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We present a new approach in considering and including both the perturbative and the

nonperturbative contributions to the multiplicity ratio r of gluon and quark jets. The new

method is motivated by recent developments in timelike small-x resummation obtained in

the MS factorization scheme. A global analysis to fit the available data is also presented.

1 Introduction

The gluon-quark multiplicity ratio is defined as r = Ng/Nq, where Ng(q) is the number of
hadrons produced in a gluon(quark) jet. A purely perturbative and analytical prediction has
been achieved by a solution to the equations for the generating functionals in the modified
leading logarithmic approximation (MLLA) in Ref.[1] up to the so called N3LOr in the expansion
parameter γ0 =

√

2Ncαs/π i.e. γ3
0 . Here the theoretical prediction is about 10% higher than

the data at the scale of the Z0 vector boson and the difference with the data becomes even
larger at lower scales. Among the many attempts to predict r numerically, the most successfull
refers to numerical sulutions to the coupled system of equations of the generating functionals
for the quark (ZF ) and the gluon (ZG) in the MLLA framework (see e.g. [2]). These numerical
solutions describe well the data only above at relatively high energies [3, 4, 5]. This shows
that the slope of the multiplicity ratio predicted by this approach tends to be smaller than
its experimental value. An alternative approach was given in Ref. [6] where equations for the
derivative of the ratio of the multiplicities are obtained in the MLLA within the framework
of the colour dipole model. There a constant of integration which encodes nonperturbative
contributions is fixed by the data. Here a new approach is presented.

2 The multiplicity ratio in the effective-ω approach

We consider the standard Mellin-space moments of the coupled gluon-singlet system whose
evolution in the scale µ2 is governed in QCD by the DGLAP equations:

µ2 d

dµ2

(

Dg

Ds

)

=

(

Pqq Pgq

Pqg Pgg

)(

Dg

Ds

)

. (1)

The timelike splitting functions Pij can be computed perturbatively in the strong coupling
constant:

Pij(ω, µ
2) =

(

αs(µ
2)

4π

)

P
(0)
ij (ω)+

(

αs(µ
2)

4π

)2

P
(1)
ij (ω)+

(

αs(µ
2)

4π

)3

P
(2)
ij (ω)+O(α4

s), i, j = g, q,

(2)
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where ω = N − 1 with N the usual Mellin conjugate variable to the fraction of longitudinal

momentum x. The functions P
(k)
ij (ω) with k = 0, 1, 2 appearing in Eq.(2) in the MS scheme

can be found in Ref.[7, 8, 9] up to NNLO and in Ref.[10] the NNLL contributions up to O(α16
s )

in the same scheme. Fully analytical resummed results in a closed form in the MS scheme are
known at NLL for the eigenvalues of the siglet-gluon matrix [10, 11].

It would be desiderable to fully diagonalize Eq.(1). However in general this is not possible
because the contributions to the splitting function matrix do not commute at different orders.
One is hence enforced to write a series expansion about the LO which in turn can be diago-
nalized. Therefore we start choosing a basis where the LO is diagonal (see e.g. [12]) with the
timelike splitting function matrix taking the form:

P (ω) =

(

P++(ω) P+−(ω)
P−+(ω) P−−(ω)

)

, (3)

where by definition

P
(0)
+−(ω) = P

(0)
−+(ω) = 0, (4)

and where P
(0)
±±(ω) are the eigenvalues of the LO splitting matrix.

Now relating the (g, s) basis to this new (+,−) basis, we can decompose the singlet and the
gluon fragmentation function symbolically in the following way:

Da(ω, µ
2) = D+

a (ω, µ
2) +D−

a (ω, µ
2); a = s, g. (5)

According to Eq.(1) the plus and minus components have the form

D±
a (ω, µ

2) = D̃±
a (ω, µ

2
0)

[

αs(µ
2)

αs(µ2
0)

]−
P

(0)
±±

2β0

H±
a (ω, µ2), (6)

where the normalization factors D̃±
a (ω, µ

2
0) satisfy

D̃+
g (ω, µ

2
0) = −

αω

ǫω
D̃+

s (ω, µ
2
0) ; D̃−

g (ω, µ
2
0) =

1− αω

ǫω
D̃−

s (ω, µ
2
0), (7)

with

αω =
P

(0)
qq (ω)− P

(0)
++(ω)

P
(0)
−−(ω)− P

(0)
++(ω)

, ǫω =
P

(0)
gq (ω)

P
(0)
−−(ω)− P

(0)
++(ω)

. (8)

The perturbative functions H±
a (ω, µ2) in Eq.(6) up to NNLO may be represented as

H±
a (ω, µ2) = 1 +

(

αs(µ
2)

4π

)

(

Z
(1)
±±,a(ω)− Z

(1)
±∓,a(ω)

)

+

(

αs(µ
2)

4π

)2
(

Z̃
(2)
±±,a(ω)− Z̃

(2)
±∓,a(ω)

)

, (9)

where the functions Z
(1)
±±,a, Z

(1)
±∓,a, Z̃

(2)
±±,a and Z̃

(2)
±∓,a with a = g, s in terms of the timelike

splitting functions up to NNLO in the (+,−) basis are given by:

Z
(1)
±±,s(ω) = Z

(1)
±±,g(ω) =

1

2β0

[

P
(1)
±±(ω)− P

(0)
±±(ω)

β1

β0

]

, (10)

Z
(1)
±∓,s(ω) =
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2β0 + P
(0)
±±(ω)− P

(0)
∓∓(ω)

, Z
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(1)
±∓,s(ω)

P
(0)
qq (ω)− P

(0)
∓∓(ω)

P
(0)
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±±(ω)

,
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Figure 1: rN
kLL

pert (Q2) with k = 0, 1, 2
(blue,red,green) according to Eq.(15). The bands cor-
respond to nf = 4, 5.
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Figure 2: The multilicity ratio r according to
Eq.(14) with K(nf = 4) = 0.941 ± 0.019 (orange)
and K(nf = 5) = 0.978± 0.020 (dashed grey).

and
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. (11)

It is a well known fact that the multiplicity can be obtained from the DGLAP evolution
equations Eq.(1) once one is able to take its first Mellin moment ω = N − 1 = 0. This is
not possible using a fixed order computation because of the presence of singularitues at ω = 0
due to multiple soft emissions. Resummation of these divergences has been shown to be the
appropriate thing to do to avoid this problem. This has been shown a long time ago in [13]
at leading logarithmic accuracy (LL). The algebraic relations in Ref. [14] show that the first
Mellin moment of the resummed leading logarithmic splitting function PLL

++(ω) can be obtained
by taking the LO leading singular term and assign an effective value to ω :

PLL
++(ω = 0) =

αsCA

πωLL
eff

; ωLL
eff = 2PLL

++(ω = 0) =

√

2CAαs

π
= 1.382

√
αs (12)

Our approach consists in adopting the same procedure also to fix PNLL
++ (ω = 0) and

PNNLL
++ (ω = 0). The former quantity is analytically known [10, 11], while the last one is

known up to the 16th order [10]. In this case we have obtained a numerical estimation of the
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first Mellin moment of PNNLL
++ (ω) performing a numerical extrapolation. Our result is:

ωNNLL
eff = 1.3820

√
αs + (0.0059nf + 0.8754)αs + (0.0300nf + 1.0881)α3/2

s , (13)

which is valid for nf = 4, 5 number of active flavors.
Neglecting the evolution of the minus component in Eq.(5) and using Eq.(7) we arrive at

our definition of the gluon-quark multiplocity ratio which is given by

rN
kLL(Q2) ≡

Dg(ω
NkLL
eff , Q2)

Ds(ωNkLL
eff , Q2)

= K rN
kLL

pert (Q2), (14)

where

rN
kLL

pert (Q2) =
D+

g (ω
NkLL
eff , Q2)

D+
s (ωNkLL

eff , Q2)
= −

αω

ǫω

H+
g (ωNkLL

eff , Q2)

H+
s (ωNkLL

eff , Q2)
; K =

D+
s (ω

NkLL
eff , Q2)

D+
s (ωNkLL

eff , Q2) + D̄s

, (15)

by use of Eq.(6). Fig.1 shows our results for rLL
pert(Q

2),rNLL
pert (Q

2) and rNNLL
pert (Q2) for nf = 4, 5

and Fig.2 shows our 90% C.L. fit of K in Eqs.(14,15) using the NNLL result for rpert. In our
analysis we have used the first three terms of the ω expansion for the splitting functions and
the double counted terms due to resummation have been subtracted. The running of αs has
been evaluated at NNLO with nf = 5 and with αs(MZ) = 0.118. The data are taken from the
summary tables of [15] and references therein and from [16].
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