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Abstract
The production of soft photons in dense matter is studied in terms of
the two-particle Green’s function in a non-equilibrium medium. The
rate of photons is calculated and studied in detail.

1 Introduction

Production of soft photons in matter is studied in the context of the formalism of two-particle
Green’ functions in a non-equilibrium medium. The exact expression for such functions which
determines completely the spectrum of soft photons in matter is derived in the diffusive approxi-
mation. On a basis of the calculated two-particle Green’s functions the photon rate in equilibrium
matter is obtained. The contribution of the bremsstrahlung, two-to-two particle process as well as
inelastic pair annihilation is taken into account in the derived rate in the whole region of the emis-
sion spectrum of the soft photons which includes the :andau-Pomeranchu-Migdal (LPM) [1, 2]
effect range. It is shown that the consistent considerationof both the elastic and inelastic colli-
sions of in-matter particles leads to the additional suppression of the rate of photons as compared
with the results obtained earlier in studying the Landau-Pomeranchuk effect [2]. The rate of soft
photons from an equilibrium hot quark-gluon plasma is studied in detail. It is shown that the
rate is suppressed along all range of the energies of soft photons due to multi-particle interaction
between particles in the matter. In this way, the spectral distribution of the emitted photons has a
maximum which shifts to the short-wave region of the spectrum with increasing temperature of
the matter.

2 Two-particle Green’s functions and photon production in the matter

The probability of photon production by the currentjν is given by the following expression:
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wherek = (ω,~k) andeα are the 4-vector of momentum and the polarization vector of aphoton;
nγ is the occupancy number of photon states;jν(x) is the current of the particles generating
photons. The angle brackets mean averaging over some state of the particles in matter;x are
4-coordinates. In the absence of a photon ”bath” we havenγ = 0.

When the energy of produced photons is not too large, so that the emission of them can
not change the state of the matter, the bilinear combinationof the currents in the last equation
can be written as follows :
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where〈i|
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Ôµ
)

α,β
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γ,δ
|j〉 is the matrix element of some operator which is independent

on 4-coordinates,Ψα(x) are the psi-operators in the Heisenberg picture;α, β, γ, δ are the spin
variables;αE is the fine structure constant.

Thus, the problem of the calculation of the photon rate in matter is reduced to obtaining
the two-particle Green’s function since it is proportionalto the product of fourΨ-functions.

We assume that the matter is such that the in-matter particles are ultrarelativistic ones and
their spins are equal to1/2. Then, the influence of scattering in the matter on the spin states
of the particles is negligible [1, 2]. Expanding the correlator 〈Ψ†

γ(x2)Ψδ(x2)Ψα(x1)Ψ
†
β(x1)〉

over the whole set of plane waves, we can write the expressionfor the probability of photon
productiondW per unit volume as follows ( see Eqs.(1)-(3)):
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wherepi = (p0
i , ~pi) are the 4-momentum of the radiating particle,s is its spin,uα(p) are

the Dirac spinors. The line overd4w means the averaging and summing over the corresponding
spin states of the particles in the matter. In the case of the generation of photons by fermions
with the spins = 1/2 the operatorÔν is the corresponding Dirac matrix.

The functionK−+,−+

αγ,βδ (p1; p2|p3; p4) is the so-called time-unordered two-particle Green’s
functionK(1(−), 2(−)|3(+), 4(+)) in the momentum representation. Thus, the problem of the
calculation of the photon production in matter is reduced toobtaining the non-chronological
(time-unordered) two-point Green’s functionsK(p1(−); p4(−)|p3(+); p2(+)) [3].

3 Two-particle Green’s functions in non-equilibrium matter in the diffusive approxima-
tion

According to [3] the Green’s functionKac,bd
αγ,βδ(p1; p2|p3; p4) satisfies the Bethe-Salpeter-like

equation which has the following form in the momentum representation (̄h = c = 1) in the
case of the Fermi statistics:
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where the Roman letters are minus or plus sign, the Greek letters mean spin variables; where
Γ...

...(...) is the exact two-particle vertex function consisting of alldiagrams that can not be cut by
a vertical line so that this line only intersects two lines which correspond to the exact or free one-
particle Green’s functions;Gab

αβ(p1 = p3) is the exact 2-point Green’s function in the momentum
representation [4].

In the diffusive approximation the last equation is reducedto the corresponding differential
equation which can be solved in the small angle approach withrespect to elastic scattering of
particles in matter.

When small angle scattering occurs it is convenient to introduce the angle vectors~η and
~θ [1, 2] which are connected with the velocity~v of a particle and the wave vector of a photon~k
by means of the formulae:
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2
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Then, the solution of the equation for the unordered two-particle Green’s function in the
momentum representation can expressed by the following formulae:
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whereF (p , p′, ~η, ~ζ) is equal to:
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whereΓ is the width with respect to inelastic processes.

Substituting Eqs.(6), (7) into the formulae (3) and carrying out the needed integrations, we
derive the probability of the photon production in the absence of the photon ”bath” (nγ = 0):
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whereγ = E/M is the Lorenz-factor of the particle;E(~p) is the energy of a particle,M is its
mass.

The products of the first and last terms in the square bracketsin Eq.(8) are the contribution
to the probability of photon production due to the particle-particle and antiparticle-antiparticle
bremsstrahlung in matter. The products of the other terms inthe square bracket results in the
photon production via the annihilation of off-shell particles and antiparticles and on-shell anti-
particles and particles, respectively.

4 Photon production in a hot equilibrium quark-gluon plasma

We illustrate the applicability of the developed method of the calculation of the photon rate in
matter and consider a hot quark-gluon plasma. We assume thatthe plasma is in equilibrium
at temperatureT ≥ 300MeV and consists of light quarks mainly. In this case the quarks are
ultrarelativistic ones, and they are scattered on small angles. The small angle elastic scattering in
a hot quark-gluon plasma can be described by the t-channel-exchange diagrams [5]. In this case
the mean square of the angle per unit path length is< θ2

s >= 8.5 · Lc · αs
2 · T 3

p2 [5], whereLc

is the Coulomb logarithm depending onαs
2;T andp. Owing to the logarithm we setLc as the

constant of the order of unit.

Taking into account the flavor degeneracy in Eq.(8) we derivethe following for the energy
being escaped from the quark-gluon plasma via the photon emitted by the light quarks:

dε

dω
= 2

ω · W

dω
(8)
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Fig. 1: Dependence of emission energy on the energy of photons at the fixed matter temperature.

The results of the numerical calculation of the photon rate according to Eq.(9) are pre-
sented in Figs.1. It follows from Figs.1. that the emission energy increases with increasing the
temperature of the matter at any fixed frequency. In this way,the maximum of the spectral distri-
bution of the emission energy shifts to the short wave range of the spectrum with increasing the
temperature of the medium.

5 Conclusion

The photon production in matter in terms of the two-particles Green’s functions in non-equilibrium
matter is considered in the paper. The developed method of the calculation of photon rate allows
us to take properly into account the contribution of all mechanism of forming the emission spec-
trum such as the particle (antiparticle) and antiparticle (particle) bremsstrahlung, particles and
off-shell-antiparticle annihilation, two-to-two process. As an illustration of the applicability of
the developed method, the energy emitted from a hot equilibrium quark-gluon plasma due quark
emission is calculated for various temperatures of the matter.
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