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Abstract

The hadronic correlation among particle-antiparticle pairs was high-

lighted in the late 1990’s, culminating with the demonstration that it

should exist if the masses of the hadrons were modified in the hot and

dense medium formed in high energy heavy ion collisions. They were

called Back-to-Back Correlations (BBC) of particle-antiparticle pairs,

also known as squeezed correlations. However, even though they are

well-established theoretically, such hadronic correlations have not yet

been experimentally discovered. Expecting to compel the experimen-

talists to search for this effect, we suggest here a clear way to look for

the BBC signal, by constructing the squeezed correlation function of

φφ and K+K− pairs at RHIC energies, plotted in terms of the aver-

age momentum of the pair, K12=
1

2
(k1 + k2), inspired by procedures

adopted in Hanbury-Brown & Twiss (HBT) correlations.

1 Basic Formalism

Back-to-Back Correlations (BBC) of particle-antiparticle pairs, also called hadronic squeezed

correlations, were predicted to exist if their masses were modified in the hot and dense medium

formed in high energy heavy ion collisions. The formalism corresponding to the bosonic case

was developed in Ref. [1]. Shortly after that, similar correlations were shown to exist among

fermion-antifermion pairs with in-medium modified masses [2], and they were treated by an

analogous formalisms. However, in contrast to what is observed in quantum statistical correla-

tions of identical hadrons (the HBT effect), where bosons with similar momenta have positive

correlations, while fermions with similar momenta are anti-correlated, the fermionic (fBBC) and

the bosonic (bBBC) Back-to-Back Correlations are both positive correlations with unlimited in-

tensity. The similarities of the fBBC and the bBBC curves were illustrated in Fig. 1 of Ref. [2],

where squeezed correlations of two φ-mesons and of p̄p were chosen as illustration. In what

follows, we will focus our discussion in the bosonic case, illustrating the effect by considering

φφ pairs, and also introducing some results on K+K− pairs.

In the case of φ-mesons (which are their own antiparticles) with in-medium modified

masses, the joint probability for observing two such particles, i.e., the two-particle distribution, is

written as N2(k1,k2)=ωk1
ωk2

[
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after applying a generalization of Wick’s theorem for locally equilibrated systems. The first term

corresponds to the product of the spectra of the two φ’s, N1(ki) = ωki

d3N
dki

= ωki
〈a†

ki
aki

〉, be-
ing a

†
k
and ak the free-particle creation and annihilation operators of the scalar quanta, and 〈...〉

† speaker



means thermal averages. The second term contains the identical particle contribution which, to-

gether with the first term, gives rise to the femtoscopic (or Hanbury-Brown & Twiss) effect,

and is represented by the square modulus of the so-called chaotic amplitude, Gc(k1,k2) =√
ωk1

ωk2
〈a†

k1
ak2

〉. The third term, when written as the square modulus of the squeezed ampli-
tude, Gs(k1,k2) =

√
ωk1

ωk2
〈ak1

ak2
〉, is identically zero in the absence of in-medium mass-

shift. However, if the masses of the particles are modified, it gives rise to the squeezed correlation

function, together with the first term. In summary, in terms of these amplitudes, the φφ correla-

tion function can be written as

C2(k1,k2) = 1 +
|Gc(k1,k2)|2

Gc(k1,k1)Gc(k2,k2)
+

|Gs(k1,k2)|2
Gc(k1,k1)Gc(k2,k2)

, (1)

the first two terms corresponding to the identical particle (HBT) correlation, whereas the first and

the last terms represent the correlation function between the particle and its antiparticle, i.e., the

squeezed part. In the case of charged mesons, as in the K+K−, only the first and the last terms

contribute to the squeezed correlation, if their masses change.

In the definition of the amplitudes Gc(ki,kj) and Gs(ki,kj), the annihilation (creation)
operator of the asymptotic, observed bosons with momentum kµ =(ωk,k), i.e., a (a†), is related
to the in-medium annihilation (creation) operator b (b†), corresponding to thermalized quasi-

particles, by the Bogoliubov-Valatin transformation,

ak = ckbk + s∗−kb
†
−k ; a

†
k = c∗kb

†
k + s−kb−k ; fi,j(x) =

1

2
log

[

K
µ
i,j(x)uµ(x)

K∗ν
i,j (x)uν(x)

]

. (2)

In Eq. (2), ck ≡ cosh(fk), sk ≡ sinh(fk). The argument, fk, is called squeezing parameter, since

the transformation in Eq. (2) is equivalent to a squeezing operation. The in-medium modified

mass, m∗, is related to the asymptotic mass, m, by m2
∗(|k|) = m2 − δM2(|k|). Although in

the general case m∗ could be momentum-dependent, it is here assumed to be a constant mass-

shift. For a hydrodynamical ensemble, both the chaotic and the squeezed amplitudes, Gc andGs,

respectively, can be written in a special form derived in [3], and developed in [1, 4].

2 Results

The formulation for both bosons and fermions was initially derived for a static, infinite medium

[1, 2]. More recently, it was shown [4] in the bosonic case that, even for finite-size systems ex-

panding with moderate flow, the squeezed correlation may survive with sizable strength to be

observed experimentally. Similar behavior is expected in the fermionic case. In that analysis, a

non-relativistic treatment with flow-independent squeezing parameter was adopted for the sake of

simplicity, which allowed for obtaining analytical results. The detailed discussion is in Ref. [4],

where the maximum value of Cs(k,−k), was studied as a function of the modified mass, m∗,

considering pairs with exact back-to-back momenta, k1=−k2=k. This type of analysis repre-

sents an analogous procedure as to studying only the intercept parameter of the HBT correlation

function. This is illustrated in Fig. 1(a), which shows the variation of the maximum of the

squeezed correlation in the absence of flow, in three parts. The top and middle plots are results

of a recent simulation, where the momenta of each particle in the pair is generated, the squeezed



correlation is then estimated and the bins are filled. The bottom plot is obtained by attributing

precise values to the variables, then calculating Cs(m∗, q12
). This shows that the simulation is

indeed reproducing the calculation, for small bin sizes. We can also see from Fig. 1(a) that the

simulation shows practically no sensitivity to the cuts introduced in the momentum generation,

in order to mimic the experimental cuts in pT , η, azimuthal angle, etc [5]. Although this study

illustrated many points of theoretical interest, it was not helpful for motivating the experimental

search of the BBC’s, since the modified mass is not accessible to direct measurement.

Fig. 1: Part (a) shows the squeezed-pair correlation as a function of the in-medium mass,m∗, and of the back-to-back

momentum of each particle, for a static medium (〈u〉= 0)). In (b) the effects of finite emission time (∆t = 2fm/c)

and of radial flow (〈u〉=0.5) are shown, for fixedm∗ = 1GeV .

A more realistic analysis would involve combinations of the momenta of the particles, in

terms of which the BBC could be searched for, even though we would have to make a more

precise hypothesis concerning the mass-shift. For the sake of simplicity and for illustrating the

procedure, we will assume here a constant value for m∗. Within the non-relativistic approach

of [4], we suggest to combine the particle-antiparticle momenta, (k1,k2), into the pair average
momentum, K = 1

2
(k1 + k2), and analyze the squeezed correlation function in terms of |K|,

similarly to what is done in HBT interferometry. The maximum of the BBC effect is reached

when k1 =−k2 =k, corresponding to |K|=0. Therefore, the squeezed correlation should be in-
vestigated as Cs(k1,k2) = Cs(K,q), around the zero of the average momentum. For simplicity,
we analyze here the behavior of the correlation function, detailed in [4], by attributing values to

|K| and |q|, as shown in Fig. 1(b), where the in-medium mass of the φ’s was fixed tom∗ = 1.0
GeV. In the top and middle plots, a static system (〈u〉 = 0) was considered. By comparing these
two plots, we can see the dramatic rôle played by the finite emission times, which reduces the

BBC signal by more than two orders of magnitude. This was obtained when considering an ex-

ponential emission, leading to a Lorentzian factor F (∆t) = [1 + (ω1 + ω2)
2∆t2]−1, with ∆t = 2

fm/c, multiplying the second and the third terms in Eq. (1). From Fig. 1(b) we also see that,

in the absence of flow, the squeezed correlation intensity grows faster for higher values |q| than
the corresponding case in the presence of flow. However, in this last one it is stronger even for



smaller values of |q|, showing that the presence of flow could help to enhance the signal.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

C
s
(2
*K
,q
)

C
s
(2
*K
,q
)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

C
s
(2
*K
,q
)

C
s
(2
*K
,q
)

Fig. 2: The response of the BBC function to system sizes with R = 7 fm (top plots) and R = 3 fm (bottom plots) is

shown, for∆t = 2 fm/c. In (a), the relative momentum was fixed to q
12

= 0.8 GeV/c. In part (b), q
12

= 1.6 GeV/c.

The sensitivity of the squeezed-pair correlation to the size of the region where the mass-

change occurs is shown in Fig. 2, for two values of the system radii, R = 7 fm and R = 3 fm,
fixing the relative momentum of the pair to (a) q

12
= 0.80 GeV/c and (b) q

12
= 1.6 GeV/c. The

plots were obtained by attributing values toK
12
and q

12
. We can see that the size of the squeezing

region is reflected in the inverse width of the curves plotted as function of 2|K|.
The investigation of the squeezed correlation in terms of 2K is applicable when treating

non-relativistic flow. In the case of a fully relativistic study, a four-momentum variable can be

constructed, as Qback = (ω1 − ω2,k1 + k2) = (q0, 2K), as introduced in Ref. [6]. Moreover, it
would be preferable to redefine this variable asQ2

bbc = −(Qback)
2 = 4(ω1ω2−KµKµ), because

its non-relativistic limit recovers Q2
bbc → (2K)2.

The above analysis could also be applied to other particles that are not their own antipar-

ticles. For showing it, we investigate the case of K+K− squeezed correlations, as illustrated in

Fig. 3, for an expanding system with radial flow parameter 〈u〉 = 0.5. In part (a), the squeezed
correlation is shown as a function of the in-medium mass,m∗, also varying the back-to-back mo-

mentum of particle and antiparticle. In part (b), the squeezed correlation is plotted as a function

of (K
12
,q

12
), fixing the kaon in-medium modified mass to m∗ = 650 MeV. These plots do not

come from simulation, but were obtained by attributing values to the plotting variables.

3 Conclusions

We discussed here some of the main results on the squeezed correlations, within an a non-

relativistic approach developed earlier. We suggest an effective way to search for it in heavy

ion collisions at RHIC, emphasizing the need for experimentally observe this signal. This should

be done by plotting the hadronic squeezed correlations in terms of the average momentum of the

pair, (2K)2, which is the non-relativistic limit of the four-vector Q2
bbc = 4(ω1ω2 − KµKµ). We



Fig. 3: Part (a) shows the squeezed correlation as a function of possible in-medium mass of the kaons, m∗, and of

the momentum of each particle in the pair, |k|. In part (b), it is plotted as a function of K
12
and q

12
, considering

m∗ = 650MeV, which corresponds to roughly the highest value of the correlation in part (a).

showed some results that would be expected in the case of φφ back-to-back correlations, as well

in the case of the K+K− pairs. We also illustrated the effects of finite system sizes, finite times

and flow. We could see that finite emission times reduce the signal substantially, and that, in

the presence of flow, the signal is stronger over the momentum regions in the plots, i.e., roughly

for 0 ≤ |K
12
| ≤ 60 MeV/c and |q

12
| ≤ 2000 MeV/c, suggesting that flow may enhance the

chances of observing the BBC signal. We also saw that the correlation function reflects the size

of the region where the squeezing occurred. Finally, we should emphasize that the absence of

squeezing, i.e., if there is no in-medium mass modification, the squeezed correlation functions

would be unity for all values of 2|K
12
| and |q

12
|.
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