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Abstract

The choice of a factorization scheme suitable for Monte €sirhula-
tions of NLO initial state parton showers is discussed is tuntribu-
tion.

1 Introduction

Generating initial state parton showers (IPS) in hadroailisions at the NLO accuracy is a task
for which no satisfactory solution has so far been found. Aenapt at solving this problem
which is presented in this contribution is based on an etgilon of the freedom in the choice of
the factorization scheme.

As a simple illustration, consider a non-singlet nucleoacstire functionFys (z, @?). Its
Mellin moments are given as the product

FNS (n7 QZ) = CNS <TL, %a FS) qNS(na M7 FS) ) (1)

whereCns(n, @/M, FS) stands for Mellin moments of the corresponding coefficiemiction
and gns(n, M, FS) represents Mellin moments of the relevant non—singletopadistribution
function. BothCns(n, Q/M, FS) andgns(n, M, FS) depend on a particular factorization scheme
FS and on a factorization scale/, however, their product (1) is independent of both of them.
The coefficient functiorCxgs(n, Q/M,FS) is calculable within the framework of perturbative
QCD and can thus be expanded in powers of the QCD coupliagy /7

Q ok w( @
Cns <TL, Ma FS) = kZ:Oa (//H RS) ONS n, M? FS> K, RS ). (2)

Although both the coupling(u, RS) and the coefficienté?lﬂ]ks) (n,Q/M,FS, 1, RS) depend on
a particular renormalization schem& and on a renormalization scale which is in principle
different from M, the series, if summed to all orders, is independent of RS andu. The
non-singlet parton distribution functiams(n, M, FS) satisfies the evolution equatibn

dgns(n, M, FS)
dln M

'From the relations (3) and (4), we see that the non—singittillition functiongys (n, M, FS) also depends on
the renormalization scheme in which the renormalized dogpl(M) is defined. This scheme can in principle be
different from that used for the expansion of the coeffictamiction Cxs(n, @Q/M, FS), but usually these schemes
are chosen to be identical.

:(I(M)PNS(’I’L,M,FS)QNs(TL,M,FS), (3)




where the non—singlet splitting functidbys(n, M, FS) can be expanded in powers«(f)M )

Pxs(n, M,FS) = Zak(M) PIEI]“S)(n,FS) . (4)
k=0

In the next—to—leading order approximation, we retain dhgyfirst two terms in the ex-
pansions (2) and (4):

CNS <’I’L, %7 FS) = C]E?S) (TL) + a(lu’) C]EIIS) <’I’L, %7 FS> ) (5)
Pus(n, M,FS) = P (n) + a(M) PL) (n,FS) (6)

and the NLO coupling:(1.) obeys the differential equation

da(p) _ 2
Ty, = e (1 ca(). @)
The LO termsCIEIOS) (n) and PIEIOS) (n) are universal — independent of any unphysical quanti-

ties such as renormalization and factorization scales ahdnses. The NLO contributions
Clﬁlls) (n,Q/M,FS) andPlflls) (n, FS) satisfy the following condition

1
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where k(n) is a scale and scheme factorization invariant. The amlyigeiated to the fac-
torization procedure is already at the NLO large, becausesiiitting functionPlflls) (z,FS) is
completely arbitrary function — for any functiofyz), there always exists such a factorization

scheme FS in WhicIPIEIlS) (x,FS) = f(z). There are two prominent choices of the splitting

function PIEIIS) (n, FS), which are in some sense opposite to each other. In the fiesttbe split-

ting functionPIEIIS) (n,FS) is set equal to zero. For this choice, which will be called ZlEERO
factorization scheme, the evolution of the distributiondtion gns(n, M, FS) is formally iden-
tical to the LO one and all NLO corrections are thus contaiimetthe NLO coefficient function
CIE}S) (n,Q/M,FS). The latter choice consists in selecting the splitting ﬁchSS) (n,FS)in
such a way that the NLO coefficient functi@}(qls) (n,Q/M,FS) vanishes forM = @ (see the
equation (8)). In this case, the relation between the stradunctionFys(z, Q%) and the dis-
tribution functiongns(n, M, FS) has the same form as in the LO and all NLO corrections are
included in the evolution of the distribution functigrg(n, M, FS). This type of choice is the
essence of the so called DIS factorization scheme intratiuncgl ], which is widely used in phe-
nomenology. The factorization scheme dependence of NLQrekieal predictions for physical
guantities is studied, for instance, in [2], where only deiztation schemes interpolating between
the DIS andMS factorization schemes are considered.

The factorization scheme specifies the way in which the dedtabllinear singularities,
which are contained in cross—sections at parton level,lzgerbed into the dressed parton distri-
bution functions. Within the framework of dimensional rigization, the relation between the



dressed and bare distribution functions is given in the ggrase by the formula

1
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The matricesAg.“O) (z) can be chosen arbitrarily and their choice fully specifies fctoriza-
tion scheme. The factorization scheme can also be specifibijher order splitting functions
Pi(jk) (z,FS), k > 1, which we can choose at will. The most widely used factolegrascheme is

the so called\VIS factorization scheme, which is defined by setting the mmgjm (x) equal
to zerd and is thus convenient for theoretical calculations.

At present time many QCD cross—sections at parton levelravevk at the NLO accuracy.
However, the algorithms that are used for their incorporatn Monte Carlo event generators
attach to them the IPS only at the LO accuracy because gerngetBS at the NLO accuracy is
very complicated in the standaddS factorization scheme. The reasons for that are basically
two: The NLO splitting functions no longer correspond toib&3CD vertices and the splitting
functions at the NLO approximation are negative for samevhich prevents us from using
straightforward probabilistic interpretation. Becaubke tPS induce the scale dependence of
parton distribution functions, it is inconsistent to attdloe LO IPS to NLO QCD cross—sections,
which include NLO parton distribution functions. This défitcy could be removed by choosing
the ZERO factorization scheme, in which the NLO IPS are fdiynidentical to the LO ones
and all NLO corrections are thus put into hard scattering®rsections. The main advantage
of this approach is the fact that the existing algorithmsgfarton showering and for attaching
parton showers to NLO cross—sections need not be changexlorii step necessary to do is
transforming parton level cross—sections from the stahili factorization scheme to the ZERO
factorization scheme and determining parton distributiorctions in the ZERO scheme.

2 The transformation of hard scattering cross—sections

In the case of a hadron collision, a cross—sectid#’) (in general differential) depending on
observables’ is given by the formula

1 1
U(P):Z/o/o dzy dze Dijs(x1, M, FS) D} g(x2, M, FS) 0ij(x1, x9; P; M, FS), (10)
ij

whereD;, 4(z, M, FS) andD;,g(x, M, FS) are the parton distribution functions of the colliding
hadrons. The partonic cross—sectiof(z1, z2; P; M,FS) can be expanded in powers of the
QCD couplinga(u):

oij(x1,29; P; M, FS) = ai(;-)) (x1,22; P) + a(p) ai(;)(wl,wg; P; M,FS) + O(a*(w)). (11)

2with the renormalized coupling(M) defined in theMS renormalization scheme



The LO cross—sectiongg) (z1,x9; P) is independent of the factorization scale and scheme.

The dependence of the NLO cross—seca’éﬁ (x1,x9; P; M, FS) on the factorization scale and
scheme is determined by the formula

1
O'i(;)(:L'l,:L'g; P; M,FS) = Ji(;)(:nl,m; P; My, MS) + Z/o dy [052) (1, yze; P) X 12)
k

M, M,
X <P,$) (y)In ﬁo + Tlgjl.)(% FS)> + O'](C(;-) (yz1,x9; P) <P,§?) (y)In ﬁo + T,gg)(y, FS))} .

What we need for the conversion to the factorization scheSieskhe knowledge of the corre-
sponding matrix functior‘i}(jl)(:n,FS) 3, which is process independent. In the space of Mellin

moments, the matriﬂ}(jl)(n, FS) satisfies the following matrix equation:

[T(l)(n, FS), p© (n)] —pTW (n, FS) = PO (1, MS) — PO (0, FS) . (13)

3 The ZERO factorization scheme
The solution of the preceding equation (13) for the ZEROdiazation scheme reads

Ti, () = T (n) = T (n) — 1P8) (0, MS),  T(n) = TN (n) = TV (),

qiq;j

7 ) =10 () = () = 1Y) ,WS), T (n) =T () = TV (), (14)

qiq; T 4iq; qi
1 1 EwTal 1
TEb(n) = = Py (n, MIS) — 20 T4V (n),

where the unknown functiong(l)(n) can be expressed in terms of the Mellin moments of the LO
and NLO splitting functions. The Mellin inversion @t (n) has to be calculated numerically.
This was performed for three and four effectively masslesgofirs. The obtained results are
very surprising because for< 0.1

TW () ~ Ciz¢  with &(ne = 3) = 4.63 and &(ns = 4) = 3.85 (15)

2

and the coefficient§’; are so large that the functioﬁs(l)(a:) strongly dominate over the NLO
splitting functionsP,gll)(x,M_S) in this region ¢ < 0.1). So the question of applicability of the
ZERO factorization scheme arises.

The parton distribution functions in the ZERO factorizatischeme are plotted far €
(1073,10~1) in Figure 1. In this region they behave like¢ with ¢ close to that in the rela-
tion (15). The ZERO factorization scheme can thus providseeable predictions only if large
cancellation between positive and negative values ocouegpressions for physical quantities.
Hence, within the framework of numerical computations, ZE&RO factorization scheme can
only be used in kinematic regions where> 0.1. The only exception is its application in the

non-singlet case, where the functidjg)(m) do not appear and no problems with large numbers
occur.

3(1) _ (10) -4 (10) . . . .
T,; (z,FS) = —A;; 7 (x, FS), where the matrixd; ;™ (z, F'S) is defined in the relation (9).
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Fig. 1: Comparison of the ZERO aidS parton distributions at/ = 50 GeV. TheMS distributions were obtained
by evolving the starting distributions of the MRST98 set\{8{h the fixed number of active flavours = 3 (only
light flavours are taken into account). The ZERO distribugiovere calculated from tRdS ones by using a numerical
transformation method based on Mellin moments. Note thagthon distributions are plotted in their absolute value
because the ZERO gluon distribution is negative in the diga region. The zero point where the ZERO gluon
distribution changes the sign is closexte= 0.1.

4 Summary and conclusion

The ZERO factorization scheme is optimal for Monte Carlowdations of NLO initial state
parton showers. However, because of the problems with langebers, this scheme has too
little range of applicability in numerical calculations.h& ZERO factorization scheme should
thus be replaced by some “almost ZERO” factorization schetmieh is sufficiently close to the
ZERO factorization scheme and is free of problems with largmbers. Searching for such a
factorization scheme has already been started.
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