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Abstract

We review the holographic conjecture which links the transition from

a dilute to a dense system of partons in DIS with the formation of tiny

black holes in the gravitational collapse of a perfect fluid. At small ’t

Hooft coupling and large center-of-mass energies the onset of unitar-

ity in the Yang-Mills side is interpreted as the formation of a horizon

due to nonlinear gravitational dynamics in the higher dimensional bulk.

Recent progress in the study of critical behaviour present in the forma-

tion of closed trapped surfaces in the collision of gravitational shock

waves is also presented.

1 Critical gravitational collapse of a massless scalar field and a perfect fluid

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

-10 -5  0  5  10

y

Log z

GRHA - dim = 5

k = 0.01, D = 158.92, Log zsp = - 3.74
k = 0.10, D =   39.92, Log zsp = - 1.31
k = 0.20, D =   13.41, Log zsp = - 0.61

Fig. 1: Solutions for different CSS backgrounds.

In Ref. [1] it was remarked that the

critical exponent characterizing the

formation of a small black hole in

the gravitational collapse of a mass-

less scalar field is quite similar to the

critical exponent present in the satu-

ration line of DIS. This line marks

the onset of saturation effects in

the evolution of parton distribution

functions at very small values of

Bjorken x. It should be indicated
that the calculation of the critical ex-

ponent in the QCD side suffers from

some intrinsic uncertainties even if

one stays in the leading logarithmic

approximation. If the calculation of

the saturation line is performed us-

ing an effective absorptive barrier

implemented in the integration over

transverse momenta [2] one obtains

a critical exponent ∼ 2.44. Using other approaches where unitarity takes the form of a nonlinear

† speaker



term in the evolution equation [3, 4] this number changes to ∼ 2.28 [5]. Nevertheless it is en-
couraging that these are pure numbers independent of the value taken for the coupling and that

they are quite similar to each other. Higher order corrections in the gauge theory side, such as

next-to-leading order terms, are suppressed if we assume that the ’t Hooft coupling is very small.

The calculation of the so-called Choptuik exponent in the gravity side is robust and a recent

study [6] has shown that its value for the scalar field in 5 dimensions is ∼ 2.42.
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Fig. 2: Liapunov perturbations for different CSS backgrounds.

There is a more serious com-

plication to map perturbative satu-

ration with the critical collapse of

a scalar field. In this case the so-

lutions to Einstein’s equations for

any scaleless quantity have a dis-

crete self-similarity. This means that

they reproduce themselves after a

simultaneous fixed discrete rescal-

ing in the time and radial compo-

nents. Such a discrete scaling, also

known as “echoing”, is not present

in the Yang-Mills side. However,

not everything is lost since it is well

known that DIS data for the total

cross section in the collision of a vir-

tual photon with a proton manifests

what is known as “geometric scal-

ing”. This behaviour appears for a

large range of values of the virtual-

ity of the photon, Q2, when Bjorken x ≃ Q2/s is smaller than 0.01, with s being the center-of-
mass energy in the process. In this region the HERA data is a function only of the ratio of Q2

over x to some power [7]. In this way we can consider this scaling as continuous self-similar
(CSS) because the cross section is invariant under any shift in Q2, compensated by a similar one

in x. This CSS can be interpreted within perturbative QCD as a consequence of saturation effects
where the parton multiplicity is so large that a simple linear evolution cannot hold any longer and

recombination effects must be taken into account. These effects are of non-perturbative origin,

in the sense that they are related to the dynamics of the formation of a high density system, but

not related to confinement since the typical transverse scale in the problem is set by Q2, always

above Λ2
QCD.

The natural question now is whether there exists any gravitational system with CSS col-

lapse which is characterized by a similar critical exponent to that found in the case of the scalar

field. This question motivated us to study [8] the critical gravitational collapse of a perfect fluid

with barotropic equation of state p = kρ and spherical symmetry in arbitrary dimensions. In this
type of collapse black hole singularities are formed with a radius given by

rBH ∼ (p − p∗)γ ,



where p parameterizes generic values of the initial radial density of collapsing fluid. p∗ denotes
a critical region of densities for which, if p is above but close to p∗, a singularity appears. We
are particularly interested in this system because the critical solutions at p = p∗ are CSS and
can be directly calculated from Einstein equations sourced by the perfect fluid imposing that they

depend only on the variable z = −r/t. For fine tuned values of p∗ we numerically obtained these
background solutions at different values of the speed of sound

√
k in the fluid. An example of

our numerical results is shown in Fig. 1 where we plot the ratio of the fluid local density at the

point r over the global density up to that point. We show the behaviour of this function versus
the variable z for different values of k in five dimensions. Note that D, which is related to p∗,
has to be fine tuned in order to cross the so-called “sonic point”, where the surfaces of constant

z move at a speed equal to
√

k. The main constraint to select the correct value of D is to have
analyticity at this sonic point, indicated by a dot in the figure.

The critical exponent γ in the formula for the radius of the black hole can be found by
introducing a Lyapunov perturbation around the CSS critical line y(z) of the form

y(t, z) = y(z)
(

1 + ǫ (−t)−
1

γ y1(z)
)

.

To calculate the perturbations y1(z) it is again crucial to have analyticity at the sonic point.
This condition fixes the value for the single unstable mode γ. The form of the perturbations can
be seen in Fig. 2 where λ = 1/γ. The corresponding γ modes which we calculated for different
dimensions are shown in Table 1. The results for dimension four coincide with those found in

Ref. [9]. Thinking of a possible holographic interpretation we have also investigated how these

critical exponents vary with the dimension. To match the numbers obtained in QCD we would

be looking for a range of γ ∈ (0.41, 0.44). Of course we now face the problem of selecting
the correct k. A possible candidate would be that corresponding to a conformal fluid of traceless
energy-momentum tensor for which k = 1/(d−1). An heuristic motivation for this choice is that
in the linear growth of parton distributions and in the transition vertex from two reggeized gluons

to four reggeized gluons, which is a fundamental piece in the unitarization corrections, there is

an associated SL(2, C) invariance [10]. We are currently investigating the extension of Table 1
up to dimension ten since it is possible that the holographic dual might live in a AdS5 × S5

geometry where all dimensions would be equally important since the critical black holes here

discussed can be arbitrarily small. Preliminary studies show that γ is close to the QCD range of
results in the conformal limit of ten dimensions.

Although these investigations show encouraging results we are still far from having a holo-

graphic picture of the problem at hand. There are many unanswered questions and probably the

most pressing one is to find the geometry corresponding to the perturbative hard pomeron. In

Ref. [11] this problem was addressed from the large ’t Hooft coupling perspective arguing that

the main features of the BFKL kernel cannot change too much in the transition from weak to

strong coupling since it is protected by conformal invariance. Our research targets a more com-

plicated problem, not only because we handle perturbative results in the Yang-Mills side but also

because we are at the transition region from a single pomeron picture to a regime dominated by

multiple pomeron exchanges.



k γd=4 γd=5 γd=6 γd=7

0.01 0.114 0.225 0.290 0.330

0.02 0.123 0.233 0.296 0.336

0.03 0.131 0.241 0.303 0.342

0.04 0.140 0.248 0.309 0.348

0.05 0.148 0.256 0.316 0.353

0.06 0.156 0.263 0.322 0.359

0.07 0.164 0.270 0.328 0.364

0.08 0.172 0.277 0.334 0.369

0.09 0.180 0.284 0.340 0.375

0.10 0.187 0.291 0.346 0.380

0.11 0.195 0.298 0.352 0.385

0.12 0.203 0.304 0.358 0.390

0.13 0.210 0.311 0.364 0.396

0.14 0.218 0.318 0.369 0.401

0.15 0.225 0.324 0.375 0.406

0.16 0.232 0.330 0.381 0.411

0.17 0.240 0.337 0.386 0.416

0.18 0.247 0.343 0.392 0.421

0.19 0.254 0.347 0.397 0.426

0.20 0.261 0.356 0.403 0.431

0.21 0.259 0.362 0.408 0.435

0.22 0.276 0.368 0.414 0.440

0.23 0.283 0.375 0.419 0.445

0.24 0.290 0.381 0.425 0.450

0.25 0.297 0.387 0.430 0.454

Table 1: Values of the Choptuik exponent with precision ±0.001 as a function of k for d = 4, 5, 6 and 7.



2 Closed trapped surfaces in shock wave collisions

Some light might be shed on these issues if we focus our attention on a related problem which

shares some features with the physics of saturation. In Ref. [12] a gravity dual of a boosted

Woods-Saxon nuclear energy density for heavy ions was proposed. For example, if we consider

gold with a typical size L and energy E the corresponding energy momentum tensor on the
gauge theory side, Tµν , is associated with a bulk gravitational source of the form ρ(xi, z) ∼
Eδ(xi)δ(z −L), where xi are the transverse coordinates and z the holographic direction in aH3

space. The R3,1 boundary lies at z = 0. The solution to the Einstein equations in this space
(

⊔⊓H3
−

3

L2

)

Φ(xi, z) = δ(u)ρ(xi, z)

can be used to construct a five dimensional AdS shock wave bulk geometry with metric

ds2 =
L2

z2

(

−dudv +
∑

i

dx2
i + dz2 +

z

L
Φ(xi, z)δ(u)du2

)

.
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Fig. 3: Size of the trapped surface versus the diluting parameter ω.

It is very interesting that in [12]

when head-on collisions of heavy

ions, which correspond to the grav-

itational collision of two shock

waves, are considered, a closed

trapped surface is formed. The

area of the trapped surface is of

the order of the entropy generated

in the collision, which is itself re-

lated to the number of generated

charged tracks. The total energy in

the system can be written as E ∼
∫

H3
ρ(xi, z). If a O(3) symmetry

in the H3 plane is assumed then the

source can be written as a function

of the chordal coordinate q(xi, z) =
(
∑

i x
2
i + (z − L)2

)

/(4zL). In this
coordinate the trapped surface is

characterized by a density function

ρ(q) describing the strong gravity
collision region such that E ∼

∫ qc

0 ρ(q) with the horizon defined by the surface q = qc.

It would be important to see if a similar set up could be used to describe DIS in the sat-

uration region with the onset of nonlinear effects being related to the formation of a trapped

surface. Indeed, we have found that in the formulation of [12] a critical phenomena resembling

that found by Choptuik is present. In order to see this it is needed to smear the energy den-

sity in the chordal variable using, for example, a Gaussian distribution with width parametrized

by a variable ω. With an AdS metric in different dimensions we have solved the equation to
form a close trapped surface of size qc as a function of ω. The results are plotted in Fig. 3.



We observe that in dimensions larger than five it is always possible to form an arbitrary small

trapped surface by simply diluting the initial energy density. This is done by increasing ω
while keeping the total energy constant. No critical behaviour is found in these dimensions.
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Fig. 4: Size of the trapped surface versus the diluting parameter ω.

However, the situation is more inter-

esting at d = 4, 5 since criticality
kicks in. In both cases there exists

a maximal ω = ωc beyond which it

is not possible to form a trapped sur-

face and in the region close to this

point the relation

qc ≃ q∗c + (ωc − ω)γ

holds with q∗c being different from
zero in d = 4 and canceling for
d = 5. The critical exponent γ
is 1 in d = 5 and 0.5 in d = 4.
When considering the same physics

in a flat background we have found

an equivalent behaviour, shown in

Fig. 4. The only difference is that

now the critical exponent γ is 0.5 in
both dimensions 4 and 5. Further

details on these results can be found in Ref. [13].
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