Exclusive dipion production

Justyna Tomaszewska on behalf of the ZEUS Collaboration Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg

DOI: http://dx.doi.org/10.3204/DESY-PROC-2012-02/38

The exclusive electroproduction of two pions in the mass range $0.4 < M_{\pi\pi} < 2.5$ GeV has been studied with the ZEUS detector at HERA using an integrated luminosity of 82 pb⁻¹. The two-pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, $|F(M_{\pi\pi})|$, assuming that the studied mass range includes the contributions of the ρ , ρ' and ρ " vector-meson states.

1 Exclusive dipion production

Exclusive electroproduction of vector mesons takes place through a virtual photon γ^* by means of the process $\gamma^*p \to Vp$. At large values of the centre-of-mass energy, W, this is usually viewed as a three-step process; the virtual photon γ^* fluctuates into a $q\bar{q}$ pair which interacts with the proton through a two-gluon ladder and hadronizes into a vector meson, V.

Exclusive $\pi^+\pi^-$ production has been measured at HERA [1] experiments: ZEUS [2, 3] and H1 [4] as well as in the annihilation process $e^+e^- \to \pi^+\pi^-$ [5, 6]. The $\pi^+\pi^-$ mass distribution shows a complex structure in the mass range 1–2 GeV. Evidence for two excited vector-meson states has been established [7]; the $\rho'(1450)$ is assumed to be predominantly a radially excited 2S state and the $\rho''(1700)$ is an orbitally excited 2D state, with some mixture of the S and D waves [8]. In addition there is also the $\rho_3(1690)$ spin-3 meson [9] which has a $\pi\pi$ decay mode.

1.1 Data selection

The data used in this analysis were collected at the HERA ep collider during 1998-2000 with the ZEUS detector. At that time HERA operated at a proton energy of 920 GeV and at a positron energy of 27.5 GeV. The integrated luminosity used was 82 pb⁻¹.

The data are selected in the two-pion mass range $0.4 < M(\pi\pi) < 2.5$ GeV, in the kinematic range $2.5 < Q^2 < 80$ GeV², 32 < W < 180 GeV and |t| < 0.6 GeV², where Q^2 is the virtuality of the photon and t is the squared four-momentum transfer at the proton vertex. The $M_{\pi\pi}$ system consists of a resonance part and a non-resonant background.

1.2 Pion Form Factor

The resonances $(\rho, \rho' \text{ and } \rho'')$ are described by the pion form factor, F_{π} . It can be related to the $\pi\pi$ invariant-mass distribution through the following relation [10]:

$$\frac{dN(M(\pi\pi))}{dM_{\pi\pi}} \propto |F_{\pi}(M_{\pi\pi})|^2$$

DIS 2012

In the mass range $M_{\pi\pi} < 2.5$ GeV, Kuhn-Santamaria (KS) [11] include contributions from the $\rho(770)$, $\rho'(1450)$ and $\rho''(1700)$ resonances,

$$F_{\pi} = \frac{BW_{\rho}(M_{\pi\pi}) + \beta BW_{\rho'}(M_{\pi\pi}) + \gamma BW_{\rho''}(M_{\pi\pi})}{1 + \beta + \gamma}.$$

Here β and γ are relative amplitudes and BW_V is the Breit-Wigner distribution of the vector meson V.

The $\pi^+\pi^-$ mass distribution, after acceptance correction, is shown in Figure 1. A clear peak is seen in the ρ mass range. A small shoulder is apparent around 1.3 GeV and a secondary peak at about 1.8 GeV.

The two-pion invariant-mass distribution was fitted, using the least-square method, as a sum of two terms,

$$\frac{dN(M_{\pi\pi})}{dM_{\pi\pi}} = A\left(1 - \frac{4M_{\pi}^2}{M_{\pi\pi}^2}\right) \left[F_{\pi} + B\left(\frac{M_0}{M_{\pi\pi}}\right)^n\right],$$

where A is an overall normalization constant. The second term is a parameterization of the non-resonant background, with constant parameters B, n and $M_0 = 1$ GeV. The other parameters, the masses and widths of the three resonances and their relative contributions β and γ , enter through the pion form factor, F_{π} . The fit, which includes 11 parameters, gives a good description of the data.

The result of the fit is shown in Figure 1 together with the contribution of each of the two terms. The ρ and the ρ " signals are clearly visible. The negative interference between all the resonances results in the ρ' signal appearing as a shoulder.

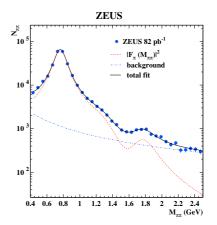


Figure 1: The two-pion invariantmass distribution, $M_{\pi\pi}$, where $N_{\pi\pi}$ is the acceptance-corrected number of events in each bin of 60 MeV. The dots are the data and the full line is the result of a fit using the Kuhn-Santamaria parameterization. The dashed line is the result of the pion form factor normalized to the data, and the dash-dotted line denotes the background contribution.

$1.3 \quad Q^2$ dependence

The Q^2 dependence of the relative amplitudes was determined by performing the fit to $M_{\pi\pi}$ in three Q^2 regions, 2–5, 5–10 and 10–80 GeV². The results are shown in Figure 2. A reasonable description of the data is achieved in all three Q^2 regions. The absolute value of β increases with Q^2 , while the value of γ is consistent with no Q^2 dependence, within large uncertainties.

The Q^2 dependence of the ρ by itself is given elsewhere [2]. Since the $\pi\pi$ branching ratios of ρ' and ρ " are poorly known, the ratio R_V defined as

$$R_V = \frac{\sigma(V) \cdot Br(V \to \pi\pi)}{\sigma(\rho)},$$

has been measured, where σ is the cross section for vector-meson production, and $Br(V \to \pi\pi)$ is the branching ratio of the vector meson $V(\rho', \rho")$ into $\pi\pi$.

The ratio R_V for $V = \rho', \rho''$, as a function of Q^2 is presented in Figure 3.

Owing to the large uncertainties of R_{ρ} , no conclusion on its Q^2 behaviour can be deduced, whereas $R_{\rho'}$ clearly increases with Q^2 . This rise has been predicted by several models [12, 13, 14, 15, 16]. The suppression of the 2S state (ρ') is connected to a node effect, which results

2 DIS 2012

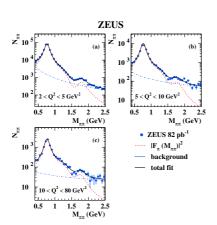


Figure 2: The two-pion invariant-mass distribution, $M_{\pi\pi}$ for three regions of Q^2 , as denoted in the figure.

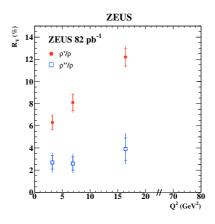


Figure 3: The ratio R_V as a function of Q^2 for $V = \rho'$ (full circles) and ρ " (open squares). The inner error bars indicate the statistical uncertainty, the outer error bars represent the statistical and systematic uncertainty added in quadrature.

in cancellations of contributions from different impact-parameter regions at lower Q^2 , while at higher Q^2 the effect vanishes.

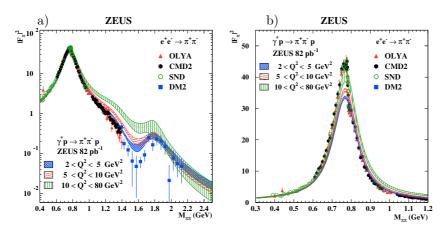


Figure 4: The pion form factor squared, $|F_{\pi}|^2$, in the whole mass range (a)) and in the ρ mass region (b)), as a function of the $\pi^+\pi^-$ invariant mass, $M_{\pi\pi}$, as obtained from the reaction $e^+e^- \to \pi^+\pi^-$ [5, 17, 18, 19, 20]. The shaded bands represent the square of the pion form factor and its total uncertainty obtained in the present analysis for three ranges of Q²: 2–5 GeV²(crossed lines), 5–10 GeV²(horizontal lines) and 10–80 GeV² (vertical lines).

Figure 4 a) shows the curves representing the pion form factor, $|F_{\pi}(M_{\pi\pi})|^2$, as obtained in the present analysis for the three Q^2 ranges: 2–5, 5–10, 10–80 GeV². Also shown are results

DIS 2012 3

obtained in the time-like regime from the reaction $e^+e^- \to \pi^+\pi^-$. In general, the features of the $|F_{\pi}(M_{\pi\pi})|^2$ distribution observed here are also observed in e^+e^- , i.e., the prominent ρ peak, a shoulder around the ρ' and a dip followed by an enhancement in the ρ'' region. Above the ρ region, where the interference between the ρ' and the ρ'' starts to dominate, there is a dependence of $|F_{\pi}(M_{\pi\pi})|^2$ on Q^2 , with the results from the lowest Q^2 range closest to those from e^+e^- . However, in the region of the ρ peak, shown in Figure 4 b), the pion form-factor $|F_{\pi}(M_{\pi\pi})|^2$ is highest at the highest Q^2 , as in the ρ' - ρ'' interference region, while the e^+e^- data are higher than those in the highest Q^2 range. They are equal within errors for $M_{\pi\pi} > 1.8$ GeV.

2 Summary

Exclusive two-pion electroproduction has been studied by ZEUS at HERA. The mass distribution is well described by the pion electromagnetic form factor, $|F_{\pi}(M_{\pi\pi})|^2$, which includes three resonances, ρ , $\rho'(1450)$ and $\rho''(1700)$.

A Q^2 dependence of $|F_{\pi}(M_{\pi\pi})|^2$ is observed, visible in particular in the interference region between ρ' and ρ'' . The electromagnetic pion form factor obtained from the present analysis is lower (higher) than that obtained from $e^+e^- \to \pi^+\pi^-$ for $M_{\pi\pi} < 0.8$ GeV (0.8< $M_{\pi\pi} < 1.8$ GeV). They are equal within errors for $M_{\pi\pi} > 1.8$ GeV.

The Q^2 dependence of the cross-section ratios $R_{\rho'} = \sigma(\rho' \to \pi\pi)/\sigma(\rho)$ and $R_{\rho''} = \sigma(\rho'' \to \pi\pi)/\sigma(\rho)$, has been studied. The ratio $R_{\rho'}$ rises strongly with Q^2 , as expected in QCD-inspired models in which the wave-function of the vector meson is calculated within the constituent quark model, which allows for nodes in the wave-function to be present.

References

- [1] A Proposal for a Large Electron-Proton Colliding Beam Facility at DESY, DESY HERA 81-10 (1981).
- [2] ZEUS Coll., S. Chekanov et al., PMC Phys. A 1 (2007) 6.
- [3] ZEUS Coll., H. Abramowicz et al., Eur. Phys. J. C 72 (2012) 1869.
- [4] H1 Coll., F.D. Aaron et al., JHEP **05** (2010) 032.
- [5] L.M. Barkov et al., Nucl. Phys. B 256 (1985) 365.
- [6] D. Aston et al., Phys. Lett. B 92 (1980) 215.
- [7] A. Donnachie and H. Mirzaie, Z. Phys. C 33 (1987) 407.
- [8] I.P. Ivanov and N.N. Nikolaev, JETP Lett. 69 (1999) 294.
- [9] Omega Photon Coll., M. Atkinson et al., Z.Phys. C 26 (1985) 499.
- [10] B. Clerbaux and M.V. Polyakov, Nucl. Phys. A 79 (2000) 185.
- $[11]\,$ J.H. Kuhn and A. Santamaria, Z. Phys. C $\mathbf{48}$ (1990) 445.
- [12] J. Nemchik, N.N. Nikolaev and B.G. Zakharov, Phys. Lett. B 339 (1994) 194.
- [13] L. Frankfurt, W. Koepf and M. Strikman, Phys. Rev. D 54 (1996) 3194.
- [14] I.P. Ivanov and N.N. Nikolaev, Acta Phys. Polon. B 33 (2002) 3517.
- [15] H. Abramowicz, L. Frankfurt and M. Strikman, Surveys High Energy Phys. 11 (1997) 51.
- [16] I.P. Ivanov, PhD Thesis (Bonn University), hep-ph/0303035 (2003).
- [17] DM2 Coll., D. Bisello et al., Phys. Lett. B 220 (1989) 312.
- $[18]\,$ CMD2 Coll., R.R. Akhmetshin et al., Phys. Lett. B $\bf 527$ (2002) 161.
- $[19]\,$ CMD2 Coll. V.M. Aul'chenko et al., JETP Lett., $\bf 82$ (2005) 743.
- [20] SND Coll., M.N. Achasov et al., J. Exp. Theor. Phys. 101 (2005) 1053.

4 DIS 2012