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Abstract

A series of previous papers [1] develops a dipole model in initial state

impact parameter space that includes subleading effects such as run-

ning αs, unitarity, confinement and saturation. Here some recent work

[2] is presented, where the model is applied to a new set of data: vec-

tor meson production in γ⋆p, DVCS and dσ/dt in pp. This allows

us to tune a more realistic model of the proton wavefunction from the

pp data, and confirm the predictive power of the model in high Q2 of

DVCS and vector meson production. For low Q2 vector meson res-

onances dominate the photon wavefunction, making our predictions

depend on a tuned parametrisation in this range.

1 Why Dipoles?

To calculate cross sections for hadronic particles it is important to understand the evolution in

the initial state. In a high energy collision, each of the two incoming particles will emit gluons

before meeting and interacting. Enumerate the possible initial states with i, j and give each state

a probability wi such that
∑

i wi = 1. With a scattering probability pij between state i and j the

total interaction probability can be expressed as

Ttot(b) = 2
∑

ij

wiwjpij . (1)

That means that the expectation value of pij , weighted by wi can be measured. Similarly the

diffractive, including elastic, cross section is

Tdiff(b) =
∑

ij

wiwjp
2
ij . (2)

To get both these cross sections right, not only the expectation value of pij with respect to wi is

required, but also the fluctuations. That is, it is possible to measure if the cross section is dom-

inated by frequently occuring states with a low interaction probability, giving a low Tdiff/Ttot,

or by rare states with a high interaction probability, giving a high Tdiff/Ttot. Also the elastic

interaction probability can be written in this way as

Tel(b) =





∑

ij

wiwjpij





2

. (3)

This makes the form of the impact parameter profile important since the more spread out the

interaction probability is, the smaller the elastic cross section will be.

These arguments show that to describe all the above cross sections, it is important to have

a good description of the fluctuations, both in b and wi.
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2 Our Model

Our model uses colour dipoles in impact parameter space, based on the model by Mueller [3].

One of the reasons to do the calculations in impact parameter space is that each emission is on

a shorter timescale than the previous ones, essentially freezing their transverse position. Each

incoming particle is represented by a dipole state (for example the photon is represented as a

single dipole), which is then evolved in rapidity before colliding. The evolution is equivalent to

leading order BFKL, and we have made corrections for higher order effects.

2.1 Evolution

Each dipole is emitting gluons, forming two new dipoles with a probability density of

dP

dY
=

ᾱ(r<)

2πr2max

d2z

(

x− z

|x− z|
K1(

|x − z|

rmax

) −
y − z

|y − z|
K1(

|y − z|

rmax

)

)2

(4)

where x and y are the transverse positions of the partons in the original dipole, while z is the

position of the emitted gluon. r< is the size of the smallest of the three involved dipoles (the

original one, and the two new ones), and is setting the scale for the running coupling constant

for the emission. Also confinement is included in this emission density, which takes form in the

modified Bessel functions K1 which fall off exponentially for large arguments. The confinement

scale is set by rmax, corresponding to a gluon mass 1/rmax in a screened Yukawa potential.

Energy conservation is accounted for by approximating the pT of the partons as twice

the inverse dipole size, from which p+ can be calculated. Allowing only emissions that respect

energy-momentum conservation gives a cutoff for emitting too small dipoles, that is, too large

pT, cutting away the poles in the emission probability (4).

Apart from the 1 to 2 emission above, the model also includes a 2 to 2 dipole swing, where

dipoles of the same colour may recombine, changing the colour flow, but not the momenta.

The swing favours small dipoles over large dipoles, which reduces the cross section and gives a

saturation effect.

2.2 Interaction and Cross sections

To find the cross section, the interaction probability of two evolved states of dipoles is calculated

for a given impact parameter. The probability that a dipole i from one state will interact with a

dipole j in the other state is

fij =
α2

s

8

(

log

(

(xi − yj)
2(yi − xj)

2

(xi − xj)2(yi − yj)2

))2

, (5)

with xi, yi the transverse positions of the partons of dipole i. This is then corrected for confine-

ment, which introduces Bessel functions as was done for the emission probability (4). Using this,

the total interaction probability of the two dipole states can be calculated in the unitarised form,

T (b) = 1 − e−
∑

fij . (6)
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Fig. 1: Left: The total and elastic pp cross section. Right: Differential dσ/dt cross section in pp. Data from [4].

This is again using the fact that the interactions are taking place during a short timescale, freezing

the transverse positions of the partons. This evolution and interaction can be simulated in a Monte

Carlo program to determine the interaction probability numerically. Integrating over the impact

parameter then gives the total cross section, and modifications to the order of integration as in

section 1 yields diffractive and elastic cross sections.

3 Results

By tuning the two evolution parameters ΛQCD and rmax and the proton wavefunction we can

describe the total and elastic pp cross section (fig 1). The tuned proton wavefunction is an

equilateral triangle of dipoles with a radius of 3 GeV−1. It should be noted that once the cross

section is tuned for a total and elastic cross section at a given energy, the energy dependence of

the cross sections depends very weakly on the tuning, so it is a direct result of the evolution in

our model. The fourier transform of the elastic amplitude then gives also σ(t). As the elastic

amplitude is calculated through the optical theorem, only the imaginary part is included, which

causes a dip to 0 amplitude at a certain t. With the real part included, this dip would be smoothed

out. The fact that it is possible to describe the energy dependence of the cross sections, as well

as following σ(t) over many orders of magnitude is a sign of the predictive power of the model.

It is possible to calculate also γ⋆p using the virtual photon dipole wavefunction. For high

Q2 the wavefunction can be calculated perturbatively and the cross section as function of Q2 and

W is predicted directly from the pp tuning. The results agree with data (dotted line in fig 2),

showing that the model can predict data without being tuned to it.

For low Q2 (below 5-10 GeV2) the photon wavefunction will have important soft contri-

butions. Confinement suppresses too large dipoles, which can be taken into account by shrinking

large dipoles coming out from the perturbative wavefunction. This can be compared to the con-

finement used in the evolution and can be estimated using the confinement scale rmax from the

evolution. The most important effect is when the quark-antiquark pair propagates as a vector

meson, boosting the wavefunction at mesonic dipole sizes. This vector meson resonance is not

well understood quantitatively, so it had to be parametrised and tuned to low Q2 total γ⋆p cross
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Fig. 2: Top: Total γ⋆p as function of Q2 (left) and W (right). Bottom: DVCS for W = 82 GeV as function of Q2

(left) and t (right). Data from [5, 6]

section data. The result with both soft effects included in the photon wavefunction is shown in

the full line in fig 2.

Once the photon wavefunction was determined, also for low Q2, the deeply virtual Comp-

ton scattering (DVCS) cross section can be calculated, using a Q2 = 0 photon wavefunction for

the outgoing particle. The results agree with data in Q2, W and t dependence as can be seen in

the plots in fig 2, further confirming the predictive power of our model.

By replacing the outgoing Q2 = 0 photon wavefunction with a vector meson wavefunc-

tion, we can also calculate vector meson production cross sections. The vector meson wave-

function cannot be calculated perturbatively, but there are several models that estimate it, using

normalisation and decay width to fix parametrisations. We used the DGKP [7] and the Boosted

Gaussian [8] models in our calculations. For the light vector mesons, the Q2 and W dependence

on the total cross section agrees well with data, specially for the Boosted Gaussian model (fig 3).

Also the t dependence agrees for high Q2, while for lower Q2, the slope is too steep. This is not

surprising, as the vector meson dominance of the photon wavefunction dominates in this range.

It was tuned only to the total cross section in γ⋆p, and we can not expect this parametrisation to

correctly describe also the impact parameter profile that determines the t dependence. Possibly,

this is also the case in DVCS, but since the available experimental data for t dependence does

not go below Q2 = 8 GeV2, it is not observed. Moreover, the vector meson wavefunctions are

approximative parametrisations, and they may yield incorrect t distributions.

Also ψ production can be calculated with this method, however, the results are not as good.

One source of uncertainty is the vector meson resonance correction to the photon wavefunction,
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Fig. 3: Rho production as function of Q2 (left) and W (right). Data from [9, 10]

which would have to be retuned for a charm pair fluctuating into a ψ. More work is needed to

achieve reliable results for heavy quark vector mesons.

4 Conclusions and outlook

Our dipole model has proven to describe a wide selection of data in both pp and in γ⋆p collisions.

The pp data and the total γ⋆p cross section has been used for tuning the parameters of the evo-

lution and the wavefunctions, while other aspects, like DVCS and the energy dependence of all

processes, have been found without tuning, showing good predictive power of the model. For low

Q2 there are soft effects in the photon wave functions that we do not understand quantitatively,

mainly the vector meson resonance.

Looking forward, we are currently working on using the information in the evolved states

to determine not only the cross section, but also the exclusive final state. The evolution gives us

the particles, their momenta, and even their colour connections. Some of the partons that have not

collided will, however, have spacelike momenta and have to be reabsorbed as virtual fluctuations.
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