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Abstract
The choice of a factorization scheme suitable for Monte Carlo simula-
tions of NLO initial state parton showers is discussed in this contribu-
tion.

1 Introduction

Generating initial state parton showers (IPS) in hadronic collisions at the NLO accuracy is a task
for which no satisfactory solution has so far been found. An attempt at solving this problem
which is presented in this contribution is based on an exploitation of the freedom in the choice of
the factorization scheme.

As a simple illustration, consider a non–singlet nucleon structure functionFNS
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Mellin moments are given as the product
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qNS(n,M,FS) , (1)

whereCNS(n,Q/M,FS) stands for Mellin moments of the corresponding coefficient function
and qNS(n,M,FS) represents Mellin moments of the relevant non–singlet parton distribution
function. BothCNS(n,Q/M,FS) andqNS(n,M,FS) depend on a particular factorization scheme
FS and on a factorization scaleM , however, their product (1) is independent of both of them.
The coefficient functionCNS(n,Q/M,FS) is calculable within the framework of perturbative
QCD and can thus be expanded in powers of the QCD couplinga ≡ αs/π
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Although both the couplinga(µ,RS) and the coefficientsC(k)
NS (n,Q/M,FS, µ,RS) depend on

a particular renormalization schemeRS and on a renormalization scaleµ, which is in principle
different fromM , the series, if summed to all orders, is independent of both theRS andµ. The
non–singlet parton distribution functionqNS(n,M,FS) satisfies the evolution equation1

dqNS(n,M,FS)

d lnM
= a(M)PNS(n,M,FS) qNS(n,M,FS) , (3)

1From the relations (3) and (4), we see that the non–singlet distribution functionqNS(n, M, FS) also depends on
the renormalization scheme in which the renormalized coupling a(M) is defined. This scheme can in principle be
different from that used for the expansion of the coefficientfunctionCNS(n, Q/M,FS), but usually these schemes
are chosen to be identical.



where the non–singlet splitting functionPNS(n,M,FS) can be expanded in powers ofa(M)

PNS(n,M,FS) =

∞
∑

k=0

ak(M)P
(k)
NS (n,FS) . (4)

In the next–to–leading order approximation, we retain onlythe first two terms in the ex-
pansions (2) and (4):
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and the NLO couplinga(µ) obeys the differential equation
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d ln µ
= −ba2(µ)
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)

. (7)

The LO termsC(0)
NS(n) and P

(0)
NS (n) are universal — independent of any unphysical quanti-

ties such as renormalization and factorization scales and schemes. The NLO contributions
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whereκ(n) is a scale and scheme factorization invariant. The ambiguity related to the fac-

torization procedure is already at the NLO large, because the splitting functionP
(1)
NS (x,FS) is

completely arbitrary function — for any functionf(x), there always exists such a factorization

scheme FS in whichP (1)
NS (x,FS) = f(x). There are two prominent choices of the splitting

functionP
(1)
NS (n,FS), which are in some sense opposite to each other. In the first one, the split-

ting functionP
(1)
NS (n,FS) is set equal to zero. For this choice, which will be called theZERO

factorization scheme, the evolution of the distribution function qNS(n,M,FS) is formally iden-
tical to the LO one and all NLO corrections are thus containedin the NLO coefficient function
C

(1)
NS(n,Q/M,FS). The latter choice consists in selecting the splitting function P

(1)
NS (n,FS) in

such a way that the NLO coefficient functionC(1)
NS(n,Q/M,FS) vanishes forM = Q (see the

equation (8)). In this case, the relation between the structure functionFNS

(

x,Q2
)

and the dis-
tribution functionqNS(n,M,FS) has the same form as in the LO and all NLO corrections are
included in the evolution of the distribution functionqNS(n,M,FS). This type of choice is the
essence of the so called DIS factorization scheme introduced in [1], which is widely used in phe-
nomenology. The factorization scheme dependence of NLO theoretical predictions for physical
quantities is studied, for instance, in [2], where only factorization schemes interpolating between
the DIS andMS factorization schemes are considered.

The factorization scheme specifies the way in which the so called collinear singularities,
which are contained in cross–sections at parton level, are absorbed into the dressed parton distri-
bution functions. Within the framework of dimensional regularization, the relation between the



dressed and bare distribution functions is given in the general case by the formula
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The matricesA(k0)
ij (x) can be chosen arbitrarily and their choice fully specifies the factoriza-

tion scheme. The factorization scheme can also be specified by higher order splitting functions
P

(k)
ij (x,FS), k ≥ 1, which we can choose at will. The most widely used factorization scheme is

the so calledMS factorization scheme, which is defined by setting the matricesA
(k0)
ij (x) equal

to zero2 and is thus convenient for theoretical calculations.

At present time many QCD cross–sections at parton level are known at the NLO accuracy.
However, the algorithms that are used for their incorporation in Monte Carlo event generators
attach to them the IPS only at the LO accuracy because generating IPS at the NLO accuracy is
very complicated in the standardMS factorization scheme. The reasons for that are basically
two: The NLO splitting functions no longer correspond to basic QCD vertices and the splitting
functions at the NLO approximation are negative for somex, which prevents us from using
straightforward probabilistic interpretation. Because the IPS induce the scale dependence of
parton distribution functions, it is inconsistent to attach the LO IPS to NLO QCD cross–sections,
which include NLO parton distribution functions. This deficiency could be removed by choosing
the ZERO factorization scheme, in which the NLO IPS are formally identical to the LO ones
and all NLO corrections are thus put into hard scattering cross–sections. The main advantage
of this approach is the fact that the existing algorithms forparton showering and for attaching
parton showers to NLO cross–sections need not be changed. The only step necessary to do is
transforming parton level cross–sections from the standard MS factorization scheme to the ZERO
factorization scheme and determining parton distributionfunctions in the ZERO scheme.

2 The transformation of hard scattering cross–sections

In the case of a hadron collision, a cross–sectionσ(P ) (in general differential) depending on
observablesP is given by the formula

σ(P ) =
∑

ij

∫ 1

0

∫ 1

0
dx1 dx2 Di/A(x1,M,FS)Dj/B(x2,M,FS)σij(x1, x2;P ;M,FS), (10)

whereDi/A(x,M,FS) andDi/B(x,M,FS) are the parton distribution functions of the colliding
hadrons. The partonic cross–sectionσij(x1, x2;P ;M,FS) can be expanded in powers of the
QCD couplinga(µ):

σij(x1, x2;P ;M,FS) = σ
(0)
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(
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)

. (11)

2with the renormalized couplinga(M) defined in theMS renormalization scheme



The LO cross–sectionσ(0)
ij (x1, x2;P ) is independent of the factorization scale and scheme.

The dependence of the NLO cross–sectionσ
(1)
ij (x1, x2;P ;M,FS) on the factorization scale and

scheme is determined by the formula
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What we need for the conversion to the factorization scheme FS is the knowledge of the corre-
sponding matrix functionT (1)

ij (x,FS) 3, which is process independent. In the space of Mellin

moments, the matrixT (1)
ij (n,FS) satisfies the following matrix equation:

[

T
(1)(n,FS),P(0)(n)

]

− bT(1)(n,FS) = P
(1)(n,MS) − P

(1)(n,FS) . (13)

3 The ZERO factorization scheme

The solution of the preceding equation (13) for the ZERO factorization scheme reads
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where the unknown functionsT (1)
i (n) can be expressed in terms of the Mellin moments of the LO

and NLO splitting functions. The Mellin inversion ofT (1)
i (n) has to be calculated numerically.

This was performed for three and four effectively massless flavours. The obtained results are
very surprising because forx . 0.1

T
(1)
i (x) ≈ Cix

−ξ with ξ(nf = 3)
.
= 4.63 and ξ(nf = 4)

.
= 3.85 (15)

and the coefficientsCi are so large that the functionsT (1)
i (x) strongly dominate over the NLO

splitting functionsP (1)
kl (x,MS) in this region (x . 0.1). So the question of applicability of the

ZERO factorization scheme arises.

The parton distribution functions in the ZERO factorization scheme are plotted forx ∈

(10−3, 10−1) in Figure 1. In this region they behave likex−ξ with ξ close to that in the rela-
tion (15). The ZERO factorization scheme can thus provide reasonable predictions only if large
cancellation between positive and negative values occurs in expressions for physical quantities.
Hence, within the framework of numerical computations, theZERO factorization scheme can
only be used in kinematic regions wherex & 0.1. The only exception is its application in the
non–singlet case, where the functionsT

(1)
i (x) do not appear and no problems with large numbers

occur.
3T

(1)
ij (x,FS) = −A

(10)
ij (x, FS), where the matrixA(10)

ij (x,FS) is defined in the relation (9).



Fig. 1: Comparison of the ZERO andMS parton distributions atM = 50 GeV. TheMS distributions were obtained

by evolving the starting distributions of the MRST98 set [3]with the fixed number of active flavoursnf = 3 (only

light flavours are taken into account). The ZERO distributions were calculated from theMS ones by using a numerical

transformation method based on Mellin moments. Note that the gluon distributions are plotted in their absolute value

because the ZERO gluon distribution is negative in the displayed region. The zero point where the ZERO gluon

distribution changes the sign is close tox = 0.1.

4 Summary and conclusion

The ZERO factorization scheme is optimal for Monte Carlo simulations of NLO initial state
parton showers. However, because of the problems with largenumbers, this scheme has too
little range of applicability in numerical calculations. The ZERO factorization scheme should
thus be replaced by some “almost ZERO” factorization schemewhich is sufficiently close to the
ZERO factorization scheme and is free of problems with largenumbers. Searching for such a
factorization scheme has already been started.
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