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Abstract

The strong CP problem is one of many puzzles in the theoretical description of ele-
mentary particle physics that still lacks an explanation. While top-down solutions to that
problem usually comprise new symmetries or fields or both, we want to present a rather
bottom-up perspective. The main problem seems to be how to achieve small CP violation
in the strong interactions despite large CP violation in weak interactions. Observation
of CP violation is exclusively through the Higgs—Yukawa interactions. In this paper, we
show that with minimal assumptions on the structure of mass (Yukawa) matrices they
do not contribute to the strong CP problem and thus we can provide a pathway to a
solution of the strong CP problem within the structures of the Standard Model and no
extension at the electroweak scale is needed. However, to address the flavor puzzle,
models based on minimal SU(3) flavor groups leading to the proposed flavor matrices
are favored. Though we refrain from an explicit a UV completion of the Standard Model,
we provide a simple requirement those models should have to intrinsically not show a

strong CP problem.
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1 Introduction

The Standard Model (SM) is known to be an incomplete model full of unresolved problems.
Among the issues of the SM that still wait to be solved, the strong CP problem appears to be
a very central one as it resides in the interplay of non-perturbative effects in Quantum Chro-
modynamics (QCD) and CP violation (CPV) in weak interactions. Curiously, the majority of
present day solutions to many of the problems in high energy physics obey the tendency of
going beyond the SM introducing new physics at a higher scale; the strong CP problem seems
to follow this tendency. However, here we take a different philosophy and carefully scruti-
nize the available structures of the SM, offering an alternative approach of the problem. Our
point of view might be defined as pragmatic, rather bottom-up, as we only study the mass
matrices along with the bi-unitary transformations diagonalizing them. Starting from the SM
flavor structures, we are going to present guidelines for model builders to fell the strong CP
problem. Before moving to the details of our treatment let us first briefly summarize what
the strong CP problem is. For a comprehensive review of this problem, see for instance [1].

The 6qcp parameter of QCD parametrizes the non-equivalence of possible QCD vacua as

for non-abelian gauge fields there can be non-vanishing winding numbers defined as
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leading therefore to an effective action

St = J d*xL + inBycp. (2)

The axial anomaly introduces via

g’ -
QHjs = S _Fa fiany, (3)

k16w wY
effectively a change in S by rotations of the quark fields with exp(—iys%) that shifts the
gauge field Oy parameter as
QQCD i 0_ == QQCD + Oq. (4)

The same transformation affects quark mass terms as mg, gz — e '%mg, qz and may con-
versely be used to trace CP violating effects stemming from the masses. Due to this property,

we may identify the physical remaining phase after such rephasing with the axial phase trans-



formation and be left with the well-known combination 6 = Oocp + Oorp, Where the quark

flavor dynamical contribution is given by
Oorp = argdet (Mu) + argdet (Md) = argdet (MuMd). (5)

The parameter 0 violates CP and induces an electric dipole moment for the neutron, so
bounds are roughly 6 < 1071° [2]. Such a huge cancellation between those two contributions
in Eq. (4) is to be seen as a fine-tuning problem as they are conceptually independent. The
strong CP problem now manifests itself in the question why 6 is so small although CPV in
weak interactions has been found to be rather large (large, of course, compared to 6, not
on absolute grounds). Even though both contributions, the pure gauge 6y, and the quark
flavored 6Oy, cannot be treated separately because a chiral phase shift in the quarks always
reintroduces a genuine Oqpp-term according to Eq. (3), we want to disaggregate especially
the Oypp-term on a flavor physics groundwork. The viability of the approach is reflected in
the fact that one can always find a basis, in which either 0y, or Oz, vanishes [3].

Popular solutions to this problem are besides the possibility of having one massless quark
(typically the u-quark but the same holds for a massless d-quark), the introduction of at least
one new symmetry (like an axial U(1) or Peccei—-Quinn [4] symmetry) that gets spontaneously
(or softly [5,6]) broken and comprises a light pseudo Nambu—Goldstone boson, the axion [7,
8].1 A third way to compass the problem is via mechanisms worked out by Nelson [13] and
Barr [14, 15], for a recent review see [16]. The main requirement for this mechanism is a
vanishing argdet (M q) and a way to spontaneously break CP in the context of Grand Unified
Theories, alternatively spontaneously [17] or softly broken parity [18] (or a combination of
all of them [19, 20]). This proposal is noteworthy in the sense that it provides a solution
to the strong CP problem with no low energy consequence; unlike the axion and m, =
0 solutions [16]. It was also shown in a certain kind of toy model that explicit soft CP-
violation in the Higgs potential with two complex scalars leads spontaneously to an explicit
CP-violating effect in the quarks mass matrices and still keeps det (M M ) real at the tree-
level [21]. In this spirit, the study of the SM structure as an effective theory is sufficient to
circumvent the original problem as one is left with the open question about the origin of the
Yukawa interactions. Another approach with spontaneous CPV is the one involving discrete

flavor symmetries [22]. For last, generalized P-invariance in left-right symmetric theories

!Axions and axion-like particles (ALPs) have a very rich phenomenology, summarized e. g. in [9], with an
ongoing experimental effort to detect them (as the ALPS experiment at DESY [10,11] and future facilities like
ALPS-II or SHiP at CERN [12]).



can also provide valuable methods on computing approximately 6 through the corresponding
right-handed quark mixing matrix [23-25], while supersymmetry helps to protect 6 = 0 [26,
27].

Interpreting 0y, as a Lagrangian parameter, it is the only parity violating term in the
QCD Lagrangian (and because charge conjugation is conserved, the 6,p-term explicitly vio-
lates CP). In the bottom-up approach, we take a vanishing 0y, for granted and unlike the
Nelson-Barr approach stay at first ignorant about possible symmetries and physics at higher
energy scales. Whether or not some variant of P or CP has to be employed as symmetry
of nature depends on the specific realization. Instead, we pursue the option that CPV shall
only arise from the Yukawa interactions alone, not even from the Higgs vacuum expectation
values that multiply the Yukawa couplings. We do not require necessarily spontaneous CPV
but allow in principle for explicit breaking in the (effective) Yukawa couplings. Imposing
global CP-invariance of the QCD gauge interactions (though parity is enough) suffices for
our main argument. We treat the Yukawa Lagrangian as an effective Lagrangian hiding the
UV completion in the dimensionless Yukawa matrices. In that way, we obtain 6, = 0 and
hence reduce the problem to understand why argdet (M M d) is such a small number (or
why it should exactly vanish).

In the course of this paper, we accordingly suppose 0y, = 0 and show how argdet (M q)
vanishes by imposing a minimal constraint on certain flavor phases and still providing suf-
ficiently large weak CPV.> We shall argue that the physical CPV in the weak interactions is
unrelated to any other phases appearing in argdet (M q) and may only give a small finite con-
tribution at higher orders as 0ycp, = O at tree-level [28]. In the following, we give an explicit
example of symmetry structures of mass matrices based on special unitary transformations
that have the desired property and start by finding the minimal assumptions for the mass
matrices to fulfill that. These assumptions easily find their way in any extension of the SM
that generate Yukawa couplings dynamically, either by spontaneous breaking of the under-
lying flavor symmetry or by the moduli fields of string theory [29]. The generalization to an
arbitrary number of quark families illustrates the universal validity of our idea.

Wrapping up our philosophy in order to clarify the new approach, we want to point out
that a deliberate solution to the strong CP problem does not require a distinct statement

about fundamental CPV. First of all, CP-invariance of the gauge interactions is sufficient,

2We call flavor phases the ones that appear both in the Yukawa matrices in a certain weak basis and remain,
after moving to the mass basis, in the Jarlskog invariant. Of course, within the minimal SM only one physical
will remain (that would be a linear combination of all the initial ones). But more physical phases could remain
in extensions of the SM such as those including a fourth family and N extra Higgs doublets.



as we will show, to circumvent one aspect of the strong CP problem. Second, CP may be
violated explicitly (or spontaneously) in the Yukawa interactions of SM fermions to the Higgs
scalar as these interactions are the less understood in the context of the SM and do not
necessarily have to respect CP. Third, we shall identify types of fermion mass matrices that
automatically cancel out the undesired contribution to the §-parameter and thus solve the
strong CP problem without the need of additional degrees of freedom in the theory as new
fields assisting in this process. Finally, we stay open towards the remaining solution of the
flavor puzzle in the SM, namely the question why there are three families of fermions and why
they behave and mix as they do. However, we give an explicit realization of a parametrization
(not yet a model) that helps to explain the mixing angles fully in terms of mass ratios and
additionally provides the weak CP-phase of the SM in the same form.

This paper is organized as follows. In Section 2, we disentangle the origins of strong and
weak CPV despite the fact that both of them can be expressed in terms of the same quark mass
matrices. In Section 3, we write the Kobayashi-Maskawa phase in terms of quark mass ratios
as it follows from [30], which is seen to be independent from the previous considerations. In
Section 4, we study general consequences of the conditions provided in this work and how
they are related to concrete models. Finally, we conclude in Section 5.

2 Disentangling weak and strong CPV

A complete knowledge of the quark mass matrices, M, and M, tackles down the flavor puz-
zle in the SM and finally evades the strong CP problem (since the quark flavor contribution
to 6 can be absorbed in the masses and Oocp = 0). Strong and weak CPV, Oq, and the
rephasing invariant J,, respectively, are of different origins on one hand. And on the other
hand sufficiently large CPV in the weak sector’ therefore does not necessarily imply strong
CPV despite the fact that both reside in the same mass matrices

e weak CPV: the Jarlskog invariant
Jy ~Im[det([M M, M;M}1)], see [33],

e strong CPV: the Oqpp-term from above
Oorp = argdet (MuMd).

3The expression “large” does not have to be correlated to a numerically large value of the only CP-violating
phase in weak interactions, since, depending on the chosen parametrization, this phase can be rather small
though the overall CP-violation appears to be actually large (see [31,32]). The rephasing invariant J, does not
depend on the particular parametrization and serves as a better measure of comparison.
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It is not only the functional dependence on the mass matrices (and thus relevant phases) that
is apparently different for weak and strong CPV but rather their individual transformation
properties of parity and charge conjugation [31]. While both objects are CP-odd, Oy, trans-
forms even under C and odd under P whereas J, behaves the other way round, see [34].
For “complete knowledge” of mass matrices, it is adequate to set up each matrix in terms of
known parameters, even though a full theory of flavor is still lacking. By the freedom of re-
lying on an effective description of the mass matrices, we encompass the strong CP problem
by an ansatz to understand the flavor puzzle.

In the following, we will assume that all quark masses are different from zero, as sug-
gested by lattice calculations [35]. Our minimal requirement for the mass matrices follows

very obviously from the usual Singular Value Decomposition*
—_ 7T
M, =L 3R, (6)

with L, and R, unitary transformations and X, = diag(m,,,m,,,m, ) a positive diagonal

matrix, m, > 0. Consequently, we find

argdet (M M) = argdet (L' = R L ZR,)

i T 7)
= arg (detLLl detR,detL; deth) ,

after using the well-known property of the determinant, det(AB) = detAdetB, with the
args of the diagonal matrices vanishing (as they are real and positive). The decomposition of
Eq. (6) is completely arbitrary in the sense that different choices of L, and R lead to different
flavor representations of the mass matrices and additionally the particular choice of L, = Ly
leaves the weak interaction basis invariant. In case, one desires to build mass matrices M, on
a certain family of flavor symmetries, this fixes the allowed classes of transformations L, and
R,. We give constraints on these transformations that can be easily verified in any proposal
of a flavor model to be inherently free of a strong CP problem.

In the limit of vanishing mass matrices, the SM Lagrangian (the kinetic terms) obeys for n
generations a U(n) symmetry for each gauge multiplet (i. e. left-handed quark doublets and
the up- and down-type right-handed singlets; in total U(n)?). The maximal freedom to rotate

4A similar conclusion can be drawn by virtue of the Polar Decomposition, M ¢=H,U, [31,34], with H @
Hermitian and U, a unitary matrix (note that U, # R, in the Singular Value Decomposition).



Table 1: Complex phases contributing to either the strong or weak CPV phase with an arbitrary number
of fermion families. Notice how always the same linear combination of phases appears in the strong
CP case. Through this table it becomes very apparent that the origin of strong CPV is completely
independent from the one generating quark mixing or weak CPV.

Number of fermion families Oorp 5‘3’;31‘
1 W —al ol — ol 0
2 a® —a 1+ oD —al¥ 0
3 W — a4 ol — gl S

W) (@

4 ag‘)—aL + ay —a(Ld) S, wep, Wl
(u) (w) (d) (d) CKM k _ n(n—3)
n ap —a; +ay —a;’ O, Wep (k=1,2,---,25=)

these fields is parametrized hence by U(n) transformations U with det U = e'?, such that

argdet(M,M,) = al? —al” + a{? —a?, €))
where argdet (K q) = aéq) and K either L or R. Let us remark that this result is independent
of n and applies in the same way for any number of fermion families, see Table 1.

We emphasize that strong and weak CPV, 6, and J, are of different origin and thus can
be treated independently. If the left and right unitary rotations L, and R, respectively, were
either special unitary rotations or the same (as for Hermitian mass matrices), Eq. (8) would
vanish trivially and still allow for a non-vanishing Jarlskog invariant. [Recall that unitary
transformations are equal to special unitary transformations times a global phase, U(n) =
SU(n)® U(1)/Z, [36].] Hence, the global phases give rise to strong CPV and consequently
Oorp is sensitive to these global phases only and insensitive to the complex structure of the
underlying SU(3) transformations responsible for flavor mixing phenomena. Weak CPV on
the other hand has exactly the opposite relation: it is sensitive to the complex nature of
the special bi-unitary transformations (which give rise to flavor mixing in weak interactions)
and insensitive to global phases (a property exactly expressed by Jarlskog invariant which is
known to be rephasing invariant). Even in the absence of a global phase that violates CP
strongly, we can have sufficiently large weak CPV: the existence or non-existence of strong
CPV is completely unrelated to the existence or non-existence of weak CPV as can be seen
from the two family case which has no weak CPV while showing, in principle, strong CPV.
Conversely, comparison of the expressions of J, and Oqgp, as listed above already shows that
the phase difference of M, and M, responsible for O,rp # 0 drops out in the expression of
J,. Note that the existence of these global U(1)-phases and the invariance of the SM field



Table 2: Different cases for which there is no contribution in the strong CP phase, 6, stemming from
the global phases, Ogpp.

Case o o o ¥ Condition on the Yukawa couplings Weak CPV

Ia 0 0 0 0 C P-invariance No
Ib 0 0 0 0 G C SU(3)-invariance Yes
I a, a; Qq a4 P-invariance Yes
m o, —a; og —ag Unknown Yes
v a p p a Unknown Yes
\Y a, a X  2a;—X SU(2), gauge ?

content under a particular combination of such rephasings is just the conservation of baryon
number, which, however, is accidental.

We have shown that the strong CPV parameter (6qzp) can be treated independently from
the weak one, which already on its own is quite distinct from other approaches. However,
to identify how the above conditions feed into a viable UV complete model one needs to go
farther. In this regard, it helps to recognize certain benchmark scenarios that have Oy, =

agl) — a(Lu) + aéd)

— a(Ld) = 0. The different ways to achieve this goal are sketched in Table 2,
note that in principle one should be able to smoothly interpolate between those scenarios.
These conditions should be seen as applied to a more fundamental theory where 6y, = 0
and which when taken to lower energies one delivers the SM. In this sense, the Yukawa part
of the SM Lagrangian could be treated as an effective Lagrangian. Case Ia considers a CP-
invariant Lagrangian where there are no phases; in order to get weak CPV one must either
spontaneously or explicitly break it. Case Ib refers to a flavor theory employing an SU(3)
symmetry group or subgroup. Case II embraces those Left-Right (LR) symmetric theories
where parity is conserved. Cases III and IV, are other examples with no explicit model present
in which the sum of global phases could be canceled.

Therefore, within this context, the vanishing argdet (M M d) is automatic, contrary to
the common folklore. Instead, certain conditions, that are summarized in Table 2, could
be taken as forced by symmetry reasons. Our approach to solve the strong CP problem
reduces essentially to explain why a(Lq) = aéq) (similar to Case II in Table 2 without explicit P-
invariance) while, simultaneously, explain the observed amount of weak CPV, 555" = (1.19+
0.15) rad, see [37].

Before we move to an explicit realization of our findings, let us briefly summarize what we
have so far: even if all quarks are massive, we have no strong CP problem without imposing

any new symmetries. The requirement argdet (M M d) = 0 can be achieved by all of the



benchmark cases of Table 2 and any interpolation between them. For example, Case I or II,
ensures a(Lq) and aéq) for ¢ = u,d to be zero or equal, respectively; the minimal way for the
former scenario would be to propose either CP-invariance or SU(3) transformations for the
diagonalization of the mass matrices which conversely means that any flavor model based on
SU(3) transformations gives a solution to the strong CP problem [38,39]. Finally, we can still
have (arbitrarily large) CPV in weak interactions as this is unrelated to strong CPV. The main
task is somewhat to reduce the arbitrariness in complex phases that are generally allowed for
the mass matrices and give a restrictive prescription for weak CPV. It is comparably simple
to define generic CP-violating textures of mass matrices that have no strong CP-phase and
still allow for a CKM-phase according to a mismatch between phases in up and down type
mass matrices [40]. Our approach, however, is still even more generic as we do not rely
on a certain flavor basis in which the phases are apparent and stay rather basis and model

independent.

3 A suggestive way of calculating weak CPV

In the previous section, we have stated that the SU(3) symmetry transformations in fam-
ily space, acting in the left and right handed fields of up-quark and down-quark types, are
enough to deliver any amount of weak CPV independently of having previously eliminated
the combination of U(1) global phases which give rise to the strong CP phase, Oygp. Now,
we want to outline in a recently proposed mixing parametrization [30], how to represent the
weak CP phase. This parametrization relates the entries of the Cabibbo—Kobayashi-Maskawa
(CKM) matrix to functions of the quark mass ratios and thus the remaining CP phase can be
written as function of those.

A very famous expression of a mixing angle as a function of a mass ratio was provided
by the well-known Gatto-Sartori-Tonin (GST) relation, tan 6. ~ 1/m4/m,, for the Cabibbo
angle 0. [41]. Based on this finding, a parametrization of the fermion mixing matrices was
proposed that only uses the mass ratios as input [30]. Besides the phenomenological ob-
servation m; < m; for i < j with masses of the i-th and j-th generation, a crucial assump-
tion behind this parametrization is that the Euler rotations can be individually expressed by
tan 0;; = \/m . Likewise, symmetrical structures in the mass matrices have been detected
that lead to exactly this kind of mixing matrices [42]. In that view, the final quark mixing

matrix can be decomposed into a chain of successive two-family rotations where each planar



SU(2) rotation can then be written as

1
1+ 145
U/‘-(.U'ij:(sij) = — > ©))
1 Mij eléij

V 145 AT

with u;; = m;/m; and an a priori arbitrary complex phase §;; € [0, 27). We identify sin ;; =
Hi D |
Trug and cos0;; = T

sub-sector is then given by

For example, the full SU(3) transformation for the the 2-3

1 0 0
my 1 Mmy/ms  —i&,,
U/23 (E’ 523) =0 4/ 1+my/ms 1+my/mg . (10)
3 0 — / my/ms ei623 1
L1+m,/mg 14+my/ms

Now, defining the CKM-matrix as
Vern = LuLY, (11)

with the U(3) transformations L, 4 defined via Eq. (6), we have in the formulation of [30] four
mass ratios entering the game and six phases from which three can be removed by choosing
the up-type mass matrix real.” From the remaining three, only one maximally CP-violating
phase sitting in the 1-2 rotation is needed to fully reproduce the CKM-phase, details may
be found in [30]. It was also pointed out in Ref. [43] that the same follows for certain 1-3
texture zero mass matrices. The approach of [30] is however more general as it does not rely
on specific texture zeros but merely on symmetrical structures a la Ref. [42].

Using this mass ratios parametrization, we similarly compute the Kobayashi-Maskawa
CP-phase in terms of mass ratios. In the standard parametrization, the most recent global
fit obtains for it 65" = (1.19 £ 0.15) rad [37]. In the following, we want to estimate the
corresponding theoretical value. After imposing individual rotations of the type (9), we can
finally build up a quark mixing matrix that has non-vanishing CPV.

The procedure introduced in Ref. [30] gives a mixing matrix which cannot be directly
compared to the conventional parametrization. In order to do that, we first need to rephase

SThis rephasing should not introduce a new strong CP-phase as we only shuffle complex entries from M,
to M4. Moreover, any global phase does not play a role for weak CP-violation as the relevant objects are the
left-Hermitian products M, 4M .



both the up and down type quark fields

Ve = ZuVCKMZga (12)

in such a way that we are able to produce the following structure

Re Re C
Vau~| C C Rel, (13)
C C Re

where y, = diag(e'®s,1,1) and Re and C mean real and complex entries. After rephasing, we
get the following expression for the Kobayashi-Maskawa CP-phase

Uas(1 + thgs)

~ (1.38+0.10) rad, (14)
Pac(1 + thye)

5 ¢p A arctan

which after insertion of the values of the quark mass ratios, 4, = my/m, = 0.051+0.001 and
Uye = m,/m, = 0.0021 £ 0.0001, we find it to be in agreement to the experimental value,
5M = (1.19 £ 0.15).° Notice how when the decoupling limit, m;,, — ©0, is considered
the CP-phase does not go to zero as one would expect it in other parametrizations [32].
Nevertheless, there is no inconsistency in this result as simultaneously the magnitudes of the

mixing matrix elements vanish,

V%(M| — 0 and |V§§M| — 0 as m, , — 0o. Conversely, the
CP phase gets closer to its maximum value 7 when the ratio between the up and the charm
quark gets more suppressed, m,/m, — 0.

Hence, we have shown that within the SM without adding new degrees of freedom the
amount of weak CPV can be calculated by means of the quark mass ratios if one allows for a
relation among CKM angles and mass ratios.

What about higher order corrections? The impact of the weak CP phase in the CKM
model on the strong C P phase was first and extensively studied in Ref. [ 28] where the generic
contribution was shown to be small. However, at very high (i. e. 14th) order in perturbation
theory there is an “infinite” contribution which actually turns out to be rather tiny when the
original Oy, parameter is renormalized to zero at around the Planck scale. Even with some

“New Physics” contribution (of heavy quarks above the electroweak scale—remembering that

5The quark masses have been treated as running MS masses evaluated at the weak scale (Q* = M ;), numbers
are taken from App. A in Ref. [30].
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at the time this reference originates the mass of the top quark was expected to be well below
its today’s value) there is no huge effect. Proper New Physics contributions, however, strongly
depend on the implementation of New Physics and shall be rather tuned to avoid a strong
effect on Oycp anyway. Spurious contributions at low energies are not to be expected once
the Standard CKM model has been generated in a top-down approach.

4 Towards a UV completion

After having paved the path towards a UV complete theory of flavor without strong CP prob-
lem, we explore the possible consequences of the conditions above to see where the path may
end. Through this reasoning, the functional dependence of the Kobayashi-Maskawa phase
on the quark mass ratios in a parametrization suggested by some of the authors [30] helps
to describe the phenomenological properties of the true flavor dynamics realized in nature.
In this regard, we start with certain flavor matrix structures [42], which have successfully
described fermion mixing [30], and study their connection to the strong CP problem.

We explicitly refrain from providing a UV complete model extending the field content of
the SM in order not to spoil the generality of our results. What follows shall be rather seen as
matching conditions of any theory of flavor generating mass or Yukawa matrices for the low
energy effective theory where all relevant heavy degrees of freedom are integrated out. We
leave it to either the interested reader to construct such a model which give such conditions
or to future works of the authors. As the framework itself leading the results in [30,42], is
directly related to the decomposition of 3 x 3 matrices into 2 x 2 submatrices, we show some
relations in the two-family case only, not losing by this any generality in our treatment.

It is outside the scope of this work to provide the full details of the two mentioned pub-
lications [30,42]. Nonetheless, here we briefly comment the essential ideas behind them
which might be incorporated in any UV complete model wishing to serve as a theory of fla-
vor. The first work delivers a new mixing parametrization which applies to both quarks and
leptons [30]. A systematical procedure was built through the phenomenological observation
of hierarchical fermion masses, m§ > m% > mf, along with a lower rank approximation
theorem known as Schimdt-Mirsky. In a similar fashion as the Wolfenstein parametrization,
where the four mixing parameters are real but still the parametrization is complex, the four

independent mass ratios of either the quark or lepton sector are used as mixing parameters,

V.o—v (mfl‘ my m m) Is
f_ f _)_J_)_b ) ( )
m, m m3



where f = q,{ is the CKM or PMNS mixing matrix, respectively, and a = u, v and b = d,e.
This procedure exploits the mathematical properties of matrices under the fact of hierarchi-
cal singular values. There is no lost of generality in any of the involved approximations as
cautious steps are made. Two main issues, however, are left: what symmetry or principle
dictates that Yukawa matrices should arise with the following structure,

M ~ + x |+ x ? (16)

and what is producing among them a hierarchy?

The second work [42] precisely offers an answer to the first question. The mass ma-
trix which gets diagonalized by a transformation of the type (9) can be found very easily
in the two family case and can be generalized to n > 2 generations according to [42]. In
Ref. [42], mass matrices are constructed in such a way to allow the sequential diagonal-
ization of [30] without preference to any of the families. The basic assumption behind
this approach is that Higgs—Yukawa interactions (or conversely mass matrices if one does
not specify the mass generating mechanism directly) are symmetric under permutations of
the fermion fields. This permutation symmetry is then supposed to be broken stepwise as
S3; ® Sap — Sy ® Sop — Syu @ Sy, Where the last step proceeds to a sum of anti-symmetric
and symmetric permutation matrices of two objects. This proposal can be fulfilled employing
textures like the one appearing in Eq. (16) which allow to study the corresponding mixing
by three different rotations in a two-family space each.

We exemplarily study the two-family case where the mass matrix originated in the se-

quential breakdown of permutation symmetries [42] is given in a preferred basis’ as

M =

—ib,,
( 0 Jmimye ) ' 17)

— Jmn,eion m, —m,

Now, we want to map this structure resulting in a GST relation to the most general case of
a 2 x 2 mass matrix. The GST relation gives Eq. (9) as the corresponding unitary transforma-

tion. A general U(2) matrix has two more parameters that can be expressed as an additional

"The preferred basis corresponds to the mass basis for m; — 0.
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phase on the diagonal and an overall phase factor,

. cosBem sinfe 0
U =e¢? s ], (18)
—sinfBe® cosBe "

such that detU = e'®. According to Eq. (18), the relevant left rotation of a generic mass
matrix should also have the form

[ — g2 €S 0,ePr  sin@, e (19)
=e ‘ .
—sin @, cosB e P

The same expression follows for the right transformation R with L <= R in Eq. (19) and the
individual entries of the mass matrices can be expressed via

M = o [ €08 0,7 —sinBe®\(m; O cos Opetfr  sin Oze 10k 0)

= e 2 . ) ) ) ,
sinf,e®  cos@, e 0 m,)\—sinBze®® cosOpe P

and thus

.ap—ay

My =e 7 [e7PrPm, cos 6, cos Oy + e Pt m, sin 0 sin 0 |,

e
e—l(ﬂL+5R)m1 CcoS OL sin QR — e_l(ﬁR_'_EL)mz cos OR sin QL] 5

My, = el |:

apay . (21)
My, = etz - [ePr+¥)m, cos Oy sin 8, — /P19 m, cos §, sin 6 |,
My,=¢e 7" [e/Pr=PrIm, cos 0; cos Oy + €'+~ m, sin 0, sin O .

Matching this set of equations to the matrix form of Eq. (17) reduces the freedom of the U(2)
rotations as the structure is dictated by the simple symmetry patterns. We find the conditions

ap = A, BL—Br=06,—06r=0, Or = —0;. (22)

Identifying the impact of those relations is rather trivial in comparison with Eq. (17), as the
mass matrix there clearly exhibits no global phase (and thus a; = ay), and the off-diagonal
phase is given by 6,, = 6(z) + B(z), as combination of the two relevant phases in the SU(2)
rotation. Notice that, although Eq. (17) is not left-right symmetric (the mass matrix is anti-
Hermitian), one gets roughly the same conditions on the left and right rotation matrices. The
last relation, 6, = —6; follows after commuting the phase matrices through and absorbing
phases in a redefinition of the fermion fields. This redefinition does not fully apply to the

three-family case and thus there is a remaining CP-violating phase in the mixing.
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The constraints of Egs. (22) provide very valuable information especially on the right-
handed rotations coded in R resulting in the clear prediction that the individual mixing an-
gles of the right-handed sector have exactly the same magnitude as the known left-handed
(i. e. CKM) ones. The future detection of right-handed currents may be a razor to finally rule
out the proposed description. Note, that we do not predict right-handed currents at all. If,
however, a right-handed counterpart to the electroweak gauge group exists, the correspond-
ing CKM matrix cannot be arbitrary in that description.

Fulfillment of conditions similar to (22) is very natural in left-right symmetry models. It
is well-known that such parity-invariant models offer a solution to the strong CP problem on
their own without the need of an axion solution [ 18]. A minimal model is based on the gauge
group SU(2), x SU(2)g x U(1)z_,, where the left- and right-handed fermions transform as
doublets of SU(2); and SU(2), respectively. Parity invariance requires the Yukawa matrices

to be Hermitian and the mass matrices are of the form
M= > vy, (23)

with the vacuum expectation value (vev) ( )(io) of the relevant set of Higgs multiplets tak-
ing part in electroweak symmetry breaking. Consequently, for the necessary condition on
the mass matrices, all the vevs have to be real in order not to spoil the Hermiticity of the
Yukawa matrices. Generically, however, such multi Higgs models easily have spontaneous
CP violation with at least one complex vev. Supersymmetry helps to cure this problem, in-
troduces on the other hand a new strong CP problem connected to the potentially complex
gluino mass [44,45]. Another avenue involves the complete doubling of fermions and gauge
group [17,46], which includes additional mirror fermions as singlets under the SM gauge
group but charged under a mirror gauge group SU(2)z x U(1)yx. The concept of a hidden
sector together with LR symmetry applies also to radiative solutions of the flavor hierarchy
problem—and automatically complies with the conditions presented here [47]. Conversely,
LR-inspired models of flavor model building have no need for a flavored axion as recently
proposed on basis of a Froggatt—Nielsen mechanism [48,49].

We see several viable approaches to build reasonable flavor models that are intrinsically
free of the strong CP problem:

e Multi-Higgs models with spontaneous CPV where the mass matrices can be constructed
as linear combinations of Yukawa matrices and vacuum expectation values like Eq. (23)
that carry complex phases. This approach potentially suffers from unacceptably large
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corrections as also discussed in [28].
e LR-inspired models that have Eq. (8) automatically implemented.

e Radiative constructions similar to [47] where LR symmetry may not be necessary to
fulfill condition (8). Here we leave the field open to play with the ingredients.

e Non-Abelian flavor models with Yukawa spurion fields as remaining vevs of heavy
scalars and in such a way Eq. (8) is achieved dynamically by the flavon dynamics as

proposed in Ref. [50].

As a side remark, let us note that recent investigations on minimal left-right symmetric
models hint toward the conclusion of V&, = VL. [24,25]. Surprisingly, we do not get
an exact equality but rather find for the right-handed sector the angles QfZKM’R = QfZKM’L
GZCSKM’R = GZCSKM’L , and GSSKM’R ~ GSSKM’L /10, which results from the intricate structure of V
in Ref. [30].

We do not have to rely on strict parity invariance of the fermion Yukawa sector in order to

>

reply the findings presented here. Parity symmetry is broken in SM at low energies anyway
and what we observe applying the rules from above is rather a fake Parity built in the Yukawa
matrices which may be of a different origin than a GUT-inspired remnant Parity invariant
structure.

5 Conclusions

We have addressed the strong CP problem by following a bottom-up approach. We have
determined the necessary conditions a more fundamental theory should have in order to
intrinsically not show a strong CP phase, 8 = 0, not only at higher energies but also at lower
ones. As this phase is made out of two conceptually independent contributions, § = Oocp +
Oorp, We have studied the conditions for each of them to be zero, 6ycp = Ogrp = 0, while
simultaneously allowing weak CPV. The first condition demands that within a UV complete
model one should have either P or CP invariance. This is not a new statement as it is well
known, that this automatically sets both contributions equal to zero. However, as one wishes
to explain the observed amount of weak CPV stemming from the quark masses, this initial
symmetry must be broken. However, in general, this induces at tree level a new strong CP
phase, here denoted as Oy, = argdet (M M d) # 0. The main challenge, which is naturally
present within the Nelson-Barr type of models, then basically consists in explaining why the
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amount of strong CPV stemming from the quark masses should be zero, while simultaneously
a sufficiently large value (compared to 6ypp) of weak CPV appears, which is coded in the
Jarlskog invariant J,, of the experimentally measured (fitted) CKM-matrix. We have realized
that there is no difficult challenge in solving the previous problem. Splitting the generational
freedom of the gauge kinetic terms as U(3) = SU(3) ® U(1)/Z,, it can be clearly seen that
arbitrary U(1) factors lead to O, # 0 while the SU(3) nature is responsible for J, # 0.
Hence, the complex phases implied by 0, are entirely unrelated to the phases of weak
CPV, as shown in Table 1. The absence of the strong CPV is guaranteed by imposing one of
the four possible conditions appearing in Table 2. In particular, Case II has a very minimal
condition on the mass matrices such that O, =3 _, 4 P —al? =0, if o' = ¢, though
the basic constraint is much weaker. (This gets important in the context of some Grand
Unification when up- and down-quark mass matrices are related to each other.) It has been
shown that minimal symmetrical requirements on the Higgs—Yukawa interactions according
to [42] lead to the given constraint and non-trivial CKM-mixing. As a consequence of this,
the mixing of the right-handed sector is fixed and predicts for the right-handed CKM-matrix
O = 05, 05 = 60 and 05" &~ 0;5"" /10. This fingerprint can be tested in
future experiments within a variety of extensions of the Standard Model.

Moreover, for the weak CPV we have showed that in the recently proposed fermion mass
ratios parametrization [30] the leading contribution to the CKM-phase, after insertion of the
value for the mass ratios m,/m, and my/my, implies the value &2, ~ (1.38 +0.10) rad which
is in agreement to the observed one, 655" = (1.19 £ 0.15) rad.

We have not provided a solution to the strong CP problem but rather argued that it can
be addressed without the need of an axial U(1) symmetry from a flavor physics point of
view by modeling the quark mass matrices and thus does not come along with a flavored
axion (Flaxion [48] or Axiflavon [49]). Instead there may be several paths to implement the
condition to pass by the strong CP problem via flavor model building especially based on

spontaneous breaking of the maximal flavor group.
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