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We compute the spectral density of the (Hermitian) Dirac operator in quantum chromodynamics with

two light degenerate quarks near the origin. We use CLS/ALPHA lattices generated with two flavors of

OðaÞ-improved Wilson fermions corresponding to pseudoscalar meson masses down to 190 MeVand with

spacings in the range 0.05–0.08 fm. Thanks to the coverage of parameter space, we can extrapolate our data

to the chiral and continuum limits with confidence. The results show that the spectral density at the origin is

nonzero because the low modes of the Dirac operator do condense as expected in the Banks-Casher

mechanism. Within errors, the spectral density turns out to be a constant function up to eigenvalues of

≈80 MeV. Its value agrees with the one extracted from the Gell-Mann-Oakes-Renner relation.
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I. INTRODUCTION

There is overwhelming evidence that the chiral sym-

metry group SUðNfÞL × SUðNfÞR of quantum chromody-

namics (QCD) with a small number Nf of light flavors

breaks spontaneously to SUðNfÞLþR. This progress

became possible over the last decade thanks to the

impressive speed-up of the numerical simulations of lattice

QCD with light dynamical fermions [1–5] (for a recent

compilation of results see [6]). By now it is standard

practice to assume this fact and extrapolate phenomeno-

logically interesting observables in the quark mass by

applying the predictions of chiral perturbation theory

(ChPT) [7,8].

The distinctive signature of spontaneous symmetry

breaking in QCD is the set of relations among pion masses

and matrix elements which are expected to hold in the

chiral limit [7]. Pions interact only if they carry momentum,

and their matrix elements near the chiral limit can be

expressed as known functions of two low-energy constants,

the decay constant F and the chiral condensate Σ. The

simplest of these relations is the Gell-Mann-Oakes-Renner

(GMOR) one, which equals the slope of the pion mass

squared with respect to the quark mass to 2Σ=F2. On the

one hand, lattice simulations have become so powerful that

we now have the tools to verify some of these relations with

confidence. On the other hand, very little is known about

the dynamical mechanism which breaks chiral symmetry.

Maybe the spectrum of the Dirac operator is the simplest

quantity to look at for an insight. Indeed, many years ago

Banks and Casher suggested that chiral symmetry breaks if

the low modes of the Dirac operator at the origin do

condense and vice versa [9]. Remarkably, we now know

that the spectral density [9–11] is a renormalizable quantity

to which a universal meaning can be assigned [12].

The present paper is the second of two devoted to the

computation of the spectral density of the Dirac operator in

QCD with two flavors near the origin.
1
This is achieved

by extrapolating the numerical results obtained with

OðaÞ-improved Wilson fermions at several lattice spacings

to the universal continuum limit. In the first paper, the focus

was on the physics results [15], while here we report the full

set of results, including the technical and numerical details

of the computation. After fixing the notation and giving the

parameters of the lattices simulated in Secs II and III,

Secs. IV and V are devoted to two different numerical

analyses of the data. Results and conclusions are given in

the last section.

II. SPECTRAL DENSITY OF THE

DIRAC OPERATOR

In a space-time box of volume V with periodic boundary

conditions, the spectral density of the Euclidean massless

Dirac operator D is defined as

ρðλ; mÞ ¼ 1

V

X

∞

k¼1

hδðλ − λkÞi; ð1Þ

where iλ1; iλ2;… are its (purely imaginary) eigenvalues

ordered with their magnitude in ascending order. As usual,

the bracket h…i denotes the QCD expectation value and m
the quark mass. The spectral density is a renormalizable

observable [12,16]. Once the free parameters in the action

(coupling constant and quark masses) have been renormal-

ized, no renormalization ambiguity is left in ρðλ; mÞ.
The Banks-Casher relation [9],

1
Preliminary results of this work were presented in

Refs. [13,14].
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lim
λ→0

lim
m→0

lim
V→∞

ρðλ; mÞ ¼ Σ

π
; ð2Þ

links the spectral density to the chiral condensate,

Σ ¼ −
1

2
lim
m→0

lim
V→∞

hψ̄ψi; ð3Þ

where ψ is the quark doublet. It can be read in either

direction. If chiral symmetry is spontaneously broken by a

nonzero value of the condensate, the density of the quark

modes in infinite volume does not vanish at the origin.

Conversely, a nonzero density implies that the symmetry is

broken.

The mode number of the Dirac operator,

νðΛ; mÞ ¼ V

Z

Λ

−Λ

dλρðλ; mÞ; ð4Þ

also corresponds to the average number of eigenmodes of

the massive Hermitian operator D†Dþm2 with eigenval-

ues α ≤ M2 ¼ Λ2 þm2. It is a renormalization-group

invariant quantity as it stands. Its (normalized) discrete

derivative,

~ρðΛ1;Λ2; mÞ ¼ π

2V

νðΛ2Þ − νðΛ1Þ
Λ2 − Λ1

; ð5Þ

carries the same information as ρðλ; mÞ, but this effective
spectral density is a more convenient quantity to consider in

practice on the lattice.

A. Mode number on the lattice

We discretize two-flavor QCD with the Wilson plaquette

action for the gauge field and OðaÞ-improvedWilson action

for the doublet of mass-degenerate quarks [17,18]; see

Appendix A for more details. The mode number
2
νðΛ; mÞ is

defined as the average number of eigenmodes of the

massive Hermitian OðaÞ-improved Wilson-Dirac operator

D†
mDm with eigenvalues α ≤ M2. In the continuum limit

this definition converges to the universal one [12],

νRðΛR; mRÞ ¼ νðΛ; mÞ; ð6Þ

provided mR is defined as in Eq. (A6), and ΛR as

ΛR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
R −m2

R

q

; MR ¼ Z−1
P ð1þ b̄μamÞM: ð7Þ

The counter term proportional to b̄μ ensures that at finite

lattice spacing νRðMR; mRÞ is an OðaÞ-improved quantity.

This improvement coefficient has been computed in

Ref. [12], and its values for the inverse couplings β

considered in this paper are given in Table III.

For Wilson fermions chiral symmetry is violated at finite

lattice spacing. As a consequence, the fine details of the

spectrum of the Wilson-Dirac operator near the threshold

ΛR ¼ 0 is not protected from large lattice effects

[16,19,20]. While this region may be of interest for

studying the peculiar details of those fermions, it is easier

to extract universal information about the continuum theory

far away from it. In this respect the effective spectral

density in Eq. (5) is a good quantity to consider on the

lattice to extract the value of the chiral condensate.
3

III. NUMERICAL SETUP

The CLS community
4
and the ALPHA Collaboration

have generated the gauge configurations of the two-flavor

QCD with the OðaÞ-improved Wilson action by using

the MP-HMC (lattices A5, B6, G8, N6 and O7) and the

DD-HMC (all other lattices) algorithms as implemented in

Refs. [22,23]. The primary observables that we have

computed are the two-point functions of bilinear operators

in Eq. (A5) and the mode number νðΛ; mÞ. The former were

already computed by the ALPHA Collaboration; see

Appendix B and Refs. [24,25] for more details.

A. Computation of the mode number

The stochastic computation of the mode number has

been carried out as in Ref. [12]. A numerical approximation

of the orthogonal projector PM to the subspace spanned by

the eigenmodes of D†
mDm with eigenvalues α ≤ M2 is

computed as

PM ≃ hðXÞ4; X ¼ 1 −
2M2

�
D†

mDm þM2
�
; ð8Þ

whereM=M⋆ ¼ 0.96334. The function hðxÞ is an approxi-

mation to the step function θð−xÞ by a minmax polynomial

of degree n ¼ 32 in the range −1 ≤ x ≤ 1; see Ref. [12] for

more details. This choice, together with the value of M⋆

given, guarantees a systematic error well below our

statistical errors. The mode number is then computed as

νðM;mÞ ¼ hONi; ON ¼ 1

N

X

N

k¼1

ðηk;PMηkÞ; ð9Þ

where we have added to the theory a set of pseudofermion

fields η1;…; ηN with Gaussian action. In the course of a

numerical simulation, one such field (N ¼ 1) for each

2
We use the same notation for lattice and continuum quantities,

since any ambiguity is resolved from the context. As usual, the
continuum limit value of a renormalized lattice quantity, iden-
tified with the subscript R, is the one to be identified with its
continuum counterpart.

3
Once the renormalizability of the spectral density is proven, a

generic finite integral of ρðλ; mÞ can be used to measure the
condensate; see Ref. [21] for a different choice.

4
https://wiki‑zeuthen.desy.de/CLS/CLS.
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gauge-field configuration is generated randomly, and the

mode number is estimated in the usual way by averaging

the observable ON over the generated ensemble of fields.

The mode number is an extensive quantity, and at fixed N
and for a given statistics, the relative statistical error of the

calculated mode number is, therefore, expected to decrease

like V−1=2.

B. Ensembles generated

The details of the lattices are listed in Tables I and II. All

of them have a size of 2L × L3, and the spatial dimensions

are always large enough so thatMπL ≥ 4. The three values

of the coupling constant β ¼ 5.2, 5.3, 5.5 correspond to

lattice spacings of a ¼ 0.075, 0.065, 0.048 fm, respec-

tively, which have been fixed from FK by supplementing

the theory with a quenched “strange” quark [24]. The pion

masses range from 190 to 500 MeV. To explicitly check for

finite-size effects in the mode number, we have generated

an additional set of lattices (D5) with the same spacing

and quark mass as E5, but with a smaller lattice volume

48 × 243.

The autocorrelation times of the two-point functions and

of the mode number are reported in Table II. For the lattice

E5, we have computed τintðνÞ for three values of aM
corresponding to ΛR ¼ 30, 40 and 86 MeV, and no

significative difference was observed. We thus space the

measurements to give time to the mode number to

decorrelate, while we bin properly the (cheaper) measure-

ments of the two-point functions. To measure ν, the number

of configurations to be processed is chosen so that the

statistical error of the effective spectral density receives

roughly equally sized contributions from the scale and the

mode number. To ensure a proper Monte Carlo sampling, a

minimum of 50 configurations is processed in any case.

TABLE I. Overview of the ensembles and statistics used in this study. We give the label, the spatial extent of the lattice, β ¼ 6=g20, the

hopping parameter κ for the quark fields, the number of molecular dynamics units (MDU), the quark mass mR renormalized in the MS

scheme at μ ¼ 2 GeV, the pion mass Mπ and its decay constant Fπ , the product MπL, and the (updated) value of the lattice spacing

determined as in [24] (see also [26]).

id L=a β κ MDU mR [MeV] Fπ[MeV] Mπ[MeV] MπL a[fm]

A3 32 5.2 0.13580 7040 37.4(9) 120.8(7) 496(6) 6.0 0.0749(8)

A4 32 0.13590 7920 22.8(6) 110.7(6) 386(5) 4.7

A5 32 0.13594 1980 16.8(4) 106.0(6) 333(5) 4.0

B6 48 0.13597 1200 12.2(3) 102.3(5) 283(4) 5.2

E5 32 5.3 0.13625 8832 32.0(8) 115.2(6) 440(5) 4.7 0.0652(6)

F6 48 0.13635 4000 16.5(4) 105.3(6) 314(3) 5.0

F7 48 0.13638 3600 12.0(3) 100.9(4) 268(3) 4.3

G8 64 0.136417 1680 6.1(2) 95.8(4) 193(2) 4.1

N5 48 5.5 0.13660 3840 34.8(8) 115.1(7) 443(4) 5.2 0.0483(4)

N6 48 0.13667 7680 20.9(5) 105.8(5) 342(3) 4.0

O7 64 0.13671 3800 12.9(3) 101.2(4) 269(3) 4.2

TABLE II. The integrated autocorrelation time τint of the pion mass and of the mode number, multiplied by the

fraction of active links in the HMC Ract, is given in units of MDU. The parameters τint have a typical error of

25%–35%. The number nit of MDUs skipped between two consecutive measurements of the two-point functions

and of the mode number is also reported. The value of τexp of the Markov chain given in the last column is taken

from Ref. [27]. The value of RactτintðνÞ for N5 is a conservative estimate from the one of E5 and a scaling

proportional to τexp.

id Ract RactτintðMπÞ RactnitðMπÞ RactτintðνÞ RactnitðνÞ Ractτexp

A3 0.37 7 2.96 47.36 40

A4 0.37 5 2.96 53.28

A5 1 5 4.00 3 36.00

B6 1 6 2.00 24.00

E5 0.37 9 5.92 6 35.52 55

F6 0.37 8 2.96 29.60

F7 0.37 7 2.96 26.64

G8 1 8 2.00 24–48

N5 0.44 30 3.52 11 28.16 100

N6 1 10 4.00 128

O7 1 15 4.00 76
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The value of τexp of the Markov chain, defined as in

Ref. [24], is taken from [27]. It gets significantly longer

towards finer lattice spacings. For the ensembles where

nit < τexp, we estimate the contributions of the tails in the

autocorrelation functions of the observables as described in

Ref. [28]. When needed, we take them into account to have

a more conservative error estimate.

IV. A FIRST LOOK INTO THE

NUMERICAL RESULTS

We have computed the mode number ν for nine values
5

of ΛR in the range 20–120 MeV with a statistical accuracy

of a few percent on all lattices listed in Table I. Four larger

values of ΛR in the range 150–500 MeV also have been

analyzed for the ensemble E5. The results are collected in

Tables V–VII of Appendix D.

In Fig. 1 we show ν as a function of ΛR for the lattice O7,

corresponding to the smallest reference quark mass (see

below) at the smallest lattice spacing. On all other lattices

an analogous qualitative behavior is observed. The mode

number is a nearly linear function in ΛR up to approx-

imatively 100–150 MeV. A clear departure from linearity is

observed for ΛR > 200 MeV on the lattice E5. At the

percent precision, however, the data show statistically

significant deviations from the linear behavior already

below 100 MeV. To guide the eye, a quadratic fit in ΛR

is shown in Fig. 1, and the values of the coefficients are

given in the caption. The bulk of ν is given by the linear

term, while the constant and the quadratic term represent

Oð10%Þ corrections in the fitted range. The nearly linear

behavior of the mode number is manifest on the right plot

of Fig. 1, where its discrete derivative, defined as in Eq. (5)

for each couple of consecutive values of ΛR, is shown as a

function of ΛR ¼ ðΛ1;R þ Λ2;RÞ=2. Since it is not affected

by threshold effects, the effective spectral density ~ρR is the

primary observable we focus on in the next sections.

A. Continuum-limit extrapolation

In general for ~ρR we observe quite a flat behavior in ΛR

toward finer lattice spacings and light quark masses, similar

to the one shown in Fig. 1. Because the action and the mode

number are OðaÞ-improved, the Symanzik effective theory

analysis predicts that discretization errors start at Oða2Þ. In
order to remove them, at every lattice spacing we match

three quark mass values (mR ¼ 12.9, 20.9, 32.0 MeV) by

interpolating ~ρR linearly in mR (see next section for more

details). The values of ~ρR show mild discretization effects at

light mR and ΛR, while they differ up to 15% per linear

dimension among the three lattice spacings toward larger

ΛR. Within the statistical errors all data sets are compatible

with a linear dependence in a2, and we thus independently

extrapolate each triplet of points to the continuum limit

accordingly. We show six of those extrapolations in Fig. 2,

considering the lightest and the heaviest reference quark

masses for the lightest, an intermediate, and the heaviest

cutoff ΛR. The difference between the values of ~ρR at the

finest lattice spacing and the continuum-extrapolated ones

is within the statistical errors for light mR and ΛR, and it

remains within few standard deviations toward larger

values of mR and ΛR. This fact makes us confident that

the extrapolation removes the cutoff effects within the

errors quoted.

The results for ~ρR at mR ¼ 12.9 MeV in the continuum

limit are shown as a function of ΛR in the left plot of Fig. 3.

A similar ΛR dependence is observed at the two other

reference masses. It is worth noting that no assumption on

the presence of spontaneous symmetry breaking was

needed so far. These results, however, point to the fact

that the spectral density of the Dirac operator in two-flavor

QCD is (almost) constant in ΛR near the origin at small

quark masses. This is consistent with the expectation from

the Banks-Casher relation in presence of spontaneous
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FIG. 1 (color online). Left: the mode number ν as a function of ΛR for the ensemble O7. A quadratic fit of the data gives

ν ¼ −9.0ð13Þ þ 2.07ð7ÞΛR þ 0.0022ð4ÞΛ2
R. Right: the effective spectral density ~ρR as defined in Eq. (5) for the same ensemble as a

function of ΛR ¼ ðΛ1;R þ Λ2;RÞ=2. Since we are interested in the ΛR dependence only, the errors in this plot do not include those of the

lattice spacing and of ZP. The errors from ZA and mR appear to be invisible in the figure.

5
If not explicitly stated, the scheme- and scale-dependent

quantities such as Σ, mR, ΛR and ~ρR are renormalized in the MS
scheme at μ ¼ 2 GeV.
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symmetry breaking. In this case next-to-leading (NLO)

ChPT indeed predicts

~ρnloR ¼ Σ

�

1þ mRΣ

ð4πÞ2F4

�

3l̄6 þ 1 − lnð2Þ

− 3 ln

�

ΣmR

F2μ̄2

�

þ ~gν

�

Λ1;R

mR

;
Λ2;R

mR

���

; ð10Þ

i.e. an almost flat function in (small) ΛR at (small) finite

quark masses; see Appendix C for unexplained notation. At

fixed quark mass, the ΛR dependence of ~ρR
nlo in Eq. (10) is

parameter free once the pion mass and decay constant are

measured.

B. Chiral limit

The extrapolation to the chiral limit requires an

assumption on how the effective spectral density ~ρR
behaves when mR → 0. In this respect it is interesting to

note that the NLO function in Eq. (10) goes linearly in mR

near the chiral limit since there are no chiral logarithms at

fixed ΛR; see Appendix C. A fit of the data to Eq. (10)

shows that the data are compatible with that NLO formula.

A prediction of NLO ChPT in the two-flavor theory is that

in the chiral limit ~ρnloR ¼ Σ also at nonzero ΛR, since all

NLO corrections in Eq. (10) vanish [29]. To check for this

property we extrapolate ~ρR with Eq. (11), which is a

generalization of Eq. (10) see below, and we obtain the

results shown in the right plot of Fig. 3 with a χ2=dof ¼
16.4=14. Within errors the ΛR dependence is clearly

compatible with a constant up to ≈80 MeV. Moreover

the difference between the values of ~ρR in the chiral limit

and those at mR ¼ 12.9 MeV is of the order of the

statistical error; i.e., the extrapolation is very mild. A fit

to a constant of the data gives Σ1=3 ¼ 261ð6Þ MeV.

As in any numerical computation, the chiral limit

inevitably requires an extrapolation of the results with a

pre-defined functional form. The distinctive feature of

spontaneous symmetry breaking, however, is that the

behavior of ~ρR near the origin is predicted by ChPT, and

its extrapolated value has to agree with the one of

M2
πF

2
π=ð2mRÞ. We have thus complemented our computa-

tions with those for mR, Mπ and Fπ , and extrapolated the

above-mentioned ratio to the chiral limit as prescribed by
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FIG. 2 (color online). Effective spectral density ~ρR vs the lattice spacing squared for the lightest (left-hand side) and the heaviest

reference quark massmR (right-hand side), and for the lightest, an intermediate, and the heaviest cutoff ΛR in both panels. In general, the

data are well described by a linear fit in a2, which suggests that, within our statistical errors, we are in the asymptotic regime of

Symanzik effective theory. As evident from the figures, there are competing (positive and negative) discretization effects, which can

approximately compensate for each other in specific domains of parameter space.
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FIG. 3 (color online). Effective spectral density ~ρR in the continuum limit at the smallest reference quark massmR ¼ 12.9 MeV (left),

and in the chiral limit (right). Note the flat dependence on ΛR which agrees with the expectation from NLO ChPT. The results of the fit to

a constant is also shown on the right plot.
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ChPT; see Appendix B and Ref. [15]. We obtain Σ
1=3
GMOR ¼

263ð3Þð4Þ MeV, where the first error is statistical and the

second is systematic, in excellent agreement with the

value quoted above. These results show that the spectral

density at the origin has a nonzero value in the chiral limit.

In the rest of this paper we assume this conclusion, and we

apply standard field theory arguments to remove with

confidence the (small) contributions in the raw data due

to the discretization effects, the finite quark mass and

finite ΛR.

V. DETAILED DISCUSSION OF

NUMERICAL RESULTS

We have analyzed the numerical results for the effective

spectral density ~ρR following two different fitting strategies.

In the first one, the main results of which are reported in the

previous section, we have extrapolated the results at fixed

kinematics ðΛR; mRÞ to the continuum limit independently.

The results of this analysis call for an alternative strategy to

extract the chiral condensate which uses ChPT from the

starting point, i.e. based on fitting the data in all three

directions ðΛR; mR; aÞ at the same time. This procedure

reduces the number of fit parameters, allows us to include

all generated data in the fit, and avoids the need for an

interpolation in the quark mass. It is important to stress that

also in this case ChPT is used to remove only (small)

higher-order corrections in the spectral density. The details

of these fits are reported in the next two subsections.

A. Continuum limit fit

In the first strategy outlined in Sec. IV, we start by

interpolating the data in the quark mass at fixed ΛR and a.
We choose three reference values (mR ¼ 12.9, 20.9,

32.0 MeV) which are within the range of simulated quark

masses at all β values, and they are as close as possible to

the values at the finest lattice spacing. Most of the data sets

look perfectly linear inm in the vicinity of the interpolation

points, with small deviations only for simultaneous coarse

lattices, light ΛR’s and towards heavy quark masses (see

Fig. 4). In all cases, however, the systematic error asso-

ciated with the linear interpolation is negligible with respect

to the statistical one. The interpolation and all following fits

are performed using the jackknife technique to take into

account the correlation of the data.

At fixed ðΛR; mRÞ, each data set is well fitted by a linear

function in a2, see Fig. 2, a fact which supports the

assumption of being in the Symanzik asymptotic regime

within the errors quoted.
6
Once extrapolated to the con-

tinuum limit, we fit the effective spectral density with the

functional form

~ρR ¼ c0ðΛRÞ þmR

�

c1 þ c2

�

−3 ln

�

mR

μ̄

�

þ ~gν

�

ΛR;1

mR

;
ΛR;2

mR

���

; ð11Þ

which rests on NLO ChPT but is capable of accounting

for OðΛ2Þ effects. The latter are expected to be the

dominant higher-order effects in ChPT in this range of

parameters. Within the given accuracy, c0ðΛÞ is consistent
with a plateau behavior in the range 20 ≤ ΛR ≤ 80 MeV;

see right plot of Fig. 3. By fitting c0ðΛRÞ to a constant in

this range, we obtain Σ
1=3 ¼ 261ð6Þ MeV. If we include

also a Λ2
R term in the fit and consider the entire range

20 ≤ ΛR ≤ 120 MeV, we find 253(9) MeV, which

differs from the previous result by roughly one standard

deviation. At the level of our statistical errors of

Oð10%Þ, the spectral density of the Dirac operator in the

continuum and chiral limits is a constant function up

to ΛR ≈ 80 MeV.
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FIG. 4 (color online). Left: effective spectral density ~ρR vs the quark mass mR for the finer lattice spacings and three cutoffs ΛR

together with the combined fit to all data to Eq. (14). Right: effective spectral density ~ρR vs the cutoff ΛR in the continuum and chiral

limits. The squares are the results for c0;0ðΛRÞ of the fit to the function in Eq. (14), and the plateau fit shown gives the value for the chiral
condensate.

6
A detailed analysis of discretization effects in the spectral

density is beyond the scope of this paper. For completeness, we
report the results of these fits in Appendix D for interested
readers.
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B. Combined fit

In this section we present an alternative strategy to

extract the chiral condensate, based on fitting the data in all

three directions ðΛR; mR; aÞ at the same time. Compared to

the first strategy, the shortcomings are that we cannot

disentangle different corrections as clearly and ChPT is

used from the very beginning. We remark, however, that

also in this case ChPT is used only to remove higher-order

corrections, while the bulk of the chiral condensate is still

given through the Banks–Casher relation. The statistical

analysis is based on a double-elimination jackknife fit to

take into account all errors and correlations (no fit of fitted

quantities is needed). We start with the fit form

~ρR ¼ c0ðΛR; aÞ þmR

�

c1ðΛR; aÞ þ c2

�

−3 ln

�

mR

μ̄

�

þ ~gν

�

ΛR;1

mR

;
ΛR;2

mR

���

; ð12Þ

where ΛR ¼ ðΛR;1 þ ΛR;2Þ=2, and we constrain the fit

parameters as suggested by NLO chiral and Symanzik

effective theories. As already verified in the first strategy,

the discretization effects obey an a2 dependence in the

range of parameters simulated. We, thus, constrain our fit

parameters to obey
7

c0ðΛR; aÞ ¼ c0;0ðΛRÞ þ a2c0;1ðΛRÞ;
c1ðΛR; aÞ ¼ c1;0ðΛRÞ þ a2c1;1ðΛRÞ: ð13Þ

The NLO ChPT predicts that c0;0ðΛRÞ and c1;0ðΛRÞ should
both be constant. Allowing for the time being an arbitrary

ΛR dependence in the parameter c0;0ðΛRÞ, we arrive at the
fit function

~ρR ¼ c0;0ðΛRÞ þ a2c0;1ðΛRÞ þmR

�

c1;0 þ a2c1;1ðΛRÞ

þ c2

�

−3 ln

�

mR

μ̄

�

þ ~gν

�

ΛR;1

mR

;
ΛR;2

mR

���

: ð14Þ

The fit of the data is shown versus the quark mass in the left

plot of Fig. 4 for the finer lattice spacings and three cutoffs

ΛR’s. The resulting effective spectral density in the con-

tinuum and chiral limit, corresponding to c0;0ðΛRÞ, is

shown in the right plot of Fig. 4. The results are very well

compatible with the ones determined in Sec. IV. If we fix

c0;0 to a constant in the region 20 ≤ ΛR ≤ 80, we can

extract the condensate to get Σ1=3 ¼ 259ð6Þ MeV, which is

well compatible with the one extracted in the previous

strategy.

To assess the stability of the fit, we have amended the

function with higher-order terms of the form

OðΛ2
R;ΛRmR; m

2
RÞ. Note that when including Λ2

R terms,

we always consider the entire range 20 ≤ ΛR ≤ 120 MeV.

The coefficient of ΛRmR is consistent with zero, while m2
R

and Λ2
R effects are nonzero by 2 and 3 standard deviations,

respectively, and affect our final result systematically by

roughly 1 standard deviation downwards. We remark,

however, that in the truncated range 20 ≤ ΛR ≤ 80 the

data is perfectly compatible with a flat dependence on ΛR.

We also investigated the effect of truncating the amount of

data included in the fit. Cutting light ΛR slightly improves

the fit, while cutting heavy ones does not make a note-

worthy difference. To check again whether all data obey

well the assumed linear a2 dependence, we perform also

fits excluding the data at the coarsest lattices

(a ¼ 0.075 fm) with larger discretization effects (we kept

12 out of 32 data points at this lattice spacing). This does

not improve the quality of the fit significantly, and it gives

Σ
1=3 ¼ 267ð6Þ MeV which differs from the previous result

by roughly one standard deviation upwards. We remark,

however, that the linear a2 dependence has been checked

and confirmed explicitly for each pair of ðΛR; mRÞ in the

first strategy. A further reduction of the number of fit

parameters can actually be achieved by noting that c2 is

known in ChPT, as seen in Eq. (10). One can rewrite it as a

function ofmπ andm. We have also tried to fix c0;1ðΛRÞ to a
constant which is suggested from results of the several fits

we have done (see Appendix E). In either case, we get

results which are well compatible with the results quoted.

For this strategy the best value of the chiral condensate is

Σ
1=3 ¼ 259ð6Þ MeV. It is extracted from the fit function

Eq. (14) where c0;0 is fitted to a constant in the range

20 ≤ ΛR ≤ 80 MeV. This fit confirms that in the chiral and

continuum limits the spectral density is a flat function ofΛR

up to ≈80 MeV at the level of precision of our data points

in the continuum limit (approximatively 10%), and it can be

parametrized by NLO ChPT.

We presented preliminary results of this study at only

two lattice spacings in Ref. [13]. There we observed effects

of OðΛ2
RÞ already for ΛR ≳ 50 MeV, in particular for

a ¼ 0.065 fm. Once the data are extrapolated to the

continuum limit, these effects are not visible anymore up

to ΛR ≈ 80 MeV. In this respect it must be noted, however,

that once the uncertainties in the scale and renormalization

constants are included, the final errors of the extrapolated

results are significantly larger than those used to study the

ΛR dependence at fixed lattice spacing. It is, therefore, not

surprising that the window extends to larger values of ΛR.

By estimating the spectral density of the twisted mass

Hermitian Dirac operator, the dimensionless quantity

r0Σ
1=3 was computed in Ref. [31]. Since they have a

smaller set of data, the analysis described in Sec. VA is not

a viable option for them. They opt for the strategy adopted

in Ref. [12] which is inspired by NLO ChPT. They fit the

7
Note that this expression includes also the functional form of

discretization effects predicted at NLO in the GSM regime of
ChPT [30]; see Appendixes C and E.
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mode number linearly in M in the range 50–120 MeV, and

they extrapolate the results to the chiral and continuum

limits linearly. The smaller quark masses and in particular

the smaller values of ΛR that we considered were instru-

mental to properly quantify and eventually reduce our

systematic error.

C. Finite-size effects

We have chosen the lattice parameters so that finite-

volume effects, as estimated by NLO ChPT (see

Appendix C), are negligible within the statistical accuracy.

For the lattice E5 we have explicitly checked that finite-size

effects are within the expectations of ChPT by comparing

the values of the mode number with those obtained on a

lattice of 48 × 243, lattice D5 in Table VI of Appendix D.

VI. RESULTS AND CONCLUSIONS

Our results show that in QCD with two flavors, the low

modes of the Dirac operator do condense in the continuum

limit as expected by the Banks-Casher relation in the

presence of spontaneous symmetry breaking. The spectral

density of the Dirac operator in the chiral limit at the origin

is ½πρMSð2 GeVÞ�1=3 ¼ 261ð6Þð8Þ MeV, where the first

error is statistical and the second is systematic. The latter

is estimated so that the results from various fits are within

the range covered by the systematic error: in particular, the

smaller value that we find in Sec. VA when a Λ2
R term is

included in the fit function and the higher one obtained in

Sec. V B when some of the data at the coarser lattice

spacing are excluded from the fit. From the GMOR

relation, the best value of the chiral condensate that we

obtain is ½ΣMS
GMORð2 GeVÞ�1=3 ¼ 263ð3Þð4Þ MeV, where

again the first error is statistical and the second is

systematic. The spectral density at the origin, thus, agrees

with M2
πF

2
π=ð2mRÞ when both are extrapolated to the

chiral limit.

For the sake of clarity, the above values of the condensate

have been expressed in physical units by supplementing the

theory with a quenched “strange” quark and by fixing the

lattice spacing from the kaon decay constant FK . They are,

therefore, affected by an intrinsic ambiguity due to the

matching of FK in the Nf ¼ 2 partially quenched theory

with its experimental value. The renormalization group-

invariant dimensionless ratio

½ΣRGI�1=3
F

¼ 2.77ð2Þð4Þ; ð15Þ

however, is a parameter-free prediction of the Nf ¼ 2

theory. It belongs to the family of unambiguous quantities

that should be used for comparing computations in the two-

flavor theory rather than those expressed in physical

units [6].
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APPENDIX A: LATTICE ACTION

AND OPERATORS

The gluons are discretized with the Wilson plaquette

action, while the doublet of mass-degenerate quarks with

the OðaÞ-improved Wilson action
8
[17,18] with its coef-

ficient csw determined nonperturbatively [32]. We are

interested in the flavor nonsinglet (r; s ¼ 1; 2; r ≠ s)
fermion bilinears

Prs ¼ ψ̄ rγ5ψ s; Ars
0 ¼ ψ̄ rγ0γ5ψ s: ðA1Þ

The corresponding OðaÞ-improved renormalized operators

are given by

Prs
R ¼ ZPð1þ ðb̄P þ ~bPÞamÞPrs;

Ars
0;R ¼ ZAð1þ ðb̄A þ ~bAÞamÞ

�

Ars
0 þ cA

a

2
ð∂�

0 þ ∂0ÞPrs

�

;

ðA2Þ

where ∂0 and ∂�
0 are the forward and the backward lattice

derivatives, respectively. The coefficient cA has been

determined nonperturbatively for the Nf ¼ 2 theory in

Ref. [33], while the b coefficients are known in perturba-

tion theory up to one loop only [34,35]. The multiplicative

renormalization constants ZA and ZP have been computed

nonperturbatively in Ref. [24]. For the lattices considered in

this paper, the numerical values of the improvement

coefficients and of the renormalization constants are

summarized in Table III. The matching factors between

ZP in the Schrödinger functional scheme and the renorm-

alization-group invariant ZRGI
P (with the overall normali-

zation convention of Ref. [24]) and ZMS
P ð2 GeVÞ are

ZRGI
P ¼ 1

1.308ð16ÞZP;

ZMS
P ð2 GeVÞ ¼ 1

0.740ð12ÞZ
RGI
P : ðA3Þ

8
The correction proportional to bg is neglected.
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Using the PCAC relation, we can define

mðx0Þ ¼
1
2
ð∂0 þ ∂�

0ÞfAPðx0Þ þ cAa∂
�
0∂0fPPðx0Þ

2fPPðx0Þ
; ðA4Þ

where

fPPðx0Þ ¼ −a3
X

~x

hP12ðxÞP21ð0Þi;

fAPðx0Þ ¼ −a3
X

~x

hA12
0 ðxÞP21ð0Þi: ðA5Þ

At asymptotically large values of x0, the mass mðx0Þ has a
plateau which defines the value of m to be used in

Eqs. (A2). From this, the renormalized quark mass is

obtained as

mR ¼ ZAð1þ ðb̄A þ ~bAÞamÞ
ZPð1þ ðb̄P þ ~bPÞamÞ

m; ðA6Þ

where the renormalization scheme and scale are those of

ZP. In particular in this paper, when not explicitly stated,

we use the symbol mR for the quark mass renormalized in

the MS scheme at μ ¼ 2 GeV. The bare pseudoscalar

decay constant is given by [36]

F π ¼ 2m
Gπ

M2
π

; ðA7Þ

where Gπ is extracted from the behavior of the correlator

fPPðx0Þ at asymptotically large values of x0,

fPPðx0Þ ¼
G2

π

Mπ

e−Mπx0 : ðA8Þ

Thanks to Eq. (A2), the pseudoscalar decay constant is

finally given by

Fπ ¼ ZAð1þ ðb̄A þ ~bAÞamÞF π: ðA9Þ

APPENDIX B: QUARK MASSES, PION MASSES

AND DECAY CONSTANTS

On all ensembles in Table I, we have computed the two-

point functions of the flavor nonsinglet bilinear operators

in Eqs. (A4) and (A5). They have been estimated by using

10 to 20 Uð1Þ noise sources located on randomly chosen

time slices. The bare quark mass mðx0Þ in Eq. (A4) has a

plateau for large enough x0 over which we average. The

pion mass Mπ and the bare pion decay constant F π are

extracted from fPPðx0Þ and the quark mass following

Ref. [24]. In particular, we determine the region x0 ∈

½xmin
0 ;T − xmin

0 � where we can neglect the excited state

contribution by first fitting the pseudoscalar two-point

function with a two-exponential fit,

fPPðx0Þ ¼ d1½e−E1x0 þ e−E1ðT−x0Þ�
þ d2½e−E2x0 þ e−E2ðT−x0Þ�; ðB1Þ

in a range where this function describes the data well for the

given statistical accuracy. We then determine xmin
0 to be

the smallest value of x0 where the statistical uncertainty on

the effective mass meffðx0Þ ¼ − d
dx0

log½fPPðx0Þ� is 4 times

larger than the contribution of the excited state to meffðx0Þ
as given by the result of the fit. In the second step only the

first term of Eq. (B1) is fitted to the data restricted to this

region, and E1 and d1 are determined. The pion mass and

its decay constant are then fixed to be Mπ ¼ E1 and

F π ¼ 2
ffiffiffiffiffi

d1
p

m=M3=2
π , respectively. The numerical results

for all lattices are reported in Table IV, and those for the

pseudoscalar decay constant and for the cubic root of

the ratio M2
π=ð2mRFÞ are shown in Fig. 5 versus

y ¼ M2
π=ð4πFπÞ2. We fit Fπ to the function

TABLE III. Improvement coefficients and renormalization constants for the β values considered in the paper.

β run cSW cA ~bP ~bA b̄μ ZP ZA

5.2 all 2.01715 −0.06414 1.07224 1.07116 −0.576 0.5184(53) 0.7703(57)

5.3 all 1.90952 −0.05061 1.07088 1.06982 −0.575 0.5184(53) 0.7784(52)

5.5 N5 1.751496 −0.03613 1.06830 1.06728 −0.572 0.5184(53) 0.7932(43)

5.5 N6,O7 1.751500 −0.03613 1.06830 1.06728 −0.572 0.5184(53) 0.7932(43)

TABLE IV. The bare quark mass am as defined in Eq. (A4), the

pion mass aMπ and pion decay constant aFπ as defined in

Eq. (A9).

id am aMπ aFπ

A3 0.00985(6) 0.1883(8) 0.04583(37)

A4 0.00601(6) 0.1466(8) 0.04200(35)

A5 0.00444(6) 0.1263(11) 0.04023(34)

B6 0.00321(4) 0.1073(8) 0.03883(31)

E5 0.00727(3) 0.1454(5) 0.03803(29)

F6 0.00374(3) 0.1036(5) 0.03479(29)

F7 0.002721(20) 0.0886(4) 0.03331(24)

G8 0.001395(18) 0.0638(4) 0.03162(23)

N5 0.00576(3) 0.1085(8) 0.02816(21)

N6 0.003444(15) 0.0837(3) 0.02589(19)

O7 0.002131(9) 0.06574(23) 0.02475(16)
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aFπ ¼ ðaFÞf1 − y lnðyÞ þ byg; ðB2Þ

where b is common to all lattice spacings, restricted to the

points with Mπ < 400 MeV (see left plot of Fig. 5). This

function rests on the Symanzik expansion and is compat-

ible with Wilson ChPT (WChPT) at the NLO [37]. To

estimate the systematic error, we performed a number of fits

to different functions: linear in y with Mπ < 400 MeV and

next-to-next-to-leading order in ChPT with all data

included. As a final result, we quote aF ¼ 0.0330ð4Þð8Þ,
0.0287(3)(7) and 0.0211(2)(5) at a ¼ 0.075, 0.065 and

0.048 fm, respectively, where the second (systematic) error

takes into account the spread of the results from the various

fits. By fixing the scale from FK , and by performing a

continuum-limit extrapolation, we obtain our final result

F ¼ 85.8ð7Þð20Þ MeV.

We further compute the ratio M2
π=ð2mRFÞ for all data

points. We fit the data restricted to Mπ < 400 MeV to

�

M2
π

2mRF

�

1=3

¼ ðs0 þ s1ðaFÞ2Þ
�

1þ y

6
lnðyÞ þ dy

�

; ðB3Þ

where s0, s1 and d are common to all lattice spacings, and

the fit function is again the one resting on the Symanzik

expansion and compatible with WChPT at the NLO. Also

in this case we checked several variants, although the data

look very flat up to the heaviest mass. From the fits we

get s0 ¼ 3.06ð3Þð4Þ, where the systematic error is deter-

mined as for F. This translates to a value for the

renormalization-group-invariant dimensionless ratio of

½ΣRGI�1=3=F ¼ 2.77ð2Þð4Þ, which in turn corresponds to

½ΣMSð2GeVÞ�1=3¼263ð3Þð4ÞMeV if again FK is used to

set the scale.

APPENDIX C: MODE NUMBER IN CHIRAL

PERTURBATION THEORY

When chiral symmetry is spontaneously broken, the

mode number can be computed in the chiral effective

theory. At the NLO it reads [12] (see also Ref. [38])

νnloðΛR; mRÞ ¼
2ΣΛRV

π

�

1þ mRΣ

ð4πÞ2F4

�

3l̄6 þ 1 − lnð2Þ

− 3 ln

�

ΣmR

F2μ̄2

�

þ fν

�

ΛR

mR

���

; ðC1Þ

where

fνðxÞ ¼ x

�

arctanðxÞ − π

2

�

−
1

x
arctanðxÞ

− lnðxÞ − lnð1þ x2Þ: ðC2Þ

The constants F and l̄6 are, respectively, the pion decay

constant in the chiral limit and a SUð3j1Þ low-energy

effective coupling renormalized at the scale μ̄. The formula

in Eq. (C1) has some interesting properties:

(i) for x → ∞,

fνðxÞ⟶
x→∞

− 3 lnðxÞ; ðC3Þ

and, therefore, at fixed ΛR the mode number has no

chiral logs when mR → 0;

(ii) since in the continuum the operator D†
mDm has a

threshold at α ¼ m2, the mode number must satisfy

lim
ΛR→0

νnloðΛR; mRÞ ¼ 0; ðC4Þ

a property which is inherited by the NLO ChPT

formula;

(iii) in the chiral limit νnloðΛR; mRÞ=ΛR becomes inde-

pendent of ΛR. This is an accident of the Nf ¼ 2

ChPT theory at NLO [29];

(iv) the ΛR dependence in the square brackets on the rhs

of (C1) is parameter free. Since mRΣ
2

ð4πÞ2F4 > 0, the

behavior of the function fνðxÞ implies that

νnloðΛR; mRÞ=ΛR is a decreasing function of ΛR at

fixed mR, and no ambiguity is left due to free

parameters.
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FIG. 5 (color online). Left: the pseudoscalar decay constant aFπ versus y ¼ M2
π=ð4πFπÞ2. Right: The ratioM2

π=ð2mRFÞ versus y. The
bands are the result of a combined fit, see main text.
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At the NLO the effective spectral density defined in

Eq. (5) reads

~ρnloR ¼ Σ

�

1þ mRΣ

ð4πÞ2F4

�

3l̄6 þ 1 − lnð2Þ

− 3 ln

�

ΣmR

F2μ̄2

�

þ ~gν

�

Λ1;R

mR

;
Λ2;R

mR

���

; ðC5Þ

where

~gνðx1; x2Þ ¼
fνðx1Þ þ fνðx2Þ

2
þ 1

2

x1 þ x2
x2 − x1

½fνðx2Þ − fνðx1Þ�:

ðC6Þ

The quantity ~ρnloR inherits the same peculiar properties of

νnloðΛR; mRÞ=ΛR at NLO: at fixed Λ1;R and Λ2;R, it has no

chiral logarithms when mR → 0, it is independent from

Λ1;R and Λ2;R in the chiral limit, and at nonzero quark mass

it is a decreasing parameter-free (apart the overall factor)

function of ðΛ1;R þ Λ2;RÞ=2. It is very weakly dependent on
ðΛ1;R − Λ2;RÞ in the range we are interested in. To have a

quantitative idea of the ðΛ1;R þ Λ2;RÞ=2 dependence

of ~ρnloR , we can choose Σ ¼ ð260 MeVÞ3, F ¼ 85 MeV,

msea
R ¼ 10 MeV, Λ1;R ¼ 20, 40 MeV, Λ2;R ¼ 25, 55 MeV

to obtain

Σ

ð4πÞ2F4
¼ 0.00213 MeV−1;

0.0213 ·

�

~gν

�

20

10
;
25

10

�

− ~gν

�

40

10
;
55

10

��

¼ 0.0467: ðC7Þ

For light values of the quark masses, the variations are

rather mild, i.e. of the order of a few percent. The next-to-

next-to-leading corrections in ~ρR are of the form

OðΛ2
R; mRΛR; m

2
RÞ. They are expected to spoil some of

the peculiar properties of the NLO formula. In the chiral

limit the OðΛ2
RÞ corrections can induce a ΛR dependence,

and the OðmRΛRÞ can change the parameter-free depend-

ence on ΛR within the square brackets on the rhs

of Eq. (C5).

1. Finite volume effects

Finite volume effects in the mode number were com-

puted in the chiral effective theory at the NLO in

Refs. [12,38] (see also [30]). They are given by

�

ΔνV

ν

�

nlo

¼ Σ

ð4πÞ2F4

X0

fn1;…;n4g
lim
ϵ→0

�

2

ΛR

Im

�

F−2

�

Σq2n
4F2

; iΛR þmR þ ϵ

��

−
mR

ΛR

Im

�

F−1

�

Σq2n
2F2

; iΛR þ ϵ

��

þ Re

�

F−1

�

Σq2n
2F2

; iΛR þ ϵ

���

; ðC8Þ

where

Fνðb; zÞ ¼ 2

�

b

z

�

ν=2

Kνð2
ffiffiffiffiffi

bz
p

Þ; ðC9Þ

with Reb > 0, Rez > 0, and Kν is a modified Bessel

function [39]. Furthermore, q2n ¼
P

d
μ¼1ðnμLμÞ2 and

P0
fn1;…;ndg denotes the sum over all integers without

n ¼ ð0;…; 0Þ. By expanding the Bessel functions for large
arguments [39], it is straightforward to show that the most

significant terms in the sum on the rhs of Eq. (C9) are

proportional to the exponentials expf−M1L=
ffiffiffi

2
p

g and

expf−M2L=2g, where M1 and M2 are the leading-order

expressions in ChPT for the mass of a pseudoscalar

meson made of two valence quarks of mass ΛR and

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2
R þm2

R

p

þmRÞ, respectively.

2. Discretization effects

At finite lattice spacing and volume, the threshold

region should be treated carefully in ChPT [19]. The latter

can be avoided by considering the quantity ~ρR, with

Λ2;R > Λ1;R ≫ 1=ΣV. In this case, the computation in

the GSM power-counting regime of the Wilson ChPT

gives [30]

~ρnloR ðaÞ ¼ ~ρnloR − 32ðW0aÞ2W0
8mR

1

Λ1;RΛ2;R

: ðC10Þ

Since W0
8 is expected to be negative [20,40], if we

rewrite

Λ1;RΛ2;R ¼
�

Λ1;R þ Λ2;R

2

�

2

−
1

4
ðΛ2;R − Λ1;RÞ2; ðC11Þ

and we keep constant ðΛ2;R − Λ1;RÞ, then ~ρnloR ðaÞ is a

decreasing function of ΛR ¼ ðΛ2;R þ Λ1;RÞ=2 on the

lattice too. At variance with the continuum case, however,

a free parameter W2
0W

0
8 appears in the function, and its

magnitude cannot be predicted. Remarkably, ~ρnloR ðaÞ
is free from discretization effects in the chiral limit and,
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therefore, it is independent of Λ1;R and Λ2;R. The con-

tinuum extrapolation of the chiral value of ~ρnloR ðaÞ then

removes the discretization effects due to the reference

scale used.

APPENDIX D: NUMERICAL RESULTS

FOR THE MODE NUMBER

We collect the results for the mode number in

Tables V, VI and VII. For each lattice, the values of aM
correspond to approximatively ΛR ¼ 20, 25, 30, 40, 55, 71,

86, 101, 116 MeV with the exception of the lattice

E5 for which ΛR ¼ 151, 202, 303, 505 MeV were also

computed. In Table VIII we give the value of ~ρR in the

TABLE V. Values of aM and the corresponding results for ν for

each lattice at β ¼ 5.2.

id Ncnfgs aM ν

A3 55 0.008673 13.3(6)

0.009208 16.2(6)

0.009821 20.5(7)

0.011235 29.6(9)

0.013665 47.3(10)

0.016322 66.9(12)

0.019110 88.2(14)

0.021979 111.1(16)

0.024901 134.6(18)

A4 55 0.006205 11.6(6)

0.006929 15.9(7)

0.007723 20.6(7)

0.009447 30.8(8)

0.012228 48.8(10)

0.015127 68.6(12)

0.018088 89.6(13)

0.021085 110.9(15)

0.024103 132.5(15)

A5 55 0.005352 11.4(6)

0.006176 15.6(6)

0.007054 20.6(7)

0.008905 31.9(8)

0.011810 50.1(11)

0.014786 68.3(13)

0.017799 88.7(14)

0.020831 108.7(16)

0.023877 129.2(18)

B6 50 0.004800 59.5(10)

0.005703 82.5(11)

0.006642 108.4(13)

0.008580 162.3(16)

0.011563 253.0(22)

0.014586 346.5(25)

0.017629 443(3)

0.020683 543(3)

0.023743 647(4)

TABLE VI. As in Table V but for β ¼ 5.3.

id Ncnfgs aM ν

D5 345 0.006720 2.09(9)

0.007239 2.77(10)

0.007826 3.42(10)

0.009153 5.26(12)

0.011385 8.38(16)

0.013782 11.69(19)

0.016271 15.16(22)

0.018815 18.61(25)

0.021396 22.3(3)

E5 92 0.006720 7.3(3)

0.007239 9.3(3)

0.007826 11.5(3)

0.009153 17.1(4)

0.011385 26.9(5)

0.013782 37.4(7)

0.016271 47.3(8)

0.018815 58.0(9)

0.021396 68.8(10)

0.027499 93.7(10)

0.036321 138.6(12)

0.054110 259.7(16)

0.089863 689(3)

F6 50 0.004618 34.7(9)

0.005342 47.6(11)

0.006111 60.7(12)

0.007732 90.8(16)

0.010268 135.8(17)

0.012865 183.0(20)

0.015492 230.9(23)

0.018137 280(3)

0.020791 330(3)

F7 50 0.004159 34.7(9)

0.004950 47.0(10)

0.005770 59.3(10)

0.007464 87.1(12)

0.010065 128.9(16)

0.012701 172.0(21)

0.015354 217.2(23)

0.018015 265(3)

0.020682 314(3)

G8 50 0.003737 113.7(16)

0.004599 153.8(18)

0.005472 196.7(22)

0.007233 282.3(25)

0.009892 409(3)

0.012560 543(3)

0.015233 682(4)

0.017910 828(4)

0.020587 981(5)
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continuum for various values of the cutoff ΛR and the quark

mass mR.

APPENDIX E: NUMERICAL ANALYSIS OF

DISCRETIZATION EFFECTS

In this appendix we report more details on the discre-

tization effects that we have observed in our data. We limit

ourselves to an empirical discussion of the results obtained

by following the strategy described in Sec. VA.

A first look into the data reveals that discretization

effects in ν show a nontrivial dependence on ΛR and mR.

We plot the mode number at mR ¼ 32 MeV, normalized

with respect to its value at ΛR ¼ 40 MeV, for all three

lattice spacings and all values of ΛR in Fig. 6, left-hand

side. After interpolating the effective spectral density in

mR, we fit the data linearly in a2

~ρRðΛR; mR; aÞ ¼ ~ρRðΛR; mR; 0Þ þ a2ΔðΛR; mRÞ ðE1Þ

for each pair of ðΛR; mRÞ. By fitting Δ linearly in mR

(Fig. 6, right plot)

ΔðΛR; mRÞ ¼ c0;1ðΛRÞ þ c1;1ðΛRÞmR ðE2Þ

for each ΛR, we obtain the values for c0;1ðΛRÞ shown in the
left plot of Fig. 7. Within errors, c0;1ðΛRÞ turns out to be

compatible with a constant. To reduce the noise in c1;1ðΛRÞ,

TABLE VII. As in Table V but for β ¼ 5.5.

id Ncnfgs aM ν

N5 60 0.005287 12.0(6)

0.005647 15.6(6)

0.006058 19.3(7)

0.006998 27.3(8)

0.008599 40.2(9)

0.010334 52.3(10)

0.012146 65.0(11)

0.014005 77.7(12)

0.015895 91.2(13)

N6 60 0.003797 11.0(4)

0.004284 14.9(5)

0.004812 18.3(5)

0.005949 25.6(7)

0.007765 37.3(8)

0.009646 49.1(8)

0.011562 60.4(9)

0.013496 72.6(10)

0.015444 85.8(11)

O7 50 0.003137 34.3(9)

0.003710 45.9(10)

0.004309 57.5(11)

0.005548 78.5(12)

0.007459 111.9(15)

0.009399 147.8(16)

0.011354 184.0(18)

0.013316 220.8(19)

0.015284 260.2(21)

TABLE VIII. The effective density ~ρR in the continuum is given

for various values of the cutoff ΛR and the quark mass mR. These

data are obtained by first interpolating ~ρR linearly in mR for each

ΛR and lattice spacing a, followed by an extrapolation linear in a2

to the continuum for each pair of ðΛR; mRÞ, as described in

Secs. IV and VA. ~ρR is given in GeV3, and ΛR and mR are given

in MeV.

ΛR=mR 12.9 20.9 32.0

22.7 0.0289(20) 0.032(3) 0.033(3)

27.7 0.0249(21) 0.023(3) 0.029(3)

35.3 0.0191(16) 0.025(3) 0.0308(24)

47.9 0.0192(15) 0.0239(22) 0.0288(19)

63.0 0.0221(15) 0.0228(24) 0.0229(18)

78.2 0.0210(16) 0.0174(20) 0.0224(18)

93.3 0.0212(14) 0.0221(21) 0.0211(18)

108.4 0.0237(15) 0.0257(22) 0.0243(19)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0 20 40 60 80 100 120

ν
/ν

re
f

ΛR [MeV]

a = 0.075 fm
a = 0.065 fm
a = 0.048 fm

mR = 32.0 MeV

-10

-5

 0

 5

 10

 0  10  20  30  40

∆
 [

G
e

V
3
/f
m

2
]

mR [MeV]

ΛR = 108 MeV
ΛR =   48 MeV
ΛR =   23 MeV

FIG. 6 (color online). Left: mode number atmR ¼ 32 MeV for all three lattice spacings and all cutoffs ΛR, normalized with respect to

its value at ΛR ¼ 40 MeV. Right: discretization effects Δ of the effective spectral density as defined in Eq. (E1), shown vs mR for three

values of ΛR. The fit in the plot follows Eq. (E2), the resulting parameters of which are shown in Fig. 7.
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we repeat the fit in Eq. (E2) but constraining c0;1ðΛRÞ to be
a constant. The results of this fit are shown in the right plot

of Fig. 7. The coefficient c1;1ðΛRÞ tends to a constant for

large ΛR, while a significant drop is observed towards the

origin. In an intermediate range, the opposite signs of c0;1
and c1;1 allow for a compensation of the different effects,

implying an effectively flat dependence of ~ρR in the lattice

spacing. Within the large errors, the mass-dependent

discretization effects could be compatible with the func-

tional form given in Eq. (C10) [30]. The sign of the pole,

however, appears to be opposite than predicted in

Refs. [20,40]. In this respect it must be said that it is

not clear that the GSM power-counting scheme used in

Ref. [30] applies in the range of parameters of our data.
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