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Abstract
We present a short summary of parton saturation concepts as seen in
deep inelastic scattering.

1 Introduction

The deep inelastic scattering (DIS) experiments, in which leptons probe nucleons with the help
of electroweak bosons, reveal that nucleons consist of partons. These are colored quarks of
Quantum Chromodynamics (QCD) which carry approximately half of the nucleon’s momentum.
The missing half is provided by gluons to which the electroweak bosons do not couple. Thus,
although not directly probed, gluons are extremally important for the description of the nucleon
structure. Quantitatively, this is summarized by the DGLAPevolution equations of QCD which
govern the dependence of the quark and gluon distributions in a nucleon on a scaleQ2 (identified
in DIS with photon’s virtualityq2 = −Q2). The sign of the logarithmic derivative,∂F2/∂ log Q2,
at different values of the Bjorken variablex is determined by the relative contribution of quarks
to gluons. In the limitx → 0, studied intensively by the experiments at HERA, the deep inelastic
processes are dominated by a strongly rising gluon distribution. Therefore, in the small-x limit,
gluonic systems inside the nucleon are predominantly studied. The description of processes in
such systems, using perturbative QCD (pQCD), is the aim of this presentation.

2 Collinear factorization versus kT -factorization

In the electron–proton DIS, the measured proton structure functions,FT andFL, are related to
the parton distributions through the collinear factorization formula resulting from pQCD:

FT,L(x,Q2) =
∑

i=q,q̄,g

{C
(i)
T,L ⊗ fi)}(x,Q2) +

∑

n=1

Λ
(n)
T,L(x, αs)

Q2n
(1)

where⊗ indicates integral convolution in parton longitudinal momentum fractions,αs = αs(Q
2)

is the running strong coupling constant,C
(i)
T,L(z, αs) are perturbatively computed coefficient

functions andfi(x,Q2) are quark, antiquark and gluon distributions (multiplied by x). The
Q2-dependence of the parton distributions is determind by theDGLAP evolution equations [1]
with initial conditions which are fitted to data. The first term on the r.h.s. of eq. (1) provides
the leading twist-2 description with logarithmic dependence onQ2 while the remaining terms,
called higher twists, seem to be suppressed for largeQ2. In the standard analysis, a global fit of
the leading twist formula to the HERA data onF2 = FT + FL, together with cross sections of
other hard processes, leads to the determination of the parton distributions shown in Fig. 1. A
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Fig. 1: Parton distributions from a global fit to the HERA data as functions ofx for fixedQ2 = 10 GeV2.

distinct feature of this determination is a strong rise of the gluon and sea quark distributions for
x → 0.

A closer theoretical examination of the small-x scattering reveals that for not too highQ2,
the higher twist terms cannot be neglected since they are enhanced by powers ofαs log(1/x),
when the smallness ofαs is compensated by a large logarithm ofx. The relevant resummation
of such terms in the leading (LO) and next-to-leading (NLO) logarithmic approximation leads to
the BFKL approach to the structure functions with the following kT -factorized form [2]:

F2(x,Q2) = Q2
∫

d2kT

k4
T

Φ(k2
T /Q2, αs(kT )) f(x, kT ) (2)

where the impact factorΦ(k2
T /Q2, αs(kT )) describes the interaction of the virtual photon with a

gluon with nonzero transverse momentumkT . In the LO this is the process:γ∗(Q2)g(kT ) → qq̄.
The functionf(x, kT ) is called unintegrated gluon distribution which obeys the BFKL equation
[3] and is related to the gluon distributiong(x,Q2) through the formula

xg(x,Q2) =

∫

d2kT

k2
T

f(x, kT ) θ(|kT | < Q2) . (3)

From the solution of the BFKL equation, the small-x limit is dominated by the gluon distribution
with the power-like rise,f(x, kT ) ∼ x−λ andλ ≈ 0.3. There is a general agreement, based
on the experience with the Froissart-Martin bound, that such a rise of the gluon distribution, and
in consequenceF2, violates unitarity and eventually must be tamed. The BFKL solution is also
plagued by diffusion to infrared, namely, thekT -integration in the pQCD formula (2) is quickly
dominated by the contribution from the soft momenta region,kT ≈ ΛQCD, where the Landau
pole ofαs(kT ) is encountered. A cure for these problems is absolutely necessary.

3 Parton saturation

The taming of the power-like rise of the gluon distributionxg(x,Q2) was addressed for the first
time by Gribov, Levin and Ryskin in [4] in the double logarithmic approximation. Summing fan
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Fig. 2: Saturation line in the(x, Q2)-plane.

diagrams, which take into account the fusion oft-channel gluons, the linear DGLAP equation
for the gluon distribution receives a negative, nonlinear term,

∂2xg(x,Q2)

∂ ln(1/x)∂ ln Q2
= αsxg(x,Q2) −

α2
s

π2R2

[xg(x,Q2)]2

Q2
, (4)

whereαs = Ncαs/π and the parameterR controls the strength of the nonlinearity. With such a
modification, the gluon distribution saturates forx → 0, and so does the structure function. This
result was extended in [5] by including nonlinear modifications for the sea quark distributions. A
crucial feature introduced by the nonlinearity is anx-dependent saturation scaleQ2

s(x), defined
as a value ofQ2 for which the nonlinear term in eq. (4) is comparable with thelinear one:

xg(x,Q2
s)

αs(Q
2
s)

Q2
s

∼ πR2 . (5)

Therefore, saturation effects are important when the number of gluons per unit of rapidity,xg,
times the gluon-gluon interaction cross section,αs/Q

2, approaches the geometric size of the
nucleon or a gluonic system inside the nucleon (“hot spot”).In such a case, a simple additive
treatment of parton emission breaks down and gluons start toannihilate. Since from (5)Q2

s ∼ xg
andxg ∼ x−λ before the saturation limit is reached, we find thatQ2

s ≫ Λ2
QCD for sufficiently

smallx, and the presented approach based on perturbative QCD is justified . This is schematically
illustrated in Fig. 2 where two regions separated by the saturation line,Q2 = Q2

s(x), are shown.
Below this line, in the dilute region, the linear evolution equations are valid, while approaching
the line, the saturation region is entered with nonlinear equations describing parton saturation.

Eq. (4) is a rather crude approximation since it is valid in the extreme case,x → 0 and
Q2 → ∞. In thekT -factorization approach the latter limit is relaxed and only large logarithms
log(1/x) are relevant. Summing BFKL pomeron fan diagrams with triplepomeron vertices in
the leading logarithmic approximation and in the limit of large number of colorsNc, the Balitsky-



Kovchegov (BK) equation for the unintegrated gluon densityφ(x, kT ) is found1 [6,7]:

∂Y φ(x, kT ) = αs χ(−∂L)φ − αs φ2 (6)

whereY = log(1/x) is rapidity, L = log k2
T andχ is the BFKL characteristic function. This

nonlinear equation generalizes the linear BFKL equation. The properties of its solutions were
intensively studied both analytically [8] and numerically[9]. The most fruitful approach is based
on the relation to the known from statistical physics Fisher-Kolmogorov equation, which admits
travelling wave solutions. In our language, it means that the BK solution develops a saturation
scale,Qs(x) ∼ x−λ with known value ofλ [8], such that for smallx we have

φ(x, kT ) = φ(kT /Qs(x)) . (7)

This property, called geometric scaling, was observed in the data from HERA [10]. Looking
more carefully, forkT ≫ Qs(x) the gluon distributionφ ∼ 1/k2

T , while for small transverse
momenta,ΛQCD ≪ kT < Qs(x), the behaviour changes to logarithmic,φ ∼ ln(Qs(x)/kT ).
This is the illustration of the transition to saturation, when both the power-like growth inx and
infrared diffusion inkT of the gluon distribution are tamed, see again Fig. 2 withQ2 ≡ k2

T .

4 Color dipole approach and beyond

A more intuitive approach to parton saturation is provided by the color dipole approach [11,12].
In the target rest frame, the DIS at smallx can be formulated as the eikonal scattering of a color
quark-antiquark dipole, formed by the splittingγ∗ → qq̄, on the target color field. The dipole
scattering amplitudeN(x, y) is given by two Wilson lines collinear to quarks’ velocityu

N(x, y) = 1 −
1

Nc

Tr U(x)U †(y) , U(x) = P exp

{

ig

∫ ∞

−∞
dλu · A(λu + x)

}

(8)

wherex andy are two dimensional vectors of the quark transverse positions, conserved during
the collision, andA is a target color field. The deviation of the classcal quark trajectory from the
light-like line defines the change ofN with rapidity Y , which leads to the new BK equation for
the dipole scattering amplitude [6]. Its solutions fulfil the unitarity bound,N ≤ 1. When the
dependence on the impact parameter,b = (x + y)/2 is neglected, the new equation is equivalent
to eq. (6) after Fourier transforming ofN/r2 with respect tor = x − y. The BK equation in the
transverse space was also obtained in the Mueller’s dipole approach [12] in which theqq̄ dipole
develops a system of dipoles (by radiating soft gluons in thelarge Nc approximation) which
subsequently multiply interact with a large nucleus target[7].

The dipole scattering amplitude is the basic ingredient in the computation of the nucleon
structure functions at smallx. In the last ten years, this amplitude was also modelled using the
properties of the BK solutions such as color transparency,N ∼ r2 for a small dipole sizer = |r|;
geometric scaling,N = N(rQs(x)); and the unitarity bound,N ≤ 1. A recent comprehensive
review on the dipole models of DIS processes is presented in [13].

The BK equation describes unitarity corrections in the asymmetric configuration when
the target is extended and dense and the projectile is small and dilute. In a more symmetric

1φ is related to the unintegrated gluon densityf from Section 2 byf(x, k) ∼ k2
∇

2

kφ(x, k).



configuration, e.g. in thepp scattering at LHC, the BK equation is no longer sufficient, which
means that in the diagrammatic approach closed pomeron loops have to be taken into account
besides fan diagrams. An interesting attempt in this direction was made in [14] where pomeron
loops were modelled as color reconnections in the dipole cascades. The resulting scattering
amplitudes respect the target-projectile symmetry and describe reasonable well the existing total
and diffractive cross sections in thepp scattering. The pomeron loops were also studied in a
statistical approach, based on the stochastic Fisher-Kolmogorov equation, finding a new kind of
scaling called diffusive scaling [15]. Recently, high energy factorization theorems for the gluon
production in heavy nucleus collisions were proven in the color glass condensate approach [16].
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