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Abstract

We construct a model of high energy heavy ion collisions as two ultra-

relativistic shock waves colliding in AdS5. The metric in the forward

light cone after the collision is constructed perturbatively through ex-

pansion in graviton exchanges. We conclude that shock waves cor-

responding to physical energy-momentum tensors of the nuclei must

completely stop almost immediately after the collision in AdS5, which,

on the field theory side, corresponds to complete nuclear stopping due

to strong coupling effects, likely leading to Landau hydrodynamics.

We propose using zero-net energy shock waves, which continue mov-

ing along their light cones after the collision, as a possible way to

model the collision which may lead to Bjorken hydrodynamics at late

proper times.

1 General Setup: Expansion in Graviton Exchanges

Our goal is to describe the isotropization (and thermalization) of the medium created in heavy

ion collisions assuming that the medium is strongly coupled and using AdS/CFT correspondence

to study its dynamics. We want to construct a metric in AdS5 which is dual to an ultrarelativistic

heavy ion collision as pictured in Fig. 1. Throughout the discussion we will use Bjorken approxi-

mation of the nuclei having an infinite transverse extent and being homogeneous (on the average)

in the transverse direction, such that nothing in our problem would depend on the transverse co-

ordinates x1, x2.

We start with a metric for a single shock wave moving along a light cone [2]:

ds2 =
L2

z2

{

−2 dx+ dx− +
2π2

N2
c

〈T−−(x−)〉 z4 dx− 2 + dx2
⊥ + dz2

}

. (1)

Here x± = x0±x3
√

2
, z is the coordinate describing the 5th dimension such that the boundary of the

AdS space is at z = 0, and L is the curvature radius of the AdS space. According to holographic
renormalization [3], 〈T−−(x−)〉 is the expectation value of the energy-momentum tensor for a
single ultrarelativistic nucleus moving along the light-cone in x+-direction in the gauge theory.

The metric in Eq. (1) is an exact solution of Einstein equations in AdS5: Rµν + 4
L2 gµν = 0.

It can also be represented perturbatively as a single graviton exchange between the source nucleus

†This talk was based on [1].
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Fig. 1: The space-time picture of the ultrarelativistic heavy ion collision in the center-of-mass frame. The collision

axis is labeled x
3, the time is x0.

at the AdS boundary and the location in the bulk where we measure the metric/graviton field. This

is shown in Fig. 2, where the solid line represents the nucleus and the wavy line is the graviton

propagator. Incidentally a single graviton exchange, while being a first-order perturbation of the

empty AdS space, is also an exact solution of Einstein equations. This means higher order tree-

level graviton diagrams are zero (cf. classical gluon field of a single nucleus in covariant gauge

in the Color Glass Condensate (CGC) formalism [4]).
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Fig. 2: A representation of the metric (1) as a graviton (wavy line) exchange between the nucleus at the boundary of

AdS space (the solid line) and the point in the bulk where the metric is measured (denoted by a cross).

Now let us try to find the geometry dual to a collision of two shock waves with the metrics

like that in Eq. (1). Defining t1(x
−) ≡ 2 π2

N2
c
〈T1−−(x−)〉 and t2(x

+) ≡ 2 π2

N2
c
〈T2++(x+)〉 we

write the metric resulting from such a collision as

ds2 =
L2

z2

{

− 2 dx+ dx− + dx2
⊥ + dz2 + t1(x

−) z4 dx− 2 + t2(x
+) z4 dx+ 2

+ higher order graviton exchanges

}

(2)
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Fig. 3: Diagrammatic representation of the metric in Eq. (2). Wavy lines are graviton propagators between the

boundary of the AdS space and the bulk. Graphs A and B correspond to the metrics of the first and the second nucleus

correspondingly. Diagram C is an example of the higher order graviton exchange corrections.

The metric of Eq. (2) is illustrated in Fig. 3. The first two terms in Fig. 3 (diagrams A and

B) correspond to one-graviton exchanges which constitute the individual metrics of each of the

nuclei, as shown in Eq. (1). Our goal below is to calculate the next order correction to these terms,

which is shown in the diagram C in Fig. 3. Fig. 3 illustrates that construction of dual geometry to

a shock wave collision in AdS5 consists of summing up all tree-level graviton exchange diagrams,

similar diagrammatically to the classical gluon field formed by heavy ion collisions in CGC [5].

While classical gluon fields lead to free-streaming final state [6], their AdS graviton “dual” is

likely to lead to a hydrodynamic final state for the gauge theory like the one found in [2].

2 Perturbative Solution of Einstein Equations

To solve Einstein equations perturbatively in graviton exchanges we write

gµν = g(0)
µν + g(1)

µν + g(2)
µν + . . . . (3)

Here g
(0)
µν is the metric of the empty AdS5 space with non-zero components

g
(0)
+− = g

(0)
−+ = −L2

z2
, g

(0)
ij = δij

L2

z2
, i, j = 1, 2, g(0)

zz =
L2

z2
. (4)

g
(1)
µν is the first perturbation of the empty AdS5 space due to the two nuclei

g
(1)
−− = t1(x

−)L2 z2, g
(1)
++ = t2(x

+)L2 z2 (5)

with all the other components zero.

We want to find the next non-trivial correction g
(2)
µν . By the choice of Fefferman-Graham

coordinates one has gzµ = gµz = 0 exactly for µ 6= z and gzz = L2/z2. Hence the non-trivial



components of g
(2)
µν are those for µ, ν = 0, . . . , 3. Due to translational and rotational invariance of

the nuclei in the transverse direction g
(2)
ij ∼ δij . We thus parametrize the unknown components

of g
(2)
µν as

g
(2)
−− = L2

z2 f(x+, x−, z), g
(2)
++ = L2

z2 f̃(x+, x−, z),

g
(2)
+− = −1

2
L2

z2 g(x+, x−, z), g
(2)
ij = L2

z2 h(x+, x−, z) δij (6)

with f , f̃ , g and h some unknown functions. Imposing causality we require that functions f , f̃ ,
g and h are zero before the collision, i.e., that before the collision the metric is given only by
the empty AdS space and by the contributions of the two nuclei (5). Also, according to general

properties of gµν outlined in Sect. 1 (see [3]), we demand that f , f̃ , g and h go to zero as z4

when z → 0.

Linearizing Einstein equations in f , f̃ , g, and hwe solve the obtained system of differential
equation to obtain [1]

h(x+, x−, z) = h0(x
+, x−) z4 + h1(x

+, x−) z6 (7)

where h0 and h1 are determined by the causal solutions of the following equations

(∂+ ∂−)2 h0(x
+, x−) = 8 t1(x

−) t2(x
+), (8)

∂+ ∂− h1(x
+, x−) =

4

3
t1(x

−) t2(x
+). (9)

f , f̃ , and g are easily expressed in terms of h(x+, x−, z) from Eq. (7) (see [1]).

3 Nuclear Stopping and How One May Avoid It

Imagine a collisions of two shock waves whose energy-momentum tensors are given by smeared

delta-functions

t1(x
−) = 2π2 µ

a
θ(x−) θ(a − x−), t2(x

+) = 2π2 µ

a
θ(x+) θ(a − x+). (10)

Here for a shock wave moving in the x+-direction µ ∝ p+ Λ2 A1/3 and a ∝ R Λ
p+ ∝ A1/3

p+ ,

where the nucleus of radius R has A nucleons in it with N2
c valence gluons each. p

+ is the light

cone momentum of each nucleon and Λ is the typical transverse momentum scale. Using the
solution found in Sect. 2 along with holographic renormalization we find the “−−” component
of the energy-momentum tensor of a shock wave after the collision at x− = a/2 and for x+ ≫ a:

〈T−−(x+ ≫ a, x− = a/2)〉 = N2
c

µ

a
− 4π2 N2

c µ2 x+2. (11)

The first term on the right of Eq. (11) is due to the original shock wave while the second term

describes energy loss due to graviton emission.

Eq. (11) shows that 〈T−−〉 of a nucleus becomes zero at light-cone times

x+ ∼ 1√
µ a

∼ 1

ΛA1/3
. (12)



Indeed zero 〈T−−〉 would mean a complete stopping of the shock wave and the corresponding
nucleus. At larger x+ the energy-momentum tensor component in Eq. (11) becomes negative:

one can show that higher order graviton exchanges become important at this light cone time

likely preventing 〈T−−〉 from becoming negative. As the shock wave can loose all of its energy
by emitting a single graviton as shown in Fig. 3C, it is highly unlikely that higher order graviton

exchanges/emissions would prevent the shock wave from stopping. We thus conclude that the

collision of two nuclei at strong coupling leads to a necessary stopping of the two nuclei shortly

after the collision. If the nuclei stop completely in the collision, the strong interactions between

them are almost certain to thermalize the system, probably leading to Landau hydrodynamics [7].

However, in the real-life heavy ion collisions the nuclei interact weakly at the early stages

of the collisions and continue moving along their light cones after the collision. While finding a

dual theory describing these weak coupling effects in the framework of the AdS/CFT correspon-

dence is very hard, we suggest mimicking them by using zero-net energy shock waves with

t1(x
−) = Λ2

1 δ′(x−), t2(x
+) = Λ2

2 δ′(x+) (13)

in the shock waves metric of Eq. (2). δ′(x) denotes the derivative of a delta-function and Λ1 and

Λ2 are the transverse momentum scales describing the two nuclei. One can then show [1] that the

lowest order non-trivial graviton exchange of Fig. 3C leads to the following energy density ǫ and
transverse p and longitudinal p3 pressure components for the produced medium at early times:

ǫ(τ) =
N2

c

π2
4Λ2

1 Λ2
2, p(τ) =

N2
c

π2
4Λ2

1 Λ2
2, p3(τ) = −N2

c

π2
4Λ2

1 Λ2
2. (14)

(One can prove [1] that graviton expansion of Fig. 3 corresponds to expansion in Λ2
1 τ2 and Λ2

2 τ2

for the energy-momentum tensor of the gauge theory: hence the lowest order diagram (Fig. 3C)

gives the dominant contribution to Tµν at early times.) One can see from Eq. (14) that the energy

density of the strongly coupled medium starts out as a constant at early times, a conclusion which

has been reached earlier in [8]. The energy-momentum tensor components in Eq. (14) are also

similar to those found in CGC at early times [9], and may serve as a starting point for a possible

evolution of the strongly-coupled system towards Bjorken hydrodynamics [10].
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