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In this talk, I present the theory overview of recent developments on the parton orbital
angular momentum in nucleon.

1 Introduction

Understanding the proton spin structure has been a driving motive for intense spin-physics
activities in hadron physics in the last two decades. Much progress has been made both exper-
imentally and theoretically [1, 2, 3]. Orbital angular momentum (OAM) has played a central
role in all these studies. There have been many investigations from both theory and exper-
iments [4]. In recent years, three major developments have been particularly emphasized to
extract the quark OAM information: (1) GPDs measurements [5]; (2) TMD studies [6]; and
(3) very recently the Wigner distributions. In this talk, we would like to present an overview
for these developments based on recent publications [7]. Here, we focus on the partonic inter-
pretation of the proton spin and the experimental measurability of the relevant distributions.
We explain why a simple partonic sum rule exists only for the transverse polarization. We find
that the gauge-invariant OAM contribution to the proton helicity is related to twist-two and
three GPDs which are measurable in hard exclusive processes. Finally, the canonical OAM
distribution in the light-cone gauge is related to a Wigner distribution [8], which is accessible
through certain hard processes. Our discussions are mainly focused on quarks, but they can be
easily extended to gluons.

The starting point is the matrix element of the QCD AM density Mµαβ in the nucleon
plane-wave state [2]

〈PS|
∫
d4ξMµαβ(ξ)|PS〉 = J

2SρPσ
M2

(2π)4δ4(0)
(
εαβρσPµ + ε[αµρσP β] − (trace)

)
+ · · · , (1)

where ξµ is the space-time coordinates, Pµ and Sµ (S ·P = 0, S2 = −M2) are the four-
momentum and polarization of the nucleon, and J = 1/2 and M are the spin and mass, respec-
tively. To seek the partonic interpretation, we consider the nucleon in the Infinite Momentum
Frame (IMF) along the z-direction and take µ to be + component. Because of the antisymmetry
between α and β, the leading component of the angular momentum density comes from α = +
and β =⊥= (1, 2). This is only possible if the nucleon is transversely polarized and the matrix
element reduces to

〈PS|
∫
d4ξM++⊥|PS〉 = J3(P+)2S⊥

′
(2π)4δ4(0)/M2 , (2)
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where S⊥
′

= ε−+⊥ρSρ with convention of ε0123 = 1. The longitudinal polarization supports the
matrix element of the next-to-leading AM tensor component M+12,

〈PS|
∫
d3~ξM+12|PS〉 = J(2S+)(2π)3δ3(0) , (3)

which has one P+-factor less. Thus the nucleon helicity J is a subleading light-cone quan-
tity, and a partonic interpretation will in general involve parton transverse-momentum and
correlations.

2 Transverse-polarization Sum Rule
According to Eq. (2), one expects a simple partonic interpretation of the transverse proton
polarization from the leading parton distributions. Indeed, the quark AM sum-rule derived in
terms of the quark distribution q(x) and GPD E(x, 0, 0) is exactly of this type [3],

Jq =
1

2

∑
i

∫
dxx [qi(x) + Ei(x, 0, 0)] , (4)

where i sums over different flavor of quarks, and similarly for the gluon AM. We emphasize that
this spin sum rule is frame-independent. To attribute the above sum rule with a simple parton
picture, one has to justify that (x/2)(q(x) + E(x)) is the transverse AM density in x, i.e., it is
just the contribution to the transverse nucleon spin from partons with longitudinal momentum
xP+. We can define the quark longitudinal momentum density ρ+(x, ξ, S⊥) through

ρ+(x, ξ, S⊥) = x

∫
dλ

4π
eiλx〈PS⊥|ψ(−λn

2
, ξ)γ+ψ(

λn

2
, ξ)|PS⊥〉 , (5)

where n is the conjugation vector associated with P : n = (0+, n−, 0⊥) with n ·P = 1. A careful
calculation shows that beside the usual momentum distribution, it has an additional term

ρ+(x, ξ, S⊥)/P+ = xq(x) +
1

2
x (q(x) + E(x)) lim

∆⊥→0

S⊥
′

M2
∂⊥ξeiξ⊥∆⊥ (6)

where the ξ⊥-dependence comes from the slightly off-forward matrix element. The parton
contribution to the transverse spin is just the transverse-space moment of ρ+(x, ξ, S⊥),

Sq⊥(x) =
M2

2P+S⊥′(2π)2δ2(0)

∫
d2ξξ⊥ρ+(x, ξ, S⊥) =

x

2
(q(x) + E(x)) . (7)

where we have included the contribution from the energy-momentum component T+⊥ through
Lorentz symmetry.

3 Helicity Sum Rule
For a longitudinal polarized nucleon, we consider the z-component of the quark AM,

J3 =

∫
d3~ξM+12(ξ) =

∫
d3~ξ

[
ψγ+(

Σ3

2
)ψ + ψγ+

(
ξ1(iD2)− ξ2(iD1)

)
ψ

]
, (8)
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where the quark helicity is well-known to have a simple parton density interpretation. However,
the quark OAM involves transverse component of the gluon field, and thus is related to three-
parton correlations.

Thus a partonic picture of the orbital contribution to the nucleon helicity necessarily in-
volves parton’s transverse momentum. In other words, TMD parton distributions are the right
objects for physical measurements and interpretation. In recent years, TMDs and novel effects
associated with them have been explored extensively in both theory and experiment [1], where
it was found that the physical parton represents a gauge-invariant object with a gauge link
extended from the location of parton field to infinity along the conjugating light-cone direction
nµ,

ΨLC(ξ) = P

[
exp

(
−ig

∫ ∞
0

dλn ·A(λn+ ξ)

)]
ψ(ξ) . (9)

where P indicates path ordering. Therefore, in perturbative diagrams, a parton with momentum
k+ = xP+ represents in fact the sum of all diagrams with longitudinal gluons involved.

When considering parton’s transverse momentum, we also need appropriate gauge links
formed of gauge potentials. In practical applications, two choices stand out. First one uses the
same light-cone gauge link as shown in the above. The second choice is a straightline gauge
link along the direction of spacetime position ξµ,

ΨFS(ξ) = P

[
exp

(
−ig

∫ ∞
0

dλξ ·A(λξ)

)]
ψ(ξ) , (10)

The link reduces to unity in Fock-Schwinger gauge, ξ ·A(ξ) = 0.
To investigate parton’s OAM contribution to the proton helicity, one also needs their trans-

verse coordinates. The most natural concept is a phase-space Wigner distribution, which was
first introduced in Ref. [9]. A Wigner distribution operator for quarks is defined as

ŴP(~r, k) =

∫
ΨP(~r − ξ/2)γ+ΨP(~r + ξ/2)eik · ξd4ξ , (11)

where P denotes the path choice of LC or FS, ~r is the quark phase-space position and k the
phase-space four-momentum. The above quantity is gauge invariant although it does depend
on the choices of the gauge link. The Wigner distribution can be define as the expectation
value of Ŵ in the nucleon state,

WP(k+ = xP+,~b⊥,~k⊥) =
1

2

∫
d2~q⊥
(2π)3

∫
dk−

(2π)3
e−i~q⊥ ·~b⊥

〈
~q⊥
2

∣∣∣ŴP(0, k)
∣∣∣− ~q⊥

2

〉
. (12)

where the nucleon has definite helicity 1/2.
The total OAM sum rule in term of parton’s Wigner distribution,

〈PS|
∫
d3~r ψ(~r)γ+(~r⊥ × i ~D⊥)ψ(~r)|PS〉

〈PS|PS〉
=

∫
(~b⊥ × ~k⊥)WFS(x,~b⊥,~k⊥)dxd2~b⊥d

2~k⊥ (13)

which gives a parton picture for the gauge-invariant OAM [3], although the straightline gauge
link destroys the straightforward parton density interpretation.

DIS 2012 3



4 Canonical Orbital Angular Momentum
The quark contribution to the canonical orbital angular momentum was explored in Ref. [10],

lq(x) =
1

(2π)22P+δ2(0)

∫
dλ

2π
eixλd2ξ〈PS|ψ(−λn

2
, ξ)γ+(ξ1i∂2 − ξ2i∂1)ψ(

λn

2
, ξ)|PS〉 . (14)

This definition represents the canonical OAM in the light-cone gauge A+ = 0. Its matrix
element is in principle related to the twist-three GPDs, and an infinite number of moments are
involved due to non-locality. Therefore, we arrive at the interesting conclusion that lq(x) in
light-cone gauge is actually accessible through twist-two and three GPDs.

A clear parton picture emerges through connections between lq(x) and TMDs and Wigner
distributions [7, 8]. One can introduce a Wigner distribution with the gauge link in the light-
cone direction, WLC(x,~b⊥,~k⊥). Integration over the impact parameter space

∫
d2~b⊥WLC gen-

erates quark-spin independent TMDs. It can be shown that the canonical AM distribution in
A+ = 0 gauge as defined in [10] can be obtained from the simple moment of a gauge-invariant
Wigner distribution,

lq(x) =

∫
(~b⊥ × ~k⊥)WLC(x,~b⊥,~k⊥)d2~b⊥d

2~k⊥ . (15)

From the discussion of the previous paragraph, this also implies constraints on the moments of
Wigner distributions from the GPDs. Finally, the canonical OAM in light-cone gauge acquires
the simple but gauge-dependent parton sum rule in the quantum phase space [7, 8],

lq =
〈PS|

∫
d3~r ψ(~r)γ+(~r⊥ × i~∂⊥)ψ(~r)|PS〉

〈PS|PS〉
=

∫
(~b⊥ × ~k⊥)WLC(x,~b⊥,~k⊥)dxd2~b⊥d

2~k⊥ . (16)

The measurability of this Wigner distribution will be studied in a future publication.
To summarize, we reviewed parton pictures for the proton spin: For the transverse po-

larization, we found that it is simple to interpret in terms of parton AM density measurable
through twist-two GPDs; For the nucleon helicity, the gauge-invariant parton picture can be
probed through twist-two and three GPDs, and also calculable in lattice QCD. A simpler parton
picture in the light-cone gauge can be established through the quantum phase space Wigner
distribution, and can be measured through either twist-two and three GPDs or directly from
Wigner distribution.

We thank X. Ji and X. Xiong for the collaboration on this project. This work was partially
supported by the U.S. Department of Energy via grants DE-AC02-05CH11231.
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