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ABSTRACT

The progenitor stars of several Type IIb supernovae (SNe) show indications of extended hydrogen envelopes.
These envelopes might be the outcome of luminous energetic pre-explosion events, so-called precursor eruptions.
We use the Palomar Transient Factory (PTF) pre-explosion observations of a sample of 27 nearby SNe IIb to look
for such precursors during the final years prior to the SN explosion. No precursors are found when combining the
observations in 15-day bins, and we calculate the absolute-magnitude-dependent upper limit on the precursor rate.
At the 90% confidence level, SNe IIb have on average <0.86 precursors as bright as an absolute R-band magnitude
of −14 in the final 3.5 years before the explosion and <0.56 events over the final year. In contrast, precursors
among SNe IIn have a 5 times higher rate. The kinetic energy required to unbind a low-mass stellar envelope is
comparable to the radiated energy of a few-weeks-long precursor that would be detectable for the closest SNe in
our sample. Therefore, mass ejections, if they are common in such SNe, are radiatively inefficient or have durations
longer than months. Indeed, when using 60-day bins, a faint precursor candidate is detected prior to SN 2012cs
(∼2% false-alarm probability). We also report the detection of the progenitor of SN 2011dh that does not show
detectable variability over the final two years before the explosion. The suggested progenitor of SN 2012P is still
present, and hence is likely a compact star cluster or an unrelated object.

Key words: stars: mass-loss – supernovae: general – supernovae: individual (SN2011dh, SN2012P, SN2012cs,
SN2013bb)

Supporting material: machine-readable tables

1. INTRODUCTION

Violent stellar activity, for example, precursor eruptions,

during the years prior to the terminal explosion of a star as a

supernova (SN) can give insight into the properties of

progenitor stars at this crucial stage of their life. In case these

eruptions are causally connected to the final explosion, they

might even provide clues about the explosion mechanism.

Indications for such luminous flares were reported previously,

mainly among SNe IIn (e.g., Foley et al. 2007; Pastorello et al.

2007; Fraser et al. 2013; Mauerhan et al. 2013; Ofek et al.

2013, 2014), and a possible precursor was also reported for an

SN Ic (Corsi et al. 2014). Here, we search for precursor

eruptions, i.e., small explosions prior to the SN, in the pre-

explosion light curves of SNe IIb.
The defining property of SNe IIb, the first known example of

which was SN 1987 K (Filippenko 1988), is their spectral

evolution. The spectrum first resembles that of a hydrogen-rich

SN II and later turns into a helium-dominated spectrum similar

to that of an SN Ib (e.g., Filippenko et al. 1993, 1994;

Chornock et al. 2011; Ben-Ami et al. 2015; see Filippenko

1997 for a general review of SN spectra). This evidence

suggests that the progenitors of SNe IIb likely consist of a

helium core surrounded by a low-mass hydrogen envelope that

expands, and consequently the hydrogen features fade away

within a few weeks (e.g., Woosley et al. 1994; Tsvetkov et al.

2009; Chevalier & Soderberg 2010; Bersten et al. 2012; Ergon

et al. 2014a, 2014b; Marion et al. 2014; Nakar & Piro 2014).
Another characteristic is that some SNe IIb show two optical

photometric peaks in their light curve (e.g., SN 1993J, Wheeler

et al. 1993; SN 2011dh, Arcavi et al. 2011; SN 2013df, Van

Dyk et al. 2014). The first peak can be attributed to thermal

emission from a shock-heated extended hydrogen envelope

(Bersten et al. 2012; Nakar & Piro 2014), while the second one

is presumably powered by radioactivity. Nakar & Piro (2014)

suggest that the envelope’s radius and mass can be inferred

from the shape of the first peak. They have also shown that

standard red giant or Wolf–Rayet progenitors cannot explain

the observed light curves. Indeed, large photospheric radii of

several hundred solar radii have been measured for several SNe

IIb at early times (e.g., Woosley et al. 1994; Tsvetkov et al.

2009; Bersten et al. 2012; Horesh et al. 2013; Ergon

et al. 2014a, 2014b).
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Additionally, an ultraviolet (UV) excess relative to the
spectral shape in the optical has been observed for several SNe
IIb whose UV spectra were obtained within the first month after
explosion. It can be explained by the presence of a dense
circumstellar medium (CSM) above the photosphere (Ben-Ami
et al. 2015). Double-peaked light curves and excess UV
radiation are, however, not observed for all SNe IIb (I. Arcavi
et al. 2015, in preparation; Ben-Ami et al. 2015). Moreover,
Chevalier & Soderberg (2010) argue that some SNe IIb show
indications for much more compact progenitors having
R R1 ☉.
It is unclear how extended envelopes or dense CSM shells

are created. They could consist either of material in
hydrodynamic equilibrium (Bersten et al. 2012; Benvenuto
et al. 2013) or of unbound material ejected during the
interaction with a binary companion (e.g., Chevalier 2012),
by a stellar wind, or by an instability related to the final stages
of stellar burning (e.g., Rakavy & Shaviv 1967; Arnett &
Meakin 2011a, 2011b; Quataert & Shiode 2012; Shiode &
Quataert 2014). Such an instability can generate a precursor
event that can release some of its energy in visible light.

A systematic search for precursor eruptions among SNe IIn
has previously been performed by Ofek et al. (2014), with 6
likely precursor explosions observed in a sample of 16 objects.
A quantitative analysis showed that, assuming a uniform
population, at the 99% confidence level at least 98% of the SNe
IIn exhibit one or several precursor events brighter than an
absolute magnitude of −14 within the last 2.5 years prior to
their explosion. These results apply to all SNe IIn, under the
assumption that they form a homogeneous population that is
well represented by the used sample. Furthermore, Ofek et al.
(2014) find possible correlations between the amount of energy
radiated in a precursor event and the SN rise time, peak
magnitude, and radiated energy. If real, the correlation is
consistent with the idea that SNe IIn are powered mainly by the
interaction of the SN ejecta with a massive CSM created in
precursor eruptions.

Only SNe having strong and persistent narrow hydrogen
lines were included in the sample of Ofek et al. (2014). It was
found recently that some core-collapse SNe, dubbed “flash-
spectroscopy SNe,” exhibit narrow hydrogen lines within the
first days after the explosion that subsequently vanish (Gal-
Yam et al. 2014; D. Khazov et al. 2015, in preparation). This
evolution might indicate that a dense CSM shell or an envelope
is located only in the immediate vicinity of the progenitor star
and is swept up by the ejecta shortly after the explosion. Owing
to the short duration of the CSM interaction, these objects are
not considered in the sample of SNe IIn of Ofek et al. (2014)
and might not undergo precursor explosions as frequently. We
note that the detection of flash-spectroscopy signatures provide
further evidence for mass ejections prior to SN explosions.

In another search for precursors among SNe IIn by Bilinski
et al. (2015), no pre-explosion events were found. However,
with six objects their sample is smaller, and they do not provide
an absolute-magnitude-dependent upper limit on the precursor
rates, so a close comparison is not possible at this stage.

Here, we extend the search of Ofek et al. (2014) to SNe IIb.
In Section 2, we explain how the SN sample was selected, and
in Section 3, we describe the observations used in this analysis.
Our search for precursor explosions is presented in Section 4.
The pre-explosion observations of three nearby SNe are
evaluated in more detail in Section 5. In Section 6, we

calculate the sample control time and derive an upper limit on
the precursor rate of SNe IIb. Section 7 discusses whether the
ejection of a low-mass stellar envelope is likely detectable in
this search, and Section 8 summarizes the results.

2. SAMPLE SELECTION

The sample is selected by initially considering all nearby
SNe IIb detected either by the Palomar Transient Factory (PTF;
Law et al. 2009; Rau et al. 2009) or announced in
Astronomer’s Telegrams or IAU Circulars since 2009 (i.e.,
after the start of the PTF project). SNe IIb are chosen based on
their spectral evolution, and the main criterion is the
appearance of helium features at 5876, 6678, and 7065Å a
few weeks after the explosion. Tools such as the Supernova
Identification Code (SNID; Blondin & Tonry 2007) and
Superfit (Howell et al. 2005) are used to compare our spectra
to the spectra of known SNe IIb in case the spectral features are
not obvious. We note that, in general, our SN classification is
based on human decision, and hence may be biased. To
increase the chances of detecting faint precursors, we restrict
ourselves to nearby SNe with z 0.05, corresponding to a
luminosity distance of 220 Mpc. Only SNe having a large
number of PTF observations prior to their explosion are
selected. We require about 20 images (either before or long
after the SN explosion) to construct a high-quality reference
image, and another 20 science images before the explo-
sion date.
Our final sample consists of 27 SNe listed in Table 1. The

majority were discovered by PTF, and additional SNe were
found by the Lick Observatory Supernova Search (Li et al.
2000; Filippenko et al. 2001), the Puckett Observatory
Supernova Search,14 the La Silla Quest survey (LSQ; Baltay
et al. 2013), the Catalina Real-time Transient Survey (Drake
et al. 2009a), the Italian Supernova Search Project,15 and the
Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS; Hodapp et al. 2004). For three SNe
(SN 2011ef, SN 2012an, and LSQ 12fwb), no spectra are
publicly available, and we rely on the classification published
in Astronomer’s Telegrams and Central Bureau Electronic
Telegrams by Blanchard et al. (2011), Chen et al. (2012), and
Hadjiyska et al. (2012). Representative spectra of all SNe
discovered by PTF are shown in the Appendix (Yaron & Gal-
Yam 2012). The spectra were acquired using various facilities
that are listed in Table 5.
Our sample includes SN 2013cu (PTF 13ast), which has

been classified as a flash-spectroscopy SN (Gal-Yam et al.
2014; D. Khazov et al. 2015, in preparation). After the initial
CSM interaction, SN 2013cu evolves into an SN IIb (see the
spectrum in the Appendix) and is thus included in this sample.
Out of all core-collapse SNe having spectra within the first 10
days after their last nondetection, ∼14% show flash-spectro-
scopy signatures (D. Khazov et al. 2015, in preparation). It is
therefore likely that other SNe in our sample for which no early
spectra have been obtained belong to this group.

3. OBSERVATIONS

The observations used here were obtained with the 48 inch
Oschin Schmidt telescope at Palomar Observatory (P48), as

14
http://www.cometwatch.com/supernovasearch.html

15
http://italiansupernovae.org/
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part of the PTF project. PTF searches for transient sources by

visiting selected fields of the sky regularly over the duration of

several months. The data-reduction procedure is described by

Laher et al. (2014) and the photometric calibration by Ofek

et al. (2012a, 2012b). We only use observations in the R band

and neglect <15% of the data in the g band to simplify this

analysis. For every SN, a reference period containing at least

20 observations is chosen. If possible, we use data well after

the SN has faded to construct the reference image, but when

no such data are available, we instead resort to the oldest

Table 1

Supernova Sample

Name α(J2000) δ(J2000) z DM E(B−V) MR,peak t0 tpeak FAP DP Ref. Period

(deg) (deg) (mag) (mag) (mag) (day) (day)

PTF 09dxv 347.144705 +18.937131 0.0322 35.77 0.145 −18.0* 55079 55094 0.000 >56041

SN 2009nf, PTF 09gyp 029.736494 −07.282473 0.046 36.57 0.027 −17.6 55138 55151 0.025 >55835

PTF 09hnq 345.470095 +14.413534 0.027 35.38 0.108 −17.5* 55157 55168 0.002 >56449

PTF 09ism 176.149461 +10.212143 0.03 35.61 0.075 −17.4 55194 55200 0.000 >56328

PTF 10fqg 190.457745 +11.591142 0.0278 35.44 0.032 −16.6 55302 55323 0.126 >56712

PTF 10qrl 347.470125 +13.132566 0.0396 36.23 0.076 −17.0 55413 55427 0.027 >56503

PTF 10tzh 257.305622 +41.755139 0.034 35.89 0.025 −16.3* 55437 55459 0.002 y >56360

PTF 10xfl 034.955874 +15.295001 0.05 36.76 0.105 −18.2* 55456 55470 0.030 >56533

SN 2011dh, PTF 11eon 202.521152 +47.169782 0.001683 29.45 0.035 −17.1 55713 55732 0.050 y >56662

SN 2011hg, PTF 11pdj 347.953215 +31.016708 0.0236 35.08 0.075 55856 0.000 >56735

PTF 11qju 213.862526 +36.408608 0.0282 35.48 0.089 −17.5 55880 55902 0.007 >56324

SN 2012P, PTF 12os 224.996177 +01.890051 0.004533 32.04 0.051 −16.3 55931 55952 0.006 >56710

PTF 12fxj 027.004256 +35.708841 0.0148 34.06 0.056 −17.4 55089 55102 0.054 <55127

SN 2012ey, PTF 12iqw 036.210492 +16.181395 0.027 35.38 0.179 −15.8* 56183 56198 0.000 <55503

PTF 12jaa 338.364087 +00.740223 0.0237 35.09 0.087 −15.6* 56190 56193 0.000 y <55896

PTF 13nu 183.267741 +32.613898 0.026 35.30 0.013 −17.7 56356 56376 0.355 <55896

SN 2013bb, PTF 13aby 213.058377 +15.842080 0.01755 34.43 0.015 −16.5 56369 56394 0.217 >56766

PTF 13ajn 129.528692 +66.526227 0.03 35.62 0.049 −17.3* 56385 56404 0.077 y <55183

& <56325

SN 2013cu, PTF 13ast 218.495242 +40.239672 0.0258 35.28 0.012 −18.5 56414 56426 0.003 <55042

PTF 13ebs 140.284454 +49.592651 0.027 35.38 0.022 −16.9* 56606 56622 0.003 >56780

SN 2011ef 352.737583 +15.490083 0.0134 33.84 0.067 L 55760 L 0.095 >56406

SN 2012an 261.042625 +59.001916 0.0111 33.43 0.030 L 55978 L 0.000 >56778

SN 2012cs 232.990208 +68.245222 0.0218 33.56 0.027 L 56053 L 0.041 <55052

LSQ 12fwb 006.355083 +06.707194 0.03 35.62 0.024 L 56233 L 0.114 <55430

LSQ 12htu 152.904625 −07.386555 0.04 36.26 0.034 L 56282 L 0.006 >56712

SN 2013df 186.622208 +31.227305 0.002388 31.23 0.019 −16.8 56447 56470 0.965 y <56388

PS1-14od 050.275958 −07.282611 0.02 34.72 0.059 L 56713 L 0.000 <55089

Notes. The SN sample. α(J2000) and δ(J2000) are the J2000.0 R.A. and decl., respectively; z is the SN redshift obtained from spectroscopy. DM, the distance

modulus, is derived from the redshift with H0 = 69.33 km s−1 Mpc−1, 0.24,M and = 0.71 (Hinshaw et al. 2013). The only exceptions are the three closest

SNe and SN 2012cs, where redshift-independent distance measurements of the host galaxies are available on NED. E(B−V) is the Galactic extinction taken from

Schlegel et al. (1998). MR, peak is the absolute R-band magnitude of the brightest detection; asterisks indicate that the peak is not well observed and the SN might be

considerably brighter. t0 is the MJD of the approximate explosion date estimated by picking a date between the last nondetection and the first detection; thus, for some

SNe the uncertainty in t0 can be many days. tpeak is the MJD of the brightest detection, where only the second peak is considered in the case of a double-peaked light

curve. FAP, the false-alarm probability, is the probability of detecting a false precursor candidate by coadding images in 15-day bins as estimated using the bootstrap

method (see Section 4.1). In the penultimate column SNe for two peaks observed in the light curve are marked with a “y”, and the last column specifies the chosen

reference period. Below the solid line we list SNe added to our sample from the literature.

References. PTF 09hnq, PTF 10fqg, PTF 10qrl, PTF 10tzh, PTF 10xfl, PTF 11qju, PTF 12jaa, PTF 13nu, PTF 13ajn, and PTF 13ebs: reported here for the first time.

PTF 09dxv: Arcavi et al. (2010).

SN 2009nf (PTF 09gyp): Drake et al. (2009b); Arcavi et al. (2010).

PTF 09ism: Arcavi et al. (2010).

SN 2011dh (PTF 11eon): Arcavi et al. (2011); Griga et al. (2011).

SN 2011hg (PTF 11pdj): Ciabattari & Mazzoni (2011); Gal-Yam et al. (2011); Marion & Berlind (2011); Tomasella et al. (2011).

SN 2012P (PTF 12os): Arcavi et al. (2012); Borsato & Nascimbeni (2012); Dimai et al. (2012).

SN 2013bb (PTF 13aby): Howerton et al. (2013); Elias-Rosa et al. (2013).

SN 2011ef: Blanchard et al. (2011); Parrent et al. (2011).

SN 2012an: Chen et al. (2012); Jha et al. (2012); Newton et al. (2012).

SN 2012cs: Rich et al. (2012).

SN 2012ey: Howerton et al. (2012); Turatto et al. (2012).

LSQ 12fwb: Hadjiyska et al. (2012).

LSQ 12htu: Le Guillou et al. (2012).

SN 2013cu: Gal-Yam et al. (2014).

SN 2013df: Ciabattari et al. (2013); Van Dyk et al. (2013); Van Dyk et al. (2014); Morales-Garoffolo et al. (2014); Ben-Ami et al. (2015).

PS1-14od: Campbell et al. (2014).

3

The Astrophysical Journal, 811:117 (16pp), 2015 October 1 Strotjohann et al.



pre-explosion images. For PTF 13ajn, a considerable number of
observations were acquired with two CCDs, and we hence
define two different reference periods. All reference periods are
listed in the last column of Table 1.

For each SN, the reference image is created by coadding
observations within the reference period. This image is
subtracted from all science images and the (positive or
negative) flux residuals at the SN location are measured using
forced point-spread function (PSF) photometry. A correction
for Galactic extinction according to Cardelli et al. (1989) and
Schlegel et al. (1998) is applied to all fluxes and magnitudes in
this paper.

The observations and their flux residuals are listed in
Table 2. They were obtained up to 3.5 years prior to the SN
explosion. Figures 1–3 display the pre-explosion light curves in
15-day bins. Filled circles correspond to bins containing six or
more observations, while open circles represent bins with fewer
data points. Crosses around zero mark the estimated 5 noise
level, whose calculation is described in Section 4.1.

4. PRECURSOR SEARCHES

The precursor search follows to a large extent the methods of
Ofek et al. (2014). In a first search, we look for precursor
events in individual images. In a second search channel,
observations are combined once in 15-day and once in 60-day
bins to gain sensitivity to faint precursor events. An advantage
of the binned search is that it allows us to estimate the noise
level from the data itself, which is more precise than the formal
errors calculated by the image-subtraction pipeline. The only
drawback of binning the data is that a minimal precursor
duration has to be assumed and we lose sensitivity to shorter
eruptions.

Both search methods are presented in Section 4.1 and the
results are described in Section 4.2. Additional tests and cross
checks on the data are explained in Section 4.3. This search
uses tools available in the MATLAB astronomy and astro-
physics package (Ofek 2014).

4.1. Search Methods

In the unbinned search, we have to rely on the statistical
errors estimated by the image-subtraction pipeline. These
uncertainties are based on Poisson noise, and several additional
uncertainties are neglected. Those neglected error sources
include errors on the fitted PSF and correlations between
neighboring pixels induced by smoothing images before the

subtraction with a kernel takes place (e.g., Alard &
Lupton 1998; Bramich 2008). Therefore, the calculated errors
often underestimate the fluctuations in the data, and here we
scale them up to obtain a more realistic error estimate.
We calculate the standard deviation of the complete pre-

explosion light curve using the errors from the image-
subtraction pipeline and compare it to the actual scatter in the
data estimated using the bootstrap method (Efron 1982). When
applying the bootstrap method, we resample the pre-explosion
light curve 1000 times by randomly assigning flux residuals to
the observation times. Flux residuals can be drawn several
times. We then calculate the average flux of every simulated
light curve. The average fluxes are distributed according to a
normal distribution whose standard deviation is the bootstrap
error on the average flux. When using the bootstrap technique,
we implicitly assume that the pre-explosion light curves are
dominated by statistical fluctuations and that eventual pre-
cursors have a negligible influence on the light curves’ standard
deviation. We find that the bootstrap error is always larger than
the standard deviation calculated from the Poisson errors. For
many SNe, the difference is approximately a factor of two. The
errors on the individual flux residuals are scaled up accord-
ingly, and we require a 5 deviation above zero for the
detection of a precursor.
We caution that these flux residuals (even in the absence of a

precursor) do not follow a Gaussian distribution. Outliers can
be caused in a number of ways, such as by atmospheric
conditions, cosmic rays hitting the detector, or imperfect image
subtractions. Large deviations are rare, however, and they can
be identified by inspecting the image or verifying that a
precursor candidate is detected in several subsequent images.
In the second search channel, the sensitivity of the search is

increased by coadding flux residuals in time bins. Our
coaddition method preserves more information relative to
simple image coaddition and has common ground with the
optimal coaddition method described by B. Zackay & E. O.
Ofek (2015, in preparation). Following Ofek et al. (2014), we
choose a bin size of 15 days, which means that precursor events
having shorter durations might be missed even if their
luminosity is above the quoted sensitivity. In addition, we
repeat the analysis using 60-day bins to search for long-lasting
faint precursors.
For the binned searches, bootstrap errors are calculated for

individual bins, which is more reliable than scaling up the
Poisson errors estimated by the image-subtraction pipeline. To
get a sound error estimate with the bootstrap method, a bin

Table 2

PTF Observations

Name MJD–t0 MJD mPTF, R mPTF, R Err Lim Mag Flux Flux Err

(day) (day) (mag) (mag) (mag) (counts) (counts)

PTF 09dxv −47.876 55031.304 25.34 31.38 21.09 2.7 76.9

PTF 09dxv −47.805 55031.375 22.72 1.24 21.39 51.1 58.4

PTF 09dxv −45.711 55033.469 78.65 L 21.38 −9.0 59.2

PTF 09dxv −45.705 55033.475 21.69 0.49 21.37 133.2 59.7

PTF 09dxv −43.762 55035.418 79.45 L 21.46 −18.8 54.9

Note. Flux residuals in the pre-explosion light curves of all SNe in our sample. Magnitudes are calculated as “asinh magnitudes” (Lupton et al. 1999), and have

meaning only when smaller than the limiting magnitude. The limiting magnitude here is at the 3 level.

(This table is available in its entirety in machine-readable form.)
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must contain several entries. Therefore, in the following, only
bins with at least six observations are considered.

As before, we require a 5 deviation for the detection of a
precursor, with the difference being that the noise level for
every bin is estimated with the bootstrap method. To calculate
a false-alarm probability, we randomly combine observation
times and flux residuals from the entire pre-explosion light
curve 1000 times, bin them in 15-day bins, and look for
precursors in these scrambled light curves. The probabilities
for detecting one or several false precursor candidates per SN
are listed in Table 1. This test, however, only leads to a valid
result if the pre-explosion light curve is dominated by

statistical fluctuations and its mean flux is consistent
with zero.
The binned pre-explosion light curves are shown in

Figures 1–3. In addition, bins containing fewer than six
observations are marked by open circles. For these bins, the
standard deviation of the mean flux is calculated based on the
scaled Poisson errors.

4.2. Precursor Candidates

When applying the precursor searches described in Sec-
tion 4.1 to the SNe in our sample, no precursor candidates are

Figure 1. Pre-explosion light curves of the first 10 SNe (names are listed in each panel; cf. Table 1). Shown are flux residuals (relative to the reference image given in
counts per 60 s exposure) coadded in 15-day bins prior to the SN explosion. The right-hand axis shows apparent mPTF, R-band magnitudes. All measurements are in the
PTF magnitude system (Ofek et al. 2012a, 2012b). The zero point of the flux residuals is 27. Filled circles represent 15-day bins with six or more observations and open
circles mark bins having less data. The plus signs show the 5σ noise level, which is estimated based on scaled Poisson errors for the open circles and with the bootstrap
method (Efron 1982) for filled circles (see Section 4.1 for a detailed description). If observations are found in consecutive bins, the plus signs are connected by a solid line.
A few very large error regions are outside the plotted range to improve readability. Figures 2 and 3 show the pre-explosion light curves of the remaining SNe.
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found in the unbinned search or when using 15-day bins;
however, one precursor candidate is discovered when binning
observations in 60-day bins.

In the unbinned pre-explosion light curves (not shown; flux
residuals given in Table 2), no single observation has a flux
above the 5 noise level estimated based on the scaled Poisson
errors. From the nondetection of events above this threshold,
we can infer an upper limit on the false-alarm rate for this
search channel. Using the Poisson single-sided upper limits
(Gehrels 1986), the expected number of precursors is smaller
than 2.3 at the 90% confidence level when no event is
observed. Since we evaluate in total 3152 pre-explosion
observations, the false-alarm probability is smaller than 2.3/
3152≈0.0007 per observation.

We find that even when lowering the threshold of this search
to 3 , only one single flux residual reaches the threshold. The
most significant subthreshold event is a 4.2 deviation in the

light curve of SN 2012P, 654 days before the SN explosion. A
second observation with similar limiting magnitude only two
hours earlier, however, does not yield a detection. The two
following observations three days later are just as deep, but
neither show signs of a flare. Given the number of trials, this
event is most likely spurious. We nevertheless conservatively
maintain the 5 threshold when calculating limits on the
precursor rate in Section 6. Potential precursor events below the
quoted flux threshold of our search do not affect the validity of
the calculated limits.
We also do not find precursor candidates above the 5 noise

level when using 15-day bins. The only exception is the pre-
explosion light curve of SN 2011dh, the nearest object in our
sample. Its progenitor star is detected in coadded images, and in
17 of the bins the noise level is low enough to allow a
significant detection. The average flux of the pre-explosion
light curve of SN 2011dh is 17σ above zero and the progenitor

Figure 2. Figure 1, continued.
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is hence clearly detected. In Section 5.1, we account for the
progenitor’s average flux, and all precursor candidates vanish,
as can be seen in Figure 4.

When increasing the bin size to 60 days, one precursor
candidate is detected marginally above the 5 threshold in the
pre-explosion light curve of SN 2012cs. Figure 5 shows the
binned light curve as well as the unbinned observations. For
60-day bins, the noise level is low enough to show a flux
excess approximately 680 days before the SN explosion. The
16 observations in this bin are nearly all at the same flux level.
The excess is, hence, not caused by individual observations,
but many points contribute to it as it is expected from a long-
lasting precursor event. The median flux in this bin is 62
counts, which corresponds to a magnitude of m 22.51.RPTF,

SN 2012cs has a redshift of 0.0218. The absolute magnitude of
the possible precursor is M 11.0RPTF, , and its luminosity is
Lprec. = 7 × 1039 erg s−1 (no bolometric correction applied). A
duration of about 60 days seems consistent with the unbinned
light curve, and the radiated energy amounts to 4 × 1046 erg
during this period. If real, the event is hence slightly fainter
than precursors detected so far (compare to, e.g., Ofek et al.
2014), and its radiated energy is similar to the least energetic
detected precursors.

Since the event is barely above the significance threshold of
this search, it might be a false detection. The false-alarm

probability estimated for SN 2012cs and a bin size of 60 days is

1.8%. Its calculation is, however, based on the assumption that

the pre-explosion light curve is dominated by statistical
fluctuations. If the event is real, a considerable fraction of the

observations (16 out of 52) are systematically shifted upward.

A real precursor can thus enhance the false-alarm probability.

We conclude that the detected candidate is consistent with an
astrophysical precursor event. However, due to the marginal

detection, we cannot decide whether or not it is real. No further

precursor candidates are found. We focus in the following on

the nondetection of precursors using 15-day bins, which allows
us to constrain the rate of bright precursors. The detected

possible precursor is below the sensitivity threshold of this

analysis and hence does not affect the limits. The pre-explosion
light curves of all 27 SNe IIb are shown in Figures 1–3, and the

upper edge of the error band corresponds to the sensitivity of

the search with a bin size of 15 days.

4.3. Additional Tests

In addition to the tests described in Section 4.1, we check

whether the pre-explosion light curves are consistent with an

average flux of zero, and we look for autocorrelations in the
unbinned light curves. Both tests, described below, do not

Figure 3. Figures 1 and 2, continued. Here we show the PTF pre-explosion light curves of SNe IIb found in the literature.
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reveal hints for detections or raise concerns about the data
quality.

Initially, the complete pre-explosion light curves of several
SNe were inconsistent with zero when calculating its average
flux and its bootstrap error. In some cases, the SN was still
present in the chosen reference images, and we instead resorted
to a pre-explosion reference. For PTF 10qrl, we use pre-
explosion images since the SN location is at the very edge of
the CCD in the post-explosion images, affecting the image
subtraction. Also, the average pre-explosion fluxes of several
sources show deviations marginally below the 3 threshold.
This may affect the false-alarm probabilities of the binned
search (shown in Table 1). We verify, however, that no
additional precursor candidates are found when subtracting the
mean pre-explosion flux from all of the residuals.

Furthermore, we look for autocorrelations in the unbinned
pre-explosion light curves, where we calculate the correlation
between an observation and the five following observations.
The only deviation above the 3 threshold is found for
PTF 10qrl with a lag of two observations. This might, however,
be caused by chance. The autocorrelation is calculated for all
27 SNe with five different lags each, which means that at the
3 level 0.36 false detections are expected. The probability to
detect one or several events above the 3 threshold is therefore
30%. Moreover, when looking for autocorrelations in time bins
of three days instead of indexing the observations, the
correlation vanishes. PTF 10qrl is located at a redshift of 0.05
and is hence is too far away for the detection of the
progenitor star.

We conclude that no indications for precursor detections are
found in these additional tests.

5. PROGENITOR DETECTIONS AND VARIABILITY

For the three nearest SNe in our sample, here, we explore the
possibility of detecting the progenitor star and calculating limits
on its variability.

5.1. SN 2011dh

SN 2011dh was discovered on 2011 May 31 in the nearby
galaxy M51 at a distance of 7.8 Mpc, less than 15 hr after a

nondetection down to a limiting magnitude of mPTF,g = 21.4
(Arcavi et al. 2011). The progenitor star is clearly detected both
by the Hubble Space Telescope (HST; Li et al. 2011; Maund
et al. 2011; Van Dyk et al. 2011) and in ground-based
observations (e.g., the Large Binocular Telescope, Szczygieł
et al. 2012; the Northern Optical Telescope, Ergon et al. 2014a;
and PTF). The progenitor is a yellow supergiant (Van Dyk
et al. 2013). Moreover, a flux excess has been measured in the
fading SN light curve in blue bands and has been attributed to
the presence of a binary companion star (Folatelli et al. 2014).
The companion presumably has MF225W = −5.11 ± 0.29 mag
and MF336W = −4.66±0.29 mag, consistent with a B star
having M M M10 16 (Folatelli et al. 2014).
There are 373 PTF R-band observations that span the last

two years before the explosion of SN 2011dh. Our reference is
based on observations obtained starting 949 days after the
explosion, when the SN has faded away. The progenitor star is
hence not present in the reference image, so its flux is not
subtracted from the pre-explosion light curve. All flux residuals
are listed in Table 2.
The progenitor is not detected in individual images; however,

in the binned light curve shown in Figure 4 the SN is
significantly detected in many bins. The average unabsorbed
flux of the progenitor is 139 ± 10 counts, corresponding to
m 21.82 0.08RPTF, mag, where the uncertainty is the 1
bootstrap error. During the HST observations in 2005, the
progenitor star was detected in the F658N band with a magnitude
of m 21.39 0.02F658N (Van Dyk et al. 2011), correspond-

ing to a flux of 4.94 0.09 10 erg s cm18 1 2 1( ) Å at an

effective wavelength of 6579.5Å (flux taken from Benvenuto
et al. 2013). This value is comparable to our measurement,

translating into a flux of 5.54 0.35( ) 10 erg s cm18 1 2 1Å
at the same effective wavelength.
To search for precursors on top of the progenitor flux, the 5

error band is centered around the star’s average flux. No single
or binned observations exceed this error band, and hence no

Figure 5. Section of the pre-explosion light curve of SN 2012cs. The gray error
bars show the scaled-up 1 Poisson errors on the individual observations. The
blue lines indicate the bin position as well as the 5 noise level for the binned
light curve. Open dots represent bins containing fewer than six observations for
which the noise level is estimated based on the scaled Poisson errors. Filled
dots correspond to bins with at least six observations, and the bootstrap method
was used to estimate the noise level. A detection, marginally above the 5
threshold, is obtained around day 680. The false-alarm probability of
SN 2012cs is 1.8% when using 60-day bins.

Figure 4. Binned pre-explosion light curve of SN 2011dh. The reference
images are chosen to be after the explosion; hence, the flux of the progenitor
has not been subtracted. No observations deviate by more than 5σ from the
mean flux.
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precursors are found. One bin around day 215 before the
explosion has an average flux of more than 600 counts. It,
however, only contains two flux residuals that both have large
errors. We hence conclude that this point is caused by two low-
quality observations. Its deviation from zero is less than 2 .

Moreover, we search for periodic variability by calculating
the power spectrum of the pre-explosion flux residuals. No
significant variability is found at any timescale either in the
binned or unbinned data.

Szczygieł et al. (2012) analyze pre-explosion observations
taken with the Large Binocular Telescope within three years
before the SN explosion. With data at five different epochs,
they suggest a continuous fading at a rate of 0.039 ±

0.006 mag yr−1 in the R band. However, in a sample of stars
of comparable luminosity, large or larger dimmings are
observed for 5% of the stars, and about 16% of the stars have
a photometric rms value larger than that of the progenitor of
SN 2011dh (Szczygieł et al. 2012). Therefore, it is possible that
this variability is not real. A fading in the last century before
the SN explosion is expected as the envelope slowly responds
to the rapid changes in the stellar core during the last stages of
nuclear burning. The decline rates predicted by simulations are,
however, typically 100 times smaller than the measured
dimming rate (Szczygieł et al. 2012).

The measured dimming of 0.039 mag yr−1 would correspond
to a change of only nine counts between our first and last
observation, comparable to the uncertainty in the average flux.
To check whether our observations do favor a dimming, the
binned pre-explosion light curve is fitted both with a constant
flux and with a dimming at the measured rate. The results are
very similar, with dof 35.4 392 for the constant model
compared to dof 34.4 392 for the fading light curve.
With 1,2 we cannot confirm or eliminate the fading
hypothesis of Szczygieł et al. (2012).

5.2. SN 2013df

The second-nearest object in our sample is SN 2013df at a
distance of 18.2 Mpc. No attempt can be made to detect the
progenitor since we do not have potential reference images
after the SN has faded. The progenitor, a R500 cool
supergiant, was identified by Van Dyk et al. (2014) in pre-
explosion HST images with an absolute magnitude of
M 6.8.VHST,

5.3. SN 2012P

At the position of SN 2012P, a potential progenitor star was
detected in archival HST observations from 2005 March 10
(Van Dyk et al. 2012). The source has an absolute magnitude
of M 9.1,VHST, and its luminosity and colors are consistent
with a very luminous supergiant star or a star cluster.

Interpolating the V- and I-band magnitudes reported by Van
Dyk et al. (2012), a PTF R-band magnitude of m 22.74RPTF,

is expected, corresponding to a signal of 50 counts per
observation. The weighted average flux of the 308 pre-
explosion observations is, however, 17 10 counts per
observation (1 bootstrap error). Hence, we conclude that the
source reported by Van Dyk et al. (2012) is still present in the
reference image, which consists of observations more than 779
days after the SN explosion. The source close to the SN
position could be either a compact star cluster as mentioned by

Van Dyk et al. (2012), a luminous binary companion, or an
unrelated object.
Based on the PTF pre-explosion observations in the last

three years before the explosion of SN 2012P, we can exclude
precursor explosions with an absolute R-band magnitude of
M 11RPTF, (L 8 10 erg39 1 without a bolometric
correction) during 30% of the time.

6. CONTROL TIME AND PRECURSOR RATES

Following Ofek et al. (2014), we combine the results of the
individual SNe and calculate an upper limit on the precursor
rate of SNe IIb. Hereby, we implicitly assume that the
progenitors of SNe IIb form a uniform population and that
our SN sample provides a good representation of this
population. Both presumptions are likely not fulfilled and the
resulting rate estimate should hence be regarded with caution.
To address the inhomogeneity of the progenitor population,

we additionally calculate an upper limit only for SNe IIb with
observed double-peaked light curves since this is a strong
indication for an extended envelope (Nakar & Piro 2014).
Moreover, faint SNe IIb are likely underrepresented in this

sample; however, our sample does cover a wide range of peak
luminosities and light-curve shapes. This analysis is thus not
restricted to any certain subgroup of SNe IIb. The advantage of
a rate estimate is that we potentially gain information on the
SNe IIb as a class and we are able to quantify the results of this
analysis.
To calculate a precursor rate for all SNe IIb, we estimate the

control time—the time during which a precursor above a
certain absolute magnitude can be detected. The following
calculations are described for a bin size of 15 days. When using
60-day bins, all calculations and results are similar except for
the detection of the faint precursor candidate. All resulting
upper limits or precursor rates are summarized in Table 3 for
both bin sizes.
We adopt a minimal precursor duration of 15 days and bin

the observations accordingly. For bins with six or more
observations, the 1σ noise level is calculated using the
bootstrap method and is then multiplied by a factor of five to
estimate a 5 level. For bins with fewer observations, we
determine the standard deviation based on the scaled Poisson
errors estimated by the image-subtraction pipeline (see
Section 4.1). The upper edge of the noise level corresponds
to the 5 limiting magnitude per bin. The control time is
formally given as

t M t M

t M
M M

with
15 days, if

0 days, otherwise,
1

R

i

N N

i i R

i i R

i R R
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1

,

, search ,
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bin SN
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( )
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⎧
⎨
⎩

whereMR is the absolute magnitude at which the control time is

calculated and Mi,R is the 5 limiting magnitude in bin i. The

sum runs over all Nbin light-curve bins per SN and all NSN SNe

in this sample. The mean observation time of the bin relative to

the explosion date, the limiting magnitude, and the number of

observations per bin are listed in Table 4 (unbinned observa-

tions are given in Table 2).
From the search results described in Section 4.2 and the light

curves shown in Figures 1–3, we know that during the control
time no precursors were detected above the estimated noise
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level when using 15-day bins. The control time tsearch for the
complete sample as a function of the precursor magnitude is
depicted in Figure 6, where tsearch is defined as the bin duration
of 15 days multiplied by the number of bins in which a
precursor of the respective magnitude would have been
detected. For example, at an absolute magnitude of 14 and
considering the full time range of 3.5 years prior to the SN
explosion (thick black line in Figure 6), a control time of 9.2
years has been accumulated; in our sample, there are two
hundred twenty-three 15-day bins in which precursors having
an absolute magnitude of 14 or less can be excluded.

According to the amount of data and the SN distance, the
objects in our sample contribute differently to the magnitude-
dependent control time. The five SNe with the longest control
time (PTF 11qju, SN 2011dh, PTF 12fxj, SN 2012P, and
SN 2011ef) account for close to 50% of the total time covered
by observations. Especially at large absolute magnitudes, the
control-time distribution is dominated by the two nearby
events, SN 2011dh and SN 2012P. In Figure 6, we show how
the distribution changes when removing SN 2011dh, which
owing to its small distance has a large contribution to the

control time in the absolute magnitude range of 7 to 10. In a
similar way, the second bump at magnitudes from 9 to 12 is
due to the observations of SN 2012P. At lower magnitudes,
many other SNe start to contribute to the distribution, so the
results are less dominated by individual objects.
For searches in which no precursors are detected, we can set

a 90% upper limit on the expectation number of precursors of
2.3 (Gehrels 1986; one-sided Poisson statistics). The limits on
the average precursor rate per SN per year, R ,prec and on the
average number of precursors per SN, N ,prec are given by

R
t

N
t

t

2.3
and 2.3 , 2prec

search
prec

window

search

( )

respectively, where twindow is the duration of the considered

time interval before the explosion. The limit on Nprec is hence

purely determined by the ratio twindow/tsearch, the amount of

Table 3
N ,prec Average Number of Precursors per SN

Time Interval SNe IIb, Bright Precursors (−14 mag) SNe IIb, Faint Precursors (−10 mag) SNe IIn (−14 mag)

(year) 15-day bins 60-day bins 15-day bins 60-day bins 15-day bins

−3.5 to 0 <0.86 <0.51 <5.03 1.52 1.26, 1.49
3.50, 7.12

L

−2.5 to 0 L L L L 4.8 2.3, 3.5
3.8, 7.6

−1 to 0 <0.56 <0.36 <2.95 <2.00 2.8 1.3, 2.1
2.2, 4.4

−1/3 to 0 <0.52 <0.29 <2.08 <2.33 2.5 1.2, 1.8
2.0, 4.0

−2 to −1 <0.70 <0.47 <3.12 1.01 0.84, 0.99
2.33, 4.75

L

Notes. Upper limit on the allowed number of precursors Nprec within the respective time interval (rates from Figure 7(a) multiplied by time interval) compared to the

measured number of precursors prior to SNe IIn (Ofek et al. 2014). The limits apply to precursors with a minimal duration of 15 and 60 days, respectively. The

constraints on long precursors are stronger since more observations are coadded, which leads to a better sensitivity. All limits are at the 90% confidence level, and the

quoted uncertainties correspond to the 1 and 2 Poisson errors (Gehrels 1986).

Table 4

Precursor Search Control Time

Name t mPTF,R

Abs.

MPTF,R Nmeas

(day) (mag) (mag)

PTF 09dxv −40.0 21.49 −14.28 20

PTF 09dxv −25.5 20.90 −14.87 23

PTF 09dxv −14.4 22.38 −13.39 14

SN 2009nf −63.4 20.61 −15.96 4

SN 2009nf −47.7 22.87 −13.70 8

SN 2009nf −28.6 20.08 −16.49 3

SN 2009nf −18.0 20.41 −16.16 3

PTF 09hnq −117.5 20.50 −14.88 9

Notes. Listed are the SN name, the mean observation time of the 15-day bin

relative to the explosion date, the apparent and absolute magnitude down to

which precursors can be excluded, and the number of observations per bin. The

limiting magnitudes are at the 5σ level estimated from Poisson errors for bins

with less than six observations and with the bootstrap method otherwise

(Section 4.1). They correspond to the upper + signs in Figures 1–3, and their

cumulative distribution is shown in Figure 6.

(This table is available in its entirety in machine-readable form.)

Figure 6. Absolute-magnitude-dependent control time for the complete
sample, during which the SN locations were observed and no precursors were
detected above the given magnitude. The various curves are for precursors
taking place at different time ranges prior to the SN explosion (see the legend).
The curve normalization and shape are determined by the amount of data and
the SN distances. SN 2011dh accounts for most observations at the brightest
magnitudes, and the dotted line shows the effect of removing it from the
sample. Additional curves display the control time for shorter periods before
the explosion. The limiting magnitudes per bin for all SNe are listed in Table 4.
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time during which precursors can be excluded compared to the

time window during which the search is conducted. We note

that Rprec is an average quantity since the bins of tsearch are not

necessarily distributed homogeneously within twindow.
The resulting upper limit on the precursor rate is shown in

Figure 7(a), and Table 3 compares the upper limit on the

number of precursors per SN to the number of precursors

measured for SNe IIn by Ofek et al. (2014).
The upper limit on the number of precursors for the longest

time interval of 3.5 years prior to the SN explosion is smaller

than unity. This means that at the 90% confidence level, not all

SNe IIb can exhibit precursors as bright as −14 mag, which is a

typical R-band luminosity of precursors detected so far (e.g.,

Pastorello et al. 2007; Ofek et al. 2014). Compared to SNe IIn

(Ofek et al. 2014), the average number of precursors prior to

SNe IIb at magnitude −14 is lower by at least a factor of five

(see Table 3). In case precursors are equally common before

SNe IIb and SNe IIn, they have to be at least as dim as an

absolute magnitude of 10 for SNe IIb, about a factor of 40

dimmer compared to the precursors observed prior to SNe IIn

(see Table 3).
As explained in the Introduction, a double-peaked light

curve presumably requires the presence of an extended

hydrogen envelope (Bersten et al. 2012; Nakar & Piro 2014).

The duration of the first peak is usually only hours to a few

days, and most SNe are not discovered as early. For most SNe

in our sample, we thus do not know whether or not an early

peak is present. However, not all SNe IIb have an early peak (I.

Arcavi et al. 2015, in preparation), and there are indications

that some SN IIb progenitors might be compact (Chevalier &

Soderberg 2010). To account for this diversity in the progenitor

population, we additionally calculate limits considering only

the data of the five SNe IIb for which two peaks are observed

by PTF or reported in the literature. As stated in Table 1, this

includes PTF 10tzh, SN 2011dh, PTF 12jaa, PTF 13ajn, and

SN 2013df (see also I. Arcavi et al. 2015, in preparation). These

SNe contribute only 15% of the control time of the complete

sample, and the limits are hence drastically weakened, as

shown in Figure 7(b).

7. DISCUSSION

In this section, we estimate whether or not the explosive
ejection of a low-mass stellar envelope in a precursor event is
likely to be bright enough to be detectable in this analysis. We
expect a radiatively efficient precursor eruption to radiate an
amount of energy comparable to (or larger than) the binding
energy of the ejected envelope, which is given by

E G
M M

R
, 3bind

env core

core

( )

where G is the gravitational constant, Menv and Mcore are,

respectively, the masses of the envelope and the core, and Rcore

is the core radius above which the envelope is located prior to

its ejection.
According to Nakar & Piro (2014; see also Piro 2015), both

Menv and Rcore can be estimated from the shape of the first peak
in the optical light curve. Menv is determined by the time at
which the bolometric light curve reaches the first peak (tp), and
Rcore can be derived from the minimal luminosity Lmin between
the two peaks. Lmin can be obtained relatively precisely
whenever a first peak is observed. The rise time tp is usually
less well constrained since it can be as short as a day or several
hours, and in most cases the data are not sufficient.
In our sample, the only double-peaked SN for which a good

upper limit on tp is available is SN 2011dh, where the
maximum of the first peak was reached at most 15 hr after
the explosion (Arcavi et al. 2011). This limit refers to the peak
in visible light. However, the bolometric peak probably takes
place even earlier; hence, this limit holds. For SN 2011dh,
numerical simulations by Bersten et al. (2012) suggest
M M4 ,core M M0.003 ,env and R 5 10 cm,core

11

comparable to the values estimated by Nakar & Piro (2014).
Using Equation (3), the binding energy is Ebind 8 10 erg.45

This result is an order-of-magnitude estimate since most
quantities entering the calculation have large uncertainties of
up to a factor of a few. The kinetic energy required to unbind
the envelope relates to the bolometric energy released in the
precursor event, E ,prec via an unknown radiation efficiency

Figure 7. Upper limits on the average precursor rate per SN calculated based on the control time shown in Figure 6. At the lowest (brightest) magnitudes, the limit is
dominated by observations of SN 2011dh. Considering only double-peaked SNe, the limits are weaker owing to the smaller amount of data.
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factor ò: E Erad,prec bind (see E. O. Ofek et al. 2015, in
preparation).

In the case of SN 2011dh, within two years prior to the SN
explosion, 50% of the time is covered by observations with a
limiting magnitude of 9 or less and gaps no longer than two
weeks. This limits the precursor luminosity during this time to
L 10 erg sprec

39 1 (no bolometric correction applied). If the
envelope of this progenitor star is unbound during our
observations (50% probability), we can set the following limit
on the radiative efficiency ò, as a function of the precursor
duration t, where the emitted luminosity is assumed to be
constant over the precursor duration:

E

E

L t

E

t
0.16

15 days
. 4

rad,prec

bind

prec

bind

( )
⎛

⎝
⎜

⎞

⎠
⎟

The unbinding event (if it ever existed) might be too faint to be

detected if the efficiency ò is low or if the precursor lasts for

several months or longer. Another possibility is that the envelope

is ejected prior to the time interval probed in this analysis.
The limit on the precursor luminosity Lprec is close to the

Eddington luminosity for a M4 progenitor. Thus, a
continuum-driven wind (e.g., Shaviv 2001), which could in
principle explain giant eruptions of luminous blue variable stars
or SN IIn precursors, is likely ruled out as an explanation for
the SN IIb envelope ejection. Stellar winds can, however, be
driven by other mechanisms such as line absorption or
absorption by dust, which do not require as high luminosities;
see Langer (2012) for a review.

If the precursor candidate detected prior to SN 2012cs is real,
it released an energy of ∼4 × 1046 erg (see Section 4.2). We do
not have much information about the progenitor star; however,
if it is similar to the progenitor of SN 2011dh, the radiated
energy is comparable to the required energy for the unbinding
event. It is therefore possible that a stellar envelope was ejected
in this event.

8. SUMMARY

We examine the pre-explosion light curves of 27 nearby SNe
IIb, searching for outbursts. One precursor candidate is
marginally detected in a single 60-day bin in the pre-explosion
light curve of the nearby SN 2012cs. The probability to
measure such an event caused by noise is 1.8% for this pre-
explosion light curve. The possible precursor happened 680
days before the SN explosion, and if real, its absolute R-band
magnitude is M 11.0,R,PTF which corresponds to a
luminosity of 7 × 1039 erg s−1 (no bolometric correction
applied) and a radiative energy release of 4 × 1046 erg within
the approximate duration of 60 days.

When binning the observations in 15-day bins, no precursor
eruptions are found, and we calculate a magnitude-dependent
limit on the average precursor rate among SNe IIb. Precursors as
luminous as −14mag occur on average <0.86 times within the
final 3.5 years before the SN explosion, while in the last year the
average number of precursors is limited to <0.56 at the 90%
confidence level. These limits are obtained under the assumption
that precursor eruptions last for at least 15 days. We conclude
that bright precursor explosions, if they occur at all, are rare and
do not happen before the explosion of every SN IIb.

By contrast, precursors are frequent for SNe IIn (Ofek et al.
2014); at the 99% confidence level, 98% of all SNe IIn have
precursor eruptions brighter than absolute magnitude −14

within the 2.5 years before the explosion. The precursor rate of

SNe IIn measured by Ofek et al. (2014) exceeds the upper limit

for SNe IIb by about a factor of five at an absolute magnitude

of −14 or less. In addition, the precursor rate for SNe IIb can

be constrained at higher magnitudes of up to 7.
For the nearby SN IIb SN 2012P, our observations show that

the source detected in pre-explosion HST observations at the SN

position (Van Dyk et al. 2012) is still present more than two years

after the SN explosion and thus cannot be the progenitor star.
The progenitor of SN 2011dh, the closest SN in our sample, is

clearly detected in coadded observations, and its mean R-band

magnitude is mPTF, R = 21.82 ± 0.08mag, consistent with

archival HST observations. The possible slow fading reported by

Szczygieł et al. (2012) is below the sensitivity threshold of our

observations. However, with 373 observations over the last two

years prior to the SN explosion, the progenitor is monitored

nearly constantly, and no variability or precursors are detected.

We argue that for this progenitor star, the ejection of the stellar

envelope in a precursor event might be observable, except if the

process is radiatively inefficient or lasts over several months.
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APPENDIX

Representative spectra of all SNe discovered by PTF are

shown in Figures 8–10 and are electronically available from the

WISeREP webpage16 (Yaron & Gal-Yam 2012). The spectra

were acquired using various facilities that are listed in Table 5.

16
http://www.weizmann.ac.il/astrophysics/wiserep
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Figure 8. Representative spectra of the PTF-detected SNe in our sample. All spectra are redshifted by the indicated velocity relative to the rest frame such that their

characteristic helium absorption features are at their rest wavelengths at 5876, 6678, and 7065 Å (indicated by broken lines). In addition, the black triangles mark the

prominent Hα absorption lines. The Hα emission line is found to the right of these features and often has a flat-top profile owing to the helium absorption at 6678 Å.
Some SNe are compared to known SNe IIb identified with SNID (Blondin & Tonry 2007) and the time after peak is indicated next to all spectra. All spectra are
available electronically via the WISeREP webpage (Yaron & Gal-Yam 2012). Further spectra are shown in Figures 9 and 10.
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Figure 9. Figure 8, continued.
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Figure 10. Figures 8 and 9, continued.
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Table 5

Log of Spectroscopic Observations

Name Telescope Instrument Date

PTF 09dxv Keck I LRIS 2009 Oct 22

SN 2009nf Keck I LRIS 2009 Nov 11

PTF 09hnq HET LRS 2009 Nov 25

PTF 09ism P200 DBSP 2010 Jan 09

PTF 10fqg P200 DBSP 2010 May 07

PTF 10qrl Keck I LRIS 2010 Sep 05

PTF 10tzh Keck II DEIMOS 2010 Oct 12

PTF 10xfl P200 DBSP 2010 Oct 17

SN 2011dh Lick 3 m Kast 2011 Jul 06

SN 2011hg Lick 3 m Kast 2011 Dec 19

PTF 11qju Keck I LRIS 2012 Feb 20

SN 2012P HET LRS 2012 Jan 14

PTF 12fxj Lick 3 m Kast 2012 Jul 11

SN 2012ey Keck II DEIMOS 2012 Oct 14

PTF 12jaa Keck II DEIMOS 2012 Oct 14

PTF 13nu P200 DBSP 2013 Apr 13

SN 2013bb Keck I LRIS 2013 Apr 09

PTF 13ajn P200 DBSP 2013 May 02

SN 2013cu P200 DBSP 2013 Jun 02

PTF 13ebs Keck I LRIS 2013 Dec 02

Note. The spectra are shown in Figures 8–10.
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