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The production of Quarkonium is an important testing ground for QCD calculations.
The J/¢ and T(1S) production cross-sections are measured in proton-proton collisions at
the ATLAS detector at the LHC. Differential cross sections as a function of transverse
momentum and rapidity have been measured. Charmonium states x.1(1P) and xc2(1P)
have been observed through radiative decays, as well as a new x; state. Results are
compared to perturbative QCD predictions.

1 Introduction

Despite being among the most studied of the bound quark systems, there is still no clear
understanding of the production mechanisms for quarkonium states like the J /¢ and the Y that
can consistently explain both the production cross-section and spin alignment measurements in
ete™, hadron and heavy ion collisions. Data from the LHC allow tests of theoretical models of
quarkonium production in a new energy regime. Details of the ATLAS detector may be found
in [1]. The sub-detectors of greatest importance to the analyses presented here are the Inner
Detector (ID) and Muon Spectrometer systems.

2 Measurement of the differential cross-sections of inclu-
sive, prompt and non-prompt J /¢ production

The inclusive J /4 production cross-section is measured at ATLAS in the di-muon decay channel
using 2.3 pb~! of 2010 data [2]. The number of J/1 candidates are extracted from the observed
di-muon pairs, applying event weights to unfold the response of the detector, reconstruction
and trigger efficiency. The J/v yields are then determined in regions of the di-muon pr and
rapidity. The spin alignment of the J/¢ is unknown, as yet, at the LHC. An envelope of all
possible spin alignment assumptions is taken as an additional theoretical uncertainty.

Prompt J/1¢ are produced directly from the hard-scatter of the p-p collision, as well as
through decays from higher charmonium states. Non-prompt J/¢ are produced via the decay
of a B-hadron and can be distinguished experimentally due to the associated displacement of
the J /4 vertex in the transverse plane, due to the long lifetime of the B hadron.

Figure 1 shows the inclusive J /¢ production cross-section as a function of pr, in two regions
of J/4 rapidity. The prompt and non-prompt J/1 production cross-sections, as a function of
pr, are also shown in Figure 1. The non-prompt component is seen to be in good agreement
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Figure 1: The inclusive J /1 production cross-section as a function of J /1 transverse momentum,
for low J /4 rapidity (top left) and higher J /4 rapidity (top right). The equivalent results from
CMS are overlaid. The non-prompt J/1) production cross-section is shown (bottom left) and
the prompt J/v production cross-section (bottom right), as a function of J/4 pr.

with the FONLL predictions. For the prompt component, the data are reasonably consistent
with NNLO* Colour Singlet calculations at low pr, but does less well at high pr.

3 Observation of the x.1(1P) and x.(1P) charmonium states

The x.1(1P) and x.2(1P) charmonium states
in x. — J/¢y decays are observed us-
ing an integrated luminosity of 39 pb~* [3].
J /1 candidates are reconstructed via the de-
cay J/v — pTp~ while photons are recon-
structed with a calorimetric measurements.
X candidates are observed in the kinematic
range py* > 10 GeV and rapidity | yy. |<
2.4. An extended unbinned maximum likeli-
hood fit is performed to the invariant mass
difference of the p*u~ and putpu~v systems
to yield 2960 + 120 (stat.) & 90 (syst.) Xxc1
and x.o candidates. The result of a simulta-
neous fit to the signal sample and background
sample is shown in Figure 2. The small mass
difference between the two x. states is compa-
rable to the achievable mass resolution, which
is dominated by the photon energy resolution.
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Figure 2: x. — J/vv decays. The result of
a simultaneous fit to the signal selection (top)
and background (J /1 sideband) selection (bot-
tom). The individual signal components are
shown (dashed lines).
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4 Measurement of the centrality dependence of J /v yields
and observation of Z production in lead-lead collisions

A centrality-dependent suppression has been ob-
served in the yield of J/¢ mesons produced in the
collisions of lead ions in ATLAS [4]. In a sample
of lead-lead collisions at a nucleon-nucleon centre
of mass energy /syny = 2.76 TeV, corresponding
to an integrated luminosity of about 6.7 ub~!,
J /1 mesons are reconstructed via their decays to
pTp~ pairs. The measured J/+) yield, normal-
ized to the number of binary nucleon-nucleon col-
lisions, is found to significantly decrease from pe-
ripheral (glancing) to central (head-on) collisions,
as shown in Figure 3. The centrality dependence
is found to be qualitatively similar to the trends
observed at previous, lower energy experiments.
The same sample is used to reconstruct Z bosons
in the pu*p~ final state, and a total of 38 candi-
dates are selected in the mass window of 66 to 116
GeV. No centrality-dependent supression is seen
in the Z boson yield, as expected. This analysis
provides the first results on J /¢ and Z production
in lead-lead collisions at the LHC.
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The measured J/v¢ yield, nor-

malized to the number of binary nucleon-
nucleon collisions, is found to significantly
decrease from peripheral to central colli-

sions.

5 Measurement of the Y(1S) Production Cross-Section

A measurement of the cross-section for
Y(1S) — ptp~ production is made as a func-
tion of the T(15) transverse momentum, where
both muons have pr >4 GeV and | n |< 2.5.
The results, as shown in Figure 4, are based
on an integrated luminosity of 1.13 pb~! [5].
When the cross-section measurement is com-
pared to theoretical predictions, it agrees to
within a factor of two with a prediction based
on the NRQCD model including colour-singlet
and colour-octet matrix elements as imple-
mented in PYTHIA while it disagrees by up to a
factor of ten with the NLO prediction based on
the Colour Singlet Model. This measurement is
independant of the unknown Y spin-alignment
and as such offers a precise test of theoretical
descriptions of quarkonium production.
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6 Observation of a New x(b) State in Radiative Transitions
to T(1S) and Y(2S)

The x»(nP) quarkonium states are studied using a data sample corresponding to an inte-
grated luminosity of 4.4 fb™!. These states are reconstructed through their radiative decays
to T(1S,2S) with T — ptu~ [6]. Photons are reconstructed with both calorimetric mea-
surements (unconverted) and ID tracking (converted photons). In addition to the mass peaks
corresponding to the decay modes x;(1P,2P)— Y(1S)~, a new structure centered at a mass of
10.530 & 0.005 (stat.) £ 0.009 (syst.) GeV is also observed, in both the Y (1S)y and Y(2S)~ decay
modes. This is interpreted as the x;(3P) system. The mass difference m(u™pu=v) — m(utu™)
distributions are shown in Figure 5.
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Figure 5: The mass distribution of x(b)(nP) — YT(1S5)y candidates for unconverted pho-
tons reconstructed using the electromagnetic calorimeter (left). The mass distributions of

x(b)(nP) — YT (kS)y (k = 1, 2) candidates formed using converted photons and been recon-
structed in the ID (right).

7 Conclusions

In the first year of 7 TeV data-taking ATLAS has observed and measured charmonium and
bottomonium states, including a new x; state. The production of heavy quarkonium provides
particular insight into QCD theory as its mechanisms of production operate at the boundary
of the perturbative and non-perturbative regimes. These measurements provide input towards
an improved understanding and theoretical description of QCD.
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