu
ed here for the following dis
ussion. As a 
onsequen
e of 
oupling

between the transverse os
illation modes some of the horizontal dispersion will 
ouple into the verti
al

plane, i.e. there will be generation of spurious verti
al dispersion, whi
h 
an be hazardous for the

polarization. This however is not the 
ase if the solenoid and its 
ompensating skew quadrupoles

are lo
ated in pla
es where D

x

= 0. In HERA the experiment solenoids are lo
ated at positions

where D

x

' 0. The skew quadrupoles should therefore be pla
ed at positions in the latti
e where the

horizontal dispersion is minimal. Moreover, sin
e in general the 
oupling terms will only vanish in the

region outside the 
oupling sour
e (solenoid) and the 
ompensating elements (skew quadrupoles in our


ase), for the overall ma
hine opti
 it is desirable to have a lo
al 
ompensation of the 
oupling.

5

Hen
e

the skew quadrupoles should be lo
ated as 
lose as possible to the solenoids. In the following I will

refer to the \region of interest" when dis
ussing the region to be de
oupled upstream and downstream

of an experimental solenoid, between the outermost skew quadrupoles.

In the absen
e of 
oupling the 4 � 4 transfer matrix m for the transverse motion has a blo
k

diagonal form (
f. eqn. (4.1)) along any se
tion of the ring, but when 
oupling is introdu
ed the

o� diagonal blo
ks are no longer identi
ally zero. Unlike the 
ase of ma
hine alignment errors, the

perturbation due to an experiment solenoid is in prin
iple known, so that the magnet may be in
luded

in the opti
 and one 
an look for settings for the skew quadrupoles whi
h minimize the o�{diagonal

blo
ks of the transfer matrix. This will be referred to as the \matrix method". At this stage of the


al
ulations in setting up an un
oupled opti
, the radiation e�e
ts are usually not taken into a

ount

so that the transfer matri
es obey the symple
ti
ity 
onditionm

T

Sm= S. The symple
ti
ity ensures

that only one of the o�-diagonal blo
ks needs to be minimized, so that the number of free parameters

is redu
ed to four. The minimum number of skew quadrupoles needed to for
e the o�-diagonal blo
ks

to zero is therefore four.

For the luminosity upgrade it has been de
ided to in
orporate skew quadrupole windings in the

�nal fo
us magnets GO and GG. At least one more pair of skew quadrupoles further out in the

latti
e is needed, but be
ause of the limited strength of the \inner" skew 
omponents in GO and

GG a solution with two more pairs has been 
hosen. In this way the extra freedom of 
hoi
e in

the settings 
an be used to suppress the verti
al dispersion generated by the solenoids and the skew

quadrupoles themselves. The 
hoi
e of positions of the skew quadrupoles will be explained later in

the text. Table 6.1 summarizes the settings of the six skew quadrupoles for the North IR. These were

obtained using the six free parameters to minimize the sum of squares of the o�{diagonal elements of

the 4 � 4 part of the transfer matrix M for this region of interest and in addition the generation of

verti
al dispersion, i.e. requiring

q

w

1

M[1; 3℄

2

+ w

2

M[1; 4℄

2

+ w

3

M[2; 3℄

2

+ w

4

M[2; 4℄

2

+ w

5

M[3; 6℄

2

+ w

6

M[4; 6℄

2

= 0

where w

1

; w

2

; : : : ; w

6

are weight fa
tors. By weighting the dispersion 
ompensation by a fa
tor of 100

more than the 
oupling 
ompensation an almost 
omplete redu
tion of the spurious verti
al dispersion

5

In this treatment we will ignore any 
oupling related to ma
hine magnet misalignments.
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is a

omplished, while still a
quiring good 
oupling 
ompensation. See Figure 6.1. However, as 
an

be seen in Table 6.1 the skew quadrupole settings found for the various end �eld models of H1 have

large variations. This is most likely due to the fa
t that the magnitude of D

z


aused by the solenoid

perturbation is quite modest to begin with: the solenoid 
ontribution to the verti
al dispersion is

�D

rms

z

' 2:2 mm, whi
h should be 
ompared with the mu
h larger 
ontribution from orbit distortions.

See tables in Se
tion 6.3. The system is therefore underdetermined.

A

1

A

2

B

QSKN1 0.00035 0.00020 -0.00263

QSKN2 0.00064 0.00068 -0.00070

QSKON 0.00107 0.00038 -0.00010

QSKGN -0.00763 -0.00768 -0.00008

QSKN3 -0.00165 -0.00214 -0.00772

QSKN4 -0.00003 0.00008 0.00165

Table 6.1: Skew quadrupole settings in the North IR, using 6 individually powered magnets (
oils).

Comparison between various end �eld models for H1. The integrated strengths are in m

�1

.
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Figure 6.1: Verti
al dispersion fun
tion in the North{West o
tant for the Rev3.2 e

�

latti
e in
luding

the H1 solenoid (end �eld model A

1

) and lo
al orbit 
orre
tion. The IP North is at 4751.862 m. Ob-

serve that the 20 
m spikes 
orrespond to the (design) verti
al dispersion at the verti
al bend magnets

in the rotators. Left: No skew quadrupole 
ompensation. Right: Skew quadrupole 
ompensation with

a relative weight fa
tor of 100 favouring dispersion 
ompensation over 
oupling 
ompensation.

To get a better idea of how important the modelling of the solenoid end �elds is and how this

a�e
ts the skew quadrupole settings, the 
oupling minimization has been repeated using only the

\outer" four skew quadrupoles and minimizing just the 
oupling, hen
e requiring

q

w

1

M[1; 3℄

2

+ w

2

M[1; 4℄

2

+ w

3

M[2; 3℄

2

+ w

4

M[2; 4℄

2

= 0

The results are summarized in Table 6.2. In this table \
rude" refers to a sandwi
hing made with

only nine solenoid sli
es (and the same number of quadrupole and 
orre
tion 
oil sli
es), whereas

\thin quads" refers to a model where the fo
using a
tion is represented by a larger number of thin

lens quadrupoles. In all 
ases the ratio of the verti
al emittan
e to the horizontal one is redu
ed to

2.4 %. As 
an be seen, the variation in settings is now mu
h redu
ed as 
ompared to the six parameter
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ase and the agreement between the 
al
ulations made with the numeri
al IR maps and the sandwi
h

model is also good. In the following 
al
ulations, the skew quadrupole windings on GO and GG have

therefore been ex
luded and only the outer four skew quadrupoles are used.

maps maps maps sandwi
h sandwi
h

A

1

A

2

B 
rude thin quads

QSKN1 -0.0024 -0.0027 -0.0027 -0.0026 -0.0025

QSKN2 0.0004 -0.0010 -0.0009 0.0010 -0.0003

QSKN3 -0.0069 -0.0079 -0.0079 -0.0073 -0.0073

QSKN4 0.0017 0.0017 0.0017 0.0019 0.0017

Table 6.2: Skew quadrupole settings in the North IR, using 4 individually powered magnets. Com-

parison between various end �eld models for H1. The integrated strengths are in m

�1

.

It should be noted that the settings of the skew quadrupoles presented here 
an only be used as

a guide for how to power these magnets in the real ma
hine. Even without taking further sour
es of


oupling into a

ount (due to, for instan
e, random roll{angles of the quadrupoles), one should be

prepared to perform an empiri
al optimization. In parti
ular, a straight forward minimization of the

o� diagonal blo
ks as in the matrix method does not tell anything about how the individual skew

quadrupoles in
uen
e the 
oupling. It is therefore ne
essary to �nd ways to disentangle the e�e
ts

that the individual skew quadrupoles have on the beam and to devise \orthogonal 
ontrol knobs" for

them. In order to �nd su
h knobs we have looked into a few di�erent approa
hes, in parti
ular two

perturbative methods due to Guignard [Gu76℄ and Bassetti [Ba79℄ respe
tively.

A Perturbative harmoni
 approa
h (Guignard)

Guignard has formulated the solution to the problem of linear transverse betatron 
oupling utilizing

a perturbative method. In his treatment the solutions of the un
oupled equations of motion are used

to 
onstru
t the solutions for the 
oupled 
ase by the method of variation of 
onstants. Owing to the

periodi
ity in ma
hine azimuth of the perturbing Hamiltonian, the perturbation 
an be expanded in

a Fourier series and Guignard performs a detailed analysis of the two most important harmoni
s (p

�

)

asso
iated with the linear sum (+) and di�eren
e (�) resonan
es. In the presen
e of pure solenoid and

skew quadrupole �elds and negle
ting terms in R

2

(see eqn. (6.2)), the real and imaginary parts of

these Fourier 
omponents are given in terms of the Courant{Snyder parameters [CS58℄ � and � = �

�

0

2

by
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+
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1

4�

C

Z

0

p

�

x

�

z

n

[N +R(

�

x

�

x

�

�

z

�

z

)℄ sin( 

+

)� R(

1

�

x

�

1

�

z

) 
os( 

+

)

o

ds
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with

 

�

� �

x

� �

z

� (�

x

� �

z

+ p

�

)

2�s

C

where �

x

and �

z

are the horizontal and verti
al betatron phase advan
es, and p

�

is the 
losest integer

to �(�

x

� �

z

). Also with this formalism one �nds that at least four skew quadrupoles are needed for

the 
ompensation, although these then have a somewhat di�erent fun
tion as 
ompared to the four

emerging from the matrix method. In prin
iple, an exa
t 
ompensation of the perturbation would

require the 
ompensation of all harmoni
s and therefore an in�nite number of skew quadrupoles.

However, this is only apparently in 
ontradi
tion with the matrix method. The matrix method is

aiming at getting de
oupled motion outside the region of interest, whereas the harmoni
 approa
h

is minimizing the perturbation everywhere along the ring (in our 
ase by requiring the four most

important harmoni
s of the perturbation to vanish). For this reason one does not in general expe
t

the two approa
hes to be equivalent. Note the analogy with the 
losed orbit 
ase, where the e�e
t of

a lo
al ki
k 
an be either 
on�ned to a short region by powering two 
oils 
lose to the disturban
e,

forming a lo
al \orbit bump", or 
an be minimized by 
orre
ting the most important Fourier harmoni
s

of the resulting 
losed orbit, thus redu
ing the orbit distortion everywhere around the ring.

The Guignard approa
h is useful for re
ognizing the optimal lo
ations for the skew quadrupoles.

Indeed, to keep the integrated strengths of the skew quadrupoles small and to have the possibility of


orre
ting all four 
oeÆ
ients one should look for pla
es where sin( 

�

) and 
os( 

�

) are not all small.

For example, sin
e the phase advan
es a
ross the upgraded low beta regions are approximately equal

to � in both planes, all sine terms will (nearly) vanish for positions 
lose to the IPs. Taking this

into 
onsideration, together with the 
ondition D

x

' 0 on the horizontal dispersion (the dispersion

fun
tions in the upgrade IRs 
an be seen in Figure 2.3) and additional spa
e restri
tions due to the

proton ring magnets, the number of 
hoi
es of suitable positions is very limited. For the HERA{e

luminosity upgraded opti
 the most 
onvenient lo
ations have turned out to be at �116:3 m and

�124:5 m from the IPs, and (if used) near the IPs by pla
ing the skew quadruple windings on GO

and GG on the \outer halves", i.e. on the left half of GO and on the right half of GG.

From eqn. (6.3) it is 
lear that for a fully symmetri
 IR design the solenoid would be 
ompensated by

two pairs of antisymmetri
 skew quadrupoles, leading to only two independent knobs. It is worth noting

that this result also holds for the matrix approa
h. For HERA the interesting aspe
t of the Guignard

approa
h is that owing to the orthogonality of the Fourier 
omponents and their linear dependen
e on

the skew quadrupole strengths, it is possible to 
hoose four sets of skew quadrupole strengths, su
h that

when the strengths in a set are s
aled, the 
orresponding harmoni
 is s
aled by the same fa
tor without


hanging the other three harmoni
s. The s
ale fa
tors are the \orthogonal knobs" or \skew bumps"

for the Guignard formalism needed for the empiri
al optimization mentioned above. In pra
ti
e

the relationships (\ex
itation ratios") between the skew quadrupole strengths required to ex
ite one

harmoni
 at a time and leaving the others un
hanged are trivially obtained by solving eqn. (6.3) for

<e(+) = 1 with =m(+) = <e(�) = =m(�) = 0, =m(+) = 1 with <e(+) = <e(�) = =m(�) = 0 and

so on. Although the one{turn transfer matrix is not fully de
oupled with this 
hoi
e, 
al
ulations with

SLIM/SLICK show that the residual e�e
ts of the remaining 
oupling on the beam dynami
s and

the polarization are very small. See Figure 6.11. It should however be mentioned that the remaining

distortion of the verti
al dispersion after 
ompensation with four skew quadrupoles is �D

rms

z

' 7 mm

(in
luding the distortion introdu
ed by the skew quadrupoles themselves), i.e. larger than before the


orre
tion, sin
e with only four skew quadrupoles this distortion 
annot be 
ontrolled. The value is

nevertheless small 
ompared to the value asso
iated with 
losed orbit distortions, as we will see.

B Perturbative approa
h (Bassetti)

Although the transfer matrix is not expli
itly mentioned, Bassetti is a
tually 
onsidering the transfer

matrix through the region of interest. In a �rst order approximation he �nds that the blo
k diagonal
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elements are un
hanged by the 
oupling perturbation and that the o�{diagonal elements may be

expressed as linear 
ombinations of the unperturbed blo
k diagonal elements, the 
oeÆ
ients of su
h


ombinations being given by the integrals on the right hand side of eqn. (6.3) with  

�

� �

x

� �

z

.

Therefore blo
k{diagonalization of the matrix in the Bassetti formulation amounts to requiring the

integrals in (6.3), with \Bassetti phases" instead of \Guignard phases", to be zero. Owing to the

spe
i�
 form of the fun
tions to be integrated in eqn. (6.3), the Bassetti approa
h also leads to four

orthogonal \knobs".

By 
omparing the Bassetti and the Guignard formulas we see that for �

x

+ �

z

= p

+

and �

x

� �

z

=

p

�

the two approa
hes are equivalent. However, in pra
ti
e these 
onditions 
an never be satis�ed

simultaneously. It is therefore better to say that the approa
hes are equivalent when the region of

interest is short. In that 
ase (�

x

� �

z

+ p

�

)

2�s

C

' 
onst. When the region of interest is short the two

approa
hes are also 
on
eptually equivalent. For the luminosity upgrade Rev3.2 e

�

opti
 a 
omparison

between the skew quadrupole settings needed for the North IR, using the matrix minimization, the

Guignard and the Bassetti methods is given in Table 6.3 (simulations done with SLIM, using the

sandwi
h mode with 34 solenoid sli
es). Indeed one �nds that the matrix method and the Bassetti

approa
h give very similar, although not identi
al, results.

matrix method Bassetti Guignard

QSKN1 -0.00257 -0.00254 -0.00231

QSKN2 0.00024 0.00025 0.00028

QSKN3 -0.00747 -0.00739 -0.00649

QSKN4 0.00178 0.00175 0.00146

Table 6.3: Skew quadrupole settings in the North IR, 
omparing values found for the matrix method,

the Bassetti and the Guignard approa
hes respe
tively. The integrated strengths are in m

�1

.

A minimization of the four harmoni
s in eqn. (6.3) minimizes the overall perturbation of the

Hamiltonian of the system. It should therefore be possible to use any observable as a �gure of merit.

One su
h observable is the betatron tune, whose measurement is available at any storage ring. By

using the perturbative approa
h it is possible to show (see for instan
e [RW88℄) that in the presen
e

of 
oupling sour
es the horizontal and verti
al motions both 
ontain the same two frequen
ies, �

I

and

�

II

. When �

0

x

' �

0

z

� �

0

, �

0

x

and �

0

z

being the unperturbed tunes, these frequen
ies, whi
h are the

a
tually measurable ones, di�er from ea
h other and from the unperturbed tune �

0

by an amount

whi
h depends on the 
oupling strength. Therefore de
oupling is a
hieved when it is possible to set

the ma
hine quadrupoles so that the measurable tunes are equal. Another suitable observable is the

tilt of the beam 
ross se
tion. Indeed when the radial and verti
al motions are un
oupled the beam


ross se
tion is an ellipse with axes aligned along the x and z axes, re
e
ting the fa
t that the x and

z 
oordinates of the parti
les are independent. In the presen
e of 
oupling the beam ellipse is tilted

and the tilt angle, for a given perturbation, is a fun
tion of the ma
hine azimuth. The measurement

of the tilt of the beam ellipse is therefore also a measure of the ma
hine 
oupling. In HERA the

beam 
ross se
tion 
an be observed at the syn
hrotron light monitor (SLM) in the North{West ar
,

at the experiment luminosity monitors and at the transverse polarimeter. It is worth noting that a

monitoring of the beam ellipse tilt merely at one azimuth in the ma
hine would be insuÆ
ient.

This way of 
orre
ting the 
oupling through empiri
al adjustment of the four 
oeÆ
ients in

eqn. (6.3) has been simulated with SLIM for the Rev3.2 e

�

upgrade opti
 in the presen
e of the H1

solenoid (using the sandwi
h model). For ea
h harmoni
 the strength of QSKN1, the skew quadrupole

lo
ated at -124.5 m (the \leading quadrupole"), has been varied and the observables des
ribed above

have been re
orded. The strengths of the remaining three skew quadrupoles are slaved to the strength

of QSKN1 through the ex
itation ratios. Figures 6.2 to 6.4 show these 
hosen observables plotted

against the integrated strength of QSKN1 for the harmoni
s <e(+), <e(�) and =m(�). The nom-

inal tunes (without the solenoid) are pushed rather 
lose together and are �

x

(unp) = 54:149 and
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�

z

(unp) = 51:167.

6

When the solenoid is swit
hed on the tunes move apart to �

I

= 54:143 and

�

II

= 51:174. The minimum tune separation is obtained by setting the skew quadrupoles to the val-

ues quoted in Table 6.4. This table also gives values obtained by analyti
ally solving eqn. (6.3) with

the Bassetti de�nition of  

�

. Note that the optimal settings found by looking at the minimum tune

separation are in good agreement with the values found at the minimum value of the rms beam ellipse

tilt. We note that the 
oeÆ
ient =m(�) in Table 6.4 shows the largest deviation. For =m(+), whi
h is

relatively small, the s
anning did not give any minimum. This 
an be understood by noting that the

tunes are far away from the sum resonan
e. In fa
t the minimum for <e(+) is also not pronoun
ed.

The result from the s
anning indi
ates that in pra
ti
e, the only 
oeÆ
ients that are expe
ted to be

measurable are the <e(�) and =m(�), in 
onsisten
y with the fa
t that HERA is operated 
lose to

the di�eren
e resonan
e.

For the sake of 
onsisten
y, the results presented above on the 
oupling minimization using the

Bassetti and Guignard approa
hes are all obtained using the sandwi
h model in SLIM, sin
e a 
omplete

set of results for the mixed maps in SLICK is not at hand. It should be pointed out however that

the 
al
ulations have been 
ross 
he
ked using both methods for the major part of the results and

that the results are 
onsistent. The values found for the skew quadrupole settings are not the same

with the sandwi
h model and with the numeri
al maps, but they both indi
ate that the optimization

method is feasible.

QSKN1

\analyti
al" s
an

<e(+) 0.00030 0.00027

=m(+) -0.00008 {

<e(�) -0.00160 -0.00160

=m(�) -0.00115 -0.00100

Table 6.4: Contributions from the real and imaginary parts of the 
oupling 
oeÆ
ients to the settings of

the �rst (upstream) of the four skew quadrupoles, 
ompared to the 
orresponding 
ontributions found

by s
anning ea
h of the four skew quadrupole bumps and looking at some suitable observable(s). The

integrated strengths are in m

�1

.

C Transfer matrix measurement

Finally, we have 
onsidered the possibility of \measuring" the a
tual transfer matrix M of an

experiment solenoid on
e it is swit
hed on. The basi
 idea is simple. One ex
ites orbit os
illations

with a 
orre
tion 
oil upstream of the solenoid and measures the beam position at the BPM's just

before and after the solenoid. Knowing the initial (i) and �nal (f) 
oordinates at the solenoid entran
e

and exit the transfer matrix 
an be retrieved in a way similar to the way the numeri
al maps were


al
ulated in Chapter 5. However, sin
e the parti
le slopes 
annot in general be measured they must

be 
omputed by making a �t to the measured position data. The 
losed orbit in an error free region


an always be �tted by a free betatron os
illation, therefore the normal HERA 
orre
tion 
oils may

be used and one 
an work on di�eren
e 
losed orbits instead of single pass data. The pro
edure 
an

be summarized as follows:

� Ex
ite one 
oil upstream of the solenoid

� Fit di�eren
e orbits by using the BPMs between the 
oil and the solenoid

! (x

i

; x

0 i

; z

i

; z

0 i

)

6

The label \unp", meaning \unperturbed", on �

x

and �

z

is equivalent to the supers
ript 0 used earlier.
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Figure 6.2: A few observables plotted against the integrated strength of QSKN1 for the <e(+) har-

moni
, when minimizing the 
oupling in the Rev3.2 e

�

latti
e in
luding the H1 solenoid (sandwi
h

model). Top: Nominal (without solenoid) and perturbed tunes (with solenoid). Middle: Tune di�er-

en
e. Bottom: The rms beam ellipse tilt around the ring, and the beam ellipse tilt at the SLM.
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Figure 6.3: A few observables plotted against the integrated strength of QSKN1 for the <e(�) har-

moni
, when minimizing the 
oupling in the Rev3.2 e

�

latti
e in
luding the H1 solenoid (sandwi
h

model). Top: Nominal (without solenoid) and perturbed tunes (with solenoid). Middle: Tune di�er-

en
e. Bottom: The rms beam ellipse tilt around the ring, and the beam ellipse tilt at the SLM.
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Figure 6.4: A few observables plotted against the integrated strength of QSKN1 for the =m(�) har-

moni
, when minimizing the 
oupling in the Rev3.2 e

�

latti
e in
luding the H1 solenoid (sandwi
h

model). Top: Nominal (without solenoid) and perturbed tunes (with solenoid). Middle: Tune di�er-

en
e. Bottom: The rms beam ellipse tilt around the ring, and the beam ellipse tilt at the SLM.
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� Fit di�eren
e orbits downstream of the solenoid

! (x

f

; x

0f

; z

f

; z

0f

)

� Repeat the pro
ess for 3 more 
oils to get a 16 � 16 equation system in the transfer matrix

elements

~w = A

16�16

~v

with

~w = (x

f

1

; x

0f

1

; z

f

1

; z

0f

1

; x

f

2

; : : : ; z

0f

4

)

and

~v =

�

M[1; 1℄ ;M[1; 2℄ ; : : : ;M[2; 1℄ ;M[2; 2℄ ; : : : ;M[4; 4℄

�

where

A [1; j℄ = (x

i

1

; x

0 i

1

; z

i

1

; z

0 i

1

; 0; : : : ; 0)

A [2; j℄ = (0; 0; 0; 0; x

i

1

; x

0 i

1

; z

i

1

; z

0 i

1

; 0; ::::0)

. . . . . . . . .

A [5; j℄ = (x

i

2

; x

0 i

2

; z

i

2

; z

0 i

2

; 0; : : : ; 0)

. . . . . . . . .

A [16; j℄ = (0; : : : ; 0; x

i

4

; x

0 i

4

; z

i

4

; z

0 i

4

) 8 j 2 f1; : : : ; 16g

� By inverting the A matrix (whi
h is not singular if 
oils with a phase di�eren
e ��

x;z

6= n�,

where n is integer, are used) the solenoid transfer matrix elements are obtained, and the matrix

M 
an subsequently be fed into a program minimizing the 
oupling with, for instan
e, the matrix

method.

At �rst sight one needs at least four di�erent orbits in order to determine the 16 matrix elements, but

the symple
ti
ity 
ondition redu
es the number of the free parameters to 10. Moreover, as we are only

interested in the o�{diagonal elements, using only two 
oils is suÆ
ient to determine the elements

M [1; 3℄, M [1; 4℄, M [2; 3℄ and M [2; 4℄. The HERA BPMs are 
apable of resolving orbit di�eren
es of

the order of 0.05 mm. It is possible to �nd suitable 
oils among the already existing ones whi
h,

with a moderate ex
itation in one transverse plane, produ
e an rms 
hange of the orbit in the other

transverse plane that 
an be measured [Gi01℄. Hen
e, this kind of measurement te
hnique to arrive at

the solenoid transfer matrix should be feasible in HERA. In parti
ular sin
e the experiment solenoid

�elds are not ramped, the measurements 
an be 
arried out at inje
tion energy (12 GeV), redu
ing the

amplitude of the 
oil ki
ks by a fa
tor 2.3. However the overlapping GO and GG magnets are ramped,

and measurements 
arried out at this energy must therefore be 
ompared with relevant theory at the

same energy.

6.1.2 Corre
tion of distorted IR design traje
tories

The radial �elds experien
ed by parti
les on or 
lose to the design orbit inside the solenoids, due to the

o�{axis design orbit inside the solenoids in the new design, mainly give rise to a verti
al distortion of

the orbits. To 
ompensate for this and avoid a 
losed orbit distortion propagating from the intera
tion

regions out into the ar
s, a lo
al 
ompensation, utilizing the 
orre
tion 
oil windings on the GO and

GG magnets has been devised. The shape and magnitude of the distortion was �rst 
al
ulated with
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a simple 
ode, solving the equations of motion for orbit and spin (T{BMT equation) in a general

3{dimensional �eld [Gi01℄. A systemati
 study borrowing ideas from the numeri
al map 
ode for

the overlapping �elds in the intera
tion regions has subsequently been performed, investigating the

optimal ex
itations of the 
orre
tion 
oils in various 
on�gurations in the software. Parti
les starting

on the design orbit on the upstream (left) side of the solenoids have been tra
ked a
ross the intera
tion

regions North and South and the strengths of the 
orre
tion 
oils have been varied in a least squares �t

program so as to minimize the expressions

p

w

1

x

2

+ w

2

(x

0

)

2

+ w

3

z

2

+ w

4

(z

0

)

2

or

p

w

1

z

2

+ w

2

(z

0

)

2

,

where again w

1

; w

2

; w

3

and w

4

are weight fa
tors. The 
oordinates x; x

0

; z; z

0

were 
al
ulated at the

exit of the GG magnet while the number of free parameters was set to four { two horizontal and two

verti
al 
oils { or more often just two (verti
al). The skew dipole windings are pla
ed on the right half

of GO and on the left half of GG, whi
h is favourable for the e
onomy in powering both these 
oils

and the skew quadrupole 
oils on the remaining halves of the super
ondu
ting magnets. Solutions

have been found for H1 and ZEUS, given the restri
tion that only skew dipole �elds, i.e. 
oils with

horizontal �elds 
orre
ting for motion in the verti
al plane are available. A summary of the 
al
ulated

settings for the verti
al 
orre
tion 
oils VGOR (GO right side) and VGGL (GG left side) in the North

and the South for ele
trons and positrons is given in Table 6.5. A 
omparison between di�erent end

�eld models for the H1 solenoid is also given.

The un
ompensated ele
tron traje
tory in the North intera
tion region, assuming that the H1

solenoid �eld 
an be modelled as having a linear fall o� in the end �eld regions (end �eld model B) is

shown in Figure 6.5. After 
ompensation of the orbit distortion with the skew dipole windings on GO

and GG, the traje
tory is a 
losed \hump" in the verti
al plane as seen in Figure 6.6. The residual

un
ompensated horizontal motion is very small in amplitude and 
an be taken 
are of by the ordinary


orre
tion 
oils in the latti
e; on the s
ale of the verti
al hump it 
an barely be seen in the �gure.

Figure 6.5: Un
ompensated ele
tron traje
tory (w.r.t. design orbit) in the North intera
tion region,

using H1 solenoid end �eld model B.
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maximum orbit ex
ursion

skew dipole settings

after 
orre
tions

VGOR VGGL horizontal verti
al

[�rad ℄ [�rad ℄ [�m℄ [�m ℄

e

�

North

model A

1

52.8 -2.15 0.28 16

model A

2

67.2 -7.15 0.29 22

model B 67.2 -4.68 0.25 22

South

(-4.96) (7.80) (-0.036) (-1.2)

-15.0 20.2 -0.087 -3.0

e

+

North

model A

1

9.23 -53.3 4.0 -65

model A

2

-0.90 -54.2 4.2 -69

model B 1.06 -63.7 3.5 -68

South

28.1 -36.2 -0.15 5.1

Table 6.5: Skew dipole settings, and maximum orbit ex
ursions after 
orre
tions of the orbit distortion

introdu
ed by the overlapping solenoid { 
ombined fun
tion magnet �elds in the new IRs. For ele
trons

and applying the sandwi
h models, the rms verti
al orbit shift before 
orre
tions is 1.2 mm and the

rms horizontal shift is 0.13 mm. The dominant shift 
omes from H1 sin
e the small overlap of the

ZEUS solenoid �eld with GO and GG has almost no in
uen
e. In order to simplify the 
al
ulations,

the lengths of the skew dipole windings in the models are 1.6 m for VGOR and 0.65 m for VGGL (half

of the lengths of the parent magnets), whi
h is a few 
entimeters longer than the a
tual 
oils. For the


ase of e

�

in the South, two sets of values are given. The �rst ones in parenthesis are for a transverse

o�set of x

shft

= 4 mm used in the polarization 
al
ulations in this 
hapter (where this parti
ular value

belongs to an older version of the opti
) and the se
ond ones are evaluated for x

shft

= 10 mm, whi
h

is the o�set in the Rev3.2 e

�

opti
.
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Figure 6.6: Compensated ele
tron traje
tory (w.r.t. design orbit) in the North intera
tion region,

using H1 solenoid end �eld model B.

6.1.3 Lo
al n̂

0

tilt 
orre
tion

Due to the overlap of the GO and GG magnet �elds with the experiment solenoids, the nominal

parti
le dire
tion and n̂

0

are not perfe
tly parallel to the 
entral solenoid �elds when entering these

magnets. Moreover, as we have seen in Chapter 5, the H1 solenoid has a longitudinal asymmetry of

1.125 m with respe
t to the IP North. Together with the un
ompensated orbit distortion originating

in this region, this generates an rms n̂

0

tilt of 8.8 mrad from the verti
al in the ar
s at 27.474 GeV.

To further illustrate the impa
t that this region has on the spin motion, a list of the spin 
omponents

at the entran
e and \exit" (at a position symmetri
 to the entran
e, from the opti
al point of view)

of the un
ompensated H1 solenoid of a spin, initially verti
al along the ar
 upstream of the IP North,

is given in Table 6.6.

entran
e exit exit (nominal)

b

S

x

-0.490 0.490 0.490

b

S

s

0.872 0.871 0.872

b

S

z

0.000 -0.006 0.000

Table 6.6: Spin 
omponents at the entran
e and exit of the H1 solenoid of a spin verti
al in the ar
s

with the input rotator magnet �elds set to their nominal values for 27.474 GeV. Exit (nominal) refers

to a 
ase where the solenoid is absent.

After applying orbit 
orre
tions as des
ribed above, the rms tilt is redu
ed to 3.2 mrad. The

remaining n̂

0

tilt from the verti
al in the ar
s 
an be 
ompensated for by an asymmetri
al retuning

of the verti
al bending magnets in the spin rotators, using the already existing verti
al 
orre
tion


oils in these magnets. This will only be ne
essary for the rotators straddling the North IP. With
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asymmetri
ally retuned rotators, the tilt is redu
ed to a fra
tion of a milliradian.

6.1.4 Spin mat
hing in the new latti
e

Due to the asymmetries in the new IRs, the whole se
tion between the 
entres of the rotators in

a pair must be 
onsidered when designing the opti
s and doing spin mat
hing. In a symmetri
 IR

only half the se
tion, from the IP up to the 
entre of one of the rotators in a pair needs to be taken

into a

ount. As indi
ated earlier, with the relatively large parti
le energy in HERA it is hoped that

the experiment solenoids 
an be treated as perturbations. They have therefore been ignored when

designing the new opti
s and establishing the spin mat
h.

7

Then in the absen
e of solenoids and

setting the rotator magnets to their nominal strengths for 27.474 GeV, 17 mat
hing 
onditions |

12 for the opti
 and 5 for spin mat
hing | must be ful�lled in the new IR design, whi
h should be


ompared to the 9 mat
hing 
onditions required in the old ma
hine [Gi01℄. Mat
hing the new latti
e

has therefore been a tedious task. Figure 6.7 shows a s
hemati
 representation of the syn
hro{beta spin

mat
hing 
onditions required to obtain a spin mat
hed HERA after the upgrade. Compare with the

general re
ipe given in Chapter 4. In parti
ular by 
hoosing

^

l

0

to be verti
al and m̂

0

to be horizontal

in the IR the elements G [1; 1℄ ;G[1; 2℄ ;G[2; 3℄ ;G[2; 4℄ and G [1; 6℄ must vanish [BR99℄. In order to

ful�ll all mat
hing 
onditions in the latest version of the IR design (Rev3.2), it has been ne
essary to

independently power all quadrupoles left and right of the IPs up to the rotators, requiring 14 extra

power supplies. In the starting phase however, only 7 of them will be available.

G  = 0z G  = G  = G  = 0x z s

G  = G  = G  = 0x z s

zG  = 0

α y βy

Dx Dx

N

W E

S

match ,
’,

Figure 6.7: Spin mat
hing 
onditions in the HERA upgrade latti
e. The shaded ellipses represent the

rotators.

Subsequent spin mat
hing of the opti
s in the presen
e of the solenoids has in reality turned out to

be ex
eedingly diÆ
ult. A mutual 
ompensation of the H1 and ZEUS solenoids is not feasible either,

mainly sin
e this would require the phase advan
es between the two IPs to be multiples of �.

7

Also the 
avities are ignored in the spin mat
h sin
e they have little e�e
t on the spin motion.
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6.2 Polarization in the non{distorted ma
hine

Now that the orbit distortions have been dealt with, and the spin mat
hing strategy for the luminosity

upgrade opti
s has been explained, we are ready to dis
uss the polarization in the new latti
e. The

results will be presented in the following order: �rst 
al
ulations made with SLICK for the non{

distorted ma
hine will be presented and 
omparisons between the various end �eld models, in
luding

the sandwi
h model, for the H1 solenoid will be made. Thereafter follows a qualitative analysis of

the underlying 
auses of polarization redu
tion related to syn
hro{betatron motion in the new latti
e.

In parti
ular the e�e
ts of arti�
ially swit
hing o� elements in the G matrix for various se
tions of

the ring will be studied. An estimate of the opening angle between n̂ and n̂

0

, 
lose to a resonan
e,

from SLICK 
al
ulations will also be given. The next se
tion investigates the e�e
ts of 
losed orbit

distortions and misalignments, followed by a se
tion dealing with the e�e
t of the RF frequen
y shift

on the polarization. In the last se
tion a dis
ussion of the in
uen
e on the polarization of the beam{

beam intera
tion is given. All polarization 
al
ulations presented below are 
al
ulated for the e

�


ase.

A spin mat
hed e

+

opti
 for the upgrade also exists. The results are qualitatively similar to the e

�

results and will therefore not be dis
ussed further.

The polarization 
al
ulated with SLICK for the non{distorted Rev3.2 e

�

opti
 (without solenoids)

in the presen
e of 3 pairs of rotators is presented in Figure 6.8. The latti
e has been spin mat
hed as

well as possible at the 
entral energy of the interval shown a

ording to the strategy des
ribed in the

previous se
tion. The solid line in the �gure 
orresponds to the total (linearized) polarization whereas

the dotted and dashed lines refer to the polarization related to the individual degrees of freedom of

the orbital motion, for an energy s
an 
overing one integer in a
. The abs
issa has triple labeling

to emphasize the dependen
e of the polarization on energy, a
 and spin tune, respe
tively. In many


ir
umstan
es it is advantageous to plot the polarization versus a
 or the spin tune, for instan
e when

identifying resonan
es, but for our 
ontext it is suÆ
ient to indi
ate the polarization dependen
e on

energy. Therefore in the following pi
tures only the energy will be given on the abs
issa. The large

resonan
e dips appearing in Figure 6.8 at E = 27:28 GeV and E = 27:665 GeV 
orrespond to the �rst

order resonan
es �

0

= 62 + �

s

and �

0

= 63 � �

s

, respe
tively. The less pronoun
ed dips 
orrespond

to �

0

= m � �

x

and �

0

= m � �

z

. The maximum polarization in the energy range 27:25 � 27:69

GeV is (as expe
ted) obtained for �

0

� 62:5 and is 77.2 %. The polarization is, as seen, limited by

the syn
hrotron motion, and more fundamentally by the loss related to the presen
e of the rotators

(re
all Chapter 4), setting the upper limit to 83.2 % at 27.474 GeV. Note that the widths of the

betatron resonan
es are exaggerated due to the �nite energy step size (in this and following pi
tures

�E = 0:005 GeV). By turning o� the G matrix for the straight se
tions it is found that the relatively

strong verti
al betatron resonan
e at E = 27:605 GeV is related to a breaking of the energy dependent

spin mat
h in the ar
s at that energy.

Figure 6.9 shows what happens to the polarization when the experiment solenoids are in
luded in

the 
al
ulations. In the top left pi
ture the H1 solenoid (end �eld model A

1

) is strongly perturbing

the polarization and 
ausing a wide \hole" in the polarization P

s

related to the syn
hrotron mode

to develop on ea
h side of the 
entral energy point, be
ause of the tilt of n̂

0

in the ar
s. In terms

of the spin{orbit 
oupling integrals this 
an be understood as originating in a large 
ontribution to

J

�s

in eqn. (3.78) from this tilt in 
ombination with the horizontal dispersion in the ar
s. After


orre
tion of the n̂

0

tilt by asymmetri
ally retuning the verti
al bend magnets in the North rotators

the polarization re
overs but is now limited by betatron motion in the solenoid and skew quadrupoles

and by propagation of the lo
al distortions 
aused by the presen
e of the solenoid. Applying orbit and


oupling 
orre
tions brings the polarization up to 70.8 %. By in
luding also the ZEUS solenoid in the


al
ulations, the polarization again drops by about 2.3 % for 
entral energies. Note that as mentioned

earlier asymmetri
al rotator settings are only needed in the North. Finally it should be observed that

the dips o

urring at integer values of �

0

(
lose to the outer edges in the top left pi
ture and on the

left hand side in the top right and bottom left pi
tures) are related to a de
rease in strength of the
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Figure 6.8: Polarization vs. energy (a
) fspin tuneg for the Rev3.2 e

�

nominal latti
e with 3 pairs of

rotators using standard settings.

Sokolov{Ternov driving term, 
aused by the strong tilt of n̂

0

at these energies resulting from imperfe
t

asymmetri
 rotator retuning. In reality these dips are very narrow, but the �nite energy \binning"

used in the s
an produ
es an arti�
ial broadening.

In Figure 6.10 a 
omparison between the various end �eld models for the H1 solenoid des
ribed

in Chapter 5 is made. It is seen that the di�eren
es in the polarization between the models after

orbit, 
oupling and n̂

0

tilt 
orre
tions have been applied are negligible, ex
ept for a \shoulder" for

the polarization asso
iated with longitudinal orbit motion on the right hand side in the lower two

plots. The total polarization at the 
entral energy point for the sandwi
h model is 68.1 %, for end

�eld model A

1

70.5 %, for end �eld model A

2

69.7 % and for end �eld model B 69.2 %. A 
loser study

of the resonan
e patterns indeed shows that the various models are not identi
al and that end �eld

model A

1

with its lower integrated �eld strength deviates most from the others. This suggests that

the knowledge of the integrated �eld strength is in fa
t more important for the determination of the

polarization than the exa
t knowledge of the shape of the end �elds. However for the determination

of the opti
al 
orre
tions mentioned above the end �elds do play an important role.

Figure 6.11, already dis
ussed in the previous se
tion, shows that the polarization is rather insensitive

to the 
oupling 
orre
tion s
heme adopted.

Figures 6.12 to 6.14 give examples of how SLIM/SLICK 
an be used in diagnosing whi
h parts

of the latti
e are most troublesome for the polarization. In Figure 6.12 (left) the spin{orbit 
oupling

has been dea
tivated in the whole of the ring, ex
ept in the East straight se
tion, by swit
hing o�

the G matrix for all quadrupoles, skew quadrupoles and 
ombined fun
tion magnets.

8

It is 
learly

seen that the polarization is limited by the longitudinal mode, re
e
ting the impa
t of an imperfe
t

spin mat
h related to the horizontal dispersion in the East straight se
tion, whi
h is due to inherent

8

Again the e�e
t of the 
avities 
an be ignored sin
e it is anyway small.
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Figure 6.9: Polarization vs. energy for the Rev3.2 e

�

latti
e. Top left: Latti
e in
luding H1 solenoid.

No 
orre
tions of orbit distortions and 
oupling. Standard rotator settings. Top right: Latti
e in
lud-

ing H1 solenoid. No 
orre
tions of orbit distortions and 
oupling. Asymmetri
 rotator settings around

the North IR. Bottom left: Latti
e in
luding H1 solenoid. Lo
al 
orre
tions of orbit distortions and


oupling in
luded. Asymmetri
 rotator settings around the North IR. Bottom right: Latti
e in
luding

H1 and ZEUS solenoids. Lo
al orbit and 
oupling 
orre
tions in
luded for the North and South IRs.

Asymmetri
 rotator settings around the North IR and standard rotator settings around the South IR.

In all these 
al
ulations end �eld model A

1

was assumed for the H1 solenoid.
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Figure 6.10: Polarization vs. energy for the Rev3.2 e

�

latti
e in
luding the H1 solenoid, assuming

various end �eld models. Top left: Sandwi
h model. Top right: End �eld model A

1

. Bottom left:

End �eld model A

2

. Bottom right: End �eld model B.
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Figure 6.11: Polarization vs. energy for the Rev3.2 e

�

latti
e in
luding the H1 solenoid (end �eld model

A

1

). Left: Lo
al 
oupling 
ompensation 
arried out with the matrix method (4 skew quadrupoles).

Right: Lo
al 
oupling 
ompensation 
arried out with the Guignard method (4 skew quadrupoles).

These pi
tures look identi
al, but a 
areful examination show that they are not!

limitations on the distribution of the dipoles in the East straight se
tion.

9

In the right pi
ture the

spin{orbit 
oupling in the 
entral part of the H1 solenoid has been turned on and new resonan
es

are seen to appear, although the solenoid is lo
ally 
ompensated for (orbit 
ompensation and n̂

0

tilt


ompensation are a
tive). The next two pi
tures, Figure 6.13, show the polarization a
hieved when the

ZEUS solenoid is in
luded in the 
al
ulations, but H1 not. In the left pi
ture the spin{orbit 
oupling is

a
tive in the whole ma
hine, whereas in the right pi
ture the spin{orbit 
oupling is allowed to a
t only

in the South straight se
tion. This should be 
ompared with the polarization in the nominal latti
e,

Figure 6.8, and with Figure 6.10 where only H1 is in
luded. As 
an be seen, the ZEUS solenoid has a

mu
h smaller impa
t on the polarization than H1. Note that the loss in polarization dire
tly related to

ZEUS is separated out in the right pi
ture and amounts to an enhan
ement of the betatron resonan
es,

in agreement with expe
tations raised at the the beginning of this 
hapter. The last series of pi
tures

in this blo
k, Figure 6.14, again shows the polarization when only H1 is taken into a

ount in the


al
ulations. In these pi
tures the spin{orbit 
oupling is a
tive only in the North straight se
tion, and

the polarization is limited by the horizontal motion. In the top left pi
ture, a broad P

x

resonan
e is

dominating the pattern. When the spin{orbit 
oupling is swit
hed o� in the solenoid, this resonan
e

is suppressed and the polarization re
overs (top right pi
ture). To investigate the importan
e of the

solenoid radial end �elds, the spin{orbit 
oupling is a
tivated for these end �elds (bottom pi
ture),

whereas the spin{orbit 
oupling is still swit
hed o� for the longitudinal �eld 
omponent. We note that

the main limitation on the polarization 
omes from the horizontal betatron motion in the 
entral part

of the solenoid �eld, whereas the end �elds 
ontribute to a partial 
an
ellation of the 
ontribution to

the P

z

resonan
e from the GO and GG magnets.

An investigation has also been made on how important the radiation from the 
ombined fun
tion

magnets in the North and South IRs are. By doubling or halving, and even turning the radiation o� in

the strongest 
ombined fun
tion magnets, situated at large �{fun
tion lo
ations in these regions, it is

found that the polarization, at least at the linear level, is basi
ally une�e
ted. Hen
e one 
an 
on
lude

9

This imperfe
t spin mat
h in the East straight se
tion is also the sour
e of the strong �rst order syn
hrotron

resonan
es in Figure 6.8. If a dispersion spin mat
h 
ould be established in the East, these resonan
es would

disappear and the polarization at 27.474 GeV would be above 80 % in that �gure. Likewise it was always possible

to get good spin mat
hes with the various \pre{Upgrade" opti
s for the 
ase when all three intera
tion regions were

layed out as then planned for the North and South [Bb01, Bb90, BS86℄.
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that the radiation from a small number of magnets in the IRs, although strong, has a marginal e�e
t

on the overall spin{orbit dynami
s, 
ompared to the radiation from the ar
s. This fa
t has been used

when implementing the numeri
al maps in SITROS, see Chapter 5.
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Figure 6.12: Polarization vs. energy for the Rev3.2 e

�

latti
e in
luding the H1 solenoid (end �eld

model A

1

). Left: Spin{orbit 
oupling a
tive only in the East straight se
tion. Right: Same as left, but

with stronger verti
al mode resonan
es and additional resonan
es appearing in the horizontal mode

due to swit
hed on spin{orbit 
oupling in the 
entral part of the H1 solenoid.
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Figure 6.13: Polarization vs. energy for the Rev3.2 e

�

latti
e in
luding the ZEUS solenoid. Left:

Spin{orbit 
oupling a
tive in the whole ring. Right: Spin{orbit 
oupling a
tive only in the South

straight se
tion (in
luding the ZEUS solenoid).

In order to further emphasize the importan
e of the spin{orbit 
oupling for the polarization, a

series of three{dimensional plots, 
reated from energy s
ans made with SLICK, illustrating the energy

and azimuth dependen
e of the term

1

j � j

3

11

18

�

�n̂

�Æ

�

2

in the Derbenev{Kondratenko formula for the HERA

upgrade latti
e is given in Figures 6.15 to 6.17. A few qualitative features of the plots will be pointed

out here. In the �rst illustration, Figure 6.15, the above term is plotted (for dipoles and 
ombined

fun
tion magnets (CFs) where

1

j � j

3

6= 0) for the 
ase of the nominal Rev3.2 e

�

latti
e, and is 
ompared

with the polarization 
al
ulated for the same 
ase. Two broken \fen
es" stret
hing along the ma
hine
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Figure 6.14: Polarization vs. energy for the Rev3.2 e

�

latti
e in
luding the H1 solenoid (end �eld

model A

1

). Top left: Spin{orbit 
oupling a
tive only in the North straight se
tion (in
luding the

H1 solenoid). Top right: Same as left, but with spin{orbit 
oupling a
tive only in the GO and GG

magnets (i.e. not in the solenoid) in the North straight se
tion. Bottom: Same as above, but without

spin{orbit 
oupling just for the longitudinal part of the H1 solenoid.
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azimuth (s = 0 
orresponds to the East IP) at 27.28 GeV and 27.665 GeV 
an be 
learly seen,


orresponding to the strong syn
hrotron resonan
es 
entred at these energies. The gaps in the fen
es


orrespond to the straight se
tions, whereas the tips 
lose to the gaps are related to the rotator dipoles.

Note the peaks 
lose to the 
entre of these gaps for azimuths around 1584 m (South IP) and 4752

m (North IP), indi
ating the positions of the GO and GG magnets. The pronoun
ed spikes in the

fen
es around 3440 m are due to the strong, short dipoles in the inje
tion se
tion (see Figure 1.1).

Peaks 
an also be seen rising from the ba
kground pattern at about 27.6 GeV, related to the verti
al

betatron resonan
e at this energy and appearing, as expe
ted, just at the azimuths 
orresponding to

the positions of the rotator bend magnets where v

�

z5

6= 0 sin
e D

z

6= 0. It should be observed that

the verti
al s
ale in the bottom plot is arbitrary and the data should only be regarded as a relative

measure for how strong the spin di�usion in the various magnets and at various energies is. The reason

for this is the high sensitivity of the amplitude to the 
hosen energy binning in the s
an. If the spin

di�usion term is plotted for an energy point that happens to hit a resonan
e 
ondition pre
isely, the


orresponding peak 
an be very mu
h enhan
ed and dominate the pi
ture 
ompletely. This may not

be the 
ase for the \mirror resonan
e", thus giving the false impression that the resonan
es should

have very di�erent strengths. Care must therefore be taken when 
hoosing the energy binning and

plotting su
h pi
tures. Note that the sensitivity to the energy binning is suppressed in the polarization

plots, where one turn averages (
f. eqn. (3.20)) are taken.

Figure 6.16 illustrates what happens when the spin mat
hing is broken by swit
hing o� the entire

G matrix for a pair of quadrupoles in the South{West ar
, 
lose to the rotator, where the verti
al

beta{fun
tion is relatively large. The polarization is mu
h de
reased by the strong enhan
ement of

the verti
al betatron resonan
es and 
orresponding large peaks 
an be seen in the bottom plot for the

spin di�usion related to verti
al motion. The last �gure in the series, Figure 6.17, has been added for


ompleteness and shows how the spin di�usion term looks for the Rev3.2 e

�

latti
e, in
luding the H1

(end �eld model B) and ZEUS solenoids. Note the more rugged stru
ture of the \fen
e", and the extra

spikes appearing, on the left side in the pi
ture 
ompared to the 
orresponding one in Figure 6.15,

and 
ompare this to the more smooth looking fen
e on the right side. This may be understood as

being related to the larger in
uen
e on spin{orbit motion from the non{ramped solenoids at the low

energy side. The e�e
t 
an also be seen in the polarization (top plot) for instan
e by observing that

the lower energy P

x

resonan
e is wider than the 
orresponding resonan
e on the high energy side.

In Chapter 3 it was pointed out that the measured polarization 
ontains a fa
tor hn̂i

s

and a fa
tor

P

DK

whi
h is the same over all phase spa
e and whi
h depends on the azimuthal and phase spa
e

average of

1

j�j

3

(

�n̂

�Æ

)

2

. It was 
laimed that hn̂i

s

' n̂

0

even 
lose to resonan
es owing to the smallness

of the rms angle �

hn̂;n̂

0

i

between n̂ and n̂

0

. We are now in a position to 
he
k this latter assertion

in SLIM approximation for HERA and in the pro
ess present a novel way of exploiting knowledge

of �

hn̂;n̂

0

i

. As an example I will fo
us on the �

0

= 62 + �

s

resonan
e in Figure 6.8 at an energy of

E = 27:29 GeV, three quarters down the resonan
e dip where the polarization is P = 16:1 %. In the

SLIM approximation the rms opening angle �

hn̂;n̂

0

i;syn

due to the syn
hrotron motion is

p

h(�

2

+ �

2

)i

s

for the � and � asso
iated with the syn
hrotron mode in eqn. (3.64). Its 
al
ulation needs the jA

III

j

2

given by eqn. (3.62). In the ar
 dipoles one �nds that �

hn̂;n̂

0

i;syn

is almost azimuth independent and

has the value ' 2:85 � 10

�3

at this energy. So hn̂i

s

' n̂

0

as 
laimed. But this does not mean that

�n̂

�Æ

is

small, sin
e this rms opening angle is asso
iated with a relative energy spread of �

Æ

' 1 �10

�3

! Then a

�rst estimate of (

�n̂

�Æ

)

2

is given by (

�

hn̂;n̂

0

i;syn

�

Æ

)

2

whi
h is ' 8:1. This number is of a magnitude similar

to that of (

�n̂

�Æ

)

2

= 5:8 
al
ulated analyti
ally in SLICK at the same positions in the ring. Using this

estimate, and the rough approximation P

DK

�

0:832

1+

11

18

(2:85)

2

one �nds P

DK

� 0:14.(
.f. eqn. (3.20)).

This emphasizes in 
on
rete terms that although the opening angle is small, in our 
ase 2.85 mrad,

it appertains to a small energy spread, so that the depolarization 
an be large. In order to a

ount

for a polarization of 16.1 % in geometri
 terms, i.e. only on the basis of the opening angle, this angle

would need to be of the order of 80

Æ

in order to get a small enough jhn̂i

s

j. In Chapter 7 I will further
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elaborate on this point in 
onne
tion with an extension of an idealized model for syn
hrotron sideband

resonan
es.

6.3 Closed orbit distortions and misalignments

To get an estimate of the polarization that 
an be a
hieved in the real HERA ma
hine after the lumi-

nosity upgrade, the e�e
ts of random misalignment errors of the ma
hine magnets must be in
luded in

the study. In the presen
e of random transverse quadrupole displa
ements for example, the expe
ted

rms value of the 
losed orbit distortion is related to the rms quadrupole displa
ement, Æ

quad

y

, by [Bo70℄

y

rms


:o

=

1

2

p

2

q

h �

y

i

j sin(��

y

)j

s

X

i

m

i

�

i

y

(g

i

L

i

)

2

Æ

quad

y

(y = x; z) (6.4)

where the m

i

are the number of quadrupoles in family i, L

i

are the lengths of these quadrupoles,

and on
e again g

i

=

e


E

0

�

�B

z

�x

�

i

x=z=0

are the normalized quadrupole �eld gradients. A similar but

somewhat more 
ompli
ated expression holds for the distorted dispersion �D

rms

y

. The e�e
t of su
h

errors on the polarization is, as we already know, mainly due to the tilt of n̂

0

in the ar
s. Re
all

the expression (4.2) for this tilt. The error indu
ed n̂

0

tilt 
auses a massive broadening of the �rst

order �

s

resonan
es, pulling down the polarization at 
entral energies (
lose to half integer a
). This

is reminis
ent of the e�e
t introdu
ed by a non{
ompensated solenoid as in the top left pi
ture of

Figure 6.9, only mu
h more pronoun
ed. Sin
e in the new opti
 the quadrupoles and sextupoles are

stronger than in the old one, we expe
t to see larger 
losed orbit distortions as well as larger distortions

of the dispersion and of n̂

0

. From the dis
ussion in Chapter 4 we understand the importan
e of a good

n̂

0

tilt 
orre
tion. This will be further emphasized in what follows.

6.3.1 Investigations without solenoids

For our studies we have initially 
onsidered the Rev3.2 e

�

latti
e with three pairs of rotators, but

ex
luding the experiment solenoids. The investigation 
overs the 
ases of random horizontal and

verti
al quadrupole displa
ements with assumed rms values of Æ

quad

x

= Æ

quad

z

= 0:3 mm with 
uts at

three standard deviations of the error distributions. In some 
ases a quadrupole roll{angle error of 0.35

mrad rms value has been added. No dipole rolls or �eld errors have been 
onsidered. The polarization


al
ulations have been 
arried out with SITF. The results of the simulations are summarized in

Tables 6.7 to 6.9. These tables are all organized in two blo
ks. In the upper blo
ks the rms orbit and

dispersion distortions, the beam emittan
es and the rms values for the tilt of n̂

0

, together with the

expe
ted polarization at the linear level (total and individual modes) are presented, after standard

orbit 
orre
tions have been 
arried out. In the lower blo
ks the rms tilts of n̂

0

and the 
orresponding

polarizations are shown, when in addition n̂

0

tilt 
orre
tion using the harmoni
 bumps (see Chapter 4)

has been applied. All 
al
ulations are 
arried out at the energy E = 27:474 GeV.

In Table 6.7 results averaging over 10 random seeds for the 
ase of quadrupole displa
ements in

both transverse planes are displayed. Note that the orbit has been 
orre
ted down to 0.7 mm in both

planes. In some 
ases the distortion of the dispersion is quite large and the values therefore have a

large spread. Note in parti
ular that the �D

y

(y = x; z) due to 
losed orbit distortions is mu
h larger

than the distortion introdu
ed by the overlapping �elds in the new IRs. The unperturbed emittan
es

are "

x

= 27:0 nm rad and "

z

= 0:75 nm rad, respe
tively. As 
an be seen by 
omparing with the table,

there is some blowup of the verti
al emittan
e when the distortions are in
luded. The average tilt of

n̂

0

is about 5 - 10 mrad larger than in the old opti
 (for orbit 
orre
tions down to about 1 mm in both
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After usual orbit 
orre
tions

P

x

[% ℄

x

rms


:o

[mm ℄ �D

rms

x

[mm ℄ "

x

[ nm rad ℄

Æn̂

0

[mrad ℄ P

lin

[ % ℄ P

z

[% ℄

z

rms


:o

[ mm ℄ �D

rms

z

[mm ℄

"

z

[ nm rad ℄

P

s

[% ℄

72.4 � 6.5

0.71 � 0.09 35 � 12 26.2 � 1.5

30.3 � 11.7 14.2 � 9.8 74.8 � 4.6

0.71 � 0.17 19 � 14 1.16 � 0.40

13.4 � 9.9

With harmoni
 bumps in addition

P

x

[ % ℄

Æn̂

0

[mrad ℄ P

lin

[% ℄ P

z

[% ℄

P

s

[% ℄

70.5 � 7.0

15.7 � 3.9 69.5 � 5.2 73.5 � 5.4

66.7 � 9.0

Table 6.7: Expe
ted rms value of Æn̂

0

and polarization (linear) in presen
e of random quadrupole

transverse alignment errors for the Rev3.2 e

�

latti
e (without solenoids). Average over 10 random

seeds.

planes), as is the spread in the tilt angles. In order to get the same order of magnitude of tilt as in the

old opti
, a more 
areful orbit 
orre
tion has been ne
essary (see above). To bring the tilt down to the

10 - 20 mrad level 4, 6 or often 8 harmoni
 bumps (depending on the seed) have been used, whereas

in the old opti
 4 harmoni
 bumps were always suÆ
ient. After the harmoni
 bump 
orre
tion, the

polarization levels for the three degrees of freedom are similar, whi
h is in 
ontrast with the previous

design in whi
h the polarization related to the longitudinal os
illation mode was 
learly limiting. It

should be mentioned that we have noti
ed that in some 
ases the polarization is limited by a large

horizontal dispersion distortion around the North and South IPs, re
e
ted by non{zero 
ontributions

in G

s

. It is therefore sensible for operation after the upgrade to have a dedi
ated dispersion 
orre
tion

algorithm, based on, for instan
e, MICADO or Singular Value De
omposition (SVD) [Pr92℄.

In Table 6.8 a 
omparison between various 
orre
tions applied to one parti
ular realization of ma-


hine distortions is made. It 
an be seen that even with 8 harmoni
 bumps operating, the polarization

rea
hes just 65 % with an orbit 
orre
tion down to about 1 mm in both planes. Note that the rms

dispersion distortion in this 
ase is quite large, and that with 8 harmoni
 bumps a lo
al verti
al orbit

distortion of more than 10 mm is generated. In order to rea
h a polarization level above 70 % for this

seed, the orbit has to be 
orre
ted to better than 0.8 mm in both planes and the tilt must be brought

down below 15 mrad, requiring the use of 8 harmoni
 bumps.

Table 6.9 shows the results of a study where in addition to the random quadrupole displa
ements,

quadrupole roll{angle errors have been allowed (average over 6 seeds). The strategy by orbit and n̂

0

tilt 
orre
tion has been to rea
h the same order of magnitude of tilt after harmoni
 bump 
orre
tion

as in the 
ase without roll{angle errors. Also here a variation in the number of applied harmoni


bumps has been employed. As 
an be seen, the orbit 
orre
tion is very stringent and even with a �nal

average tilt of 16.2 mrad the average total polarization does not rea
h 62 %, perhaps indi
ating that

harmoni
 bump 
orre
tion is not very e�e
tive in the presen
e of roll{angle errors.

6.3.2 Investigations with solenoids

In the previous se
tion we 
on
luded that the di�eren
es in the polarization at the linear level between

the various end �eld models for the numeri
al maps and the sandwi
h model are small. It has therefore
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After usual orbit 
orre
tions

P

x

[% ℄

x

rms


:o

[mm ℄ �D

rms

x

[mm ℄ "

x

[ nm rad ℄

Æn̂

0

[mrad ℄ P

lin

[% ℄ P

z

[% ℄

z

rms


:o

[mm ℄ �D

rms

z

[mm ℄

"

z

[ nm rad ℄

P

s

[% ℄

71.7

1.0 88 29.8

39.8 5.6 75.1

1.2 24 1.11

5.7

71.7

1.0 88 29.8

39.8 5.6 75.1

1.2 24 1.11

5.7

74.7

0.7 41 29.1

34.7 7.4 76.8

0.8 10 1.17

7.4

74.7

0.7 41 29.1

34.7 7.4 76.8

0.8 10 1.17

7.4

With harmoni
 bumps in addition

P

x

[ % ℄

Æn̂

0

[ mrad ℄ P

lin

[% ℄ P

z

[ % ℄ �z

bump

max

[ mm ℄ # h

P

s

[% ℄

74.4

22.7 56.5 77.3 6.6 4

58.5

71.4

20.0 65.1 73.9 10.7 8

69.2

75.7

17.8 65.6 77.0 5.9 4

67.6

69.4

14.0 72.3 69.4 5.2 8

77.8

Table 6.8: Comparison of rms value of Æn̂

0

and polarization (linear) in presen
e of errors for one

parti
ular random seed after appli
ation of various 
orre
tions. Rev3.2 e

�

latti
e (without solenoids).

Observe that the top and bottom blo
ks of the table should be read as if the bottom blo
k would be

the 
ontinuation of the top blo
k on the right hand side.
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After usual orbit 
orre
tions

P

x

[% ℄

x

rms


:o

[mm ℄ �D

rms

x

[mm ℄ "

x

[ nm rad ℄

Æn̂

0

[mrad ℄ P

lin

[% ℄ P

z

[% ℄

z

rms


:o

[mm ℄ �D

rms

z

[mm ℄

"

z

[ nm rad ℄

P

s

[% ℄

72.5 � 10.8

0.64 � 0.06 32 � 18 27.4 � 1.4

32.4 � 8.0 8.8 � 5.4 78.4 � 2.6

0.51 � 0.03 13 � 4 0.920 � 0.196

8.7 � 5.3

With harmoni
 bumps in addition

P

x

[% ℄

Æn̂

0

[mrad ℄ P

lin

[% ℄ P

z

[% ℄

P

s

[% ℄

70.4 � 11.3

16.2 � 2.3 61.9 � 12.0 77.3 � 2.0

59.0 � 14.7

Table 6.9: Expe
ted rms value of Æn̂

0

and polarization (linear) in presen
e of random quadrupole

transverse alignment errors and quadrupole rolls for the Rev3.2 e

�

latti
e (without solenoids). Average

over 6 random seeds.

been de
ided to sti
k to the sandwi
h model, thereby allowing PETROS | the 
ode traditionally used

at DESY for simulating the e�e
ts on orbital motion of random errors and also their 
orre
tion | to

remain un
hanged. Using SITF and SITROS a study of the polarization in the presen
e of random

quadrupole displa
ements in the Rev3.2 e

�

latti
e, in
luding the H1 and ZEUS solenoids, has been


arried out. The results are displayed in Table 6.10 and Figure 6.18.

In order to give a representative pi
ture of the polarization that 
an be expe
ted in HERA after

the upgrade, the simulated orbit 
orre
tions have been made down to the realisti
 level of about 0.8

mm in both planes. Moreover, with the in
lusion of the solenoids, guided by the experien
e gained

in the studies without them and after some initial testing, it has been de
ided to investigate the

e�e
ts of adding further harmoni
 bumps. The results 
olle
ted in Table 6.10 in
lude simulations for

8 random seeds where the highest polarization (at the linear level), 
omparing the use of 4, 8 and

16 harmoni
 bumps for ea
h seed, have been sele
ted. With an average rms n̂

0

tilt of 14.8 mrad

the linear polarization 
al
ulated with SITF rea
hes 63.8 % after harmoni
 bump 
orre
tion. Note

that a dedi
ated dispersion 
orre
tion (using MICADO in PETROS) has been applied for most of

the seeds to minimize the dispersion distortion. For the 
al
ulation of the e�e
ts of higher order

resonan
es, SITROS has been used to tra
k an ensemble of typi
ally 100 { 350 parti
les for 10 000

turns: �rst 5000 turns to rea
h orbital equilibrium and then additionally 5000 turns to monitor the

depolarization. The number of parti
les has been 
hosen su
h that the tra
ked emittan
es (in pra
ti
e

the beam sizes are monitored) have been able to 
onverge to the analyti
ally 
al
ulated ones from the

�rst program module, while still keeping the tra
king time within \reasonable" limits.

10

Averaged

over the 8 random seeds for quadrupole displa
ement, the polarization from the SITROS tra
kings

for the Rev3.2 e

�

latti
e, in
luding the H1 and ZEUS solenoids (using the sandwi
h model), rea
hes

57.0 %. Figure 6.18 shows energy s
ans made with SITF and SITROS for a typi
al random seed

(bottom plots), and for 
omparison, s
ans made for the non{distorted opti
, in
luding the solenoids

(top plots). Note that one 
an see eviden
e in the right pi
tures of the expe
ted sidebands and that

10

As an example of the 
omputation time needed to make an energy s
an with the updated SITROS 
ode, it should

be mentioned that the SITROS polarization data plotted in Figure 6.18, obtained in tra
kings with 250 parti
les

(whi
h is 
ertainly not ex
essive), have required about 4 1/2 days of CPU time per s
an on a Sun Ultra{1 Spar



luster. However, the simulations 
learly point out the aspe
ts that need to be 
onsidered.
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After usual orbit 
orre
tions

P

x
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0.86 � 0.16 28 � 20 27.5 � 1.6

32.9 � 7.6 10.3 � 5.5 74.2 � 3.1

0.78 � 0.15 14 � 6 1.07 � 0.25

10.8 � 6.2

With harmoni
 bumps in addition

P

x

[% ℄

Æn̂

0

[mrad ℄ P

lin

[% ℄ P

z

[% ℄

"

analyt

x

[ nm rad ℄ "

tra
k

x

[ nm rad ℄

P

nonlin

[% ℄

P

s

[% ℄

"

analyt

z

[ nm rad ℄ "

tra
k

z

[ nm rad ℄

67.1 � 3.8

14.8 � 1.4 63.8 � 2.1 72.7 � 3.7

27.1 � 1.3 32.2 � 3.3

57.0 � 3.2

71.5 � 1.5

1.31 � 0.41 1.43 � 0.48

Table 6.10: Expe
ted rms value of Æn̂

0

and polarization (linear and higher order) in presen
e of random

quadrupole transverse alignment errors for the Rev3.2 e

�

latti
e in
luding the H1 and Zeus solenoids,

using the sandwi
h model. Average over 8 random seeds.

the separation of these sidebands 
orresponds to the syn
hrotron tune, �

s

' 0:06. This is the 
ase

sin
e SITROS deals with three{dimensional spin motion, whi
h leads to higher order resonan
es. Note

also the pronoun
ed overlap of the �rst order resonan
es in the (left) SITF pi
tures. Be
ause of this

overlap we do not expe
t the simple model in Chapter 3 for des
ribing syn
hrotron sidebands to be

reliable, and hen
e we see that we need the SITROS program.

The higher order polarization in the 
ase of the ideal opti
 with solenoids using the sandwi
h model

is 61.0 %. It must be emphasized that this value is 6.4 % lower than the value obtained using the

numeri
al maps in SITROS (end �eld model B), whereas the di�eren
e at the linear level (SITF) is

only 1.5 %. It is therefore likely that the estimate for the polarization obtained with SITROS using

the sandwi
h model is too low by a few, up to maybe 5, per
ent. In prin
iple, many more distortion

seeds should be investigated to improve the statisti
s, but due to the time 
onsuming 
orre
tions this

has not been possible for this work. However, the simulations 
learly point out the aspe
ts that need

to be 
onsidered, in order to a
hieve polarization levels around 55{60 % in the luminosity upgraded

HERA. These 
an be summarized as follows:

� The 
losed orbit must be 
orre
ted down to ' 0:7 mm. This may require the use of beam{based


alibration te
hniques.

� A dedi
ated dispersion 
orre
tion is probably needed to keep the dispersion distortion minimal.

� A good 
oupling 
ompensation is ne
essary, whi
h 
an be a
hieved using some of the te
hniques

des
ribed in Se
tion 6.1.1.

� As many as 16 harmoni
 bumps may be needed to 
orre
t the n̂

0

tilt 
aused by the random

distortions.

6.4 E�e
t of RF frequen
y shift on the polarization

In Chapter 2 it was explained that in order to a
hieve a horizontal emittan
e of 20 nm rad for the e

+=�

beam after the luminosity upgrade, besides an in
rease of the phase advan
es in the FODO 
ells from
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60

Æ

to 72

Æ

, it is planned to operate the ma
hine with a RF frequen
y o�set of about +250 Hz.

11

This


orresponds to an energy o�set of about �0:1 %, where the energy{frequen
y relationship is given via

�E

�

2

E

=




2

t




2




2

t

� 


2

�f

RF

f

RF

(6.5)

and where the square of the 
 at transition, 


2

t

, is 1833 for the 72

Æ

=72

Æ

opti
. The energy o�set implies,

through the horizontal dispersion, that the horizontal 
losed orbit shift will be nonzero by design. In

parti
ular on average there will be an inward radial o�set of the e

+=�

beam in the quadrupoles in

the ar
s. Hen
e there will be a redistribution of the partition numbers, a

ording to the Robinson

Theorem, su
h that the horizontal emittan
e is de
reased, whereas the bun
h length and the energy

spread are in
reased. We must now 
onsider the impli
ations for e

+=�

polarization. By noting that

the horizontal o�set in the ring sextupoles will 
ause these magnets to a
t as additional quadrupoles,

an in
reased spin di�usion might be expe
ted. However this 
ontribution will be mu
h smaller than

that due to standard 
losed orbit distortions. This has indeed been 
on�rmed in simulations. By

introdu
ing an equivalent energy shift a

ording to eqn. (6.5), simulations in
luding su
h a RF shift

have been made with SITF [Gi01℄. The results 
an be studied in Figure 6.19. Note the overall sideways

shift of the resonan
e stru
tures in the right hand side pi
tures, be
ause of the energy shift of about 25

MeV. As 
an be seen the e�e
t of the RF frequen
y shift on the maximum polarization is small, even

for the 
ase of realisti
 orbit distortions. To vindi
ate these �ndings, and to rule out that non{linear

e�e
ts 
ould have a detrimental e�e
t on the polarization due to the RF shift, dedi
ated ma
hine

studies were 
arried out in a spe
ially prepared 72

Æ

=72

Æ

opti
 in HERA before the shutdown [Ho00b℄.

The results from these studies are en
ouraging. In parti
ular the in
reased energy spread did not


ause any problems due to enhan
ed sideband resonan
es.

6.5 Beam-beam e�e
ts on spin

In Chapter 2 the in
uen
e of the beam{beam intera
tion at H1 and ZEUS on the luminosity after

the upgrade was dis
ussed. It was pointed out that the beam{beam for
es are very nonlinear, but

that for small amplitudes the intera
tion of the 
ounter{rotating beams mainly 
auses betatron tune

shifts. A self{
onsistent pi
ture of the beam{beam intera
tion is not easy to formulate, and it is even

more diÆ
ult to make analyti
al estimates of the impa
t on the polarization. In addition to the tune

shifts, tune spread e�e
ts and possible distortions of the beam distributions 
ompli
ate the situation

and the spins of individual parti
les are a�e
ted both dire
tly by the beam{beam for
es and indire
tly

through the traje
tory distortion.

Until 1996 no 
lear eviden
e of beam{beam e�e
ts on polarization had been observed in HERA.

In that year the proton ring �

�

z

was lowered from 0.7 m to 0.5 m (balan
ed by a redu
tion of �

�

z;e

in 1997). Moreover the proton beam 
urrent has been steadily in
reasing over the years. From the

Autumn of 1996, when proton 
urrents approa
hing 100 mA be
ame routine, the resultant larger

beam{beam for
es started to have a marked e�e
t on the polarization. By studying the polarization

of single bun
hes, as measured by LPOL, it be
ame apparent that the 
olliding and non{
olliding

bun
hes 
an have di�erent polarization values [Be00a℄. See Figure 6.20. This has been interpreted as

the 
olliding and non{
olliding bun
hes having di�erent betatron tunes, so that one of these groups of

bun
hes 
an be 
lose to some depolarizing spin{orbit resonan
e (probably a syn
hrotron sideband of

a parent resonan
e) and therefore have a lower polarization. The polarization of the 
olliding bun
hes


an usually be improved by 
ompensating for the tune shifts by adjusting the ar
 quadrupoles, thereby

avoiding depolarizing resonan
es. However, it should be noted that even after tune 
ompensation the

11

Without the RF frequen
y shift the horizontal emittan
e in the 72

Æ

=72

Æ

opti
 is �

x

= 27 nm rad.
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polarization in the presen
e of the beam{beam e�e
t is lower than for the 
ase of a single beam, due to

the breaking of the straight se
tion spin mat
h. This is illustrated by 
omparing Figures 6.8 and 6.9

(bottom right) with Figure 6.21, where the polarization 
al
ulated with SLICK in the presen
e of an

arti�
ial \beam{beam lens", and after tune 
ompensation, is shown for the Rev3.2 e

�

latti
e. The

tune shifts stated 
orrespond to a proton 
urrent of 110 mA. A variation of the polarization of the


olliding bun
hes, a
ross a group of su
h bun
hes, has also been observed and has been attributed

to a variation in the syn
hrotron tune, 
aused by dynami
 beam loading e�e
ts in the RF 
avities.

Apart from the sensitivity to orbital tunes, it has been noted that in the presen
e of the beam{beam

e�e
t the rise time of polarization after inje
tion is sometimes larger than that expe
ted from standard

radiative polarization theory, and that the polarization level is sometimes insensitive to the settings

of the harmoni
s of the harmoni
 
losed orbit 
orre
tion s
heme [Gi01℄.

The e�e
t of the beam{beam intera
tion on the ele
tron polarization for HERA I has been studied

by B�oge and Limberg [BL95℄ using SITROS. Strong depolarization was predi
ted, but su
h strong

depolarization has not been 
on�rmed by measurements. Even after updating the SITROS 
ode

(see Appendix C) it made pessimisti
 predi
tions. Therefore realisti
 simulations of beam{beam

depolarization seem to be unexpe
tedly diÆ
ult and would probably need to be the subje
t of a

separate proje
t. It has however been 
on�rmed by Fourier analysis of SITROS tra
king data, that

SITROS reprodu
es the 
orre
t linear (in
oherent) tune shifts.
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Figure 6.15: Top: Polarization vs. energy for the Rev3.2 e

�

nominal latti
e. Bottom: The (linearized)

Derbenev{Kondratenko spin di�usion term plotted in dipoles and 
ombined fun
tion magnets vs.

energy and ring azimuth for the same 
ase.
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Figure 6.16: Top: Polarization vs. energy for the Rev3.2 e

�

nominal latti
e with broken (verti
al) spin

mat
h in the South{West quadrant. Bottom: The (linearized) Derbenev{Kondratenko spin di�usion

term plotted in dipoles and 
ombined fun
tion magnets vs. energy and ring azimuth for the same


ase.
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Figure 6.17: Top: Polarization vs. energy for the Rev3.2 e

�

latti
e with H1 (end �eld model B)

and ZEUS solenoids. Bottom: The (linearized) Derbenev{Kondratenko spin di�usion term plotted in

dipoles and 
ombined fun
tion magnets vs. energy and ring azimuth for the same 
ase.

108



0

20

40

60

80

100

27.25 27.35 27.45 27.55 27.65

P
 [
%

]

E [GeV]

Ptot
Px
Pz
Ps

0

20

40

60

80

100

27.25 27.35 27.45 27.55 27.65

P
 [
%

]

E [GeV]

NONLINEAR
LINEAR

0

20

40

60

80

100

27.25 27.35 27.45 27.55 27.65

P
 [
%

]

E [GeV]

Ptot
Px
Pz
Ps

0

20

40

60

80

100

27.25 27.35 27.45 27.55 27.65

P
 [
%

]

E [GeV]

NONLINEAR
LINEAR

Figure 6.18: Polarization vs. energy for the Rev3.2 e

�

latti
e in
luding the H1 and ZEUS solenoids,

using the sandwi
h model. Top left: Linear polarization (SITF), ideal opti
. Top right: Higher

order polarization (SITROS), ideal opti
. Bottom left: Linear polarization (SITF), typi
al 
ase with

distortions. Bottom right: Higher order polarization (SITROS), typi
al 
ase with distortions.
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Figure 6.19: Polarization vs. energy for the Rev3.2 e

�

latti
e. Top left: Nominal latti
e (no distortions,

no RF shift). Top right: Nominal latti
e with �f

RF

= +250 Hz. Bottom left: Opti
 with realisti


distortions, no RF shift. Bottom right: Opti
 with realisti
 distortions and �f

RF

= +250 Hz. The

strong broadening of the �

s

resonan
es when the RF shift is applied is due to a tilt of n̂

0

, 
aused

by an energy mismat
h of the rotator settings, resulting from the parti
ular way the shift has been

implemented in the 
ode.
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Figure 6.20: Example on the di�eren
e in polarization of the 
olliding and non{
olliding bun
hes, as

measured by LPOL [Be00a℄. Courtesy of W. Lorenzon.
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Figure 6.21: Polarization vs. energy for the Rev3.2 e

�

latti
e with linear beam{beam e�e
t at the

North and South IPs. The in
oherent tune shifts (��

e

x

= 0:027 and ��

e

z

= 0:041 per IP) have been


ompensated for by adjusting the 
urrents of the main quadrupoles (i.e. the ar
 quadrupoles). Left:

Nominal latti
e. Right: Latti
e in
luding the H1 (end �eld model A

1

) and ZEUS solenoids.
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Chapter 7

A Unitary Model of Spin

Depolarization

It was pointed out in Chapter 3 that the syn
hrotron part of the term n̂

0

� ~! in the equation of

spin motion represents a modulation of the instantaneous rate of spin pre
ession around n̂

0

due to

energy os
illations and it was explained that this leads to the generation of syn
hrotron sidebands of

parent resonan
es. A brief presentation of the main result from the Yokoya{Mane approximations for

syn
hrotron sidebands of �rst order parent betatron resonan
es was given.

The Yokoya{Mane approximation is a perturbative approa
h for treating isolated resonan
es, that

does not a

ount for interferen
e between parent resonan
es. From the SLICK and SITF results for

HERA presented in Chapter 6 (see for instan
e Figure 6.9 and the left side pi
tures in Figure 6.18) it

is 
lear that the 
riterion of well separated parent resonan
es is not ful�lled in a realisti
 des
ription

of HERA. This model is therefore restri
ted in appli
ability. Moreover, the model does not preserve

the length of spin ve
tors in the spin transformations, i.e. it does not preserve unitarity in an SU(2)

representation. In prin
iple one 
ould use this model anyway and try to retrieve the main higher

order resonan
es and this has been done for a parti
ular HERA opti
 by B�oge [B�o94℄. It is found that

the Yokoya{Mane approximate model for syn
hrotron sidebands is useful to get a rough view of the

resonan
e stru
ture, but it is not adequate for predi
ting the absolute polarization level be
ause of

the limitations mentioned. There is therefore no real substitute for SITROS tra
king 
al
ulations or

the use of SODOM [Yo92℄ mentioned in Chapter 3.

An alternative method for des
ribing higher order spin motion whi
h is based on a simple pi
ture

and thereby has the potential to provide physi
al insight 
an be found in [BL96, Le97℄. However,

the method presented in those texts has been applied in
orre
tly to e

+=�

polarization. The obje
t

of this 
hapter is to outline how one 
an nevertheless in prin
iple still take advantage of this model

if one 
ombines it with a 
orre
t understanding of radiative depolarization theory. At this point I

would like to remind the reader of the dis
ussion on the opening angle between n̂ and n̂

0

in Chapter 6.

By using this opening angle, as 
al
ulated by SLICK, it was possible to get a rough estimate for the

spin{orbit 
oupling fun
tion

�n̂

�Æ

in the Derbenev{Kondratenko formula. We know from linear eigen{

theory (see eqn. (3.64)) that the spin 
omponents of the eigenve
tors, ~w

k

, are needed to 
al
ulate this

opening angle. By working in the betatron{dispersion formalism, and 
onsidering for simpli
ity only

the e�e
t of quadrupoles, we �nd that the expression for these eigenve
tors, eqn. (3.74), 
ontains the

one{turn integrals in eqn. (3.78). If we now make a Fourier expansion of the integrands and evaluate

these integrals we �nd that the result is a sum of terms 
ontaining resonan
e fa
tors of the kind

1=(�

k

� �

0

� p), with integer p. Then the ~w

k

diverge at �

k

� �

0

= ~p for some integer ~p giving an

in�nite opening angle so that the perturbative treatment is 
ompletely invalid. General solutions for

the spin motion also diverge. The reason is 
lear. At su
h a resonant 
ondition, a 
orresponding term
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exp i 2�s(�

k

� �

0

� ~p)=C in the Fourier expansion be
omes 1 and the integral for the �rst order spin

solution in eqn. (3.33) in
reases linearly and inde�nitely with distan
e [Yo83, BR99, Vo00℄. The rate

of divergen
e is proportional the ~p-th Fourier 
oeÆ
ient.

However, it is possible to 
onstru
t a better model, whi
h is unitary, for 
al
ulating the opening

angle and handling resonan
e. The key to this lies in the following observation: 
lose to a resonan
e

the spin motion is almost 
oherent with the orbital motion and it is dominated by a single harmoni



omponent equivalent to a �eld rotating in a plane perpendi
ular to n̂

0

. In the (n̂

0

; m̂

0

;

^

l

0

) frame

this 
orresponds to the spins' seeing an almost stationary �eld, whi
h rotates the spins away from n̂

0

.

The situation is analogous to that en
ountered in nu
lear magneti
 resonan
e (NMR) experiments,

where the radio frequen
y �eld a
ting on the spins is de
omposed into two 
onstant �elds 
ounter{

rotating with the same frequen
ies [Ab61℄. Studying the spin motion 
lose to a spin{orbit resonan
e

and sele
ting one harmoni
, amounts to de
omposing the �eld seen by the parti
les due to motion on

syn
hro{betatron traje
tories into two 
omponents, and sele
ting one of them. The Fourier 
oeÆ
ient

for the sele
ted harmoni
 gives the strength of the 
hosen rotating �eld 
omponent. By making a

transformation into a frame rotating with this 
omponent, an exa
tly solvable model for des
ribing

the spin motion 
an be obtained. See for instan
e [Bu87, Ma88, Ma92, Le97, Vo00℄. This is the so


alled single resonan
e model whi
h will be brie
y des
ribed below. Here, for the sake of the following

argumentation I will follow the presentation in [BL96, Le97℄, but 
hange the notation for 
ertain

quantities, in order not to 
ause 
onfusion and break with previously introdu
ed notation. Note that

in these texts the spin motion is des
ribed in terms of two 
omponent spinors 	 with

b

S = h	j~���j	i,

and where ~��� is a three 
omponent ve
tor of Pauli matri
es, ~��� = (���

1

; ���

2

; ���

3

). For a brief introdu
tion

to spinor algebra see [Mo84℄.

7.1 The single resonan
e model (SRM)

In terms of spinors, and using the generalized ma
hine azimuth � �

2�s

C

instead of s as the independent

variable, the T{BMT spin equation of motion in the presen
e of a single harmoni
 be
omes

d	

d�

= �

i

2

 

a
 ��

K

e

�iK�

��

K

�

e

iK�

�a


!

	 (7.1)

where K is the resonan
e tune and �

K

is the strength (resonan
e strength) for the harmoni
 and

is proportional to the K{th harmoni
 in the Fourier expansion.

1

Here, we assume that even if n̂

0

is tilted slightly from the verti
al, the 
losed orbit spin tune �

0

is still given by a
 to a very good

approximation. Note that although this equation resembles a S
hr�odinger equation for the spinor, we

are not invoking quantum me
hani
s here. Instead we are just using an SU(2) representation for the

real ve
tor

^

S.

By making a transformation to the resonan
e pre
ession frame (RPF) dis
ussed above, using

	

K

(�) = e

i

2

K��

3

	(�) (7.2)

the spinor equation of motion takes the form

1

For a mathemati
al de�nition of resonan
e strength, see for example [BR99, Vo00, Ho00a℄. The 
on
ept of resonan
e

strength is most important for the a

eleration of polarized protons.
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!

	

K

=

i

2

[�

R

���

1

� �

I

���

2

+ � ���

3

℄ 	

K

(7.3)

where �

R

and �

I

are the real and imaginary parts of �

K

, and we have introdu
ed the proximity parameter

� = K � a
.

2

The solution to this equation is given by

	

K

(�

f

) = e

i

2

[�

R

�

1

��

I

�

2

+� �

3

℄(�

f

��

i

)

	

K

(�

i

) = e

i

2

�(�

f

��

i

) n̂

r

�~�

	

K

(�

i

) (7.4)

where � =

q

�

2

+ j�

K

j

2

and

n̂

r

=

1

�

(�

R

x̂� �

I

ŝ+ � ẑ) (7.5)

This ve
tor represents a stationary rotation axis in the RPF. When we transform ba
k into the original

a

elerator 
oordinate system

3

, using the inverse of the transformation (7.2), we �nd that n̂

r

maps

ba
k into a T{BMT solution

n̂ =

1

�

(j�

K

j 
os(K� + �

1

) ; j�

K

j sin(K� + �

1

) ; �) (7.6)

where �

1

= ar
tan(�

I

=�

R

) a

ounts for the arbitrariness of the betatron phase. The ve
tor n̂ in

the a

elerator frame is an expli
it fun
tion of the betatron phase at ea
h azimuth and is, in fa
t,

independent of azimuth. In other words we have 
onstru
ted the Derbenev{Kondratenko n{axis

for the SRM. It is interesting to note that this expression for n̂ 
an be derived using the SMILE

algorithm [Ma92℄, where the potentially divergent resonant fa
tors in the SMILE perturbation series

sum up to give the non{divergent expression (7.6). The tilt of n̂ from n̂

0

is ar

os(�=�) and this

rea
hes �=2 when � = 0, i.e. when a
 = K. On
e we know the statisti
al distribution of �

K

for an

ensemble we 
an 
al
ulate the �

hn̂;n̂

0

i

(Chapter 6) for the SRM.

If we know how to express the sensitivity of the betatron amplitude and the phase to energy jumps,

the SRM also allows us to 
al
ulate the derivative

�n̂

�Æ

needed in the Derbenev{Kondratenko formula.

By 
omparison with the perturbative Yokoya{Mane approa
h, we expe
t this sensitivity to be given by

the bra
ket 
ontaining Courant{Snyder parameters in eqn. (3.80). See for instan
e eqn. (3.3) in [Yo83℄.

However, one then needs a model for this fun
tion and that requires extra assumptions.

The SRM 
an also be extended to des
ribe syn
hrotron sidebands of parent resonan
es [BL96, Le97℄.

The model developed in those texts is based on the assumption that the separations of the resonan
es

studied are larger than their widths, but not ex
eedingly larger. Although not stated expli
itly, it is

assumed that the resonan
es are 
onsidered pairwise, where one of the resonan
es is a parent betatron

resonan
e and the other is a syn
hrotron sideband. Furthermore, it is assumed that when we are 
lose

in tune spa
e to the se
ond resonan
e the tilt of n̂ due to the �rst resonan
e is small, i.e. 
lose to

this se
ond resonan
e n̂ is nearly aligned along n̂

0

if the sideband e�e
t is weak. The equation of spin

motion that is studied in the above texts is then

2

Note that the symbol � in some other des
riptions of the SRM [Vo00, Ho00a℄ denotes the resonan
e position in tune

spa
e.

3

In [BL96, Le97℄ a righthanded 
oordinate system (x̂; ŝ; ẑ), where the parti
les are assumed to travel 
ounter{
lo
kwise

is assumed.
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	 (7.7)

subje
t to the spe
i�ed restri
tions. By applying a series of spin transformations to eqn. (7.7), given

in [BL96℄ by the eqs. (23) { (27), the spinor is brought step by step from the ma
hine frame into

the RPF of the K

2

resonan
e. In this frame, the spinor equation 
an be solved analyti
ally and the

expression for n̂ in the a

elerator frame is given by

n̂

2

�

1

�

2

(j�

2

j 
os(K

2

� + �

2

) ; j�

2

j sin(K

2

� + �

2

) ; �

2

) (7.8)

where �

2

= K

2

�a
 and �

2

=

q

�

2

2

+ j�

2

j

2

, and where the � sign indi
ates that approximations 
orre-

sponding to the above assumptions have been made. This expression is reminis
ent of the expression

for the parent resonan
e in the usual SRM.

The model just des
ribed has been termed the \nearly overlapping resonan
e model", and it has

been used in [BL96, Le97℄ to explain measurements at IUCF of the residual time averaged verti
al

proton polarization that would be measured by a polarimeter if a beam of verti
ally polarized protons

were inje
ted. The same parametrization was applied to e

+=�

polarization measurements at SPEAR.

However, for SPEAR, that is 
learly a misuse of the model. It should now be 
lear from Chapter 3 that

su
h an approa
h is wholly inappropriate for the ele
trons in SPEAR | whi
h be
ame polarized by

the Sokolov{Ternov e�e
t. However, in the next se
tion I will show how this model 
an be developed

for dis
ussing e

+=�

polarization near a syn
hrotron sideband. In parti
ular, we need an estimate of

the rate of depolarization. To distinguish between the original model and the extended model I will


all the latter the \double resonan
e model". In 
ontrast to the situation at HERA the resonan
es in

SPEAR were quite well separated. See Figure 7.1. So the SRM and double resonan
e models have a


han
e to be relevant.

7.2 The double resonan
e model

We will now be more spe
i�
. We note that n̂

2

in eqn. (7.8) is an expli
it fun
tion of the phase by

virtue of the term K

2

�+ �

2

in the arguments of the sine and 
osine terms. As was mentioned earlier,

if we know how to relate the amplitudes and phases to the energy, we are in a position to 
al
ulate

the derivative

�n̂

�Æ

. Sin
e we are generally interested in syn
hrotron sidebands of parent betatron

resonan
es, the natural starting point is to write down the expression for the energy deviation due

to syn
hrotron os
illations. The eqn. (8) in [BL96℄ is su
h an expression. However, this parti
ular

expression la
ks an arbitrary syn
hrotron phase fa
tor, whi
h will now be added in. I will also de�ne

a generalized length variable

~

`, 
onjugate to the energy o�set variable Æ '

�p

p

, and write

Æ = â 
os(�

s

� + �

s

) = â 
os 

s

~

` = â sin(�

s

� + �

s

) = â sin 

s

(7.9)

where â is the syn
hrotron amplitude and �

s

is the missing phase fa
tor. The na��ve perturbation

strength given in eqn. (13) in [BL96℄ is a

ordingly modi�ed to in
lude this phase fa
tor
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Here I have introdu
ed the symbol � =

�

2

a
 â

�

s

(repla
ing the symbol g used in [BL96, Le97℄). For high

energy e

+=�

ma
hines, the Lorentz � ' 1 and the rms � is essentially equal to

p

� from Chapter 3.

For SPEAR in the energy range that we are 
onsidering the rms � is about 0:4. Following the

argumentation in [BL96℄, with the aim of applying the emerging formulae initially to �t measured

data from ma
hines for whi
h � < 1, we apply the small argument expansion for the Bessel fun
tions,

and fo
us on the �rst order syn
hrotron sidebands for whi
h the resonant tunes are given by K � �

s

.

If the strength of the parent resonan
e is given by �

1

, a �rst order sideband then has the strength

�

2

�

1

2

��

1

. Inserting this estimate for the resonan
e strength in eqn. (7.8) and using (7.9) we get

n̂

2

�

1

�

2

�

1

2

��

1


os(K� +  

s

) ;

1

2

��

1
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s

) ; �

2

�
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2
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s
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1
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where �

2

=

q

�

2

2

+ j�

2

j

2

and where I have introdu
ed 


1

=

1

2

a


�

s

�

1

.

If we now take the partial derivative of this expression with respe
t to Æ, keeping �

1

�xed and

average around the ring we obtain the following expression

jh

�n̂

2

�Æ

i

�

j =

v

u

u

t

(


3

1

Æ

2

� 


1

�

2

2

)

2

+ 


6

1

Æ

2
~

`

2

+ 


4

1

Æ

2

�

2

2

�

6

2

(7.12)

The expression for n̂

2

in eqn. (7.11) and generally also in eqn. (7.8) 
ontains the resonan
e strength �

1

of the parent resonan
e, and to obtain the 
omplete expression for

�n̂

2

�Æ

we would need, as in the 
ase

of the simple SRM, the partial derivative of �

1

with respe
t to Æ. This would deliver a term additional

to that obtained by di�erentiating n̂

2

with �

1

�xed. The di�usion term (

�n̂

2

�Æ

)

2

would then a
quire an

extra quadrati
 term and a \
ross term". Sin
e at this stage of the argument we have no model for the

derivative of �

1

we ignore the extra terms and work with the expression in eqn. (7.12). Nevertheless,

this estimate of the spin{orbit 
oupling fun
tion puts us in a position to point at a mis
on
eption

o

urring in the referen
e texts [BL96, Le97℄.

As already mentioned, the nearly overlapping resonan
e model presented in [BL96, Le97℄ has

been used to explain measured e

+

beam polarization data from SPEAR, �rst published in [Jo83℄.

In the paper [BL96℄ and in the book [Le97℄, the strengths of the spin{orbit resonan
es present in

these data have been attributed entirely to the 
os

2

(�

hn̂;n̂

0

i

) = �

2

=�

2

. As we have stated, this would

be appropriate for protons but not for ele
trons. We have also seen in Chapter 6 that at HERA,

attributing the measured polarization to 
os(�

hn̂;n̂

0

i

) leads to opening angles of tens of degrees, instead

of milliradians.

Instead we need (

�n̂

2

�Æ

)

2

! Close to the �rst order syn
hrotron sidebands this 
an be 
al
ulated with

eqn. (7.12).
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To illustrate this point I will 
hoose a parti
ular parent resonan
e from the SPEAR data and

use the 
orresponding values for the resonan
e strength given by the �t to the data in [BL96, Le97℄

whi
h was based on equating the measured polarization to 0:92 � 
os

2

(�

hn̂;n̂

0

i

). As an estimate for

the syn
hrotron amplitude I will initially use the value quoted in these referen
es,

p

6�

Æ

= 2:1 � 10

�3

,

and 
hoose the representative phase spa
e point Æ =

~

` =

p

6 �

Æ

, but this value is not 
riti
al for my

illustration. In fa
t a smaller value based on �

Æ

=

p

2, for example, would illustrate my point even

better. The parent resonan
e I 
hoose is that with �

0

= 3 + �

x

situated at E = 3:648 GeV, see

Figure 7.1. This resonan
e was presumably driven by a tilted n̂

0

resulting from imperfe
tions. If I

now insert the parameters from the original �t in [BL96℄ I �nd that for the lower sideband resonan
e

at about 3.63 GeV and for �

2

= 1 � 10

�3

, 
orresponding to a position in tune spa
e halfway down the

resonan
e,

11

18

�

�n̂

�Æ

�

2

is of the order of 250

2

! at this parti
ular position in phase spa
e. Clearly, from

the data from the SPEAR measurements [Jo83℄ 
ited in [BL96℄, halfway down this resonan
e

11

18

�

�n̂

�Æ

�

2

must be of the order of one. So although this estimate is based on just one position in phase spa
e, it

is 
lear that the strength parameters from [BL96, Le97℄ applied to this 
ase do not make any sense.

The value of �

1

= �

f3+�

x

g

= 0:008 is probably massively overestimated as a result of attributing the

measured polarization to the opening angle. Moreover, it is now 
lear that there is little point in being


on
erned about the absen
e of extra terms while the simplest estimate of

11

18

�

�n̂

�Æ

�

2

is so large.

This analysis has been preliminary, but we 
ould now go further and develop the full expression

for h

11

18

�

�n̂

�Æ

�

2

i in
luding the rms values of �

1

and of its derivative with respe
t to Æ. Then a �t to the

data might deliver values for these quantities. This will be the subje
t of future work and, as is often

the 
ase with simple models [He97℄, this investigation has already been of pedagogi
al value.

The obvious 
on
lusion from this dis
ussion is that it is misleading to treat e

+=�

spins in the

same way that one would treat proton spins. e

+=�

spins di�use due to syn
hrotron radiation and

polarization builds up via the Sokolov{Ternov e�e
t. Proton spins are subje
t to neither of these

e�e
ts. This dis
ussion shows how to pro
eed 
orre
tly.

Figure 7.1: The polarization as a fun
tion of energy for single e

+

beam in SPEAR. The 
ir
les with

error bars are data from measurements originally presented in [Jo83℄. The solid line is a \�t to the

eye" using the nearly overlapping resonan
e model presented in [BL96, Le97℄. Sour
e [BL96℄.
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Chapter 8

Con
lusions

The luminosity upgrade proje
t of HERA will make operation with longitudinally polarized e

+=�

beams more diÆ
ult than in the past. Polarization is only one of the aspe
ts of running HERA after

the upgrade, but it is still very important. The interest in longitudinal e

+=�

polarization is illustrated

by the large amount of time and e�ort spent by the polarimetry groups to upgrade the TPOL and

LPOL, and by the installation of the spin rotators for H1 and ZEUS. Tra
king simulations in
luding

realisti
 orbit distortions, and an estimate of the in
uen
e of the beam{beam intera
tion based on past

experien
e, suggest that, despite the 
ompli
ated �eld mixture in the new IRs and the un
ompensated

experiment solenoids, it is possible to a
hieve longitudinal polarization after the upgrade at the 50 %

level with three pairs of spin rotators operating. This however requires very well 
orre
ted orbits

and, as mentioned in Chapter 6, perhaps also a dedi
ated dispersion 
orre
tion and use of additional

harmoni
 bumps. It should be pointed out that the presen
e of the three rotator pairs, one of them

being asymmetri
ally retuned, and the extra 
onstraints set by the asymmetries in the new latti
e will

make tuning for high polarization after the upgrade espe
ially diÆ
ult. Various e�e
ts in
uen
ing the

polarization may also be diÆ
ult to disentangle in pra
ti
e. The diagnosti
 
he
ks made with SLICK,

using various models for the overlapping �eld regions in the new IRs, des
ribed in Chapter 6 
an then

be of guidan
e. It has been shown for the �rst time how to 
onstru
t numeri
al symple
ti
 orbits maps

and numeri
al orthogonal spin maps for the 
ompli
ated �elds at the dete
tors and in
lude them in

the standard programs for 
al
ulating polarization.

Sin
e the beam{beam e�e
t 
an lead to stronger depolarization in the upgraded HERA, it will be

important for the future to get the beam{beam simulations in SITROS (or in alternative software)

under 
ontrol, in order to better understand and master the underlying dynami
s. This will probably

be the subje
t of a separate proje
t, for whi
h there unfortunately has been no time during the


ompletion of this thesis.

In the last se
tion of this work, it has been demonstrated how to use a simple, unitarity preserv-

ing model of syn
hrotron sidebands to derive an analyti
al expression for the

�n̂

�Æ

in the Derbenev{

Kondratenko formula. It has been demonstrated that a previous treatment was in
omplete, and it

has been shown how that treatment 
an be improved.
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Appendix A

Equations of motion

A.1 Orbit motion

The equations of motion for a relativisti
 
harged parti
le of rest mass m in an external ele
tri
 �eld

~

E , and external magneti
 �eld

~

B, are given by the Abraham{Lorentz relation [Ja98, AM78℄

d

dt

�

E




2

_

~r

�

= e

�

~

E +

_

~r �

~

B

�

+

~

R

rad

(A.1)

where E is the energy of the parti
le, E =

m


2

v

u

u

t

1�

 

_

~r




!

2

= 
m


2

and the term

~

R

rad

is the radiation rea
tion for
e, whi
h 
an be written as the sum

~

R

rad

=

~

R

D

+ Æ

~

R (A.2)

where

~

R

D

= �

2

3

r

e
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�
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~r

�

~r

�

2

!

is the 
ontinuous 
ontribution to the energy loss due to syn
hrotron radiation emission whi
h, in

this formalism leads to damping of the orbital motion. The ve
tor Æ

~

R is the sto
hasti
 
omponent

des
ribing the quantum 
u
tuations of the radiation �eld and ultimately leads to ex
itation of the

orbital amplitudes.

In order to des
ribe the parti
le motion in an a

elerator it is 
ustomary to revert to a 
oordinate

system in whi
h the dynami
al variables are small. This is a
hieved by introdu
ing the design orbit

~r

0

and writing the general parti
le position as

~r(x; z; s) = ~r

0

(s) + xê

x

+ zê

z

(A.3)

where s is the ar
 length (azimuth) along this design orbit. The unit ve
tors ê

x

and ê

z

are mutually

orthogonal and lo
ally normal to the design orbit. It is assumed that se
tions of the design orbit lie

either in the horizontal or in the verti
al plane. In either 
ase ê

x

is in the horizontal plane whereas ê

z

is in the verti
al plane. Together with a third unit ve
tor ê

s

, tangent to the design orbit and pointing
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orbit
design

r
r

0

êz

ês

xê e
_

trajectory
particle

Figure A.1: Coordinate system used to des
ribe parti
le motion in 
ir
ular a

elerators.

in the dire
tion of motion, these unit ve
tors form a righthanded orthogonal \tripod". See Figure A.1.

Note that even with solenoids in the ma
hine latti
e there is no torsion on the design orbit.

1

The

energy of the general parti
le is given in terms of the design energy E

0

by introdu
ing a small energy

o�set parameter Æ = �E=E

0

: E = E

0

(1 + Æ). We now make a 
hange of the independent variable

from time t to ar
 length s via

d

dt

=

ds

dl

dl

dt

d

ds

=

v

l

0

d

ds

(A.4)

where l is the path length and dl=dt = v ' 
 is the velo
ity of an ultra{relativisti
 parti
le, and make

use of the relations

d~r

0

ds

= ê

s

;

dê

x

ds

= K

x

ê

s

;

dê

z

ds

= K

z

ê

s

;

dê

s

ds

= �K

x

ê

x

�K

z

ê

z

(A.5)

where the 
urvatures K

x

and K

z

are related to the transverse magneti
 �elds on the design orbit

and E

0

through K

x

=

e


E

0

B

d:o

z

and K

z

= �

e


E

0

B

d:o

x

(withK

x

K

z

= 0). The �rst two derivatives of the

position ve
tor ~r then be
ome

~r

0

(x; z; s) = x

0

ê

x

+ z

0

ê

z

+ (1 + xK

x

+ zK

z

) ê

s

(A.6)
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�
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(A.7)

Furthermore, we need the quantity l

0

= k~r

0

k =

p

(1 + xK

x

+ zK

z

)

2

+ (x

0

)

2

+ (z

0

)

2

. The motion of a

parti
le 
an now be des
ribed in terms of the 
oordinates (x; x

0

; z; z

0

; `; Æ). Assuming that the parti
les

are travelling in a region where there are no ele
tri
 �elds (

~

E = 0) and, for the moment, disregarding

1

For a more elaborate dis
ussion on a

elerator 
oordinates, where the relation of the above referen
e frame to the

Frenet{Serret 
oordinate system is explained, see [Vo00℄ or [Ho00a℄.
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radiation (set

~

R

rad

= 0) it 
an be demonstrated that the 
omplete equations of motion in the two

transverse planes transform to [MR82a℄
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Linear opti
al 
al
ulations are based on the linearized form of these equations [MR82a, MR83℄.

For ele
trons the e�e
ts of radiation must be in
luded. It is 
ustomary to represent the sto
hasti


part of the radiation as a Gaussian white noise pro
ess. The full linearized equations of motion for

x; x

0

; z; z

0

and Æ are given in [MR82a, MR83℄. For example, the linearized equation of motion for Æ

in a horizontal dipole on the design orbit is

dÆ

ds

= �2C

1

K

2

x

Æ + ÆR (A.10)

where the (
ombined) symbol

3

ÆR represents the noise and has the properties

h Æ

~

R i = 0

h Æ

~

R(s) Æ

~

R(s

0

) i =

55r

e

�h


5

24

p

3m


jK

x

j

3

Æ(s� s

0

) (A.11)

The term �2C

1

K

2

x

Æ with C

1

=

2

3

r

e




3

represents the damping. The strengths of the noise and damping

terms 
an be derived from the radiation rea
tion for
e

~

R

rad

given above [Bb91℄. The equations of

motion for the transverse 
oordinates also 
ontain damping terms [MR83, EMR99℄. But the transverse

beam size remains �nite owing to feedthrough of the noise from the longitudinal 
oordinate to the

transverse 
oordinates via the dispersion.

A.2 Spin motion

The motion of

b

S, the normalized 
entre{of{mass spin expe
tation value of a relativisti
 
harged

non{radiating parti
le, in external ele
tri
 and magneti
 �elds is given by the Thomas{BMT equa-

tion [Th27, BMT59℄

d

b

S

dt

=

~




BMT

(~r;

_

~r; t)�

b

S (A.12)

2

In the 
ited paper by Mais and Ripken the orbital equations of motion have been derived in the linear approximation,

i.e. by linearization of the equations with respe
t to the small quantities x; x

0

; z; z

0

and Æ.

3

The multiple use of the symbol Æ should not lead to 
onfusion here.
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In the above equation the �elds and the derivative of the position ve
tor,

_

~r are given in the laboratory

frame. The a = (g � 2)=2 is the gyromagneti
 anomaly and 
 is the Lorentz fa
tor. By 
hanging the

independent variable from time t to ar
 length s a

ording to relation (A.4) and using the de�nitions

in (A.5), the T{BMT equation 
an be written as

d

b
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ds
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b
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= S
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ê
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The last term, (K

z

ê

x

�K

x

ê

z

) �

b

S, appears be
ause of the 
hange of orientation of the 
oordinate

system. It is the 
ontribution to the spin motion from the rotation of the ideal parti
le 
o{moving


oordinate frame. We will represent this here by

~




r

�

b

S. Rearranging and introdu
ing

~
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r

,
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BMT

des
ribes the spin motion with respe
t to s in the laboratory

frame, we get
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(~u; s)�
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ê
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The individual 
omponents of the

~


 rotation ve
tor, in the 
ase of no ele
tri
 �eld (

~

E = 0), and with


 = 


0

(1 + Æ) now read [MR82b℄
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where x, x

0

, z, z

0

and Æ are solutions of the orbital equations of motion.

4

Again, in the original derivation of Mais and Ripken the equations have been derived in the linear approximation of

small orbital 
oordinates x; x

0

; z; z

0

and small energy o�set Æ. For a nonlinear treatment by the same authors, see

for instan
e [BM86℄.
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Appendix B

Chara
teristi
 times of pro
esses

>~ pτdτ 10

τs ~ 10 τrev

τrev~ 2πρ/c

γc/ρ

<~

/ρ α γcINTERVAL BETWEEN QUANTA:

τrev / γa

τrad reγ3~ /ρ3 2 2 c

τp reγ5~ /3 c cλ−ρ

ντ /rev}=
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ORBIT HARMONICS:

BETATRON OSCILL:

DURATION OF QUANTUM EMISSION:
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SYNCHROTRON OSCILL:
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Figure B.1: Chara
teristi
 time s
ales in a typi
al 25 GeV ele
tron storage ring [Mo84℄. Legend: � =

bending radius, �

�




= Compton wavelength, r

e

= 
lassi
al ele
tron radius, �

�

= betatron tune, � =

�ne stru
ture 
onstant, a = gyromagneti
 anomaly. Although it is desirable that �

d

� 10 �

p

, this is

diÆ
ult to a
hieve in pra
ti
e.
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Appendix C

Updates of the SITROS 
ode

SITA SITD

SITB SITC

SITE

SITF

     
Linear Polarization

Calculation

Matrix Setup Postprocessing

Tracking

Initialization

Orbit

Tracking

Orbit & Spin

Tracking

Figure C.1: Flow diagram of the SITROS 
ode.

Listed below are the updates introdu
ed and errors 
orre
ted in SITF and SITROS:

SITF:

� Resolved the 
onfusion in the program 
on
erning the use of damped and undamped eigenve
tors

(the DODAMP = T or F option). The eigenve
tor needed in the 
al
ulations of the linear

approximation of n̂, eqn. (3.64), and the partial derivative with respe
t to Æ, eqn. (3.66), are the

undamped eigenve
tors, whereas for the damping time 
al
ulations, obviously the damping has

to be swit
hed on. Note also that the 
losed orbit is 
al
ulated with the damping on.

� The verti
al bends' 
ontribution to

1

j�(s)j

3

in the emittan
e 
al
ulation were omitted, but has

now been added.

� The ar
 dipoles should in prin
iple be sli
ed up to get a suÆ
ient sampling for the opti
al


al
ulations. In the 
urrent version this option is omitted, sin
e it 
auses trouble in the routine

preparing for the tra
king (SITA) where the linear 
al
ulations from SITF are repeated. In

other words, this is a known artifa
t that should be addressed at some point. Without the extra

sli
ing the emittan
e in SITF is o� from the analyti
al value by a few per
ent.

� The erroneous 
al
ulation of the polarization time for the 
ase with the rotators turned on has

been 
orre
ted.
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� The G matrix for the solenoid was not 
orre
tly implemented, but this has now been 
orre
ted.

In fa
t, the whole implementation of the solenoids into the 
ode was suspe
t, but it should be

noted that up to now solenoids were generally not used with the program for HERA, sin
e they

were 
onsidered to be perfe
tly 
ompensated by the \anti{solenoids".

SITROS:

� An erroneous de�nition of the rms beamsize in the emittan
e 
al
ulation has been 
orre
ted.

� The number of radiation points has been enlarged so that the radiation now takes pla
e in every

dipole and 
ombined fun
tion magnet. This was ne
essary in order to reprodu
e the 
orre
t

emittan
e in the luminosity upgrade opti
.

� The representation of the spin 
omponents in the tra
king has been 
hanged from the ve
tor{

angle representation to a pure quarternion representation. Before that, a mixture of representa-

tions was used.

� The solenoid end �elds were missing in the spin representation for the tra
king | they have

now been 
orre
tly introdu
ed.

� Corre
tions in the beam{beam implementation have been made where the most important up-

date is the introdu
tion of the missing dire
t beam{beam spin ki
k.
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Appendix D

Symple
ti�
ation of maps via

generating fun
tions

The four most 
ommon generating fun
tions of 
lassi
al me
hani
s relate the generalized positions ~q

and 
onjugate momenta ~p before (i) and after (f) a 
anoni
al transformation via

(~q
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; ~q

f

) =

�

�
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;��
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(~p
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) (D.1)
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�

F

4

(~q

i

; ~q

f

) (D.4)

If, by integration, any of these generating fun
tions 
an be found, it will by de�nition represent

a symple
ti
 transformation. This property of the generating fun
tions 
an be used to 
onstru
t

transformations that restore the symple
ti
ity of nearly symple
ti
 matri
es [Ho94℄.

Consider a nearly symple
ti
 linear map M

6�6

that transports the ve
tor ~u = (x; p

x

; z; p

z

; `; Æ)

1

from azimuth s

i

to s

f

so that ~u

s

f

= M

6�6

~u

s

i

. Rearrange the phase spa
e ve
tor su
h that the

positions and momenta are sorted as follows: (~q; ~p) = (x; z; `; p

x

; p

z

; Æ) and write the matrix M in

terms of four submatri
es

M =

 

A B

C D

!

=)

 

~q

f

~p

f

!

=

 

A B

C D

! 

~q

i

~p

i

!

(D.5)

Suppose that we 
hoose F

2

as our 
andidate for the transformation. With the aid of eqs. (D.2)

and (D.5) and after some simple algebrai
 manipulations we arrive at a partial di�erential equation

problem for the 
oordinates in terms of the matrix elements

 

~q

i

~p

f

!

=

 

I 0

C D

! 

A B

0 I

!

�1

 

~q

f

~p

i

!

1

Note the use of the true 
anoni
al 
oordinates here.
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By introdu
ing the notation
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a b
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(D.8)

and integrating eqn. (D.7) to obtain F

2

| provided that A

�1

exists | it 
an be shown that one

possible solution to the matrix equation de�ned in (D.5) is given by
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(D.9)

where by virtue of the 
anoni
al transformation introdu
ed via F

2

in the intermediate step, the matrix

f

M is symple
ti
. Hen
e we have \symple
ti�ed" M.
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