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Abstract

Some recent developments in exact results in relativistic hydrodynam-

ics is reviewed. We discuss phenomenological applications in high-

energy collisions and theoretical features of the solutions. We compare

the method of numerical modelling to the strategy based on exact so-

lutions. We argue that the efforts made and progress achieved in this

seemingly purely theoretical topic is of interest for phenomenology.

1 Introduction

Nowadays one of the primary challenges to physics is to understand the phase structure of strong

interactions. An important goal of heavy-ion physics is thus to interpret the results of high-energy

collider experiments. It is a hard task, since one needs to follow the time-evolution of the created

matter in order to see the collective properties. The mean free path is small if temperature is

high, (as first noted by Fermi [1]), so the idea arises naturally to use hydrodynamics for this

end. Hydrodynamics is almost the only way which dynamically connects the initial conditions

with the final state. As the first results from the RHIC particle accelerator appeared, lots of

models failed to describe the measurements. However, many successful models were based on

hydrodynamics, and this in-turn led to a firm understanding that the created matter is an almost

perfect liquid [2]. A typical feature of the measured soft hadronic observables was the appearance

of different scalings. The strength of hydrodynamics lies in the fact that it relies only on the

simple assumption of local thermal equilibrium and local energy-momentum conservation, and

no physical scales are present, this leads to an easy explanation of scalings.

The equations of relativistic hydrodynamics: In this subsection we briefly review the well-

known equations of perfect fluid relativistic hydrodynamics. The metric is gµν , uµ = γ(1,v) is
the four-velocity field, v = vn is the three-velocity. The pressure is denoted by p , the energy
density by ε , the temperature by T , and the entropy density by σ. In high energy collisions, σ is
large compared to the net baryonic charge density, so in the following we will not take conserved

charges into account. The fundamental equations are obtained by Landau’s argumentation, which

starts from the conservation of energy-momentum and entropy density, expressed as

∂ν(σuν) = 0 , ∂νT
µν = 0 , T µν = (ε + p)uµuν − pgµν . (1)

This form of the Tµν energy-momentum tensor specifies the perfectness of the fluid. The Euler

equation and the energy equation follow as

(ε + p)uν∂νu
µ = (gµρ − uµuρ) ∂ρp, (2)

(ε + p)∂νuν + uν∂νε = 0. (3)



These equations have to be supplemented by an equation of state (EoS), which connects p, T ,
and ε, in order to have a closed set of equations. Assuming ε = κ(T )p, the κ factor is 1/c2

s , the

inverse speed of sound. In most exact solutions one uses κ = const.

Exact vs. numerical solutions: Having the hydrodynamical equations, we can either solve

them numerically or investigate them analytically. They are nonlinear, and thus it is hard to

find even particular analytic solutions. So obviously, the main advantage of the numerical ap-

proach is that in this way one can in principle use any type of initial conditions, and calculate the

corresponding final state observables. On the other hand, the similar advantage of the analytic

approach is also obvious: if one finds a suitable analytic solution, then one can map not only a

single initial condition but a manifold of them, and constrain its parameters. Also, many classes

of exact solutions are parametric solutions, naturally explaining scalings. So our point is that an-

alytic hydrodynamical solutions can also yield important insight into the dynamics. The interest

in this direction has somewhat revived in the last few years; we will first summarize the historical

results, then some recent developments.

2 Historic results

The most important and seminal two relativistic hydrodynamical solutions, the Landau-Khalatni-

kov solution and the Hwa-Bjorken solution had great impact in the application of relativistic

hydrodynamics to high-energy phenomena.

The Landau-Khalatnikov solution: The idea of relativistic hydrodynamics stems mostly

from Landau. He also elaborated on Fermi’s idea on the applications [3,4], and Khalatnikov gave

the first analytic solution to the relativistic hydrodynamical equations [5]. This solution is an 1+1

dimensional, implicit, complicated one. We just highlight the main notions and steps. What is

needed, is the expression of the T temperature and Ω fluid rapidity, defined as v = tanh Ω, as a
function of t and r, the time and spatial coordinate, or of x+ = t+r and x− = t−r, the lightcone
coordinates. Rearranging the hydrodynamical equations a bit, one arrives at the conclusion that

the key to the solution is a potential, Φ(x+, x−), with ∂+Φ = TeΩ, ∂−Φ = Te−Ω, and Φ can
be calculated from its Legendre-transform χ

(

TeΩ, T e−Ω
)

= Φ − x+TeΩ − x−Te−Ω, which

satisfies the linear Khalatnikov-equation:

∂2
θχ (θ,Ω) + (κ − 1) ∂θχ (θ,Ω) − κ∂2

Ωχ (θ,Ω) = 0, (4)

where θ = ln T was used. Now the solution of this equation can be written up with integral-
formulas using the Green-function formalism (see e.g. [6]); the essence of the Landau-Khalatni-

kov-solution is the fully stopped finite piece of matter initial condition. It yields approximately

Gaussian rapidity distribution for the produced particles, which is a realistic prediction.

The Hwa-Bjorken solution: Contrasted to the Landau-Khalatnikov solution, the Hwa-

Bjorken solution (originally formulated by Hwa [7], discussed by many others, rediscovered

and fully exploited by Bjorken [8]) provides an over-simplified picture of the 1+1 dimensional

dynamics. It uses the τ and η Rindler-coordinates: the time t and spatial coordinate r is ex-
pressed as t = τ cosh η, r = τ sinh η. The core assumption (valid at infinite collision energies)
is the boost-invariance, i.e. that σ and T are independent of η, and indeed, the simple

v = r/t , σ0/σ = τ0/τ (5)



forms give an accelerationless solution of the hydrodynamical equations. The expression of the

temperature depends on the actual value of κ. This solution leads to a flat rapidity distribution,
thus although it can be used approximately to various estimates, it needs a correction.

3 Recent results

Nonrelativistic models: Although relativistic effects are more than essential in high-energy exper-

iments, the nonrelativistic case also deserves a brief summary here: the equations are much sim-

per, and allow for more exact solutions [9–13]. A pretty general family is described in Ref. [11],

with a self-similar ellipsoidal velocity and temperature profile. It contains some of the other

solutions as special cases. It serves as a base of the Buda-Lund model, which is successful in

describing particle spectra, correlations, and their scalings [14, 15].

It is also worthwhile to mention this exact solution because (as far as we know) this is the

only one which can be generalized for arbitrary temperature-dependent speed of sound: if one

assumes Gaussian density profile and spatially constant temperature, then one gets a parametric

solution for any κ(T ) function. This result — though non-relativistic — is unique, and makes
possible to use any QCD-inspired EoS. One would naturally look for similar relativistic solutions.

Relativistic accelerationless solutions: The generalization of the Hwa-Bjorken solution

to arbitrary number of spatial dimensions seems a straightforward direction of development,

although it was a formidable task [16,17]. These solutions are also the relativistic equivalents of

the nonrelativistic solutions mentioned in the previous subsection. They have an accelerationless,

spherically symmetric velocity profile: v = r/t. The pressure is p = nT , with some conserved
charge n. Ellipsoidal profiles are allowed in the forms of n and T as

n = n0

(τ0

τ

)3 1

T (S)
, T = T0

(τ0

τ

)3 1

κ T (S) , S =
1

t2

(

x2

A2
+

y2

B2
+

z2

C2

)

, (6)

where T is an arbitrary function of the ellipsoidal scaling variable S, with principal axes A, B,
and C in the directions x, y, and z. In Ref. [17] other generalizations are also found, e.g. to
hyperbolic profiles, and Ref. [18] shows a slight generalization, where even the velocity field

can show more general, ellipsoidal symmetry, but still without any acceleration. Other important

accelerationless solutions were presented in Refs. [19, 20].

Accelerating solutions: There were no known examples of exact explicit and accelerating

solutions until recently an interesting class of spherically symmetric solutions emerged [21, 22]:

as a generalization of the Hwa-Bjorken solution, one finds that the

v = tanh (λη) , p = p0 (τ0/τ)λd(κ+1)/κ cosh−(d−1)Φλ (η/2) (7)

expressions are indeed solutions of the hydrodynamical equations, for certain values of the real

parameters λ, d, Φλ and κ: κ is the (constant) inverse speed of sound, d is the number of spatial
dimensions, λ is a parameter of the solution; for λ = 1 the Hwa-Bjorken solution is recovered, for
λ 6= 1 the solution is accelerating. The Φλ parameter is introduced because for some choices of

λ the pressure depends on η as well. The allowed parameter sets are listed in Table 1. They have
many interesting properties; for a detailed explanation, see Ref. [22]. The κ = 1, d = 1 solutions,
on the other hand, allow to an easy approximate calculation of the rapidity distribution [22].



Case λ d κ φλ

(a) 2 ∈ R d 0
(b) 1

2 ∈ R 1 κ+1
κ

(c) 3
2 ∈ R

4d−1
3

κ+1
κ

(d) 1 ∈ R ∈ R 0
(e) ∈ R 1 1 0

Table 1: Allowed parameters for the family of accelerating solutions of Eq. (7).

These distributions qualitatively agree with the observed peaked (Gaussian) structure, and the λ
parameter can be extracted from a fit to measured data with acceptable statistical significance,

thus these solutions serve as a means to improve Bjorken’s original estimate [8] of the initial

energy density: the work done by the fluid (because of acceleration) and the shift in the estimated

origin of the trajectories caused by the presence of acceleration leads to the conclusion that the

Bjorken estimate needs to be corrected by a factor greater than 1: for
√

sNN = 200GeV Au+Au
collisions, from rapidity distributions measured by the BRAHMS collaboration, one gets not less

than a factor of 2.0±0.1 correction, and taking the softness of the EoS into account, a conjectured
correction factor of 2.9 ± 0.2 [21]. This result is important in the interpretation of experimental
data in terms of advanced estimates of the initial energy densities. A somewhat less important

estimate can also be made more precise: the life-time of the reaction increases by about 20% with

taking the acceleration into account in this way [21]. It should be noted that in the case of stiff

EoS, κ = 1, not only these solutions with the λ parameter, but the general explicit solution can
be obtained [22] because of an analogy to a linear wave-equation. For multi-dimensional flows,

this idea resulted in a broad class of new general solutions [23], although only for this particular

EoS, and it is not clear how these results could be generalized for any other.

Harmonic flows in 1 + 1 dimensions: Another recent approach toward new solutions was
a generalization of the Bjorken ansatz (the boost invariance) to a harmonic ansatz: ∂+∂−Ω = 0.
A new class of solutions is obtained when substituted into the hydrodynamical equations [24]:

p = p0 exp

{

−(1 + κ)2

4κ

(

l2+ + l2−
)

+
κ2 − 1

2κ
l+l−

}

, Ω =
1

2

(

l2+ − l2−
)

. (8)

The notations are

l±(x±) =
√

ln F± , z± = h

∫ F± dx√
ln x

, (9)

where h is an arbitrary constant. This solution, although not fully explicit, is very interesting,
since it interpolates between the Landau and the Bjorken pictures (fixed h, l± → ∞, and h → 0,
respectively). If one calculates the entropy density per unit rapidity, which is proportional to the

observable particle distribution, it depends on the assumed freeze-out surface, but in general it is

approximately Gaussian [24]. More general expressions for the entropy flow dS
dn , based partially

on the Khalatnikov method, were discussed recently in Ref. [6].



4 Summary: where we are now and where to go

The interest in the numerical simulations of relativistic hydrodynamics is steadily growing: it

seems obvious to almost everyone that hydrodynamics is the correct tool to describe high-energy

collective phenomena. We see now that a similar common interest begins to arise towards exact

solutions. With simple examples we tried to demonstrate that there are many new and interest-

ing solutions, and that these are of phenomenological importance: if one has a solution with a

few adjustable fit parameters, it gives invaluable insight into the dynamics and yields advanced

estimates for the initial conditions (such as energy density, life-time).

Finding exact solutions to the hydrodynamical equations, however, is a difficult problem,

and needs lots of effort. For instance, there is no known solution in more than one spatial dimen-

sions with a little bit general equation of state. Similarly, no accelerating solutions are known

which go beyond spherical symmetry. The quest for such solutions (e.g. for an ellipsoidally

symmetric one) might lead to a more accurate description of the observables, and thus test the

perfectness of the fluid and the used equation of state.

The support of OTKA T49466 and T73143 grants is gratefully acknowledged. We thank

to the organizers of ISMD 2008 for their kind hospitality and support.

References

[1] E. Fermi, Prog. Theor. Phys. 5, 570 (1950).

[2] PHENIX Collaboration, K. Adcox et al., Nucl. Phys. A757, 184 (2005). nucl-ex/0410003.

[3] L. D. Landau, Izv. Akad. Nauk SSSR Ser. Fiz. 17, 51 (1953).

[4] S. Z. Belenkij and L. D. Landau, Nuovo Cim. Suppl. 3S10, 15 (1956).

[5] I. M. Khalatnikov, Zhur. Eksp. Teor. Fiz. 27, 51 (1953).

[6] G. Beuf, R. Peschanski, and E. N. Saridakis (2008). 0808.1073.

[7] R. C. Hwa, Phys. Rev. D10, 2260 (1974).

[8] J. D. Bjorken, Phys. Rev. D27, 140 (1983).
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[19] T. S. Biró, Phys. Lett. B474, 21 (2000). nucl-th/9911004.
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