Searching for tetraquarks on the lattice

- S. Prelovsek¹, T. Draper², C.B. Lang³, M. Limmer³, K.-F. Liu², N. Mathur⁴ and D. Mohler⁵
- ¹ Department of Physics, University of Ljubljana and Jozef Stefan Institute, Slovenia.
- ² Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA.
- ³ Institut für Physik, FB Theoretische Physik, Universität Graz, A-8010 Graz, Austria.
- ⁴ Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai, India.
- ⁵ 4004 Wesbrook Mall Vancouver, BC V6T 2A3 Canada, Canada

DOI: will be assigned

We address the question whether the lightest scalar mesons σ and κ are tetraquarks. We present a search for possible light tetraquark states with $J^{PC}=0^{++}$ and $I=0,\ 1/2,\ 3/2,\ 2$ in the dynamical and the quenched lattice simulations using tetraquark interpolators. In all the channels, we unavoidably find lowest scattering states $\pi(k)\pi(-k)$ or $K(k)\pi(-k)$ with back-to-back momentum $k=0,\ 2\pi/L,\cdots$. However, we find an additional light state in the I=0 and I=1/2 channels, which may be related to the observed resonances σ and κ with a strong tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states.

It is still not known whether the lightest observed nonet of scalar mesons σ , κ , $a_0(980)$ and $f_0(980)$ [2] are conventional $\bar{q}q$ states or exotic tetraquark $\bar{q}\bar{q}qq$ states. Tetraquark interpretation was proposed by Jaffe back in 1977 [1] and it is supported by many phenomenological studies, for example [2, 3]. The tetraquarks, composed of a scalar diquark and anti-diquark, form a flavor nonet and are expected to be light. The observed ordering $m_{\kappa} < m_{a_0(980)}$ favors tetraquark interpretation since the I=1 state $[\bar{d}\bar{s}][us]$ with additional valence pair $\bar{s}s$ is naturally heavier than the I=1/2 state $[\bar{s}\bar{d}][du]$.

It is important to determine whether QCD predicts any scalar tetraquark states below 1 GeV from a first principle lattice QCD calculation. Previous lattice simulations [4, 5] have not given the final answer yet. The strongest claim for σ as tetraquark was obtained using the sequential Bayes method to extract the spectrum [4] and needs confirmation using a different method. Our new results, given in this proceeding, are presented with more details in [6, 7].

We calculate the energy spectrum of scalar tetraquark states with $I=0,\ 2,\ 1/2,\ 3/2$ in dynamical and quenched lattice simulations. Our dynamical simulation $(a\simeq 0.15\ \mathrm{fm},\ V=16^3\times 32)$ uses dynamical Chirally Improved u/d quarks [8] and it is the first dynamical simulation intended to study tetraquarks. The quenched simulation $(a\simeq 0.20\ \mathrm{fm},\ V=16^3\times 28)$ uses overlap fermions, which have exact chiral symmetry even at finite a.

The energies of the lowest three physical states are extracted from the correlation functions $C_{ij}(t) = \langle 0|\mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0)|0\rangle_{\vec{p}=\vec{0}} = \sum_n Z_i^n Z_j^{n*} e^{-E_n \ t}$ with tetraquark interpolators $\mathcal{O} \sim \bar{q}\bar{q}qq$, where $Z_i^n \equiv \langle 0|\mathcal{O}_i|n\rangle$. In all the channels we use three different interpolators that are products of two color-singlet currents [6]. In addition, we use two types of diquark anti-diquark interpolators in $I=0,\ 1/2$ channels [6].

When calculating the I = 0, 1/2 correlation matrix, we neglect the so-called single and double disconnected quark contractions [5], as in all previous tetraquark studies. The resulting

508 LP09

states have only a $\bar{q}qqq$ Fock component in this approximation, while they would contain also a $\bar{q}q$ component if single disconnected contractions were taken into account [5]. Since we are searching for "pure" tetraquark states in this pioneering study, our approximation is physically motivated.

All physical states n with given $J^{PC}=0^{++}$ and I propagate between the source and the sink in the correlation functions. Besides possible tetraquark states, there are unavoidable contributions from scattering states $\pi(k)\pi(-k)$ for I=0, 2 and scattering states $\pi(k)K(-k)$ for I=1/2, 3/2. Scattering states have discrete momenta $\vec{k}=\frac{2\pi}{L}\vec{j}$ on the lattice of size L and energy $(m_\pi^2+\vec{k}^2)^{1/2}+(m_{\pi,K}^2+\vec{k}^2)^{1/2}$ in the non-interacting approximation. Our main question is whether we find some light state in addition the scattering states in I=0, 1/2 channels. If such a state is found, it could be related to the resonances σ or κ with a strong tetraquark component.

The energies E_n are extracted from the correlation functions $C_{ij}(t)$ via the eigenvalues $\lambda^n(t) \propto e^{-E_n(t-t_0)}$ of the generalized eigenvalue problem $C(t)\vec{u}^n(t) = \lambda^n(t,t_0)C(t_0)\vec{u}^n$ at some reference time t_0 [9].

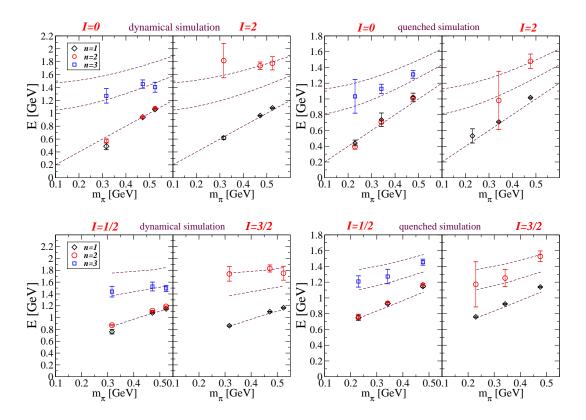


Figure 1: The resulting spectrum E_n for $I=0,\ 2,\ 1/2,\ 3/2$ in the dynamical (left) and the quenched (right) simulations. Note that there are two states (black and red) close to each other in I=0 and I=1/2 cases. The lines at $I=0,\ 2$ present the energies of non-interacting $\pi(k)\pi(-k)$ with $k=j\frac{2\pi}{L}$ and $j=0,1,\sqrt{2}$. Similarly, lines at $I=1/2,\ 3/2$ present energies of $\pi(k)K(-k)$.

LP09 509

The resulting spectrum E_n for all four isospins is shown in Fig. 1. The lines present the energies of the scattering states in the non-interacting approximation. Our dynamical and quenched results are in qualitative agreement.

In the repulsive channel I=2, where no resonance is expected, we indeed find only the candidates for the scattering states $\pi(0)\pi(0)$ and $\pi(\frac{2\pi}{L})\pi(-\frac{2\pi}{L})$ with no additional light state. The first excited state is higher than expected due to the smallness of 3×3 basis. Similar conclusion applies for the repulsive I=3/2 channel with πK scattering states.

In the attractive channel I=0 we find two (orthogonal) states close to the threshold $2m_{\pi}$ and another state consistent with $\pi(\frac{2\pi}{L})\pi(-\frac{2\pi}{L})$, so we do find an additional light state. This leads to a possible interpretation that one of the two light states is the scattering state $\pi(0)\pi(0)$ and the other one corresponds to σ resonance with strong tetraquark component (see more general discussion in [10]). In the attractive I=1/2 channel we similarly find the candidates for the lowest two $\pi(k)K(-k)$ scattering states and a candidate for a κ resonance with a large tetraquark component. These results have to be confirmed by another independent lattice simulation before making firm conclusions.

We investigate two criterion for distinguishing the one-particle (tetraquark) and two-particle (scattering) states in [7]. The first criteria is related to the time dependence of $C_{ij}(t)$ and $\lambda^n(t)$ at finite temporal extent of the lattice. The second is related to the volume dependence of the couplings $\langle 0|\mathcal{O}_i|n\rangle$.

The ultimate method to study σ and κ on the lattice would involve the study of the spectrum and couplings in presence of $\bar{q}\bar{q}qq \leftrightarrow \bar{q}q \leftrightarrow vac \leftrightarrow glue$ mixing, using interpolators that cover these Fock components. Such a study has to be done as a function of lattice size L in order to extract the resonance mass and width using the Lüscher's finite volume method [10, 11].

Acknowledgments

This work is supported by the Slovenian Research Agency, by the European RTN network FLAVIAnet (contract MRTN-CT-035482), by the Slovenian-Austrian bilateral project (contract BI-AT/09-10-012), by the USA DOE Grant DE-FG05-84ER40154, by the Austrian grant FWF DK W1203-N08 and by Natural Sciences and Engineering Research Council of Canada.

References

- [1] R. L. Jaffe, Phys. Rev. D 15 (1977) 267 and 281; R. L. Jaffe, Exotica, hep-ph/0409065.
- [2] Note on the scalar mesons, C. Amsler et al., Review of Particle Physics, Phys. Lett. B667 (2008) 1.
- [3] L. Maiani et al., Phys. Rev. Lett. 93 (2004) 212002; G. 't Hooft et al., Phys. Lett. B 662 (2008) 424;
 Hee-Jung Lee, N.I. Kochelev, Phys. Rev. D78 (2008) 076005.
- [4] N. Mathur et al., χ QCD collaboration, Phys. Rev. D76 (2007) 114505.
- [5] S. Prelovsek and D. Mohler, Phys. Rev. D79 (2009) 014503; M. Alford and R. Jaffe, Nucl. Phys. B578 (2000) 367; H. Suganuma et al., Prog. Theor. Phys. Suppl. 168 (2007) 168; M. Loan, Z. Luo, Y. Y. Lam, Eur. Phys. J. C57 (2008) 579.
- [6] S. Prelovsek, T. Draper, C.B. Lang, M. Limmer, K.-F. Liu, N. Mathur and D. Mohler, arXiv: 0909:5134, PoS LAT2009 (2009) 103.
- [7] S. Prelovsek, T. Draper, C.B. Lang, M. Limmer, K.-F. Liu, N. Mathur and D. Mohler, to be published.
- [8] C. Gattringer, C. Hagen, C.B. Lang, M. Limmer, D. Mohler and A. Schäfer, Phys. Rev. D79 (2009) 054501.
- [9] M. Lüscher and U. Wolff, Nucl. Phys. B339 (1990) 222; B. Blossier et al., JHEP 0904 (2009) 094.
- [10] S. Sasaki and T. Yamazaki, Phys. Rev. D74 (2006) 114507, PoS LAT2007 (2007) 131.
- [11] M. Lüscher, Comm. Math. Phys. 104 (1986) 177; Nucl. Phys. B354 (1991) 531; Nucl. Phys. B364 (1991)
 237; Zhi-Yuan Niu, Ming Gong, Chuan Liu, Yan Shen, Phys. Rev. D80 (2009) 114509.

510 LP09