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Abstract
Possible saturation of the matter density in two different classes of
reactions, those induced by hadrons and leptons are studied. They may
have common dynamical origin and be of the same nature.

1 Hadron-induced reactions: The Black Disc Limit at the LHC?

Unitarity in the impact parameterb representation reads:

ℑh(s, b) = |h(s, b)|2 + G(s, b),

whereh(s, b) is the elastic scattering amplitude at the center of mass energy
√

s, ℑh(s, b) is
the profile function, representing the hadron opacity andG(s, b), called the inelastic overlap
function, is the sum over all inelastic channel contributions. Integrated overb, the above equation
reduces to a simple relation between the total, elastic and inelastic cross sectionsσtot(s) =
σel(s) + σin(s).

Unitarity imposes the absolute limit

0 ≤ |h(s, b)|2 ≤ ℑh(s, b) ≤ 1,

while the so-called black disc limitσel(s) = σin(s) = 1
2σtot(s), or

ℑh(s, b) = 1/2,

is a particular realization of the optical model, namely it corresponds to the maximal absorption
within the eikonal unitarization, when the scattering amplitude is approximated as

h(s, b) =
i

2
(1 − exp [iω(s,b)] ),

with a purely imaginary eikonalω(s, b).

Eikonal unitarization corresponds to a particular solution of the unitarity equation, with
ℜh(s, b) = 0,

h(s, b) =
1

2

[
1 ±

√
1 − 4Gin(s, b)

]
,

the one with the minus sign.

An alternative solution, that with a plus sign in front of thesquare root, is known and
realized within the so-calledU -matrix approach, where the unitarized amplitude is a ratiorather
than an exponential typical of the eikonal approach:

h(s, b) =
U(s, b)

1 − i U(s, b)
,



whereU is the input Born term, the analogue of the eikonalω.

In theU -matrix approach, the scattering amplitudeh(s, b) may exceed the black disc limit
as the energy increases. The transition from a (central) black disc to a (peripheral) black ring, sur-
rounding a gray disc, for the inelastic overlap function in the impact parameter space corresponds
to the transition from shadowing to antishadowing.

The impact parameter amplitudeh(s, b) can be calculated either directly from the data
(where, however, the real part of the amplitude was neglected) or by using a particular model that
fits the data sufficiently well.

In the dipole Pomeron (DP) model [1], logarithmically rising cross sections are produced
with a Pomeron intercept equal to unity, thus respecting theFroissart-Martin bound.

Apart from the conservative Froissart-Martin bound, any model should satisfy alsos-
channel unitarity. We show that both the D-L and DP models arewell below this limit and
will remain so for long, in particular will so at the LHC.

The elastic scattering amplitude corresponding to the exchange of a dipole Pomeron reads

A(s, t) = d
dα

[
e−iπα/2G(α)(s/s0)

α
]

= e−iπα/2(s/s0)
α[G′(α) + (L − iπ/2)G(α)] ,

whereL ≡ ℓn
s

s0
andα ≡ α(t) is the Pomeron trajectory.

The elastic amplitude in the impact parameter representation in our normalization is

h(s, b) =
1

2s

∫
∞

0
dq qJ0(bq)A(s,−q2) , q =

√
−t .

The impact parameter representation for linear trajectories is calculable explicitly for the
DP model. We have

h(s, b) = i g0 [er2

1
δ e−b2/4R2

1 − ǫ er2

2
δ e−b2/4R2

2 ] ,

where
R2

i = α′r2
i (i = 1, 2); g0 =

a

4bpα′s0
.

Asymptotically (whenL ≫ bp, i.e.
√

s ≫ 2. TeV, with the parameters quoted in Table 1) we get

h(s, b)s→∞ → i g(s) (1 − ǫ) e−
b
2

4R2 ,

where

R2 = α′L ; g(s) = g0

(
s

s0

)δ

.

It is important to note that the unitarity bound 1 forImh(s, b) will not be reached at the
LHC energy, while the black disc limit 1/2 will be slightly exceeded, the central opacity of the
nucleon beingℑmh(s, 0) = 0.54.



Fig. 1: A family of curves showing the imaginary part of the amplitude in the impact parameter-representation as well

as the calculated inelastic overlap functionG(s, b) at various energies.

√
s 53 GeV 546 GeV 1800 GeV

exp 0.36 0.420 ± 0.004 0.492 ± 0.008
th 0.36 0.424 0.461

Table 1: Central opacity of the nucleonImh(s, 0) calculated at the ISR, SPS and Tevatron energies compared with

experiment.

The black disc limit is reached at
√

s ∼ 2 TeV, where the overlap function reaches its
maximum 1

4 . While Imh(s, b) remains central all the way,Gin(s, b) is getting more peripheral
as the energy increases starting from the Tevatron. For example at

√
s = 14 TeV, the central

region of the antishadowing mode, obtained from theU matrix unitarization, belowb ∼ 0.4
fm is discernible from the peripheral region of shadowing scattering beyondb ∼ 0.4 fm, where
Gin(s, b) = 1

4 . The proton will tend to become more transparent at the center (gray, in the sense
of becoming a gray object surrounded by a black ring).

Thes channel unitarity limit will not be endangered until extremely high energies (105 for
the Donnachie-Landshoff model and106 GeV for the DP), safe for any credible experiment.

2 Lepton-induced reactions: DIS

An ansatz interpolating between the soft (VMD, Pomeron) Regge behavior and the hard (GLAP
evolution) regime, given by the explicit solution of the DGLAP equation in the leading-log ap-
proximation, for the small-x singlet part of the proton structure function,

F2 ≈
√

γ1ℓn(1/x) ℓnℓnQ2 ,



with γ1 = 16Nc

(11−2f/3) (for 4 flavours(f = 4) and three colours(Nc = 3), γ1 = 5.76) was
suggested in Ref. [2]

F
(S,0)
2 (x,Q2) = A

(
Q2

Q2 + a

)1+∆̃(Q2)

e∆(x,Q2),

with the ”effective power”

∆̃(Q2) = ǫ + γ1ℓn

(
1 + γ2ℓn

[
1 +

Q2

Q2
0

])
,

and

∆(x,Q2) =

(
∆̃(Q2)ℓn

x0

x

)f(Q2)

,

where

f(Q2) =
1

2

(
1 + e−Q2/Q2

1

)
.

At small and moderate values ofQ2, the exponent̃∆(Q2) can be interpreted as aQ2-
dependent effective Pomeron intercept.

By construction, the model has the following asymptotic limits:

b) Low Q2, fixedx:

F
(S,0)
2 (x,Q2 → 0) → A e∆(x,Q2

→0)

(
Q2

a

)1+∆̃(Q2
→0)

with

∆̃(Q2 → 0) → ǫ + γ1γ2

(
Q2

Q2
0

)
→ ǫ,

f(Q2 → 0) → 1,

whence

F
(S,0)
2 (x,Q2 → 0) → A

(
x0

x

)ǫ
(

Q2

a

)1+ǫ

∝ (Q2)1+ǫ → 0 ,

as required by gauge invariance.

c) Low x, fixedQ2:

F
(S,0)
2 (x → 0, Q2) = A

(
Q2

Q2 + a

)1+∆̃(Q2)

e∆(x→0,Q2).

If f(Q2) ∼ 1 i.e. whenQ2 ≪ Q2
1, we get the standard (Pomeron-dominated) Regge behavior

(with aQ2 dependence in the effective Pomeron intercept)

F
(S,0)
2 (x → 0, Q2) → A

(
Q2

Q2 + a

)1+∆̃(Q2) (
x0

x

)∆̃(Q2)

∝ x−∆̃(Q2).



Within this approximation, the total cross-section for(γ, p) scattering as a function of the center
of mass energyW is

σtot,(0)
γ,p (W ) = 4π2α

[
F

(S,0)
2 (x,Q2)

Q2

]

Q2
→0

= 4π2α A a−1−ǫ xǫ
0 W 2ǫ.

Accounting for largex :

F
(S)
2 (x,Q2) = F

(S,0)
2 (x,Q2) (1 − x)n(Q2),

with

n(Q2) =
3

2

(
1 +

Q2

Q2 + c

)
,

wherec = 3.5489 GeV2.

The non-singlet(NS) part of the structure function is also included:

F
(NS)
2 (x,Q2) = B (1 − x)n(Q2) x1−αr

(
Q2

Q2 + b

)αr

.

The free parameters that appear with this addendum arec,B, b andαr. The final and complete
expression for the proton structure function thus becomes

F2(x,Q2) = F
(S)
2 (x,Q2) + F

(NS)
2 (x,Q2) .

Of great interest are the slopes:

∂F2

∂(ℓnQ2)
as a functionof x and Q2

and

∂ℓnF2

∂(ℓn(1/x))

as a function ofQ2 for x fixed, showing explicitly the onset of the saturation inx andQ2, namely
the inflection point nearQ2 = 100 GeV2, followed by its flattening aroundQ2 = 4 × 103 GeV2

for x ≤ 10−3 (see Figs. 5-7 in Ref. [2]).
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