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We use atomic spectra to extend pure Coulomb’s law tests to larger masses. We interpret
these results in terms of constraints for hidden sector photons. With existing data the
bounds for hidden photons are not improved. However we find that our atomic spectra
bounds are an especially clean and model-independent complement to existing ones from
other methods. We also show that data from future tests of true muonium and muonic
atoms could produce atomic spectra bounds which probe untested parameter space.

1 Introduction

We use atomic spectroscopy of ordinary and exotic atoms to test Coulomb’s law with high
precision on atomic length scales [1, 2]. This in turn allows us to constrain new particles such
as hidden photons [1, 4, 5] which arise naturally in a variety of extensions of the standard
model [4, 6, 7] (see also [8] for a review)1 2.

Hidden photons cause a deviation from Coulomb’s law,

V (r) = −Zα
r

(1 + e−mγ′rχ2) (1)

where mγ′ is the mass of the hidden photon and χ is the kinetic mixing [6]. Note that indepen-
dent of the particle interpretation, our bounds can more generally constrain deviations from
Coulomb’s law by a Yukawa type potential.

In the small and large mass limits we recover the original 1
r form potential. It is only in

the intermediate mass regions that we expect to see measurable deviations to Coulomb’s Law.
Hence we expect our bounds to drop off at low and high energies.

2 Spectroscopic bounds

We adapt the method presented in Ref. [9], where the Lamb shift in atomic hydrogen is used
to bound minicharged particles.

At first order in perturbation theory the energy shift of a state |ψn〉 is given by

δE(1)
n = 〈ψn | H ′ | ψn〉 = 〈ψn | δV | ψn〉. (2)

1Note that we can also produce bounds for minicharged particles [3, 9, 10]. However they turn out to be
relatively weak.

2Spectroscopy can also constrain Unparticles (see e.g. [11]).
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We then impose that δE(1)
n must be smaller than the uncertainty in the transition 3 4. This

constrains δV .

Figure 1: Bounds on hidden photons. The thick blue curve is from the 2s1/2−2p1/2 transition in
atomic hydrogen. The red curve shows the naive bound from 1s1/2− 2s1/2 in atomic hydrogen.
It behaves incorrectly at small mγ′. The thin joined (green) curve is correctly renormalised by
combining 1s1/2−2s1/2 with 2s1/2−8s1/2. The colour filled regions are existing bounds. Those
from pure Coulomb’s law tests are the darker section (brown) [1, 2]. The lower dashed curve
(black) shows a speculative bound from 2s1/2 − 2p1/2 in true muonium, using only theoretical
values. The upper dashed curve (purple) uses experimental data from muonic hydrogen to form
another speculative bound. Both speculative curves penetrate untested parameter space.

We find that a naive application of this method fails. Transitions between states with
different values of the principal quantum number n do not exhibit the correct drop off for small
masses. For example the naive 1s1/2 − 2s1/2 bound from atomic hydrogen is plotted as the
dotted red curve in Fig. 1. We can understand the physical reasoning for this from Eq. (1).
At small masses our perturbation reduces to a term that has the form of a Coulomb potential,
but with an extra factor (1 + χ2), which we have not absorbed into α. In other words we have
forgotten to properly (re-)normalise the coupling α. We do this by treating α as a unknown
instead of a constant, and using a second transition to solve for it. We can then produce
properly renormalised bounds which are functions of two transitions and not one. Fig. 1
shows a correctly renormalised bound (thin, joined, green) using 1s1/2−2s1/2 and 2s1/2−8s1/2

transitions in atomic hydrogen.
Note that Lamb shift 5 bounds renormalise trivially and can therefore be formed using only

one measurement (see [3]). The 2s1/2 − 2p1/2 bound from atomic hydrogen is the thick blue
joined curve in 1. The bound drops off correctly for small masses.

Other transitions involving higher excited states in atomic hydrogen are considered. However
these do not form good bounds, mainly due to high experimental uncertainties (see [3]).

We then apply the method to other atomic systems. The idea is that other atomic systems
may have advantages over atomic hydrogen. For example in pure QED systems like muonium

3We conservatively estimate the “uncertainty” by adding absolute values of the experimental and theoretical
errors (see [3]).

4Charge radii of nuclei are a major source of uncertainty. These radii must be determined from an independent
source. Moreover, to avoid even partial degeneracies (which weaken the bound at short length scales), the
determination of the radius should be obtained at high momentum transfer. Hence we use electron scattering
values.

5A Lamb shift is defined by the energy difference between two states with the same n, j.

2 Patras 2010

SPECTROSCOPIC BOUNDS ON NEW PHYSICS

PATRAS 2010 173



and positronium, we can assume a point-like nucleus [12]. This eliminates large uncertainties
from finite nuclear size effects. Smaller uncertainties strengthen our bounds, as can be seen
from Eq. 2.

However in many cases theoretical uncertainties are larger. For example hadronic orbiting
particles also interact with the nucleus via the strong interaction, which causes huge theoretical
and experimental uncertainties (see [3]).

Also many of these atoms have larger reduced masses or smaller Bohr radii than atomic
hydrogen, shifting our bounds to higher masses and towards the unexplored region.

All relevant transitions in hydrogen-like atoms were examined to see whether the advantages
outweigh the disadvantages. We found overall that we could not improve upon our original
atomic hydrogen bounds using existing data 6.

Our best bounds (the light green and thick dark blue lines in Fig. 1) do not penetrate new
parameter space for hidden photons. However they do improve upon previous Coulomb’s law
tests (brown region in 1) in the sense that they extend the excluded region to higher masses.
This is a non-trivial improvement as Coulomb based bounds are especially clean and model
independent [3, 2]. We often find that other competing bounds are more model dependent; for
example fixed target bounds assume a 100 % branching ratio for hidden photons to decay into
charged standard model particles. If this assumption is wrong, then the bounds are weakened
or possibly invalidated (see [3]).

Finally we investigate the discovery potential of future experiments.
For example, a recent article suggests that true muonium (µ+ µ−) could be produced and

studied in the near future. The reduced mass is ∼ 100 times greater than atomic hydrogen,
and for a pure QED system we expect small theoretical errors. Since no experimental data
is available, we produce a speculative bound using an estimate of the theoretical error (lower
dashed, black in Fig. 1). This penetrates new parameter space, but one still needs to obtain a
coherent experimental result.

The reduced mass of muonic atoms are ∼ 200 times larger than atomic hydrogen. In
references [14, 15] the 2sF=1

1/2 − 2pF=2
3/2 difference in muonic hydrogen is calculated as a function

or the proton radius rp . If we substitute in the most precise current value of rp = 0.8768(69)
fm, from atomic spectra [16], we obtain Eth = −205.984(062) meV. The theoretical uncertainty
alone is quite high. Moreover this also deviates from the recently measured experimental value
of −206.295000(3) meV [15] by around 5σ. This discrepancy is bad for producing bounds, but
could be taken as a potential signal for new physics. We considered if the hidden photon could
be used to explain this anomaly [17]. However this is ruled out by Lamb shift measurements in
atomic hydrogen (see [3]).

However we can form a speculative bound (upper dashed, purple in Fig. 1) from just ex-
perimental uncertainty. This bound penetrates new parameter space. If an independent and
sufficiently precise value of rp could be determined – consistent with the muonic hydrogen
extraction – this speculative bound could be turned into a real one.

6This is actually a slight simplification. The Lamb shift bound for the Z = 2 hydrogen-like ion is marginally
stronger than the corresponding one for atomic hydrogen. This is because the rp anomaly causes a high level
of theoretical uncertainty in atomic hydrogen and weakens the bound considerably. No such anomaly exists
for measurements of alpha particle charge radius, and the helium-like hydrogen Lamb shift gives us a slightly
stronger bound. However the general trend is for bounds to weaken as the nuclear charge Z increases. We
expect this trend to re-established as soon as the rp anomaly is resolved; the atomic hydrogen bound should
then be the strongest.

Patras 2010 3

SABYASACHI ROY

174 PATRAS 2010



3 Conclusion

We have used atomic spectroscopy of ordinary and exotic atoms to constrain deviations from
Coulomb’s law. A fully renormalised method was developed, which provides correctly shaped
constraints for high and low masses. We interpreted these constraints as bounds on hidden
photons and found that pure Coulomb bounds were extended to higher masses. This is a non-
trivial improvement as Coulomb based bounds are especially clean and model-independent, and
provide complementary information to existing ones, which are often more model dependent.
We also find that new parameter space for hidden photons could be penetrated using future
data from exotic atoms.
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