
Review on recent developements in jet finding

Juan Rojo
LPTHE, UPMC – Paris 6 and Paris-Diderot – Paris 7, CNRS UMR 7589, Paris (France)
INFN, Sezione di Milano, Via Celoria 16, I - 20133, Milano (Italy)

DOI: http://dx.doi.org/10.3204/DESY-PROC-2009-01/49

Abstract
We review recent developements related to jet clustering algorithms
and jet finding. These include fast implementations of sequential re-
combination algorithms, new IRC safe algorithms, quantitative deter-
mination of jet areas and quality measures for jet finding, among many
others. We also briefly discuss the status of jet finding in heavy ion
collisions, where full QCD jets have been measured for the first time
at RHIC.

Recent developements in jet algorithms With the upcoming start-up of the LHC, jet finding
techniques have received considerable attention. In this brief review, we outline some of the most
important developements in jet algorithms and related subjects in the recent years. Much more
detailed reviews can be found in [1,2].

An important developement has been the fast implementationof the kT [3] and Cam-
bridge/Aachen [4, 5] jet algorithms. Prior to 2005, existing implementations scaled asN3, with
N the number of particles to be clustered, thus making it unpractical for high multiplicity colli-
sions likepp at the LHC and even more in Heavy Ions Collisions (HIC). Thanks to computational
geometry methods, the performance of these algorithms was made to scale asN ln N [6]. These
fast implementations are available through theFastJet package [7], together with area-based
subtraction methods and plugins to external jet finders (seebelow).

Another important achievement has been the formulation of apractical (scaling asN2 ln N )
infrared and collinear (IRC) safe cone algorithm, SISCone [8]. Unlike all other commonly used
cone algorithms, SISCone is IRC safe to all orders in perturbation theory by construction. This
property allows one to compare any perturbative computation with experimental data, which for
IRC unsafe algorithms is impossible beyond some fixed order,indicated in Fig. 2. As discussed
in [8], the phenomenological implications of SISCone when compared with the (IRC unsafe)
commonly used MidPoint cone algorithm range from few percent differences in the inclusive
jet spectrum, somewhat larger in the presence of realistic Underlying Event (UE), up to 50%
differences for more exclusive observables, like the tailsof jet-mass spectra in multi-jet events.

There has been historically some confusion about the concept of thesize of a jet, specially
since the naive jet area is ambiguous beyond LO. The situation was recently clarified by the
introduction of quantitative definitions of jet areas basedon thecatchment properties of hard jets
with respect to very soft particles, calledghosts in [9]. Examples of jet areas defined with such
a technique are shown in Fig. 1. On top of their theoretical importance, jet areas have important
applications related to the subtraction of soft backgrounds coming from the UE or from Pile-Up
(PU), both inpp and inAA collisions, as discussed in [10].



Another recently developed IRC safe jet algorithm is the anti-kt algorithm [11]. This
algorithm is related tokT and Cam/Aa by its distance measure,dij ≡ min(k2p

ti , k2p
tj )∆R2

ij/R
2,

with p = −1 (p = 1 corresponds tokT andp = 0 to Cam/Aa). The anti-kT algorithm has
the property of being soft-resilient, that is, due to its distance soft particles are always clustered
with hard particles first. This property leads to rather regular jet areas, which become perfectly
circular in the limit in which all hard particles are separated in the(y, φ) plane by at least a
distanceR, as can be seen in Fig. 1. Another important advantage of the anti-kt algorithm is
that it has a very small back-reaction [9], that is, the presence of a soft background has reduced
effects on which hard particles are clustered into a given jet.

The recent progress in jet algorithms can be summarized in Fig. 2. Each IRC unsafe cone
jet algorithm can now be replaced by the corresponding IRC safe one, with a similar physics
performance, shown in the last column of Fig. 2. SISCone is the natural IRC safe replacement
for MidPoint-type iterative cone algorithms with split-merge (IC-SM), while anti-kT is so for
iterative cone algorithms of the progressive removal (IC-PR) type [1].

Fig. 1: Jet areas for thekt (left) and anti-kt (right) algorithms forR = 1.

This brief review is unable to cover many other interesting developements related to jets
and jet finding in the recent years. Some of those not discussed here include the use of jet sub-
structure as a useful technique to improve signal significance in various channels at the LHC
(see for example [12–14]), analytical studies of the interplay between perturbative and non-
perturbative effects in jet finding [15], the infrared safe definition of jet flavour and its application
to precision predictions forb−jets at hadron colliders [16,17] or the impact of jet measurements,
both at the Tevatron and at HERA, in global analysis of PDFs [18,19].

Performance of jet algorithms at LHC A recurring question in jet studies is “what is the best
jet definition for a given specific analysis”? Most existing techniques either use as a reference
unphysical Monte Carlo partons (an ambiguous concept beyond LO) and/or assume some shape
for the measured kinematical distributions. To overcome these disadvantages, a new strategy to
quantify the performance of jet definitions in kinematic reconstruction tasks has been recently
introduced [20], which is designed to make use exclusively of physical observables.

In Ref. [20] two quality measures respecting the above requirements are proposed, and
applied to the kinematic reconstruction of invariant mass distributions in dijet events for a wide



Fig. 2: Summary of the progress in jet algorithms since 2005.

range of energies. These quality measures can in turn be mapped into an effective luminosity
ratio, defined as

ρL(JD2/JD1) ≡
L(needed withJD2)

L(needed withJD1)
=

[

Σ (JD1)

Σ (JD2)

]

2

. (1)

Given a certain signal significanceΣ with jet definitionJD2, ρL(JD2/JD1) indicates the factor
more luminosity needed to obtain the same significance as with jet definitionJD1.

The results of [20] over a large range of jet definitions,1 summarized in Fig. 3, indicate
that for gluon jets, and in general for TeV scales, there are significant benefits from using larger
radii that those commonly used, up toR & 1. In general, SISCone and C/A-filt (Cam/Aa supple-
mented with a filtering procedure [12]) show the best performance. These conclusions are robust
in the presence of high-luminosity PU, when subtracted withthe jet area technique [10].

Jet finding in AA collisions at RHIC and LHC While QCD jets are ubiquitous in pp colli-
sions, until this year no real jet reconstruction had been obtained in the much more challenging
environment of HIC. Indeed, usually in HIC one refers to the leading particle of the event as ajet.
However, reconstructing full QCD jets provides a much more precise window to the properties
of the hot and dense medium created in the collision than justleading particles.

The difficulty in reconstructing jets in HIC stems from the huge backgrounds, which need
to be subtracted in order to compare with baseline results. There are various techniques to sub-
tract such large backgrounds. In [10] it was shown how theFastJet jet area method could
efficiently subtract such backgrounds in HIC at the LHC with agood accuracy (see Fig. 4).

A major breakthrough in jet finding was the recent first measurement of QCD jets in HIC
by the STAR collaboration at RHIC [22]. In Fig. 4 we show theirmeasurement with thekT

1There results can also be accessed through an interactive web tool [21] which allows the user to compare the jet
finding quality for a wide range of parameters (jet algorithm, R, value of PU, ...).



Fig. 3:

The effective luminosity ratio, Eq. 1, for quark and gluon jets at 100 GeV and 2 TeV [20].

algorithm. These results should have important consequences for understanding the medium
properties in HIC.

It would be important, after these initial measurements, toimprove the control on the
accuracy of the subtraction procedure, as well as to understand the differences between the per-
formances of different jet algorithms. Ongoing studies [23] suggest that one of the important
sources of systematic error in the HIC jet reconstruction isback-reaction [9], therefore anti-kt

is potentially interesting in this situation due to its small back-reaction [11]. Ref. [23] also in-
vestigates how the use of local ranges for the determinationof the background levelρ might
help reducing the effects of point-to-point background fluctuations. However, more work is still
required in order to determine the optimal settings for jet finding in HIC.

Outlook Jet finding has seen a large number of important developements in the recent years,
However, there is still room for more progress, which shouldbe driven by the actual requirements
of LHC data analysis. Jet finding will also be essential to exploit the heavy-ion program at the
LHC as proved by the latest RHIC jet measurements.
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Fig. 4:

Left: the simulated inclusive jet spectrum at the LHC with thekT algorithm, including subtraction,
from [10]. Right: the inclusive jet spectrum measured withkT by STAR at RHIC, from [22].
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