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Abstract
We present a short summary of parton saturation conceptseasits
deep inelastic scattering.

1 Introduction

The deep inelastic scattering (DIS) experiments, in whighdns probe nucleons with the help
of electroweak bosons, reveal that nucleons consist obipsirt These are colored quarks of
Quantum Chromodynamics (QCD) which carry approximatelydfahe nucleon’s momentum.
The missing half is provided by gluons to which the electrakvbosons do not couple. Thus,
although not directly probed, gluons are extremally im@otrtfor the description of the nucleon
structure. Quantitatively, this is summarized by the DGLeéMBlution equations of QCD which
govern the dependence of the quark and gluon distributioasiucleon on a scafg? (identified

in DIS with photon’s virtualityg> = —Q?). The sign of the logarithmic derivative 5 /0 log Q2,

at different values of the Bjorken variahleis determined by the relative contribution of quarks
to gluons. In the limit: — 0, studied intensively by the experiments at HERA, the deelasgiic
processes are dominated by a strongly rising gluon distoibu Therefore, in the smali-limit,
gluonic systems inside the nucleon are predominantly etidi he description of processes in
such systems, using perturbative QCD (pQCD), is the aimisfatesentation.

2 Collinear factorization versus kr-factorization

In the electron—proton DIS, the measured proton structumetions,Fr and Fy,, are related to
the parton distributions through the collinear factoiimatformula resulting from pQCD:

Ag:lL (x,aq)

Frp(z,Q*) = > {C:Sf,)L@)fz (2,Q%) + > o

1=q,q,9 n=1

(1)

where® indicates integral convolution in parton longitudinal memtum fractionse, = a(Q?)

is the running strong coupling constarc[t’é{)L(z,as) are perturbatively computed coefficient
functions andf;(x, Q%) are quark, antiquark and gluon distributions (multiplied 4. The
Q?*-dependence of the parton distributions is determind byDi& AP evolution equations [1]
with initial conditions which are fitted to data. The firstrteon the r.h.s. of eq. (1) provides
the leading twist-2 description with logarithmic depenciemn@? while the remaining terms,
called higher twists, seem to be suppressed for |@%eln the standard analysis, a global fit of
the leading twist formula to the HERA data @4 = Fr + [}, together with cross sections of
other hard processes, leads to the determination of therpdistributions shown in Fig. 1. A
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Fig. 1: Parton distributions from a global fit to the HERA data as fiimies ofz for fixed@? = 10 GeV?.

distinct feature of this determination is a strong rise @f gfuon and sea quark distributions for
z — 0.

A closer theoretical examination of the smalkcattering reveals that for not too hig}?,
the higher twist terms cannot be neglected since they araneeld by powers ok, log(1/x),
when the smallness ef,; is compensated by a large logarithmaof The relevant resummation
of such terms in the leading (LO) and next-to-leading (NLa¥drithmic approximation leads to
the BFKL approach to the structure functions with the follagvk-factorized form [2]:
2
By, Q%) = @2 % D(k2./ Q% e (kr)) £ (z kr) @
where the impact factob (k% /Q?, as(kr)) describes the interaction of the virtual photon with a
gluon with nonzero transverse momentém In the LO this is the process?* (Q?)g(kr) — qq.
The functionf(x, kr) is called unintegrated gluon distribution which obeys tH&KB equation
[3] and is related to the gluon distributigriz, Q?) through the formula
2
rg(z,Q%) = dk];T
T
From the solution of the BFKL equation, the smallimit is dominated by the gluon distribution
with the power-like risef(x,kr) ~ 2> and\ ~ 0.3. There is a general agreement, based
on the experience with the Froissart-Martin bound, thahsudse of the gluon distribution, and
in consequencés, violates unitarity and eventually must be tamed. The BFHKlutson is also
plagued by diffusion to infrared, namely, the-integration in the pQCD formula (2) is quickly
dominated by the contribution from the soft momenta regiagn~ Agcp, where the Landau
pole ofas(kr) is encountered. A cure for these problems is absolutelyssacg

fla, kr)0(lkr| < Q). )

3 Parton saturation

The taming of the power-like rise of the gluon distributiog(x, Q%) was addressed for the first
time by Gribov, Levin and Ryskin in [4] in the double logaritit approximation. Summing fan
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Fig. 2: Saturation line in thez, @*)-plane.

diagrams, which take into account the fusiontafhannel gluons, the linear DGLAP equation
for the gluon distribution receives a negative, nonlineant,

Pxg(x, Q%)
J01n(1/2)0In Q?

o2 [rg(z, Q)P @

= asﬂfg(l', Q2) - 7T2R2 Q2 3

wherea; = N.a,/m and the parametegR controls the strength of the nonlinearity. With such a
modification, the gluon distribution saturates for— 0, and so does the structure function. This
result was extended in [5] by including nonlinear modificas for the sea quark distributions. A
crucial feature introduced by the nonlinearity iszadependent saturation scal (), defined
as a value of)? for which the nonlinear term in eq. (4) is comparable withlthear one:

eg(w,02) Q) 2. (5)

s

Therefore, saturation effects are important when the narabgluons per unit of rapidityxg,
times the gluon-gluon interaction cross section/Q?, approaches the geometric size of the
nucleon or a gluonic system inside the nucleon (“hot spdti)such a case, a simple additive
treatment of parton emission breaks down and gluons startrtihilate. Since from (592 ~ zg
andzg ~ z~* before the saturation limit is reached, we find tt@t > A2, for sufficiently
smallz, and the presented approach based on perturbative QCHOifieflis This is schematically
illustrated in Fig. 2 where two regions separated by theratitin line,Q? = Q?(x), are shown.
Below this line, in the dilute region, the linear evolutioguations are valid, while approaching
the line, the saturation region is entered with nonlinearagiqns describing parton saturation.

Eq. (4) is a rather crude approximation since it is valid ia #8xtreme case; — 0 and
Q? — oo. In the kp-factorization approach the latter limit is relaxed andydarge logarithms
log(1/z) are relevant. Summing BFKL pomeron fan diagrams with trjdeneron vertices in
the leading logarithmic approximation and in the limit afga number of colordv,, the Balitsky-



Kovchegov (BK) equation for the unintegrated gluon density, kr) is found [6, 7]:

ang(xakT) = 05 X(_aL)¢ — O ¢2 (6)

whereY = log(1/x) is rapidity, L = log k% andy is the BFKL characteristic function. This
nonlinear equation generalizes the linear BFKL equatiohe properties of its solutions were
intensively studied both analytically [8] and numericd®y. The most fruitful approach is based
on the relation to the known from statistical physics Figkelmogorov equation, which admits
travelling wave solutions. In our language, it means thatBK solution develops a saturation
scale,Qs(z) ~ z~* with known value of [8], such that for smalt: we have

¢(z, kr) = o(kr/Qs(x)) - (7)

This property, called geometric scaling, was observed éndhita from HERA [10]. Looking
more carefully, forkr > Q(z) the gluon distributionp ~ 1/k%, while for small transverse
momentaAgcp < kr < Qs(z), the behaviour changes to logarithmig,~ In(Qs(z)/kr).
This is the illustration of the transition to saturation, emhboth the power-like growth im and
infrared diffusion inkr of the gluon distribution are tamed, see again Fig. 2 \@ith= k2.

4 Color dipole approach and beyond

A more intuitive approach to parton saturation is providgdHhe color dipole approach [11,12].
In the target rest frame, the DIS at smalktan be formulated as the eikonal scattering of a color
quark-antiquark dipole, formed by the splitting — ¢g, on the target color field. The dipole
scattering amplitudéV(x, y) is given by two Wilson lines collinear to quarks’ velocity

N(xy)=1-— NLTr UX)UT(y), U(x)=Pexp {zg/ dAu - A(Au + X)} (8)
wherex andy are two dimensional vectors of the quark transverse paositioonserved during
the collision, andA is a target color field. The deviation of the classcal quaajetitory from the
light-like line defines the change & with rapidity Y, which leads to the new BK equation for
the dipole scattering amplitude [6]. Its solutions fulfiethinitarity bound, N < 1. When the
dependence on the impact parametes (x +y)/2 is neglected, the new equation is equivalent
to eq. (6) after Fourier transforming of /r? with respect ta = x — y. The BK equation in the
transverse space was also obtained in the Mueller’'s digaggeoach [12] in which theq dipole
develops a system of dipoles (by radiating soft gluons inldinge N. approximation) which
subsequently multiply interact with a large nucleus tafdggt

The dipole scattering amplitude is the basic ingredienh@éndomputation of the nucleon
structure functions at small. In the last ten years, this amplitude was also modelledgusia
properties of the BK solutions such as color transpareNcy; 2 for a small dipole size = |r|;
geometric scalingN = N(rQs(z)); and the unitarity boundy < 1. A recent comprehensive
review on the dipole models of DIS processes is presentelBin [

The BK equation describes unitarity corrections in the amgtnic configuration when
the target is extended and dense and the projectile is smaltddute. In a more symmetric

¢ is related to the unintegrated gluon dengftfrom Section 2 byf(z, k) ~ k*Vig(z, k).



configuration, e.g. in thep scattering at LHC, the BK equation is no longer sufficientjalih
means that in the diagrammatic approach closed pomerors loaye to be taken into account
besides fan diagrams. An interesting attempt in this dmaavas made in [14] where pomeron
loops were modelled as color reconnections in the dipoleackes. The resulting scattering
amplitudes respect the target-projectile symmetry andriesreasonable well the existing total
and diffractive cross sections in th® scattering. The pomeron loops were also studied in a
statistical approach, based on the stochastic Fisher-&@dnov equation, finding a new kind of
scaling called diffusive scaling [15]. Recently, high enefactorization theorems for the gluon
production in heavy nucleus collisions were proven in thercglass condensate approach [16].
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