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Abstract

The strong C P problem is one of many puzzles in the theoretical description of ele-

mentary particle physics that still lacks an explanation. While top-down solutions to that

problem usually comprise new symmetries or fields or both, we want to present a rather

bottom-up perspective. The main problem seems to be how to achieve small C P violation

in the strong interactions despite large C P violation in weak interactions. Observation

of C P violation is exclusively through the Higgs–Yukawa interactions. In this paper, we

show that with minimal assumptions on the structure of mass (Yukawa) matrices they

do not contribute to the strong C P problem and thus we can provide a pathway to a

solution of the strong C P problem within the structures of the Standard Model and no

extension at the electroweak scale is needed. However, to address the flavor puzzle,

models based on minimal SU(3) flavor groups leading to the proposed flavor matrices

are favored. Though we refrain from an explicit a UV completion of the Standard Model,

we provide a simple requirement those models should have to intrinsically not show a

strong C P problem.
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1 Introduction

The Standard Model (SM) is known to be an incomplete model full of unresolved problems.

Among the issues of the SM that still wait to be solved, the strong C P problem appears to be

a very central one as it resides in the interplay of non-perturbative effects in Quantum Chro-

modynamics (QCD) and C P violation (CPV) in weak interactions. Curiously, the majority of

present day solutions to many of the problems in high energy physics obey the tendency of

going beyond the SM introducing new physics at a higher scale; the strong C P problem seems

to follow this tendency. However, here we take a different philosophy and carefully scruti-

nize the available structures of the SM, offering an alternative approach of the problem. Our

point of view might be defined as pragmatic, rather bottom-up, as we only study the mass

matrices along with the bi-unitary transformations diagonalizing them. Starting from the SM

flavor structures, we are going to present guidelines for model builders to fell the strong C P

problem. Before moving to the details of our treatment let us first briefly summarize what

the strong C P problem is. For a comprehensive review of this problem, see for instance [1].

The θQCD parameter of QCD parametrizes the non-equivalence of possible QCD vacua as

for non-abelian gauge fields there can be non-vanishing winding numbers defined as

n =
g2

32π2

∫

d4 x F a
µν

F̃ aµν, (1)

leading therefore to an effective action

Seff =

∫

d4 xL+ inθQCD. (2)

The axial anomaly introduces via

∂ µ j5
µ
=

g2

16π2
F a
µν

F̃ aµν, (3)

effectively a change in Seff by rotations of the quark fields with exp(−iγ5

θq

2
) that shifts the

gauge field θQCD parameter as

θQCD→ θ̄ = θQCD + θq. (4)

The same transformation affects quark mass terms as mq̄LqR→ e−iθq mq̄LqR and may con-

versely be used to trace C P violating effects stemming from the masses. Due to this property,

we may identify the physical remaining phase after such rephasing with the axial phase trans-
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formation and be left with the well-known combination θ̄ = θQCD + θQFD, where the quark

flavor dynamical contribution is given by

θQFD = argdet
�

Mu

�

+ argdet
�

Md

�

= arg det
�

MuMd

�

. (5)

The parameter θ̄ violates C P and induces an electric dipole moment for the neutron, so

bounds are roughly θ̄ < 10−10 [2]. Such a huge cancellation between those two contributions

in Eq. (4) is to be seen as a fine-tuning problem as they are conceptually independent. The

strong C P problem now manifests itself in the question why θ̄ is so small although CPV in

weak interactions has been found to be rather large (large, of course, compared to θ̄ , not

on absolute grounds). Even though both contributions, the pure gauge θQCD and the quark

flavored θQFD, cannot be treated separately because a chiral phase shift in the quarks always

reintroduces a genuine θQFD-term according to Eq. (3), we want to disaggregate especially

the θQFD-term on a flavor physics groundwork. The viability of the approach is reflected in

the fact that one can always find a basis, in which either θQCD or θQFD vanishes [3].

Popular solutions to this problem are besides the possibility of having one massless quark

(typically the u-quark but the same holds for a massless d-quark), the introduction of at least

one new symmetry (like an axial U(1) or Peccei–Quinn [4] symmetry) that gets spontaneously

(or softly [5,6]) broken and comprises a light pseudo Nambu–Goldstone boson, the axion [7,

8].1 A third way to compass the problem is via mechanisms worked out by Nelson [13] and

Barr [14, 15], for a recent review see [16]. The main requirement for this mechanism is a

vanishing argdet
�

Mq

�

and a way to spontaneously break C P in the context of Grand Unified

Theories, alternatively spontaneously [17] or softly broken parity [18] (or a combination of

all of them [19, 20]). This proposal is noteworthy in the sense that it provides a solution

to the strong C P problem with no low energy consequence; unlike the axion and mu =

0 solutions [16]. It was also shown in a certain kind of toy model that explicit soft C P-

violation in the Higgs potential with two complex scalars leads spontaneously to an explicit

C P-violating effect in the quarks mass matrices and still keeps det (MuMd) real at the tree-

level [21]. In this spirit, the study of the SM structure as an effective theory is sufficient to

circumvent the original problem as one is left with the open question about the origin of the

Yukawa interactions. Another approach with spontaneous CPV is the one involving discrete

flavor symmetries [22]. For last, generalized P-invariance in left-right symmetric theories

1Axions and axion-like particles (ALPs) have a very rich phenomenology, summarized e. g. in [9], with an

ongoing experimental effort to detect them (as the ALPS experiment at DESY [10,11] and future facilities like

ALPS-II or SHiP at CERN [12]).
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can also provide valuable methods on computing approximately θ̄ through the corresponding

right-handed quark mixing matrix [23–25], while supersymmetry helps to protect θ̄ = 0 [26,

27].

Interpreting θQCD as a Lagrangian parameter, it is the only parity violating term in the

QCD Lagrangian (and because charge conjugation is conserved, the θQCD-term explicitly vio-

lates C P). In the bottom-up approach, we take a vanishing θQCD for granted and unlike the

Nelson–Barr approach stay at first ignorant about possible symmetries and physics at higher

energy scales. Whether or not some variant of P or C P has to be employed as symmetry

of nature depends on the specific realization. Instead, we pursue the option that CPV shall

only arise from the Yukawa interactions alone, not even from the Higgs vacuum expectation

values that multiply the Yukawa couplings. We do not require necessarily spontaneous CPV

but allow in principle for explicit breaking in the (effective) Yukawa couplings. Imposing

global C P-invariance of the QCD gauge interactions (though parity is enough) suffices for

our main argument. We treat the Yukawa Lagrangian as an effective Lagrangian hiding the

UV completion in the dimensionless Yukawa matrices. In that way, we obtain θQCD = 0 and

hence reduce the problem to understand why arg det
�

MuMd

�

is such a small number (or

why it should exactly vanish).

In the course of this paper, we accordingly suppose θQCD = 0 and show how arg det
�

Mq

�

vanishes by imposing a minimal constraint on certain flavor phases and still providing suf-

ficiently large weak CPV.2 We shall argue that the physical CPV in the weak interactions is

unrelated to any other phases appearing in argdet
�

Mq

�

and may only give a small finite con-

tribution at higher orders as θQCD = 0 at tree-level [28]. In the following, we give an explicit

example of symmetry structures of mass matrices based on special unitary transformations

that have the desired property and start by finding the minimal assumptions for the mass

matrices to fulfill that. These assumptions easily find their way in any extension of the SM

that generate Yukawa couplings dynamically, either by spontaneous breaking of the under-

lying flavor symmetry or by the moduli fields of string theory [29]. The generalization to an

arbitrary number of quark families illustrates the universal validity of our idea.

Wrapping up our philosophy in order to clarify the new approach, we want to point out

that a deliberate solution to the strong C P problem does not require a distinct statement

about fundamental CPV. First of all, C P-invariance of the gauge interactions is sufficient,

2We call flavor phases the ones that appear both in the Yukawa matrices in a certain weak basis and remain,

after moving to the mass basis, in the Jarlskog invariant. Of course, within the minimal SM only one physical

will remain (that would be a linear combination of all the initial ones). But more physical phases could remain

in extensions of the SM such as those including a fourth family and N extra Higgs doublets.
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as we will show, to circumvent one aspect of the strong C P problem. Second, C P may be

violated explicitly (or spontaneously) in the Yukawa interactions of SM fermions to the Higgs

scalar as these interactions are the less understood in the context of the SM and do not

necessarily have to respect C P. Third, we shall identify types of fermion mass matrices that

automatically cancel out the undesired contribution to the θ̄ -parameter and thus solve the

strong C P problem without the need of additional degrees of freedom in the theory as new

fields assisting in this process. Finally, we stay open towards the remaining solution of the

flavor puzzle in the SM, namely the question why there are three families of fermions and why

they behave and mix as they do. However, we give an explicit realization of a parametrization

(not yet a model) that helps to explain the mixing angles fully in terms of mass ratios and

additionally provides the weak C P-phase of the SM in the same form.

This paper is organized as follows. In Section 2, we disentangle the origins of strong and

weak CPV despite the fact that both of them can be expressed in terms of the same quark mass

matrices. In Section 3, we write the Kobayashi–Maskawa phase in terms of quark mass ratios

as it follows from [30], which is seen to be independent from the previous considerations. In

Section 4, we study general consequences of the conditions provided in this work and how

they are related to concrete models. Finally, we conclude in Section 5.

2 Disentangling weak and strong CPV

A complete knowledge of the quark mass matrices, Mu and Md, tackles down the flavor puz-

zle in the SM and finally evades the strong C P problem (since the quark flavor contribution

to θ̄ can be absorbed in the masses and θQCD = 0). Strong and weak CPV, θQFD and the

rephasing invariant Jq, respectively, are of different origins on one hand. And on the other

hand sufficiently large CPV in the weak sector3 therefore does not necessarily imply strong

CPV despite the fact that both reside in the same mass matrices

• weak CPV: the Jarlskog invariant

Jq ∼ Im
�

det([MuM
†
u
, MdM

†

d
])
�

, see [33],

• strong CPV: the θQFD-term from above

θQFD ≡ argdet
�

MuMd

�

.

3The expression “large” does not have to be correlated to a numerically large value of the only CP-violating

phase in weak interactions, since, depending on the chosen parametrization, this phase can be rather small

though the overall CP-violation appears to be actually large (see [31,32]). The rephasing invariant Jq does not

depend on the particular parametrization and serves as a better measure of comparison.
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It is not only the functional dependence on the mass matrices (and thus relevant phases) that

is apparently different for weak and strong CPV but rather their individual transformation

properties of parity and charge conjugation [31]. While both objects are C P-odd, θQCD trans-

forms even under C and odd under P whereas Jq behaves the other way round, see [34].

For “complete knowledge” of mass matrices, it is adequate to set up each matrix in terms of

known parameters, even though a full theory of flavor is still lacking. By the freedom of re-

lying on an effective description of the mass matrices, we encompass the strong C P problem

by an ansatz to understand the flavor puzzle.

In the following, we will assume that all quark masses are different from zero, as sug-

gested by lattice calculations [35]. Our minimal requirement for the mass matrices follows

very obviously from the usual Singular Value Decomposition4

Mq = L
†
q
ΣqRq, (6)

with Lq and Rq unitary transformations and Σq = diag(mq1
, mq2

, mq3
) a positive diagonal

matrix, mqi
> 0. Consequently, we find

argdet
�

MuMd

�

= arg det
�

L
†
u
ΣuRuL

†

d
ΣdRd

�

= arg
�

det L
†
u

detRu det L
†

d
detRd

�

,
(7)

after using the well-known property of the determinant, det(AB) = det A det B, with the

args of the diagonal matrices vanishing (as they are real and positive). The decomposition of

Eq. (6) is completely arbitrary in the sense that different choices of Lq and Rq lead to different

flavor representations of the mass matrices and additionally the particular choice of Lu = Ld

leaves the weak interaction basis invariant. In case, one desires to build mass matrices Mq on

a certain family of flavor symmetries, this fixes the allowed classes of transformations Lq and

Rq. We give constraints on these transformations that can be easily verified in any proposal

of a flavor model to be inherently free of a strong C P problem.

In the limit of vanishing mass matrices, the SM Lagrangian (the kinetic terms) obeys for n

generations a U(n) symmetry for each gauge multiplet (i. e. left-handed quark doublets and

the up- and down-type right-handed singlets; in total U(n)3). The maximal freedom to rotate

4A similar conclusion can be drawn by virtue of the Polar Decomposition, Mq = HqUq [31, 34], with Hq a

Hermitian and Uq a unitary matrix (note that Uq 6= Rq in the Singular Value Decomposition).
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Table 1: Complex phases contributing to either the strong or weak CPV phase with an arbitrary number

of fermion families. Notice how always the same linear combination of phases appears in the strong

C P case. Through this table it becomes very apparent that the origin of strong CPV is completely

independent from the one generating quark mixing or weak CPV.

Number of fermion families θQFD δweak
C P

1 α
(u)

R −α
(u)

L +α
(d)

R −α
(d)

L 0

2 α
(u)

R −α
(u)

L +α
(d)

R −α
(d)

L 0

3 α
(u)

R −α
(u)

L +α
(d)

R −α
(d)

L δCKM
C P

4 α
(u)

R −α
(u)

L +α
(d)

R −α
(d)

L δCKM
C P

,ωC P,ω′
C P

n α
(u)

R −α
(u)

L +α
(d)

R −α
(d)

L δCKM
C P

, ωk
C P

(k = 1, 2, · · · , n(n−3)

2
)

these fields is parametrized hence by U(n) transformations U with detU = eiφ , such that

arg det
�

MuMd

�

= α
(u)

R −α
(u)

L +α
(d)

R −α
(d)

L , (8)

where argdet
�

K q

�

= α
(q)

K and K either L or R. Let us remark that this result is independent

of n and applies in the same way for any number of fermion families, see Table 1.

We emphasize that strong and weak CPV, θQFD and Jq, are of different origin and thus can

be treated independently. If the left and right unitary rotations Lq and Rq, respectively, were

either special unitary rotations or the same (as for Hermitian mass matrices), Eq. (8) would

vanish trivially and still allow for a non-vanishing Jarlskog invariant. [Recall that unitary

transformations are equal to special unitary transformations times a global phase, U(n) =

SU(n)⊗ U(1)/Zn [36].] Hence, the global phases give rise to strong CPV and consequently

θQFD is sensitive to these global phases only and insensitive to the complex structure of the

underlying SU(3) transformations responsible for flavor mixing phenomena. Weak CPV on

the other hand has exactly the opposite relation: it is sensitive to the complex nature of

the special bi-unitary transformations (which give rise to flavor mixing in weak interactions)

and insensitive to global phases (a property exactly expressed by Jarlskog invariant which is

known to be rephasing invariant). Even in the absence of a global phase that violates C P

strongly, we can have sufficiently large weak CPV: the existence or non-existence of strong

CPV is completely unrelated to the existence or non-existence of weak CPV as can be seen

from the two family case which has no weak CPV while showing, in principle, strong CPV.

Conversely, comparison of the expressions of Jq and θQFD as listed above already shows that

the phase difference of Mu and Md responsible for θQFD 6= 0 drops out in the expression of

Jq. Note that the existence of these global U(1)-phases and the invariance of the SM field
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Table 2: Different cases for which there is no contribution in the strong CP phase, θ̄ , stemming from

the global phases, θQFD.

Case α
(u)

L α
(d)

L α
(u)

R α
(d)

R Condition on the Yukawa couplings Weak CPV

Ia 0 0 0 0 C P-invariance No

Ib 0 0 0 0 G ⊆ SU(3)-invariance Yes

II αu αd αu αd P-invariance Yes

III αL −αL αR −αR Unknown Yes

IV α β β α Unknown Yes

V αL αL x 2αL − x SU(2)L gauge ?

content under a particular combination of such rephasings is just the conservation of baryon

number, which, however, is accidental.

We have shown that the strong CPV parameter (θQFD) can be treated independently from

the weak one, which already on its own is quite distinct from other approaches. However,

to identify how the above conditions feed into a viable UV complete model one needs to go

farther. In this regard, it helps to recognize certain benchmark scenarios that have θQFD =

α
(u)

R − α
(u)

L + α
(d)

R − α
(d)

L = 0. The different ways to achieve this goal are sketched in Table 2,

note that in principle one should be able to smoothly interpolate between those scenarios.

These conditions should be seen as applied to a more fundamental theory where θQCD = 0

and which when taken to lower energies one delivers the SM. In this sense, the Yukawa part

of the SM Lagrangian could be treated as an effective Lagrangian. Case Ia considers a CP-

invariant Lagrangian where there are no phases; in order to get weak CPV one must either

spontaneously or explicitly break it. Case Ib refers to a flavor theory employing an SU(3)

symmetry group or subgroup. Case II embraces those Left-Right (LR) symmetric theories

where parity is conserved. Cases III and IV, are other examples with no explicit model present

in which the sum of global phases could be canceled.

Therefore, within this context, the vanishing argdet
�

MuMd

�

is automatic, contrary to

the common folklore. Instead, certain conditions, that are summarized in Table 2, could

be taken as forced by symmetry reasons. Our approach to solve the strong C P problem

reduces essentially to explain why α
(q)

L = α
(q)

R (similar to Case II in Table 2 without explicit P-

invariance) while, simultaneously, explain the observed amount of weak CPV, δCKM
C P
= (1.19±

0.15) rad, see [37].

Before we move to an explicit realization of our findings, let us briefly summarize what we

have so far: even if all quarks are massive, we have no strong C P problem without imposing

any new symmetries. The requirement arg det
�

MuMd

�

= 0 can be achieved by all of the

7



benchmark cases of Table 2 and any interpolation between them. For example, Case I or II,

ensures α
(q)

L and α
(q)

R for q = u, d to be zero or equal, respectively; the minimal way for the

former scenario would be to propose either C P-invariance or SU(3) transformations for the

diagonalization of the mass matrices which conversely means that any flavor model based on

SU(3) transformations gives a solution to the strong C P problem [38,39]. Finally, we can still

have (arbitrarily large) CPV in weak interactions as this is unrelated to strong CPV. The main

task is somewhat to reduce the arbitrariness in complex phases that are generally allowed for

the mass matrices and give a restrictive prescription for weak CPV. It is comparably simple

to define generic C P-violating textures of mass matrices that have no strong C P-phase and

still allow for a CKM-phase according to a mismatch between phases in up and down type

mass matrices [40]. Our approach, however, is still even more generic as we do not rely

on a certain flavor basis in which the phases are apparent and stay rather basis and model

independent.

3 A suggestive way of calculating weak CPV

In the previous section, we have stated that the SU(3) symmetry transformations in fam-

ily space, acting in the left and right handed fields of up-quark and down-quark types, are

enough to deliver any amount of weak CPV independently of having previously eliminated

the combination of U(1) global phases which give rise to the strong C P phase, θQFD. Now,

we want to outline in a recently proposed mixing parametrization [30], how to represent the

weak CP phase. This parametrization relates the entries of the Cabibbo–Kobayashi–Maskawa

(CKM) matrix to functions of the quark mass ratios and thus the remaining CP phase can be

written as function of those.

A very famous expression of a mixing angle as a function of a mass ratio was provided

by the well-known Gatto–Sartori–Tonin (GST) relation, tanθC ≈
p

md/ms, for the Cabibbo

angle θC [41]. Based on this finding, a parametrization of the fermion mixing matrices was

proposed that only uses the mass ratios as input [30]. Besides the phenomenological ob-

servation mi ≪ m j for i < j with masses of the i-th and j-th generation, a crucial assump-

tion behind this parametrization is that the Euler rotations can be individually expressed by

tanθi j =
Æ

mi/m j . Likewise, symmetrical structures in the mass matrices have been detected

that lead to exactly this kind of mixing matrices [42]. In that view, the final quark mixing

matrix can be decomposed into a chain of successive two-family rotations where each planar

8



SU(2) rotation can then be written as

U
′
i j
(µi j,δi j) =





1p
1+µi j

r

µi j

1+µi j
e−iδi j

−
r

µi j

1+µi j
eiδi j 1p

1+µi j



 , (9)

with µi j = mi/m j and an a priori arbitrary complex phase δi j ∈ [0, 2π). We identify sinθi j =
r

µi j

1+µi j
and cosθi j =

1p
1+µi j

. For example, the full SU(3) transformation for the the 2-3

sub-sector is then given by

U
′
23

�

m2

m3

,δ23

�

=









1 0 0

0 1p
1+m2/m3

Ç

m2/m3

1+m2/m3
e−iδ23

0 −
Ç

m2/m3

1+m2/m3
eiδ23 1p

1+m2/m3









. (10)

Now, defining the CKM-matrix as

VCKM ≡ LuL
†

d
, (11)

with the U(3) transformations Lu,d defined via Eq. (6), we have in the formulation of [30] four

mass ratios entering the game and six phases from which three can be removed by choosing

the up-type mass matrix real.5 From the remaining three, only one maximally C P-violating

phase sitting in the 1-2 rotation is needed to fully reproduce the CKM-phase, details may

be found in [30]. It was also pointed out in Ref. [43] that the same follows for certain 1-3

texture zero mass matrices. The approach of [30] is however more general as it does not rely

on specific texture zeros but merely on symmetrical structures à la Ref. [42].

Using this mass ratios parametrization, we similarly compute the Kobayashi–Maskawa

C P-phase in terms of mass ratios. In the standard parametrization, the most recent global

fit obtains for it δCKM
CP
= (1.19± 0.15) rad [37]. In the following, we want to estimate the

corresponding theoretical value. After imposing individual rotations of the type (9), we can

finally build up a quark mixing matrix that has non-vanishing CPV.

The procedure introduced in Ref. [30] gives a mixing matrix which cannot be directly

compared to the conventional parametrization. In order to do that, we first need to rephase

5This rephasing should not introduce a new strong CP-phase as we only shuffle complex entries from Mu

to Md. Moreover, any global phase does not play a role for weak CP-violation as the relevant objects are the

left-Hermitian products Mu,dM
†

u,d
.

9



both the up and down type quark fields

ṼCKM = χuVCKMχ
†

d
, (12)

in such a way that we are able to produce the following structure

ṼCKM ∼







Re Re C

C C Re

C C Re





 , (13)

where χq = diag(eiφq , 1, 1) and Re and C mean real and complex entries. After rephasing, we

get the following expression for the Kobayashi–Maskawa C P-phase

δ
q

CP ≈ arctan





√

√

√µds(1+µds)

µuc(1+µuc)



≈ (1.38± 0.10) rad, (14)

which after insertion of the values of the quark mass ratios, µds = md/ms = 0.051±0.001 and

µuc = mu/mc = 0.0021± 0.0001, we find it to be in agreement to the experimental value,

δCKM
CP
= (1.19 ± 0.15).6 Notice how when the decoupling limit, mb,t → ∞, is considered

the C P-phase does not go to zero as one would expect it in other parametrizations [32].

Nevertheless, there is no inconsistency in this result as simultaneously the magnitudes of the

mixing matrix elements vanish,
�

�V
CKM
13

�

�→ 0 and
�

�V
CKM
23

�

�→ 0 as mt,b →∞. Conversely, the

C P phase gets closer to its maximum value π
2

when the ratio between the up and the charm

quark gets more suppressed, mu/mc → 0.

Hence, we have shown that within the SM without adding new degrees of freedom the

amount of weak CPV can be calculated by means of the quark mass ratios if one allows for a

relation among CKM angles and mass ratios.

What about higher order corrections? The impact of the weak C P phase in the CKM

model on the strong C P phase was first and extensively studied in Ref. [28]where the generic

contribution was shown to be small. However, at very high (i. e. 14th) order in perturbation

theory there is an “infinite” contribution which actually turns out to be rather tiny when the

original θQCD parameter is renormalized to zero at around the Planck scale. Even with some

“New Physics” contribution (of heavy quarks above the electroweak scale—remembering that

6The quark masses have been treated as running MS masses evaluated at the weak scale (Q2 = M2
Z
), numbers

are taken from App. A in Ref. [30].
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at the time this reference originates the mass of the top quark was expected to be well below

its today’s value) there is no huge effect. Proper New Physics contributions, however, strongly

depend on the implementation of New Physics and shall be rather tuned to avoid a strong

effect on θQCD anyway. Spurious contributions at low energies are not to be expected once

the Standard CKM model has been generated in a top-down approach.

4 Towards a UV completion

After having paved the path towards a UV complete theory of flavor without strong C P prob-

lem, we explore the possible consequences of the conditions above to see where the path may

end. Through this reasoning, the functional dependence of the Kobayashi–Maskawa phase

on the quark mass ratios in a parametrization suggested by some of the authors [30] helps

to describe the phenomenological properties of the true flavor dynamics realized in nature.

In this regard, we start with certain flavor matrix structures [42], which have successfully

described fermion mixing [30], and study their connection to the strong C P problem.

We explicitly refrain from providing a UV complete model extending the field content of

the SM in order not to spoil the generality of our results. What follows shall be rather seen as

matching conditions of any theory of flavor generating mass or Yukawa matrices for the low

energy effective theory where all relevant heavy degrees of freedom are integrated out. We

leave it to either the interested reader to construct such a model which give such conditions

or to future works of the authors. As the framework itself leading the results in [30, 42], is

directly related to the decomposition of 3×3 matrices into 2×2 submatrices, we show some

relations in the two-family case only, not losing by this any generality in our treatment.

It is outside the scope of this work to provide the full details of the two mentioned pub-

lications [30, 42]. Nonetheless, here we briefly comment the essential ideas behind them

which might be incorporated in any UV complete model wishing to serve as a theory of fla-

vor. The first work delivers a new mixing parametrization which applies to both quarks and

leptons [30]. A systematical procedure was built through the phenomenological observation

of hierarchical fermion masses, m2
3
≫ m2

2
≫ m2

1
, along with a lower rank approximation

theorem known as Schimdt–Mirsky. In a similar fashion as the Wolfenstein parametrization,

where the four mixing parameters are real but still the parametrization is complex, the four

independent mass ratios of either the quark or lepton sector are used as mixing parameters,

V f = V f

�

ma
1

ma
2

,
ma

2

ma
3

,
mb

1

mb
2

,
mb

2

mb
3

�

, (15)
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where f = q,ℓ is the CKM or PMNS mixing matrix, respectively, and a = u,ν and b = d, e.

This procedure exploits the mathematical properties of matrices under the fact of hierarchi-

cal singular values. There is no lost of generality in any of the involved approximations as

cautious steps are made. Two main issues, however, are left: what symmetry or principle

dictates that Yukawa matrices should arise with the following structure,

M ∼







×





+





 ×
×





+







× ×
×
×





? (16)

and what is producing among them a hierarchy?

The second work [42] precisely offers an answer to the first question. The mass ma-

trix which gets diagonalized by a transformation of the type (9) can be found very easily

in the two family case and can be generalized to n > 2 generations according to [42]. In

Ref. [42], mass matrices are constructed in such a way to allow the sequential diagonal-

ization of [30] without preference to any of the families. The basic assumption behind

this approach is that Higgs–Yukawa interactions (or conversely mass matrices if one does

not specify the mass generating mechanism directly) are symmetric under permutations of

the fermion fields. This permutation symmetry is then supposed to be broken stepwise as

S3L ⊗ S3R → S2L ⊗ S2R → S2A ⊕ S2S , where the last step proceeds to a sum of anti-symmetric

and symmetric permutation matrices of two objects. This proposal can be fulfilled employing

textures like the one appearing in Eq. (16) which allow to study the corresponding mixing

by three different rotations in a two-family space each.

We exemplarily study the two-family case where the mass matrix originated in the se-

quential breakdown of permutation symmetries [42] is given in a preferred basis7 as

M =

�

0
p

m1m2e−iδm

−pm1m2eiδm m2 −m1

�

. (17)

Now, we want to map this structure resulting in a GST relation to the most general case of

a 2×2 mass matrix. The GST relation gives Eq. (9) as the corresponding unitary transforma-

tion. A general U(2)matrix has two more parameters that can be expressed as an additional

7The preferred basis corresponds to the mass basis for m1→ 0.

12



phase on the diagonal and an overall phase factor,

U = eiφ/2

�

cosθ eiη sinθ e−iδ

− sinθ eiδ cosθ e−iη

�

, (18)

such that detU = eiφ . According to Eq. (18), the relevant left rotation of a generic mass

matrix should also have the form

L = eiαL/2

�

cosθLeiβL sinθLe−iδL

− sinθLeiδL cosθLe−iβL

�

. (19)

The same expression follows for the right transformation R with L↔ R in Eq. (19) and the

individual entries of the mass matrices can be expressed via

M = ei
αR−αL

2

�

cosθLe−iβL − sinθLe−iδL

sinθLeiδL cosθLeiβL

��

m1 0

0 m2

��

cosθReiβR sinθRe−iδR

− sinθReiδR cosθRe−iβR

�

, (20)

and thus

M11 = ei
αR−αL

2

�

e−i(βL−βR)m1 cosθL cosθR + e−i(δL−δR)m2 sinθL sinθR

�

,

M12 = ei
αR−αL

2

�

e−i(βL+δR)m1 cosθL sinθR − e−i(βR+δL)m2 cosθR sinθL

�

,

M21 = ei
αR−αL

2

�

ei(βR+δL)m1 cosθR sinθL − ei(βL+δR)m2 cosθL sinθR

�

,

M22 = ei
αR−αL

2

�

ei(βL−βR)m2 cosθL cosθR + ei(δL−δR)m1 sinθL sinθR

�

.

(21)

Matching this set of equations to the matrix form of Eq. (17) reduces the freedom of the U(2)

rotations as the structure is dictated by the simple symmetry patterns. We find the conditions

αL = αR, βL − βR = δL − δR = 0, θR = −θL. (22)

Identifying the impact of those relations is rather trivial in comparison with Eq. (17), as the

mass matrix there clearly exhibits no global phase (and thus αL = αR), and the off-diagonal

phase is given by δm = δL(R) + βL(R), as combination of the two relevant phases in the SU(2)

rotation. Notice that, although Eq. (17) is not left-right symmetric (the mass matrix is anti-

Hermitian), one gets roughly the same conditions on the left and right rotation matrices. The

last relation, θL = −θR follows after commuting the phase matrices through and absorbing

phases in a redefinition of the fermion fields. This redefinition does not fully apply to the

three-family case and thus there is a remaining C P-violating phase in the mixing.
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The constraints of Eqs. (22) provide very valuable information especially on the right-

handed rotations coded in R resulting in the clear prediction that the individual mixing an-

gles of the right-handed sector have exactly the same magnitude as the known left-handed

(i. e. CKM) ones. The future detection of right-handed currents may be a razor to finally rule

out the proposed description. Note, that we do not predict right-handed currents at all. If,

however, a right-handed counterpart to the electroweak gauge group exists, the correspond-

ing CKM matrix cannot be arbitrary in that description.

Fulfillment of conditions similar to (22) is very natural in left-right symmetry models. It

is well-known that such parity-invariant models offer a solution to the strong C P problem on

their own without the need of an axion solution [18]. A minimal model is based on the gauge

group SU(2)L × SU(2)R × U(1)B−L, where the left- and right-handed fermions transform as

doublets of SU(2)L and SU(2)R, respectively. Parity invariance requires the Yukawa matrices

to be Hermitian and the mass matrices are of the form

M f =
∑

i

Y
( f )

i 〈χ0
i
〉, (23)

with the vacuum expectation value (vev) 〈χ0
i
〉 of the relevant set of Higgs multiplets tak-

ing part in electroweak symmetry breaking. Consequently, for the necessary condition on

the mass matrices, all the vevs have to be real in order not to spoil the Hermiticity of the

Yukawa matrices. Generically, however, such multi Higgs models easily have spontaneous

C P violation with at least one complex vev. Supersymmetry helps to cure this problem, in-

troduces on the other hand a new strong C P problem connected to the potentially complex

gluino mass [44,45]. Another avenue involves the complete doubling of fermions and gauge

group [17, 46], which includes additional mirror fermions as singlets under the SM gauge

group but charged under a mirror gauge group SU(2)R × U(1)X . The concept of a hidden

sector together with LR symmetry applies also to radiative solutions of the flavor hierarchy

problem—and automatically complies with the conditions presented here [47]. Conversely,

LR-inspired models of flavor model building have no need for a flavored axion as recently

proposed on basis of a Froggatt–Nielsen mechanism [48,49].

We see several viable approaches to build reasonable flavor models that are intrinsically

free of the strong C P problem:

• Multi-Higgs models with spontaneous CPV where the mass matrices can be constructed

as linear combinations of Yukawa matrices and vacuum expectation values like Eq. (23)

that carry complex phases. This approach potentially suffers from unacceptably large

14



corrections as also discussed in [28].

• LR-inspired models that have Eq. (8) automatically implemented.

• Radiative constructions similar to [47] where LR symmetry may not be necessary to

fulfill condition (8). Here we leave the field open to play with the ingredients.

• Non-Abelian flavor models with Yukawa spurion fields as remaining vevs of heavy

scalars and in such a way Eq. (8) is achieved dynamically by the flavon dynamics as

proposed in Ref. [50].

As a side remark, let us note that recent investigations on minimal left-right symmetric

models hint toward the conclusion of V
R
CKM
= V

L
CKM
[24, 25]. Surprisingly, we do not get

an exact equality but rather find for the right-handed sector the angles θCKM,R

12 = θCKM,L

12 ,

θ
CKM,R

23 = θ
CKM,L

23 , and θ
CKM,R

13 ≈ θCKM,L

13 /10, which results from the intricate structure of VCKM

in Ref. [30].

We do not have to rely on strict parity invariance of the fermion Yukawa sector in order to

reply the findings presented here. Parity symmetry is broken in SM at low energies anyway

and what we observe applying the rules from above is rather a fake Parity built in the Yukawa

matrices which may be of a different origin than a GUT-inspired remnant Parity invariant

structure.

5 Conclusions

We have addressed the strong C P problem by following a bottom-up approach. We have

determined the necessary conditions a more fundamental theory should have in order to

intrinsically not show a strong C P phase, θ̄ = 0, not only at higher energies but also at lower

ones. As this phase is made out of two conceptually independent contributions, θ̄ = θQCD +

θQFD, we have studied the conditions for each of them to be zero, θQCD = θQFD = 0, while

simultaneously allowing weak CPV. The first condition demands that within a UV complete

model one should have either P or C P invariance. This is not a new statement as it is well

known, that this automatically sets both contributions equal to zero. However, as one wishes

to explain the observed amount of weak CPV stemming from the quark masses, this initial

symmetry must be broken. However, in general, this induces at tree level a new strong C P

phase, here denoted as θQFD = argdet
�

MuMd

�

6= 0. The main challenge, which is naturally

present within the Nelson–Barr type of models, then basically consists in explaining why the
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amount of strong CPV stemming from the quark masses should be zero, while simultaneously

a sufficiently large value (compared to θQFD) of weak CPV appears, which is coded in the

Jarlskog invariant Jq of the experimentally measured (fitted) CKM-matrix. We have realized

that there is no difficult challenge in solving the previous problem. Splitting the generational

freedom of the gauge kinetic terms as U(3) = SU(3) ⊗ U(1)/Zn, it can be clearly seen that

arbitrary U(1) factors lead to θQFD 6= 0 while the SU(3) nature is responsible for Jq 6= 0.

Hence, the complex phases implied by θQFD are entirely unrelated to the phases of weak

CPV, as shown in Table 1. The absence of the strong CPV is guaranteed by imposing one of

the four possible conditions appearing in Table 2. In particular, Case II has a very minimal

condition on the mass matrices such that θQFD =
∑

q=u,d α
(q)

R −α
(q)

L = 0, if α
(q)

L = α
(q)

R , though

the basic constraint is much weaker. (This gets important in the context of some Grand

Unification when up- and down-quark mass matrices are related to each other.) It has been

shown that minimal symmetrical requirements on the Higgs–Yukawa interactions according

to [42] lead to the given constraint and non-trivial CKM-mixing. As a consequence of this,

the mixing of the right-handed sector is fixed and predicts for the right-handed CKM-matrix

θ
CKM,R

12 = θ
CKM,L

12 , θ
CKM,R

23 = θ
CKM,L

23 , and θ
CKM,R

13 ≈ θCKM,L

13 /10. This fingerprint can be tested in

future experiments within a variety of extensions of the Standard Model.

Moreover, for the weak CPV we have showed that in the recently proposed fermion mass

ratios parametrization [30] the leading contribution to the CKM-phase, after insertion of the

value for the mass ratios mu/mc and md/ms, implies the value δ
q

CP ≈ (1.38±0.10) rad which

is in agreement to the observed one, δCKM
CP
= (1.19± 0.15) rad.

We have not provided a solution to the strong C P problem but rather argued that it can

be addressed without the need of an axial U(1) symmetry from a flavor physics point of

view by modeling the quark mass matrices and thus does not come along with a flavored

axion (Flaxion [48] or Axiflavon [49]). Instead there may be several paths to implement the

condition to pass by the strong C P problem via flavor model building especially based on

spontaneous breaking of the maximal flavor group.
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