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Abstract
I present an overview of recent theoretical developments towards “first
principle” description of heavy-ion collisions at high energies.

1 Introduction

Relativistic heavy-ion collisions are multi-step phenomena which necessarily entail transition
from high to low energy densities, or, equivalently from perturbative to non-perturbative kine-
matical regions (see Fig. 1). Thus, it is quite difficult to describeall the steps within the first-
principle (i.e., QCD-based) calculations even though the collision energy is taken to be high
enough. Nevertheless, we believe that at least the first two steps (the initial condition and the
earliest stage well before thermalization) allow a firm QCD-based description because, as I will
explain later, these two essentially occur around a large semi-hard momentum scale. From the
viewpoint of high energy QCD, the initial condition and the earliest stage after the collision are
respectively described by the Color Glass Condensate (CGC)[1] and the Glasma [2]. In this talk,
I overview the recent developments towards understanding the dynamics of CGC and Glasma,
and discuss a possible scenario of the heavy-ion collisionsat high energy. In particular, unstable
dynamics of the Glasma provides a novel mechanism for early thermalization.

2 Initial conditions : CGC

2.1 What is the CGC?

Consider one nucleus that is moving very fast in thez direction. When the scattering energy is
quite high, what we measure is not a simple valence structureof each nucleon, but a state with a
huge number of gluons that are emitted either directly from the valence partons or successively
from (already emitted) gluons. Such a highly dense gluonic state is now called the CGC, and is
indeed observed experimentally through the electron deep inelastic scattering off a proton. We

Fig. 1: Relativistic heavy-ion collision in the high energylimit



describe the CGC by separating the whole degrees of freedom into large and smallx partons (x
is the fraction of momentum carried by a parton). Largex partons are distributed on a Lorentz
contracted nucleus and their motion is very slow compared tothe time scale of the collision. Thus
we treat them altogether as astaticcolor sourceρa(x⊥). We also assume thatρa can be taken as
random reflecting the unpredictable configuration of partons at the moment of collision. Smallx
partons (mostly gluons) are then regarded as a coherent radiation field created by the color source
(largex partons). Hence, we investigate the following stochastic Yang-Mills equation:

(DνF νµ)a = δµ+ρa(x⊥) . (1)

We further introduce a weight functionW [ρ] (that is however a priori unknown) to control the
randomness of the sourceρa(x⊥). These are the basic strategies of CGC (see Ref. [1] for details).

Most of gluons in CGC have relatively large transverse momentum called the saturation
momentum,Qs ≫ ΛQCD whose inverse corresponds to a typical transverse ’size’ ofgluons
when they fill up the transverse disk and start to interact with each other. One can compute in
QCD the energy (orx) and atomic mass numberA dependences ofQs as

Q2
s(x,A) ∝ A1/3(1/x)λ , λ ≃ 0.3 , (2)

which is surprisingly consistent with the scaleQ2
s determined from experimental data through

the geometric scaling. SinceQs(x,A) grows with increasing energy(x ∼ ln 1/s → 0), the
weak-coupling treatment becomes better and better with increasing energy, whereαs(Qs) ≪ 1.

Another important feature of CGC is that, as a result of the large number of gluons, it has
a strong gauge fieldA ∼ Qs/g and thus strong color electric and magnetic fieldsE,B ∼ Q2

s/g.
This is the region where we cannot ignore the nonlinear termsin the interaction. Therefore, CGC
is a weakly-coupled many body system of gluons which shows coherent and nonlinear behavior.

2.2 CGC as the initial condition of heavy-ion collision

Let us now consider the collision of two nuclei in the center of mass frame where both nuclei can
be equally treated as CGCs [3] (see Fig. 1). In this case, the right-hand-side in eq. (1) is replaced
by Jµ = δµ+δ(x−)ρ1(x⊥) + δµ−δ(x+)ρ2(x⊥) with ρ1 (ρ2) being a color source of the right
(left) moving nucleus 1 (2). Before the collision, classical gauge fields belonging to each nucleus
are created by these color sources. What is truly nontrivialoccurs in the forward light cone
(x± > 0), where we expect real gluon emissions and non-equilibriumtransition towards QGP.
We describe the very early stage of time evolution by solvingsource freeYang-Mills equations
in the forward light cone, with the initial condition specified by the CGC fields of each nucleus.

Note also that the created matter which locates in between two (passed) nuclei will expand
in the longitudinal direction almost at the speed of light, and we expect that it is a good approxi-
mation to describe the solution to the Yang-Mills equation by a boost invariant field. Namely, we
consider the solution in the following form:

A± = ±x±α(τ, x⊥), Ai = αi
3(τ, x⊥) , (3)

whereτ =
√

2x+x− > 0 is the proper time. Indeed, this expression gives a solutionindependent
of rapidity η = 1

2 ln(x+/x−) which can be easily seen if one defines vector fields in the (τ, η)



coordinates:Aη = x+A− − x−A+ = −τ2α(τ, x⊥). The initial condition for the fieldsα and
αi

3 is specified atτ = 0+ by using the CGC fields of each nucleus,α1 andα2:

α|τ=0 =
ig

2
[αi

1, α
i
2] , αi

3|τ=0 = αi
1 + αi

2 , (4)

and for the time derivatives
∂τα|τ=0 = ∂ταi

3|τ=0 = 0. (5)

Obviously,the initial condition is completely determined by the CGC fields of each nucleuswhich
depend only on transverse coordinates,αi

1,2(x⊥).

3 Pre-equilibrium stages : Glasma

Unlike the CGC, the gluonic matter created after the collision shows strong time dependence of
the field as a result of rapid expansion in the longitudinal direction (recall that the CGC is static,
i.e.,x+-independent). Thus, to identify such a unique nature of thecreated matter, we now use
a new name “Glasma” meaning the transitional state between ’glass’ and ’plasma’ [2]. Glasma
is a rapidly expanding and interacting gluon field. Immediately after the collision, it will still
remember the properties of CGC, and most of the gluons will have transverse momenta of the
order ofQs. Namely, the Glasma can still be treated as a weak coupling system.

3.1 Stable dynamics : boost-invariant Glasma

The first attempts towards understanding nonlinear dynamics of the Glasma were numerically
done in real-time simulations of classical Yang-Mills fields on the lattice. Most of the simu-
lations were performed in the boost-invariant case. Obtained physical quantities such as the
gluon transverse momentum spectra and the energy density were found to be reasonable enough.
More recently, such numerical results have driven people tothink of the analytic aspects of the
Glasma. The most important recognition is the emergence of aflux tube structure(Fig. 2, left).
Before the collision, each CGC has purely transverseE andB that are orthogonal to each other
E ·B = E⊥ · B⊥ = 0. However, just after the collision, the field strength instantaneously
becomes purelylongitudinal. Indeed, thez-components atτ = 0+ are explicitly given by

Ez|τ=0+ = −ig[αi
1, α

i
2] , Bz|τ=0+ = igǫij [α

i
1, α

j
2] , (6)

with α1,2 being the CGC fields, while all the transverse components arevanishing. Such longi-
tudinally extended fields in between two receding nuclei remind us of the Lund string model, but
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Fig. 2: Flux tube structure of the Glasma (left) and how the flux tube expands in time (right)



there are two significant differences. First, reflecting theCGC structures of the colliding nuclei,
transverse coherence length of the flux tubes should be of order 1/Qs, instead of1/ΛQCD as in
the Lund model. This is so because the Glasma flux tube is a perturbative object while the Lund
model simulates nonperturbative dynamics of string breaking. Second, the Glasma flux tube can
have a magnetic field in it while the Lund model treats only electric flux tubes. In fact, even a
purely magnetic flux tube is possible if one takes the same color structure for the same spatial
componentsαi

1 andαi
2 (i = x, y) but different for different components.

Dynamics of an isolated flux tube can be reasonably understood within Abelian approxi-
mation [4]. If one looks deeply inside of the flux tube, the field strengths may be large, but are
regular and homogeneous. Thus one can gauge-transform the field so that it is directed to the
third color component. On the other hand, if one looks well outside of the flux tube, the field is
weak enough, and one can ignore nonlinear effects. Hence, ifthe field profile is not singular in
the tube and decays rapidly outside the tube, Abelian approximation is expected to be reasonable
enough. In this approximation, one can easily solve the Yang-Mills equation even in expanding
geometry, and can compute the time dependence ofE andB for a simple profile such as a Gaus-
sian. The right panel of Fig. 2 shows how a single flux tube evolves in the actual timet (not in
τ ). Since the Glasma flux tube is essentially ‘perturbative’,it expands outwards and the strength
in the tube decays rapidly in time (in contrast, a nonperturbative flux tube does not expand in
the transverse direction and the strength inside the tube does not change). Lastly, we note that
the τ dependence of each component of the field strength computed in this simple picture is
remarkably consistent with the numerical result reported in Ref. [2].

3.2 Unstable dynamics : boost-noninvariant Glasma

It should be noticed that the boost-invariant Glasma cannotsay anything about thermalization
because boost invariance means eternal absence of nontrivial pz dependence. Therefore, even
isotropization (a necessary condition for thermalization) never occurs with boost invariant so-
lutions. Of course this is a serious problem in the CGC-glasma description of the heavy-ion
collision, and people have been investigating this both numerically [5] and analytically [4, 6, 7].
Below, I explain one of the recent findings of analytic approaches thatthe rapidity-dependent
fluctuation undergoes Nielsen-Olesen instability and can grow exponentially[4].

We perform a stability analysis of the system against rapidity-dependent perturbationsai,η:

Ai = Ai(τ, x⊥) + ai(τ, η, x⊥) , Aη = Aη(τ, x⊥) + aη(τ, η, x⊥) , (7)

whereAi andAη are boost-invariant background fields given in eq. (3). Coupling betweenAi,η

andai,η is present due to the nonlinear interaction in the non-Abelian gauge theory. For simplic-
ity, we replace the background fields byτ -independent and spatially constant electric/magnetic
fields, and consider the SU(2) group.1 The first simplification was done because we expect that
the time scale of instability is much shorter than that of thebackground field, and because we con-
sider the region deep inside of the flux tube. In Ref. [4], the cases with either electric or magnetic
field were explicitly shown, but one can similarly discuss the case where both are present [9].

1Generalization to SU(3) should be straightforward [9]. We have two constant background fields (directed to the
3rd and 8th color components).



When we have both electric and magnetic fields, the linearized equation for the fluctuation2 ã
(±)
+

which is the Fourier component having the third color charge(±) and positive spin+ is given
by [9]

1

τ
∂τ (τ∂τ ã

(±)
+ ) +

{

1

τ2

(

ν ± gE

2
τ

)2

+ (2n + |m| + 1 ∓ m ± 2)gB

}

ã
(±)
+ = 0 , (8)

wherem andν, respectively, are the orbital angular momentum and the momentum conjugate to
the rapidity (a similar equation holds for negative spin−). Note that the term±2gB originates
from the anomalous magnetic moment.

When we have only the electric field (E 6= 0, B = 0), the situation is similar to the
Schwinger mechanism. Massless charged fluctuations are infinitely accelerated, but there is no
amplification of the field (no instability). On the other hand, when we have only the magnetic
field (E = 0, B 6= 0), the fluctuation forms Landau levels, and the lowest level (n = 0) becomes
unstable. This is theNielsen-Olesen instabilitywhich is known for non-expanding Yang-Mills
systems [8]. Indeed, the explicit form of the solution is given by the modified Bessel function
Iiν(

√
gBτ), which asymptotically shows divergent behavior:

Iiν(
√

gBτ) ∼ e
√

gBτ
/

√

2π
√

gBτ.

Note that the magnetic field given by the CGC can be strong
√

gB ∼ Qs. Therefore, we conclude
that the mode withν grows exponentially with the time scale given byτgrow = 1/Qs.

In relation to the early thermalization problem in RHIC, extensive investigation is per-
formed for the plasma instability scenario. However, beingformulated in a kinetic equation, it
is applicable only afterτ ∼ 1/Qs and thus cannot say anything about the very early stage of
heavy-ion collisionsτ < 1/Qs. This is the place where theGlasmainstabilities play a unique
important role. As we discussed, the characteristic time scale of the Glasma instabilities is1/Qs.
This implies that the system begins to show unstable behavior well before the kinetic description
can be applicable.
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