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SUMMARY

The mechanical stability of epithelial cells, which
protect organisms from harmful external factors, is
maintained by hemidesmosomes via the interaction
between plectin 1a (P1a) and integrin a6b4. Binding
of calcium-calmodulin (Ca2+-CaM) to P1a together
with phosphorylation of integrin b4 disrupts this
complex, resulting in disassembly of hemidesmo-
somes. We present structures of the P1a actin bind-
ing domain either in complex with the N-ter lobe of
Ca2+-CaM or with the first pair of integrin b4 fibro-
nectin domains. Ca2+-CaM binds to the N-ter iso-
form-specific tail of P1a in a unique manner, via its
N-ter lobe in an extended conformation. Structural,
cell biology, and biochemical studies suggest the
following model: binding of Ca2+-CaM to an intrinsi-
cally disordered N-ter segment of plectin converts
it to an a helix, which repositions calmodulin to
displace integrin b4 by steric repulsion. This model
could serve as a blueprint for studies aimed at under-
standing how Ca2+-CaM or EF-hand motifs regulate
F-actin-based cytoskeleton.

INTRODUCTION

The skin forms a barrier against the environment and protects

us from mechanical trauma, pathogens, radiation, dehydration,

and perilous temperature fluctuations. It is composed of an

epidermal and a dermal layer, which are separated by a base-

ment membrane. The epithelium of the skin, the epidermis, is

made primarily of keratinocytes, while the dermis contains
558 Structure 23, 558–570, March 3, 2015 ª2015 The Authors
different cell types, including fibroblasts, endothelial cells, and

macrophages, as well as the extracellular matrix. Integrity of

epithelial cells is maintained by multiprotein complexes termed

hemidesmosomes (HDs), which attach the top level of the skin

to plasmamembrane (Green and Jones, 1996). HDs are dynamic

structures, which can be quickly disassembled if required, for

example, during wound healing, differentiation, or carcinoma in-

vasion (Litjens et al., 2006). Integrin a6b4 is the principal player in

the interaction between the intermediate filament (IF) cytoskel-

eton and extracellular matrix at the site of HDs, which traverses

the plasma membrane (Borradori and Sonnenberg, 1999; Green

and Jones, 1996). The cytoplasmic part of the b4 subunit is un-

usually long and consists of two pairs of fibronectin type III (FnIII)

domains separated by the connecting segment (Tamura et al.,

1990). On the cytoplasmic side, integrin a6b4 interacts with plec-

tin, whichmediates association between the HDs and the keratin

cytoskeleton. Binding of plectin to the b4 subunit of integrin a6b4

is the critical step in the formation of HDs (Litjens et al., 2006).

The importance of integrin a6b4 and plectin for stability of HDs

is substantiated by in vivo studies inmice, which display reduced

levels or complete absence of HDs when deficient in either plec-

tin or integrin subunits a6 and b4 (Andra et al., 1997; Georges-

Labouesse et al., 1996; van der Neut et al., 1996). In fact, in-

herited or acquired diseases in which integrin a6b4 or plectin

are missing or are structurally perturbed result in tissue fragility

and blistering (Walko et al., 2014).

Plectin, a member of the plakin family, connects different ele-

ments of the cytoskeleton and is expressed in a wide variety of

mammalian cells (Castanon et al., 2013). At its N terminus there

is an actin binding domain composed of two calponin homology

(CH) domains, which is followed by a plakin domain, the coiled-

coil rod of over 1,000 residues, six plectin repeat domains, and

a short terminal tail. Due to alternative splicing, plectin is ex-

pressed as 11 isoformswith diverse N-ter sequences that dictate

its differential subcellular targeting (Fuchs et al., 1999). Plectin 1a
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(P1a) and 1c (P1c) are major isoforms of plectin expressed in

basal keratinocytes. However, P1a is HD specific, while P1c co-

localizeswithmicrotubules (Andraet al., 2003;Walkoet al., 2011).

Most of the efforts to understand the regulation of HD disas-

sembly have focused on the main organizer of the HD, the a6b4

integrin. Multiple binding sites mediate the interactions between

plectin and integrin a6b4, most of which are regulated by several

phosphorylation events at the interaction interfaces (Frijns et al.,

2010, 2012; Rabinovitz et al., 2004; Wilhelmsen et al., 2007). One

site that is not regulated by phosphorylation is between the ABD

ofplectin and the first pair of theFnIII domains and theconnecting

segments of integrin b4 (Frijns et al., 2010; Geerts et al., 1999;

Niessen et al., 1997; Rabinovitz et al., 2004; Wilhelmsen et al.,

2007). Besides phosphorylation, Ca2+ also serves as amodulator

in keratinocyte proliferation and differentiation. In particular, in-

tegrin a6b4 is downregulated duringCa2+-induced differentiation

of cultured keratinocytes (Kostan et al., 2009; Tennenbaum et al.,

1996). Interestingly, Ca2+/calmodulin (Ca2+-CaM) was shown to

reduce the interaction between integrin a6b4 and HD-specific

P1a and to inhibit the interaction of P1a with F-actin in a Ca2+-

dependent manner (Kostan et al., 2009), thus contributing to

the regulation of HD disassembly.

The aim of this study is to address the question of how Ca2+-

CaM regulates the P1a interaction with integrin b4 and F-actin,

andwhether the interactionmodewith integrin b4 is isoform spe-

cific. Our results revealed the molecular mechanism underlying

the Ca2+-CaM regulation of the P1a/integrin b4 and P1a/F-actin

interaction via shunting the integrin b4 and F-actin from the com-

plex with P1a. Comparison with the structure of the complex be-

tween integrin b4 and the P1c isoform (de Pereda et al., 2009)

shows that the plectin-integrin b4 interactionmode is not isoform

specific, while Ca2+-CaM binds to plectin in an isoform-specific

manner. Based on these results, we suggested the model for

Ca2+-CaM-induced disruption of the P1aABD-integrin b4 com-

plex. Finally, the related proteins a/b-spectrin, dystrophin, and

utrophin (members of the spectrin superfamily), as well as

F-actin binding protein filamin A, may be regulated in related

ways by Ca2+-CaM or by their own EF hands motifs.

RESULTS

Interaction of P1a and CaM in Epithelial Cells
Previous work has shown that Ca2+-CaM interacts specifically

with the ABD of isoform P1a (P1aABD) (Kostan et al., 2009).

To further characterize the role of the N-ter isoform-specific

sequence of P1a in binding to Ca2+-CaM, we prepared several

N-terminally truncated mutants of P1aABD. Pull-down assays

were used in the presence of either Ca2+ or EDTA. While full-

length P1aABD and mutant versions lacking the first 11 or 22

N-ter residues (P1aABDD11 and P1aABDD22) bound to CaM in

a calcium-dependent manner, P1aABDD32 lacking 32 N-ter res-

idues, and P1aABDD37 lacking the entire isoform-specific

sequence failed to bind to Ca2+-CaM (Figure S1). This suggested

that interaction of Ca2+-CaM with P1a is restricted to the N-ter

region spanning residues 23–32.

To analyze CaM association with P1a in vivo, we performed

Förster resonance energy transfer (FRET) analysis of the P1a-

CaM interaction in 804G epithelial cells. The cells were cotrans-

fected with cDNAs encoding C-terminally CFP-tagged P1aABD
(P1aABD-CFP) or its mutant P1aABDmut (P1aABDmut-CFP), and

with C-terminally yellow fluorescence protein (YFP)-tagged CaM

(CaM-YFP) (Figure 1A). The mutant P1aABDmut construct en-

coded two point mutations in the N-ter segment of P1a

(Leu25Asp and Val29Asp) and was designed to be deficient in

the interaction (see the section on ‘‘Crystal Structure of the

P1a ABD in Complex with CaM N-ter Lobe’’). The acceptor pho-

tobleaching method (Novotny et al., 2011) gave a positive FRET

signal for the P1aABD-CFP/CaM-YFP pair (19% ± 0.9%). The

P1aABDmut-CFP fusion protein, however, showed a significantly

lower FRET signal (6.2% ± 0.5%) despite a similar expression

level, reaching the mean FRET efficiency of the P1aABD-CFP/

empty YFP plasmid (8.0% ± 0.4%) used as a negative control

(Figures 1A and 1B). These results confirmed that P1aABD inter-

acts with CaM in vivo and that CaM binds to the isoform-specific

N-ter segment of P1a.

P1a Interacts with the N-ter Lobe of CaM
In order to identify proximity residue pairs in the P1aABD/CaM

complex, we applied chemical crosslinking combined with

mass spectrometry (XL-MS) and bioinformatics analysis. We

used the zero-length crosslinker 1-ethyl-3-(3-dimethylamino-

propyl)carbodiimide (EDC) in the presence of N-hydroxysulfo-

succinimide (sulfo-NHS). A band corresponding to �50 kDa

that appeared on SDS-PAGE upon one- or two-step crosslinking

(Figure 2A) was excised, trypsinized, and analyzed by high-res-

olution liquid chromatography (LC)-MS/MS. In total, 12 cross-

links were identified for the P1aABD/CaM complex (Table S1).

The major crosslinking products involve the adjacent K residues

36 and 37 at the border between the sequence-specific N-ter

segment of P1aABD, and E14 residing in the A helix of the first

CaM EF-hand. A representative MS/MS spectrum of a specific

crosslinking product identifying a linkage between E14 of CaM

and K37 of P1aABD is shown in Figure 2B. Other less prominent

crosslinking products involve several sites of the C-lobe of CaM

(CaMCL). These data showed that both lobes of CaM have the

capacity to interact with P1aABD. However, crosslinked pep-

tides connecting the N-lobe of CaM (CaMNL) to the N-ter tail of

P1aABD were more prominent and more frequently detected

(Table S1), suggesting a higher binding affinity of CaMNL.

To quantify the preferential binding of CaMNL to P1a, we deter-

mined and compared the binding affinities of CaM, CaMNL, and

CaMCL with P1aABD by isothermal titration calorimetry (ITC).

Schematic illustrations of plectin and CaM depicting the bound-

aries of the protein fragments used in this study are shown in

Figure 3A. CaM binds to P1aABD more strongly (Kd 4.2 ±

0.4 mM) than CaMNL alone (Kd 10.5 ± 1.1 mM), while CaMCL dis-

plays even weaker affinity (Kd 27.7 ± 3.9 mM) (Figures 3B and 3C;

Figure 7C), corroborating the XL-MS results. In a competitive

experiment, CaMCL was displaced when the P1aABD/CaMCL

complex was titrated with CaMNL (Figure 3D). As expected,

CaMCL could not displace CaMNL from the P1aABD/CaMNL

complex (Figure 3E). These results indicate that CaMNL and

CaMCL bind to the same site on P1aABD, to which CaMNL binds

with higher affinity. Furthermore, full-length CaM has a higher af-

finity for P1aABD than CaMNL alone, suggesting a possible auxil-

iary role of CaMCL in the binding event. In summary, XL-MS data

combined with ITC conclusively showed that CaM binds to P1a

preferentially via its N-ter lobe.
Structure 23, 558–570, March 3, 2015 ª2015 The Authors 559



Figure 1. The P1aABD and CaM Interact

In Vivo

(A) 804G cells ectopically expressing combina-

tions of P1aABD-CFP and P1aABDmut-CFP with

CaM-YFP or YFP alone. FRET was measured by

acceptor photobleaching. Pseudocolor pre- and

postbleach images of acceptor (CaM-YFP or YFP

alone) and FRET images (FRETeff) are shown.

FRET efficiency was determined as a relative in-

crease of donor fluorescence in the cytoplasmic

region of interest shown in boxed area, and

enlarged in insets (bottom right corners). Bar,

10 mm.

(B) Box and whisker plots indicate the median

FRET (middle line in the box), 25th percentile

(bottom line of the box), 75th percentile (top line of

the box), and minimum and maximum values

(whiskers). A CFP-YFP fusion was used as a

positive control for FRET (first column); co-

transfection of P1aABD-CFP and empty YFP

vector was used as a negative control (last col-

umn). The number of assessed cells/individual

bleach events (n) obtained from three or more in-

dependent experiments is indicated.
Crystal Structure of the P1a ABD in Complex with CaM
N-ter Lobe
To understand the structural basis of theCa2+-CaM–P1a interac-

tion, we set out to determine the crystal structure. Prediction of

disordered protein regions (Ishida and Kinoshita, 2007) sug-

gested that the N-ter extension of P1a is intrinsically disordered

(Figure S2) and hence its presence is unfavorable for crystalliza-

tion studies. As we found the minimal region of P1a sufficient for

the interaction with CaM to span N-ter residues 22–32, we first

focused on crystallization of the P1aABDD22/CaM complex,
560 Structure 23, 558–570, March 3, 2015 ª2015 The Authors
which was unsuccessful. We therefore

turned our attention to the P1aABDD22/

CaMNL complex, since we showed that

CaMNL binds to P1a with higher affinity

than CaMCL (Figures 3B–3E). The struc-

ture of the P1aABDD22/CaMNL complex

was determined to 1.8 Å resolution, with

final R and Rfree factors of 0.151 and

0.187, respectively. Data collection and

refinement statistics are summarized in

Table 1.

In the complex, CaMNL binds to the

N-ter tail of P1a, which forms an a helix.

This a helix extends the A helix of the first

CH domain and protrudes away from the

body of the ABD (Figure 4A). Each EF-

hand of CaMNL coordinates one calcium

ion (Figure 4A). Comparison of CaMNL

with the crystal structure of unbound

Ca2+-CaM (Protein Data Bank [PDB],

3CLN) (Babu et al., 1988) (root-mean-

square deviation (rmsd), 0.40 Å over 62

equivalent Ca atoms in N-lobe) showed

that CaMNL did not change the conforma-

tion upon binding to plectin.
CaMNL binds to the N-ter extension of P1a mainly via hydro-

phobic interactions. Three hydrophobic residues of P1aABDD22

(L25, V29, and A32) are buried in the hydrophobic cleft of CaMNL

(Figure 4B), consistent with the known binding motif of Ca2+-

CaM, termed 1-5-8, which bears hydrophobic residues at these

positions (Rhoads and Friedberg, 1997). To assess the role of

these residues in binding to Ca2+-CaM, we mutated amino acids

at motif positions 1 and 5 to negatively charged residues (L25D

and V29D; P1aABDmut). We showed by ITC, size exclusion chro-

matography (SEC), and FRET analysis that the P1aABDmut does



Figure 2. P1aABD Associates Preferentially with the N-ter Lobe of CaM

(A) SDS-PAGE analysis of the P1aABD/CaM complex crosslinked by EDC and sulfo-NHS. Proteins were incubated in the binding buffer either in the absence of

crosslinker (-), or subjected to EDC and sulfo-NHS in a one-step (+/1) or two-step (+/2) reaction (for details see Supplemental Materials andMethods). Complexes

of crosslinked P1aABD and CaM are readily visible as a higher-molecular weight band (arrow).

(B) MS/MS spectrum identifying a pair of crosslinked peptides after in-gel proteolysis of the complex band obtained by two-step crosslinking of CaM and

P1aABD. Fragment ions are annotated for the a-peptide (red) and the b-peptide (green). Insets show mapping of the fragment ions onto the crosslinked peptide

sequences (left) and the corresponding high-resolution MS spectrum displaying the isotopic distribution of the crosslinking product (right).

see also Table S1.
not interact with Ca2+-CaM, confirming that the hydrophobic

positions 25 and 29 are essential for binding (Figure 1; Figure S3).

Two polar contacts further stabilize the complex: an interac-

tion betweenQ41 (in the loop between helices B andC of CaMNL)

and R31 of P1a (in the N-ter tail), and a salt bridge between E14

(in the A helix of EF-hand 1) and R40 in P1a (in the A helix of the

CH1 domain). The latter seems less important for CaM binding,

as other plectin isoforms that do not bind to Ca2+-CaM

also host an R at this position (Figure 4C). Finally, mapping

the crosslinked residues on the three-dimensional structure of

the P1aABDD22/CaMNL complex showed that the carboxylate

group of E14 in CaMNL is 5.7 Å and 7.0 Å away from the amino

groups of plectin residues K36 and K37 (Figure 4C), respectively,

which is in good agreement with the XL-MS results (Figure 2B;

Table S1).

CaM Binds to P1a in an Extended Conformation
To determine the low-resolution shape of the nontruncated

P1aABD in complex with full-length Ca2+-CaM, small-angle

X-ray scattering (SAXS) experiments were conducted (Table

S2). The Rg of Ca2+-CaM in the complex with P1aABD (20.9 Å;

CRYSOL [Svergun et al., 1995]) was found to be similar to the

Rg of extended Ca2+-CaM in solution (21.3 ± 0.2 Å) (Heidorn

and Trewhella, 1988). This indicated that the Ca2+-CaM in com-

plex with P1aABD exhibits an extended conformation in which

the two lobes are connected with an interlobe linker, modeled

here with dummy residues (Figures 4D and 4E). Furthermore, in

the P1aABD/CaM complex, neither the CaMCL nor the first 22

residues of the N-ter tail of P1a participate in the interaction.

The CaM binding motif of P1aABD (L25-V29-A32) represents

a subgroup of 1-5-8-14 motifs in which hydrophobic residues at

position 1 and 14 are the primary requirements for Ca2+-CaM

binding and anchoring the interaction partner to the two lobes

of CaM (Figure S2) (Rhoads and Friedberg, 1997). P1a contains

D38 at position 14, suggesting that the C-terminal lobe of

CaM cannot bind due to the absence of a hydrophobic residue
at this site. In addition, D38 is the first residue of helix A of the

CH1 domain, and binding of the C-terminal lobe to this site

would lead to a steric clash of helix C of CaM with the ABD,

as shown by superposition of CaMNL in complex with

P1aABDD22 on Ca2+-CaM in complex with skeletal muscle light

chain kinase (PDB, 1CDL) (Chattopadhyaya et al., 1992) (rmsd,

0.684 Å over 57 Ca) (Figure S4). In summary, our results showed

that Ca2+-CaM binds with CaMNL to a 1-5-8-type recognition

site on the P1aABD N-ter tail in an extended conformation.

This is to our best knowledge the first example of a complex

in which Ca2+-CaM binds to the interaction partner via its

N-ter lobe in an extended conformation. Namely, a search of

PDB for complexes in which CaM binds to the interaction

partner in extended conformation gave seven hits, but in all of

them, only the C-ter lobe or both lobes are involved in binding

(Table S3).

N-ter Tail of P1a Folds upon Binding to CaM
Although the N-ter segment of P1aABD is predicted to be

intrinsically disordered (Figure S2B), the amino acid residues

23–37 form an a helix in the P1aABDD22/CaMNL complex (Fig-

ures 4A and 4B), a feature often observed by intrinsically

disordered proteins (Dyson and Wright, 2005). To validate the

bioinformatics prediction that the entire N-ter tail is structurally

disordered in the absence of Ca2+-CaM, we solved the

crystal structure of P1aABDD22 and performed SAXS analysis

of P1ABD.

The electron density of the first 15 residues (aa 23–37) preced-

ing the CH1 domain was missing in the crystal structure

of P1aABDD22 (Figure 5A; Table 1), suggesting that this part

of the protein is structurally disordered. SDS-PAGE analysis of

the crystals confirmed that the N-ter tail was intact and was

not proteolytically removed in the process of crystallization.

In addition, no significant conformational changes took place

in the ABD upon Ca2+-CaM binding, as shown by comparison

of P1aABDD22 in complex with CaMNL with the structure of
Structure 23, 558–570, March 3, 2015 ª2015 The Authors 561



Figure 3. N-ter Lobe of CaM Binds to P1aABD with Higher Affinity Than the C-ter Lobe

(A) Schematic illustrations of plectin andCaM.CH, calponin homology domain; PD, plakin domain; ROD, coiled-coil rod domain; CTD, C-terminal domain. Arrows

indicate positions of the first N-ter residue of P1aABD and P1aABDD22 constructs, respectively. Schematic illustration of the P1a fragment used in the assays is

shown in boxed area.

(B–E) ITC assays showing preferential binding of CaMNL to P1aABD. (B) P1aABD (40 mM) was titrated with CaMNL (400 mM). (C) P1aABD (40 mM) was titrated with

CaMCL (400 mM). (D) P1aABD/CaMCL complex (40/60 mM) was titrated with CaMNL (400 mM). (E) P1aABD/CaMNL complex (40/60 mM) was titrated with CaMCL

(400 mM). Data are expressed as mean values ± SD. ND, not determined.
P1aABDD22 alone (Figure S5) (rmsd, 0.69 Å over 209 equivalent

Ca atoms).

In the SAXS analysis of P1ABD, the N-ter extension was

modeled as an ensemble of structurally variable moieties

using the Ensemble optimization method (EOM) (Bernado

et al., 2007), while the crystal structure of P1aABDD22 was

used as a rigid-body constraint. This yielded a fit to the exper-

imental data with c = 1.09 (Figure 5B, inset). Data collection

and structural parameters derived from SAXS analysis on

P1aABD are reported in Table S2. EOM analysis showed a

broad Rg distribution, typical of extended and flexible struc-

tures (Figure 5B). Eight models from the selected ensemble

(50 models) superimposed on ABD show that the N-ter tails

of plectin isoform 1a adopt extended and variable conforma-

tions (Figure 5C). These data show that the N-ter segment of

P1a is structurally disordered in the unbound state; however,

it folds into an a helix upon binding to Ca2+-CaM, undergoing
562 Structure 23, 558–570, March 3, 2015 ª2015 The Authors
a coupled folding and binding process (Dyson and Wright,

2005).

N-ter Tail of P1a Is Not Involved in Interaction with
Integrin b4
Our structural and biochemical data showed that Ca2+-CaM in-

teracts with the N-ter isoform-specific sequence of P1a via its

N-ter lobe. In vivo, this interaction contributes to the disassembly

of the P1a-integrin b4 complex. In the published structure of the

P1cABD/integrin b4 complex, the N-ter tail of P1c binds to integ-

rin b4 mainly through the polypeptide backbone (de Pereda

et al., 2009). In order to address the question whether this inter-

action mode is isoform specific and whether the coupled folding

and binding mechanism observed for the interaction with Ca2+-

CaM applies also for the interaction of P1a and integrin b4, we

determined the crystal structure of P1aABD in complex with

the first pair of the FnIII domains of integrin b4. A construct



Table 1. Data Collection and Refinement Statistics

P1aABDD22/CaMNL P1aABDD22/b4Fn12 P1aABDD22

Data Collection

Source ID14-1 (ESRF) ID23-2 (ESRF) ID14-4 (ESRF)

Wavelength (Å) 0.933 0.873 0.939

Resolution (Å) 48.93–1.8 (1.9–1.8)a 48.16–4.0 (4.47–4.0) 60.37–2.30 (2.38–2.30)

Space group P212121 P65 C2221

Unit cell (Å, �) a = 59.08, b = 65.38, c = 87.3

a = b = g = 90

a = 96.32, b = 96.32, c = 207.8

a = 90, b = 90, g = 120

a = 41.60, b = 159.39, c = 183.83

a = 90, b = 90, g = 90

Molecules/a.u. 2 4 2

Unique reflections 31805 (4301) 9188 (2594) 28020 (2698)

Completeness (%) 99.2 (94.7) 99.1 (99.5) 99.7 (99.8)

Rmerge
b 0.095 (0.488) 0.272 (0.793) 0.125 (0.424)

Rmeas
c 0.101 (0.527) 0.300 (0.879) 0.143 (0.483)

Rpim
d 0.033 (0.193) 0.123 (0.364) 0.067 (0.224)

Multiplicity 9.4 (7.2) 5.7 (5.6) 4.4 (4.2)

Mean I/sig(I) 17.5 (3.7) 7.4 (3.9) 6.9 (2.2)

CC (1/2)e 0.998 (0.877) 0.977(0.751) 0.945 (0.856)

Refinement

Rwork
f/Rfree

g 0.151/0.187 0.224/0.287 0.183/0.245

Rmsd bonds (Å) 0.007 0.004 0.009

Rmsd angles (�) 0.963 0.892 1.246

Ramachandran outliers 0 0 0

see also Figure S5.
aValues in parentheses are for the highest-resolution shell.
bRmerge =

PjIi � hIiij=
P

Ii, where Ii is the intensity of the ith observation, and hIii is the mean intensity of the reflection.
cRmeas =

P
hkl ½N=ðN� 1Þ�1=2Pi

�
�IiðhklÞ � hIðhklÞi��=Phkl

P
i IiðhklÞ.

dRpim =
P

hkl ½1=ðN� 1Þ�1=2Pi jIiðhklÞ � hIðhklÞi��=Phkl

P
i IiðhklÞ, where Ii(hkl) is the observed intensity, and hIðhklÞi is the average intensity of multiple ob-

servations of symmetry-related reflections.
eCC(1/2) = the Pearson correlation coefficient of random half data sets.
fRwork =

P
hkl jjFoj � jFcjj=

P
hkl jFoj, calculated from working data set.

gRfree is calculated from 5% of data randomly chosen and not included in refinement.
encompassing the first two FnIII domains of integrin b4 (b4Fn12;

1126–1355) was used for crystallization with P1aABDD22 (Fig-

ure 6A). The asymmetric unit contained one P1aABDD22/

b4Fn12 complex and one free copy of ABD and b4Fn12 each.

The structure was determined to 4.0 Å resolution and refined

to the final Rwork and Rfree factors of 0.224 and 0.287, respec-

tively (Figure 6B; Table 1).

Structural comparison of our P1aABDD22/b4Fn12 complex

with the complex of P1cABD/b4Fn12 (PDB, 3F7P; de Pereda

et al., 2009) showed that no substantial conformational differ-

ences occurred and that the overall architecture was maintained

in both complexes (rmsd, 0.87 Å over 367 equivalent Ca atoms).

The first 15 residues of the P1aABDD22 construct were not visible

in the electron density of the P1aABDD22/b4Fn12 crystal struc-

ture, suggesting that it is structurally disordered in this complex

and most likely not involved in the interaction with integrin b4.

This was further confirmed by data showing that the P1a N-ter

segment encompassing residues (1–60 aa) does not bind to

b4Fn12 in ITC assays (Figure S6A).

To further characterize and validate the architecture of

the P1aABD/b4Fn12 complex in solution, we performed SAXS

analysis. Data collection and structural parameters are summa-

rized in Table S2. The ab initio molecular envelope yielded a fit
of c2 = 1.01 (Figure S7A) and agreed well with the crystal struc-

ture (Figure S7B). Since the concentration of the sample used

(41.3 mM) was similar to the Kd (41.7 mM) of the complex deter-

mined by ITC (Figure 7B), a polydisperse solution (calculated

38.0% of complex) was expected. To account for this, we

used the program OLIGOMER (Konarev et al., 2003) to deter-

mine the volume fractions of the complex and its subunits in

solution. The best fit to the experimental data (c2 = 0.90)

corresponded to a mixture containing 54% ± 3% of the

complex, 25% ± 3% of P1aABD, and 21% ± 3% of b4Fn12, in

line with the Kd-based estimation. To further validate the

structures of the P1aABD/b4Fn12 complex, we used XL-MS.

Mapping the crosslinked residues on the three-dimensional

structure of the complex further corroborated the structural

results (Figures S8A and S8B): four crosslinked peptides cluster

to one site in the P1aABD/b4Fn12 complex (Table S1). Both

plectin K36 and K37, located on the border between helix A

of the CH1 domain and the N-terminal segment, were cross-

linked to integrin b4 residue E1286 residing on the loop

between two b strands in the FnIII-2 domain. These lysine res-

idues of plectin are in contact with CaM in the P1aABDD22/

CaMNL complex (Figure 2B; Figure 4C), indicating that interac-

tion with CaM should exclude that with integrin b4. In the crystal
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Figure 4. Structure of the P1aABD/CaM Complex
(A) Crystal structure of the P1aABDD22/CaMNL complex. The complex is displayed in two orientations (90� rotated along the y axis). CH1 and CH2 in the ABD are

colored respectively in bronze and orange, the N-ter tail of P1a in yellow and CaMNL in green. Ca2+ is depicted as a violet sphere.

(B) The binding interface of the P1aABDD22/CaMNL complex. CaMNL is shown according to electrostatic surface potential, with blue and red depicting positive

and negative electrostatic potentials, respectively. Two residues of P1a (L25 and V29) important for interaction with CaM are buried in the hydrophobic cleft

of CaMNL.

(C) A salt bridge between E14 of CaM and R40 of plectin (2.7 Å apart). XL-MS analysis shows that CaM E14 is crosslinked with K36 (5.7 Å apart) and K37 of plectin

(7.0 Å).

(D) Experimental SAXS data of the P1aABD/CaM complex is shown in red; calculated scattering curves from SAXS models are individually presented in green

(rigid-body modeling by CORAL) and blue (ab initio modeling by DAMMIF) lines.

(E) The ab initio molecular shape of the P1aABD/CaM complex (shown in transparent beads) was superimposed over the SAXS-derived rigid-body model of the

complex. Flexible residues (1–21 residues of P1aABD and 74–82 residues of CaM) were modeled as dummy residues (colored spheres).

see also Figure S4; Table S2.
structure, the first residue of the CH1 domain visible in the elec-

tron density is D38, located 12.8 Å from integrin b4 Glu1286

(Ca–Ca distance, Figure S8C), showing that the two adjacent

lysine residues (K36 and K37) are close to E1286, as also shown

by XL-MS data.

Molecular Determinants of Integrin b4 Displacement
from the Complex with P1a by CaM
In order to enlighten the regulation mechanism of the integrin

b4-P1a complex by Ca2+-CaM at the molecular level, we

mimicked binding of Ca2+-CaM to the P1aABDD22/b4Fn12
564 Structure 23, 558–570, March 3, 2015 ª2015 The Authors
complex by superimposing the SAXS-derived tentative model

of P1aABD/CaM on the crystal structure of the P1aABDD22/

b4Fn12 complex (rmsd, 0.77 Å over 206 Ca equivalent

atoms). As shown in Figure 7A, binding of Ca2+-CaM to the

N-ter extension of P1a results in steric clashes with the second

FnIII domain of the integrin b4, implying a disruption of the

P1aABDD22/b4Fn12 interaction.

To obtain quantitative understanding of interactions and dis-

sociations of CaM, b4Fn12, and P1aABD, we carried out ITC

assays. The binding of b4Fn12 to P1aABD is an entropy-driven

reaction with weak affinity (Kd, 41.7 ± 4.2 mM, Figure 7B).



Figure 5. The N-ter Tail of P1a Is Intrinsically

Disordered

(A) The crystal structure of P1aABDD22 is displayed

in ribbon; CH domains 1 and 2 (CH1 and CH2) are

shown in bronze and orange, respectively. The

electron density corresponding to 15 residues of N-

ter tail (amino acid residues 23–37) is absent in the

structure. The electron density map (2Fo-Fc) is

contoured at 1.5 s.

(B) SAXS analysis of the P1aABD. The frequency

distributions of Rg generated from EOM compared

with the pool (red curve) and the selected ensemble

(black curve) are shown. The inset shows the

experimental scattering curve (red) and the simu-

lated scattering curve of the selected ensemble by

EOM (black).

(C) Eight superimposed models from the selected

ensemble, shown in two different orientations

(rotated 90� along the x axis). The N-ter tail adopts

random conformations.

see also Figure S5; Table S2.
Conversely, the binding of Ca2+-CaM to P1aABD is an enthalpy-

favored process and more than one order of magnitude stronger

(Kd, 4.2 ± 0.4 mM, Figure 7C). No interaction was observed be-

tween Ca2+-CaM and b4Fn12 (Figure S6B). In the displacement

experiment, in which the P1aABD/b4Fn12 complex was titrated

with Ca2+-CaM, the apparent binding affinity of Ca2+-CaM was

reduced due to the competitive binding of b4Fn12 to P1aABD

(Kd, 7.7 ± 0.7 mM) (Figure 7D), while the enthalpy and entropy

changes (DH and DS) increase as a result of the replacement

of an entropic bindingwith an enthalpic one. Themeasured bind-

ing affinity of Ca2+-CaM P1aABD (Kd, 4.2 ± 0.4 mM) is consistent

with the calculated one using the competitive binding model (Kd,

2.3 mM) (Sigurskjold, 2000). Moreover, the binding affinity of

Ca2+-CaM to P1aABDD22 (Kd, 2.6 ± 1.0 mM) is comparable with

that of P1aABD (Figure S6C). Due to the higher binding affinity

of P1aABD to CaMNL (Kd, 10.5 ± 1.1 mM), compared with its af-

finity to b4Fn12 (Kd, 41.7 mM± 4.2), CaMNL alone expectedly dis-

placed b4Fn12 from the P1aABD/b4Fn12 complex (Figure S6D).

In addition, we compared the thermodynamics of the b4Fn12

and Ca2+-CaM binding to P1aABD. The formation of the

P1aABD/b4Fn12 complex is not enthalpy but entropy driven

(DH, 3.69 kcal/mol, Figure 7B). This indicates that ordered water

molecules solvating the binding partners are released upon

complex formation (Dunitz, 1994). For the P1aABD/CaM interac-

tion, we showed that the folding of the structurally disordered

N-ter tail into an a helix is coupled with binding to Ca2+-CaM.

This reaction is entropy unfavorable, as shownby ITC (Figure 7C).

However, the enthalpy contribution compensates for the entropy

cost to instigate the binding reaction (Figures 7C and 7D) (Dyson

andWright, 2005), which is inferred from the fact that the binding

affinity of Ca2+-CaM to P1aABD (Kd, 4.2 mM) is lower than that re-

ported for other binding partners (Kd, 10
�7–10�11 M) (Crivici and

Ikura, 1995).
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To explore structural determinants of

the preferential affinity of CaMNL for P1a

compared with CaMCL, we generated a

model of the P1aABDD22/CaMCL complex,

by superimposing CaMCL (82–146 aa;
PDB, 3CLN [Babu et al., 1988]) on the crystal structure of the

P1aABDD22/CaMNL complex (rmsd, 0.50 Å over 53 equivalent

Ca atoms out of 65). Amino acid residues involved in the interac-

tion interfaces were analyzed by PISA (Krissinel and Henrick,

2007) (Figure S9A). Comparison of the interaction interfaces

showed differences in three positions involved in critical stabiliz-

ing interactions, which are at the basis of higher affinity of the

N-ter lobe: CaMNL Q41/CaMCL E114, CaMNL L18/CaMCL V91,

and CaMNL V55/CaMCL A128 (Figure S9B). Although E114 in

the C-lobe can potentially form a stronger interaction with the

P1aABD R31 residue compared with the corresponding Q41 in

the N-lobe, the two bulkier hydrophobic residues in the N-lobe

(L18 and V55) contribute to the establishment of a larger

hydrophobic interface with plectin than the equivalent C-lobe

residues (V91 and A128) (Figure S9B). The total interface area

of CaMNL (635 Å2, 14.9% of the solvent accessible surface

area) is larger than that of CaMCL (618 Å2, 13.4% of the solvent

accessible surface area) (Table S4).

We further compared the intermolecular interfaces of the

P1aABDD22/CaMNL and P1aABD/b4Fn12 complexes. Probabil-

ity measures PDG,IF of specific interfaces were derived

from the gain in solvation energy upon complex formation, with

PDG,IF > 0.5 pointing to hydrophilic/unspecific and PDG,IF < 0.5

to hydrophobic/specific interfaces using PISA. In the case of

P1aABDD22/CaMNL, the PDG,IF values (<0.15) are in the range

of probabilities derived from typical protein interfaces (0.1–0.4).

In the case of P1aABD/b4Fn12, however, the PDG,IF value close

to 0.6 suggests a less specific interaction, with concomitantly

smaller solvation energy gain (Table S4). These data collectively

show that CaMNL is the high-affinity ligand of P1aABD. The finely

tuned hydrophobic interactions of CaMNL with the N-ter tail of

P1a lead to its capacity to disrupt the weaker and less specific

interaction between P1a and integrin b4.
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Figure 6. Structure of P1aABD/b4Fn12

Complex

(A) Schematic illustrations of integrin b4 and P1a

fragments used in the experiments (boxed areas).

(B) The crystal structure of the P1aABDD22/b4Fn12

complex is shown in two orientations. b4Fn12 is

displayed in cyan, and the CH1 and CH2 of the

P1aABDD22 are displayed in bronze and orange,

respectively. The binding interface comprises three

salt bridges between P1a and integrin b4; D123/

R1225 (2.60 Å), R71/E1242 (3.04 Å), and E68/

R1281 (2.57 Å).

see also Figures S7 and S8; Table S2.
DISCUSSION

Specific subcellular localizations have been identified for several

plectin isoforms (Castanon et al., 2013). Nevertheless, few iso-

form-specific binding partners of these variants have been re-

ported. Our results showed that Ca2+-CaM binds specifically

to the P1a isoform, in particular to the ten residues of the

isoform-specific N-ter tail, directly preceding the isoform-

conserved ABD. The role of the 22 isoform-specific amino acid

residues preceding the CaM binding site is still unknown. How-

ever, the specific localization of P1a to HDs suggests that this

part of the isoform-specific sequence most likely harbors a

signal for targeting of P1a into HDs. Plectin isoform diversity sug-

gests that the function and nature of the plectin interactions with

binding partners will vary, depending on both interaction part-

ners and specific N-ter extensions.

Obviously, the strength of the interactions asmeasured in vitro

may well vary from those in vivo, in which the interaction of P1a

with integrin b4 is further stabilized by other interaction sites

(Walko et al., 2014), contributing to localization of P1aABD in

the vicinity of b4Fn2, thus increasing the probability of these do-

mains to interact. In any case, the interaction of P1aABD with

Ca2+-CaM displays affinity that is an order of magnitude higher

than that with b4Fn12, and these differential affinities are crucial

for the regulation of HD disassembly. Moreover, dimer and

higher oligomeric forms of P1a contribute to the stability of

HDs (Walko et al., 2011) and might have additional impact on

HD disassembly regulated by Ca2+-CaM.

In addition to its role in regulating the interaction of P1a and

integrin b4, Kostan et al showed that Ca2+-CaM also prevents

plectin ABD from binding to F-actin (Kostan et al., 2009). To un-

derstand the molecular mechanism of this process, we superim-

posed the SAXS structure of the P1aABD/CaM complex on the

homologous CH1 domain of a-actinin bound to F-actin (PDB,

3LUE) (Galkin et al., 2010) (rmsd, 0.54 Å over 98 equivalent Ca

atoms). Superimposition of the P1aABD/CaM model onto the

ABD of a-actinin bound to F-actin (Galkin et al., 2010) showed

that CaM does not directly affect the actin binding sites of CH1

(Bresnick et al., 1990; Levine et al., 1990) but rather produces

steric clashes between Ca2+-CaM and F-actin (Figure 8), which

likely explains the inability of this complex to bind F-actin.

The results presented here support and extend the previously

proposed model of HD disassembly (Kostan et al., 2009) and

explain isoform specificity of P1a binding to Ca2+-CaM. In our
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extended model (Figure 9), the P1a/integrin b4 complex is main-

tained at low cytosolic calcium concentrations in HDs. In this

complex, P1a and integrin b4 interact via the isoform-indepen-

dent interface. The N-ter isoform-specific tail of P1a is disor-

dered in this complex and is not involved in the interaction.

Upon increased cytosolic Ca2+ concentrations during keratino-

cyte differentiation or wound healing, activated CaM binds to

the N-ter tail of P1a via its N-lobe, while the C-lobe plays an auxil-

iary role in this interaction. The N-ter tail folds into an a helix upon

CaM binding to P1a, leading to a steric clash between both the

N- and C-terminal lobes of CaM and b4Fn12, which in turn insti-

gates the displacement of integrin b4 from P1a.

For HD dynamics, being structurally disordered is an essential

property of the P1a N-ter tail for three main reasons. First,

although the N-ter extension does not contribute to the complex

formation with integrin b4, an a helix in place of a structurally

disordered peptide would generate a steric clash with integrin

b4. Second, being structurally disordered in complex with integ-

rin b4 enables exploration of a large conformational space, facil-

itating the recruitment of Ca2+-CaM upon increased cytosolic

calcium levels. Intrinsically disordered regions provide confor-

mational fluctuations, which can facilitate intermolecular interac-

tions, forming complexes with high specificity and relatively low

affinity. This is critical for processes in which not only specific as-

sociation but also subsequent dissociation of binding partners is

required (Tompa and Csermely, 2004). Third, binding to Ca2+-

CaM leads to the formation of an a helix, which suitably positions

Ca2+-CaM to displace integrin b4 and F-actin from the complex

with plectin.

This study contributes to the understanding of molecular

mechanisms regulating the functional states of HDs. Using a

combination of structural, mutational, biophysical and in vivo

studies, we show that the binding of Ca2+-CaM to the N-ter

extension of P1a is involved in disruption of the plectin/integrin

b4 and plectin/F-actin complexes by shunting integrin b4 and

F-actin, without directly competing for the binding site. We

further showed that the interaction of plectin with Ca2+-CaM is

isoform specific, while the interaction with integrin b4 is not,

implying that the main function of the N-ter tail is regulation of

P1a interaction with integrin b4 and F-actin, and not direct bind-

ing to these partners.

Finally, several cytoskeletal proteins of the spectrin superfam-

ily (spectrin, utrophin, dystrophin, b-actinin) harbor EF-hand

motifs, which may play important roles in regulating cytoskeletal



Figure 7. Displacement of b4Fn12 from the b4Fn12/P1aABD Complex by Ca2+-CaM

(A) The SAXS-derived tentative model of the CaM/P1aABD complex (for detail see Figure 4E), shown as surface, was superimposed on the ABD of the plectin of

the P1aABDD22/b4Fn12 complex, shown as ribbon. Steric clashes of Fn2 domain with CaM/P1aABD are indicated with a purple dashed line.

(B–D) Displacement of b4Fn12 by Ca2+-CaM as analyzed by ITC. (B) P1aABD (0.08 mM) was titrated with b4Fn12 (0.8 mM) and exhibited entropy-driven binding.

(C) P1aABD (0.1 mM) was titrated with CaM (1 mM). CaM bound to P1aABD with a higher affinity than b4Fn12. (D) For the displacement assay, 1 mM CaM was

injected into the sample cell containing 0.1 mM P1aABD and 0.1 mM b4Fn12. Data are expressed as mean values ± SD.

see also Figure S6.
interactions near the plasma membranes (Bennett and Healy,

2008). The studies on titin-a-actinin (Young and Gautel, 2000)

and recent studies on spectrin-ankyrin, actin, and protein 4.2

(Korsgren and Lux, 2010; Korsgren et al., 2010) suggest that
these interactions are governed by a pseudoligand mechanism.

Furthermore, Ca2+-CaM was reported to regulate filamin A

and utrophin interactions with F-actin (Nakamura et al., 2005;

Winder and Kendrick-Jones, 1995). Our study provides the first
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Figure 8. Ca2+-CaM Regulates Binding of P1a to F-actin

The SAXS-derived tentative model of the P1aABD/CaM complex was super-

imposed to the CH1 domain of a-actinin (red), which is bound to F-actin (light

gray, PDB: 3LUE). The steric clash between the P1aABD/CaM complex and F-

actin is shown by purple arrows.
structural insight into amechanism of Ca2+-CaM-regulated inter-

actions of an actin binding protein. Although the regulatory me-

chanics depicted above might differ, this analysis could serve as

a blueprint for future studies aiming at understanding how Ca2+/

CaM or EF-hand motifs regulate interactions in actin-associated

proteins.

EXPERIMENTAL PROCEDURES

Protein Cloning, Expression, Purification, and Crystallization

Proteins were expressed as His6-fusions in Escherichia coli and purified via

Ni-NTA agarose and SEC as described in the Supplemental Materials and

Methods.

Structure Determination of the P1aABDD22/CaMNL and

P1aABDD22/b4Fn12 Complex

Equimolar mixture of P1aABDD22 and CaMNL was applied to an SEC column

and elution peak containing the complex concentrated to 11 mg/ml. Crystals

were grown by the hanging-drop vapor diffusion method at 4�C from a solution

containing 0.1 M Bis-Tris (pH 6.5), 0.2 M MgCl2, and 13% PEG 8000. The

structure was solved by molecular replacement using human plectin ABD

(PDB, 1MB8) (Garcia-Alvarez et al., 2003) and the N-ter lobe of Ca2+-CaM

(PDB, 3CLN) (Babu et al., 1988) as search models.

Crystals of P1aABDD22 were grown by the sitting-drop vapor diffusion

method at 22�C froma solution containing 50mMmonobasic potassiumphos-

phate and 20%PEG8000. The structurewas solved bymolecular replacement

using human plectin ABD (PDB, 1MB8) (Garcia-Alvarez et al., 2003).

An equimolar mixture of P1aABDD22 and b4Fn12 was concentrated to

12 mg/ml. Crystals of the protein complex were grown at 22�C using
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hanging-drop vapor diffusion, from a solution containing 20 mM HEPES-

NaOH (pH 6.5), 150 mM sodium formate, 7.5% PEG 550 MME, and 3%

sucrose. Crystals were dehydrated by transferring coverslips to reservoirs

containing the crystallization solution with increasing concentrations of PEG

550 MME. The structure was solved by molecular replacement using plectin

ABD (PDB, 1MB8) and integrin b4 fragment (PDB, 3F7Q) as search models

(de Pereda et al., 2009).

Diffraction data were collected at the beamlines ID14-1, ID14-4, and ID23-2

at ESRF (European Synchrotron Radiation Facility, Grenoble, France). Details

on data collection, processing, structure determination, and refinement are

described in the Supplemental Materials and Methods and in Table 1.

ITC

All protein samples were dialyzed against the ITC buffer (20mMHEPES-NaOH

[pH 7.5], 150 mMNaCl, and 5 mMCaCl2) overnight at 4
�C. ITC was performed

at 25�C or 30�C using an iTC200 Microcalorimeter (MicroCal, GE Healthcare).

Thermodynamic parameters were obtained by fitting the one-site binding

model or competitive binding model using the program Origin 7. The heat of

dilution into buffer was subtracted from each reaction or the final titration point

was used to estimate the reference baseline.

SAXS, Crosslinking, and Mass Spectrometry Analyses

SAXS data were collected on beamline X3 at EMBL (European Molecular

Biology Laboratory) c/o DESY (Deutsches Elektronen-Synchrotron) (Hamburg,

Germany) for WT, NEECK, and PIP2 mutants at three different concentrations

and analyzed using the ATSAS package program (Petoukhov et al., 2012)

following standard procedures.

Crosslinking experiments were performed using both a one-step and a two-

step protocol. For the one-step method, with EDC and sulfo-NHS, bands from

SDS-PAGE were excised, trypsinized, and analyzed by high-resolution LC-

MS/MS. Details are described in the Supplemental Materials and Methods.

Pull-Down Assay

All plectin constructs were prepared at a concentration of 5 mM in buffer P

(20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.05% Tween 20). Plectin samples

(1ml) weremixedwith 50 ml of CaM-Sepharose 4B beads (GEHealthcare) sup-

plemented with either 5 mM CaCl2 or 1 mM EDTA. The samples were incu-

bated for 2 hr at room temperature, followed by centrifugation at 3,000 x g

for 2min. Beads were washedwith 1.5ml of buffer P three times and incubated

with an SDS-PAGE sample buffer at 95�C for 10 min to elute bound samples.

FRET Experiments

Rat bladder carcinoma 804G cells were grown in DMEM (Sigma Aldrich). FRET

was measured by the acceptor photobleaching method as previously

described (Stanek and Neugebauer, 2004) using the Leica SP5 confocal mi-

croscope. Details of the procedures are described in the Supplemental Mate-

rials and Methods.
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Figure 9. Model for the CaM-Driven Disrup-

tion of the P1aABD/b4Fn12 Complex

(A) At low cytosolic calcium concentrations, the

P1a/integrin a6b4 complex is maintained in HDs.

(B) Increased cytosolic calcium concentration,

during differentiation or wound healing, leads to

activation of CaM (Ca2+-CaM). CaM in its active

form binds to the structurally disordered N-ter tail

of P1a via its N-ter lobe.

(C) CaM binding leads to the folding of the N-ter tail

of P1a into an a helix. The steric clash caused by

CaM bound to the a helix results in shunting of in-

tegrin b4 from the complex, contributing to HD

disassembly.
refinement. J.-G.S., J.K., and K.D.C. prepared the figures and wrote themanu-
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