ELSEVIER Contents lists available at ScienceDirect ## Physics Letters B www.elsevier.com/locate/physletb # The Cabibbo angle as a universal seed for quark and lepton mixings S. Roy^{a,*}, S. Morisi^b, N.N. Singh^c, J.W.F. Valle^d - ^a Department of Physics, Gauhati University, Guwahati, Assam 781014, India - ^b DESY, Platanenallee 6, D-15735 Zeuthen, Germany - ^c Department of Physics, Manipur University, Imphal, Manipur 795003, India - d AHEP Group, Institut de Física Corpuscular C.S.I.C./Universitat de València, Parc Cientific de Paterna, C/ Catedratico José Beltrán, 2, E-46980 Paterna (València), Spain ### ARTICLE INFO Article history: Received 21 February 2015 Received in revised form 30 April 2015 Accepted 23 June 2015 Available online 26 June 2015 Editor: A. Ringwald Keywords: PMNS matrix CKM matrix Cabibbo angle Bi-Large mixing Wolfenstein parameter Neutrino mixing ### ABSTRACT A model-independent ansatz to describe lepton and quark mixing in a unified way is suggested based upon the Cabibbo angle. In our framework neutrinos mix in a "Bi-Large" fashion, while the charged leptons mix as the "down-type" quarks do. In addition to the standard Wolfenstein parameters (λ, A) two other free parameters (ψ, δ) are needed to specify the physical lepton mixing matrix. Through this simple assumption one makes specific predictions for the atmospheric angle as well as leptonic CP violation in good agreement with current observations. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³. A striking observation vindicated by recent experimental neutrino data is that the smallest of the lepton mixing angles is surprisingly large, similar to the largest of the quark mixing parameters, namely the Cabibbo angle (θ_c) [1,2]. An interesting lepton mixing scheme called "Bi-Large" (BL) mixing has been proposed recently [3] and subsequently studied in Refs. [4–6]. This mixing scheme assumes the atmospheric and the solar mixing angles to be equal and proportional to the reactor angle. In contrast to the Bi-Maximal (BM) scenario [7,8], within the BL scheme the atmospheric mixing angle does not need to be strictly "Maximal", but simply "Large" in general. In summary, BL mixing posits $\sin\theta_{13}\simeq\lambda$, $\sin\theta_{12}=\sin\theta_{23}\sim\lambda$, where $\lambda=\sin\theta_{c}$. Such BL mixing ansatz can be motivated in string theories. Indeed, in F-theory motivated Grand Unified Theory (GUT) models, a geometrical unification of charged lepton and neutrino sectors leads to a mild hierarchy in the neutrino mixing matrix in which θ^{ν}_{12} and θ^{ν}_{23} become large and comparable while $\theta^{\nu}_{13} \sim \theta_c \sim \sqrt{\alpha_{GUT}} \sim 0.2$ [9]. Understanding the origin of the above relation from first principles is beyond the scope of this note. We stress however that this ansatz can be associated to specific flavor symmetries as suggested in Ref. [4] or Ref. [10], rather than being a mere "numerical coincidence". A successful framework for attacking the flavor problem constitutes an important quest in contemporary particle physics. A relevant question arises as to whether attempted solutions to the flavor problem may indicate foot-prints of unification or not [11–16]. In the present note we look into some possible links between quark and lepton mixing parameters from a phenomenological "bottom-up perspective".² In the quark sector the largest mixing is between the flavor states d and s, and is interpreted in terms of the Cabibbo angle [24] which is approximately 13°. The matrix V_{CKM} is parametrized in terms of three independent angles and one complex CP phase [25–27]. A clever approximate presentation was proposed by Wolfenstein [28], and is by now standard, namely $$V_{CKM} = \begin{bmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$ (1) ^{*} Corresponding author. *E-mail addresses*: meetsubhankar@gmail.com (S. Roy), stefano.morisi@gmail.com (S. Morisi), nimai03@yahoo.com (N.N. Singh), valle@ific.uv.es (J.W.F. Valle). ¹ Neglecting the contribution from the charged lepton sector. ² An earlier alternative in the literature is "Quark-Lepton Complementarity (QLC)" [17–23]. up to $\mathcal{O}(\lambda^4)$ where λ , A, η and ρ are four independent Wolfenstein parameters, with $\lambda = \sin \theta_c \approx 0.22$. In contrast, the mixing in the lepton sector is very different from quark mixing. While the solar and atmospheric angle are large: $\theta_{12}\approx 35^\circ$ and $\theta_{23}\approx 49^\circ$, the 1–3 mixing parameter in the lepton sector is the smallest and was believed to vanish according to the earlier results. However in last few years it has been established [29–31] that this mixing, now precisely measured, is almost as large as the d–s mixing in quark sector, $\theta_{13}\approx 9^\circ\sim \mathcal{O}(\theta_c)$. This excludes the simplest proposed schemes of neutrino mixing, which need to be revised in order to be consistent with observation [32]. Up to Majorana phases the Bi-Large mixing factor may be parametrized as follows $$U_{BL} \approx \begin{bmatrix} c(1-\frac{\lambda^2}{2}) & \psi\lambda(1-\frac{\lambda^2}{2}) & \lambda \\ -c\psi\lambda(1+\lambda) & c^2-\lambda^3\psi^2 & \psi\lambda(1-\frac{\lambda^2}{2}) \\ \lambda^2\psi^2-\lambda c^2 & -c\psi\lambda(1+\lambda) & c(1-\frac{\lambda^2}{2}) \end{bmatrix}.$$ (2) One sees that $\sin\theta_{12}=\sin\theta_{23}=\psi\lambda$, with $\sin\theta_{13}=\lambda$. With this parametrization it is evident that the Cabibbo angle is the *seed* for the mixing in both the quark and the lepton sector. Here, $c\approx\cos\sin^{-1}(\psi\lambda)$. In what follows we discuss the possible forms of the charged lepton contribution [33–41] to the lepton mixing matrix. As originally proposed the Bi-Large ansatz does not fit current neutrino oscillation data, so that corrections are required. A possibility is that BL arises only in the flavor basis and deviations are induced from the charged lepton sector. Here we consider this case within a GUT inspired framework based upon SO(10) and SU(5). In simplest SO(10) schemes the charged lepton mass matrix is approximated to that of down type quarks, $M_e \sim M_d$ [42–45]. This leads to the assumption, $U_l \approx V_{CKM}$ [46]. In V_{CKM} the dominant parameter is $\theta_{12}^{CKM} = \theta_c$, which is followed by θ_{23}^{CKM} . We classify the parametrization of U_l in two categories: (i) with 1–2 rotation only: $U_l = U_{12}(\lambda)$ and (ii) with 2–3 rotation in addition to that of 1–2, $U_l = U_{23}(A\lambda^2).U_{12}(\lambda)$. As suggested in Ref. [47], we associate a complex phase parameter δ with 1–2 rotation, so that $U_{12} \rightarrow U_{12}(\theta_c, \delta)$. We have: ## • Type-1 $$U_{l_1} = \Psi R_{12}^l(\theta_{12}^{CKM}) \Psi' \approx \begin{bmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda e^{-i\delta} & 0 \\ -\lambda e^{i\delta} & 1 - \frac{1}{2}\lambda^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad (3)$$ ## • Type-2 $$\begin{split} U_{l_{2}} &= R_{23}^{l}(\theta_{23}^{CKM}).\Psi.R_{12}^{l}(\theta_{12}^{CKM})\Psi' \\ &\approx \begin{bmatrix} 1 - \frac{1}{2}\lambda^{2} & \lambda \, e^{-i\delta} & 0 \\ -\lambda \, e^{i\delta} & 1 - \frac{1}{2}\lambda^{2} & A\lambda^{2} \\ A\lambda^{3}e^{i\delta} & -A\lambda^{2} & 1 \end{bmatrix}, \end{split} \tag{4}$$ where we have $\Psi = diag\{e^{-i\delta/2}, e^{i\delta/2}, 1\}$ and $\Psi' = \Psi^{\dagger}$. Similar within simplest SU(5) scheme one expects, $M_e \sim M_d^T$ [48]. This gives rise to other two possibilities which can be expressed as in the following: ## • Type-3 $$U_{l_1} = \Psi R_{12}^l(\theta_{12}^{CKM}) \Psi' \approx \begin{bmatrix} 1 - \frac{1}{2}\lambda^2 & -\lambda e^{-i\delta} & 0\\ \lambda e^{i\delta} & 1 - \frac{1}{2}\lambda^2 & 0\\ 0 & 0 & 1 \end{bmatrix}$$ (5) ## Type-4 $$\begin{split} U_{l_{2}} &= R_{23}^{l}(\theta_{23}^{CKM}).\Psi.R_{12}^{l}(\theta_{12}^{CKM})\Psi' \\ &\approx \begin{bmatrix} 1 - \frac{1}{2}\lambda^{2} & -\lambda e^{-i\delta} & A\lambda^{3}e^{-i\delta} \\ \lambda e^{i\delta} & 1 - \frac{1}{2}\lambda^{2} & -A\lambda^{2} \\ 0 & A\lambda^{2} & 1 \end{bmatrix}. \end{split} \tag{6}$$ The physical lepton mixing matrix is simply $$U_{lep} = U_I^{\dagger} . U_{BL} . I_{\phi}, \tag{7}$$ where U_{BL} represents the Bi-Large neutrino mixing matrix and $I_{\phi} = diag(e^{i\alpha}, e^{i\beta}, 1)$, where α and β are the two additional CP violating phases associated to the Majorana nature of the neutrinos [26].³ In what follows we base our discussion upon the above four different choices of the charged lepton diagonalizing matrix choices of U_{L} in Eqs. (3)–(6). As an example here we choose the Type-4 charged lepton diagonalizing matrix, U_{l_4} (see Eq. (6)) and construct the Type-4 BL based scheme, $$(U_{lep})_4 = U_{la}^{\dagger} \cdot U_{BL} \cdot I_{\phi}. \tag{8}$$ In $(U_{lep})_4$, the free parameters are ψ and δ . From $(U_{lep})_4$, the mixing angles are given by $$s_{13}^2 \approx \lambda^2 \left(s^2 + 2s\cos\delta + 1 \right),\tag{9}$$ $$s_{12}^2 \approx s^2 + \lambda^2 (c^4 + s^4 - s^2) + 2c^2 \lambda s \cos \delta,$$ (10) $$s_{23}^2 \approx s^2 + \lambda^2 \left(2Acs + s^4 + 2s^3 \cos \delta - s^2 - 2s \cos \delta \right).$$ (11) In order to obtain the rephasing-invariant CP violation parameter relevant for the description of neutrino oscillations we use the relation $J_{CP} = Im[U_{e1}^*, U_{\mu 3}^*, U_{\mu 1}, U_{e3}]$ for the Jarkslog invariant J_{CP} [52], and obtain, $$J_{cp} \approx -c^2 s^3 \lambda \sin \delta, \tag{12}$$ where $s=\psi\lambda$. It is evident that all the observables are given in terms of the parameters, λ , A, ψ and the unphysical phase δ , of which λ and A are the standard Wolfenstein parameters with $\lambda\approx0.22551$, A=0.813 [53] while the two parameters: ψ and δ are free. How to choose ψ and δ ? In fact, this task is not too complicated. One can choose ψ and δ in such a way, that any two of the three observable parameters, solar, reactor and atmospheric mixing angles are consistent with the neutrino oscillation data [1,2], while the prediction for the remaining one will determine the tenability of the model. First note that the determination of solar and reactor angles is rather stable irrespective of the neutrino mass spectrum. Hence it seems reasonable to use solar and reactor angles for the parametrization of the two unknowns. Hence we focus upon the predictions for θ_{23} and J_{CP} (or δ_{CP}), given their current indeterminacy from global neutrino oscillation data analysis [2]. Although consistent with maximal mixing, the possibility of θ_{23} lying within the first octant is certainly not excluded for normal ordering of neutrino masses. Moreover, probing for CP violation in the lepton sector is the next challenge for neutrino oscillation experiments. Hence in addition to the prediction for the atmospheric angle, we use the prediction of our ansatz for J_{CP} (or δ_{CP}) in order to scrutinize the viability of our ansatz, in any of the above forms. The results are summarized in Table 1. ³ As shown in [49] these phases are physical and affect lepton number violating processes such as neutrinoless double beta decay [50,51]. **Table 1** Summary of the results corresponding to four BL models. ψ and δ correspond to the central $\pm 3\sigma$ range of s_{12}^2 , s_{13}^2 , λ and A. We have taken $s_{12}^2 = [0.278, 0.375]$, $s_{13}^2 = [0.0177, 0.0297]$, $\lambda = [0.22551 - 0.001, 0.22551 + 0.001]$ and A = [0.813 - 0.029, 0.813 - 0.040]. The other observables s_{23}^2 , δ_{cp} (the Dirac type CP phase) and J_{cp} (Jarkslog invariant parameter) are the theoretical predictions for each model. This is to be noted that the best result of the Type-4 BL model is consistent with the maximal mixing prediction. | Туре | ψ | δ/π | $\sin^2 \theta_{23}$ | δ_{CP}/π | J_{cp} | |------|------------------------------|------------------------------|--------------------------------|--------------------------------|------------------------------| | 1 | $2.9521^{+0.2087}_{-0.2043}$ | $1.764^{+0.0476}_{-0.0428}$ | $0.4585^{+0.08543}_{-0.08646}$ | $1.2308^{+0.0692}_{-0.0717}$ | $0.0250^{+0.0137}_{-0.0105}$ | | 2 | $2.9521^{+0.2087}_{-0.2043}$ | $1.764^{+0.0476}_{-0.0428}$ | $0.4174^{+0.0921}_{-0.0937}$ | $1.2159^{+0.0754}_{-0.0733}$, | $0.0250^{+0.0137}_{-0.0105}$ | | 3 | $2.9522^{+0.2087}_{-0.2201}$ | $0.7644^{+0.0476}_{-0.0427}$ | $0.4585^{+0.0855}_{-0.08641}$ | $1.2303^{+0.0717}_{-0.0713}$ | $0.0250^{+0.0137}_{-0.0105}$ | | 4 | $2.9522^{+0.2087}_{-0.2201}$ | $0.7644^{+0.0476}_{-0.0427}$ | $0.4996^{+0.0927}_{-0.0935}$ | $1.2303^{+0.0717}_{-0.0713}$ | $0.0250^{+0.0137}_{-0.0105}$ | **Fig. 1.** The parametrization of ψ and δ , and prediction on s_{23}^2 and J_{cp} are illustrated for Type-4 BL. For all the cases, ψ and δ are first parametrized with respect to best-fit, 1σ , 2σ and 3σ ranges of s_{12}^2 and s_{13}^2 which are then used to predict s_{23}^2 and J_{cp} . In the above illustration we fix λ and A at their central values: $\lambda = 0.22551$ and A = 0.813. For definiteness we discuss here in more detail only the result for the Type-4 BL scheme, see Fig. 1; similar results can be found for the other cases in the table. In Fig. 1 we plot the free parameters δ and ψ . In the left panel we show the contour plot for s_{13} (horizontal band) and s_{12} (vertical band). The best-fit values $s_{12}^2 \approx 0.323$ and $s_{13}^2 \approx 0.023$ [2] correspond to choosing $\psi \approx 2.967$ and $\delta \approx 0.757 \, \pi$. We note that, with above choice of the two parameters, θ_{23} is consistent with maximal. The CP-invariant J_{cp} is approximately 0.02. The corresponding lepton mixing matrix corresponding to the Type-4 BL scheme is the following, $$U_{4} \approx \begin{bmatrix} -u^{*}(1+\lambda)\{u(\lambda-1)+\psi\lambda^{2}\}c \\ \frac{c\lambda}{2}\{(\lambda^{2}-2)(u+\psi)-2\lambda(\psi+cA\lambda)\} \\ \{\psi^{2}+cA(u+\psi)\lambda\}\lambda^{2}-c^{2} \end{bmatrix}$$ $$(\psi-u^{*}c^{2})\lambda+\psi\lambda^{3}$$ $$c^{2}(1-\frac{\lambda^{2}}{2})-\psi\lambda^{2}\{u+(\psi+cA)\lambda\}$$ $$-c\{\psi+(\psi+cA)\lambda\}\lambda$$ $$\lambda-(\frac{\lambda}{2}+u^{*}\psi)\lambda^{2}$$ $$\psi\lambda(1-\lambda^{2})+(cA-u)\lambda^{2}$$ $$-\psi A\lambda^{3}+c(1-\frac{\lambda^{2}}{2}) \end{bmatrix}, \qquad (13)$$ where $u = e^{i\delta}$ and $c = \cos \sin^{-1}(\psi \lambda)$. In Table 1, we gather the results for all the four BL schemes discussed above. In summary we proposed a generalized fermion mixing ansatz where the neutrino mixing is Bi-Large, while the charged lepton mixing matrix is CKM-like. Inspired by SO(10) and SU(5) unification, we select four CKM-like charged lepton diagonalizing matrices, U_l 's (Type-1, 2, 3, 4) and discuss the phenomenological viability of the resulting schemes. All the four models are congruous with best-fit solar and reactor angles, making definite predictions for the atmospheric angle and CP phase, which may be further tested in upcoming neutrino experiments. In particular the Type-4 BL model appears interesting in the sense that it extends the origi- nal BL model to encompass maximal atmospheric mixing. Ours is a "theory-inspired" bottom-up approach to the flavor problem, that highlights the role of θ_c as the universal seed of quark and lepton mixings and incorporates the main characteristic features of unification models. We have shown how this generalizes the original Bi-Large ansatz [3] to make it fully realistic. Further investigation on the physics underlying this ansatz may bring new insights on both fermion mixing and unification. Work supported by the Spanish grants FPA2011-22975 and Multidark CSD2009-00064 (MINECO), and PROMETEOII/2014/084 (Generalitat Valenciana). S.M. thanks DFG grant WI 2639/4-1. ### References - D. Forero, M. Tortola, J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012, http://dx.doi.org/10.1103/PhysRevD.86.073012, arXiv:1205.4018. - [2] D. Forero, M. Tortola, J. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (9) (2014) 093006, http://dx.doi.org/10.1103/PhysRevD.90.093006, arXiv: 1405.7540. - [3] S. Boucenna, S. Morisi, M. Tortola, J. Valle, Bi-large neutrino mixing and the Cabibbo angle, Phys. Rev. D 86 (2012) 051301, http://dx.doi.org/10.1103/ PhysRevD.86.051301, arXiv:1206.2555. - [4] G.-J. Ding, S. Morisi, J. Valle, Bilarge neutrino mixing and Abelian flavor symmetry, Phys. Rev. D 87 (5) (2013) 053013, http://dx.doi.org/10.1103/PhysRevD.87.053013, arXiv:1211.6506. - [5] G. Branco, M. Rebelo, J. Silva-Marcos, D. Wegman, Quasidegeneracy of Majorana neutrinos and the origin of large leptonic mixing, Phys. Rev. D 91 (1) (2015) 013001, http://dx.doi.org/10.1103/PhysRevD.91.013001, arXiv:1405.5120. - [6] S. Roy, N.N. Singh, Bi-Large neutrino mixing with charged lepton correction, Indian J. Phys. 88 (5) (2014) 513–519, http://dx.doi.org/10.1007/s12648-014-0446-1, arXiv:1211.7207. - [7] V.D. Barger, S. Pakvasa, T.J. Weiler, K. Whisnant, Bimaximal mixing of three neutrinos, Phys. Lett. B 437 (1998) 107–116, http://dx.doi.org/10.1016/ S0370-2693(98)00880-6, arXiv:hep-ph/9806387. - [8] G. Altarelli, F. Feruglio, Neutrino mass textures from oscillations with maximal mixing, Phys. Lett. B 439 (1998) 112–118, http://dx.doi.org/10.1016/S0370-2693(98)01007-7, arXiv:hep-ph/9807353. - [9] V. Bouchard, J.J. Heckman, J. Seo, C. Vafa, F-theory and neutrinos: Kaluza-Klein dilution of flavor hierarchy, J. High Energy Phys. 1001 (2010) 061, http://dx.doi.org/10.1007/JHEP01(2010)061, arXiv:0904.1419. - [10] S.F. King, C. Luhn, A.J. Stuart, A grand Δ(96) × SU(5) flavour model, Nucl. Phys. B 867 (2013) 203–235, http://dx.doi.org/10.1016/j.nuclphysb.2012.09.021, arXiv:1207.5741. - [11] A. Datta, L. Everett, P. Ramond, Cabibbo haze in lepton mixing, Phys. Lett. B 620 (2005) 42–51, http://dx.doi.org/10.1016/j.physletb.2005.05.075, arXiv:hep-ph/ 0503222. - [12] S. Antusch, C. Gross, V. Maurer, C. Sluka, A flavour GUT model with $\theta_{13}^{PMMS} \simeq \theta_C/\sqrt{2}$, Nucl. Phys. B 877 (2013) 772–791, http://dx.doi.org/10.1016/j.nuclphysb.2013.11.003, arXiv:1305.6612. - [13] S. Antusch, C. Gross, V. Maurer, C. Sluka, $\theta_{13}^{PMNS} = \theta_C/\sqrt{2}$ from GUTs, Nucl. Phys. B 866 (2013) 255–269, http://dx.doi.org/10.1016/j.nuclphysb.2012.09.002, arXiv:1205.1051. - [14] X. Zhang, B.-Q. Ma, Correlating lepton mixing angles and mixing matrix with Wolfenstein parameters, Phys. Rev. D 86 (2012) 093002, http://dx.doi.org/ 10.1103/PhysRevD.86.093002, arXiv:1206.0519. - [15] G. Altarelli, F. Feruglio, I. Masina, L. Merlo, Repressing anarchy in neutrino mass textures, J. High Energy Phys. 1211 (2012) 139, http://dx.doi.org/10.1007/ IHEP11(2012)139, arXiv:1207.0587. - [16] R. de Adelhart Toorop, F. Bazzocchi, L. Merlo, The interplay between GUT and flavour symmetries in a Pati-Salam x S4 model, J. High Energy Phys. 1008 (2010) 001, http://dx.doi.org/10.1007/JHEP08(2010)001, arXiv:1003.4502. - [17] M. Raidal, Relation between the neutrino and quark mixing angles and grand unification, Phys. Rev. Lett. 93 (2004) 161801, http://dx.doi.org/10.1103/ PhysRevLett.93.161801, arXiv:hep-ph/0404046. - [18] H. Minakata, A.Y. Smirnov, Neutrino mixing and quark-lepton complementarity, Phys. Rev. D 70 (2004) 073009, http://dx.doi.org/10.1103/PhysRevD. 70.073009, arXiv:hep-ph/0405088. - [19] J. Ferrandis, S. Pakvasa, Quark-lepton complementarity relation and neutrino mass hierarchy, Phys. Rev. D 71 (2005) 033004, http://dx.doi.org/10.1103/ PhysRevD.71.033004, arXiv:hep-ph/0412038. - [20] S. Antusch, S.F. King, R.N. Mohapatra, Quark–lepton complementarity in unified theories, Phys. Lett. B 618 (2005) 150, arXiv:hep-ph/0504007. - [21] F. Plentinger, G. Seidl, W. Winter, Systematic parameter space search of extended quark-lepton complementarity, Nucl. Phys. B 791 (2008) 60–92, http://dx.doi.org/10.1016/j.nuclphysb.2007.09.016, arXiv:hep-ph/0612169. - [22] F. Plentinger, G. Seidl, W. Winter, The Seesaw mechanism in quark-lepton complementarity, Phys. Rev. D 76 (2007) 113003, http://dx.doi.org/10.1103/ PhysRevD.76.113003, arXiv:0707.2379. - [23] X. Zhang, B.-Q. Ma, On self-complementarity relations of neutrino mixing, Phys. Lett. B 710 (2012) 630–635, http://dx.doi.org/10.1016/j.physletb.2012.03.026, arXiv:1202.4258. - [24] N. Cabibbo, Time reversal violation in neutrino oscillation, Phys. Lett. B 72 (1978) 333. - [25] M. Kobayashi, T. Maskawa, Cp violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652–657. - [26] J. Schechter, J.W.F. Valle, Neutrino masses in $su(2) \times u(1)$ theories, Phys. Rev. D 22 (1980) 2227. - [27] W. Rodejohann, J.W.F. Valle, Symmetrical parametrizations of the lepton mixing matrix, Phys. Rev. D 84 (2011) 073011, http://dx.doi.org/10.1103/ PhysRevD.84.073011. - [28] L. Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix, Phys. Rev. Lett. 51 (1983) 1945–1947. - [29] Y. Abe, et al., Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment, Phys. Rev. Lett. 108 (2012) 131801, arXiv:1112.6353. - [30] F. An, et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803, arXiv:1203.1669. - [31] J. Ahn, et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802, arXiv:1204.0626. - [32] S. Morisi, D. Forero, J. Romao, J. Valle, Neutrino mixing with revamped A4 flavour symmetry, Phys. Rev. D 88 (2013) 016003, arXiv:1305.6774. - [33] S.F. King, C. Luhn, Neutrino mass and mixing with discrete symmetry, Rep. Prog. Phys. 76 (2013) 056201, http://dx.doi.org/10.1088/0034-4885/76/5/ 056201, arXiv:1301.1340. - [34] S. Antusch, S.F. King, Charged lepton corrections to neutrino mixing angles and CP phases revisited, Phys. Lett. B 631 (2005) 42–47, http://dx.doi.org/ 10.1016/j.physletb.2005.09.075, arXiv:hep-ph/0508044. - [35] A. Romanino, Charged lepton contributions to the solar neutrino mixing and theta(13), Phys. Rev. D 70 (2004) 013003, http://dx.doi.org/10.1103/PhysRevD. 70.013003, arXiv:hep-ph/0402258. - [36] G. Altarelli, F. Feruglio, I. Masina, Can neutrino mixings arise from the charged lepton sector?, Nucl. Phys. B 689 (2004) 157–171, http://dx.doi.org/10.1016/ j.nuclphysb.2004.04.012, arXiv:hep-ph/0402155. - [37] F. Plentinger, W. Rodejohann, Deviations from tribimaximal neutrino mixing, Phys. Lett. B 625 (2005) 264, arXiv:hep-ph/0507143. - [38] W. Rodejohann, H. Zhang, Reducing θ_{13} to 9°, Phys. Lett. B 732 (2014) 174–181, http://dx.doi.org/10.1016/j.physletb.2014.03.040, arXiv:1402.2226. - [39] S. Roy, N.N. Singh, A model-independent investigation on quasi-degenerate neutrino mass models and their significance, Nucl. Phys. B 877 (2013) 321–342, http://dx.doi.org/10.1016/j.nuclphysb.2013.10.011. - [40] C. Duarah, A. Das, N.N. Singh, Charged lepton contributions to bimaximal and tri-bimaximal mixings for generating $\sin\theta_{13}\neq0$ and $\tan^2\theta_{23}<1$, Phys. Lett. B 718 (2012) 147–152, http://dx.doi.org/10.1016/j.physletb.2012.10.033, arXiv:1207.5225. - [41] S. Gollu, K. Deepthi, R. Mohanta, Charged lepton correction to tri-bimaximal lepton mixing and its implications to neutrino phenomenology, Mod. Phys. Lett. A 28 (31) (2013) 1350131, http://dx.doi.org/10.1142/S0217732313501319, arXiv:1303.3393. - [42] J.C. Pati, A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275–289, http://dx.doi.org/10.1103/PhysRevD.11.703.2. - [43] V. Elias, A.R. Swift, Generalization of the Pati-Salam model, Phys. Rev. D 13 (1976) 2083, http://dx.doi.org/10.1103/PhysRevD.13.2083. - [44] T. Blazek, S. King, J. Parry, Global analysis of a supersymmetric Pati–Salam model, J. High Energy Phys. 0305 (2003) 016, http://dx.doi.org/10.1088/ 1126-6708/2003/05/016, arXiv:hep-ph/0303192. - [45] J.B. Dent, T.W. Kephart, Minimal Pati–Salam model from string theory unification, Phys. Rev. D 77 (2008) 115008, http://dx.doi.org/10.1103/PhysRevD.77. 115008, arXiv:0705.1995. - [46] B. Dasgupta, A.Y. Smirnov, Leptonic CP violation phases, quark-lepton similarity and Seesaw mechanism, Nucl. Phys. B 884 (2014) 357–378, http://dx.doi.org/ 10.1016/j.nuclphysb.2014.05.001, arXiv:1404.0272. - [47] H. Fritzsch, Z.-z. Xing, On the parametrization of flavor mixing in the standard model, Phys. Rev. D 57 (1998) 594–597, http://dx.doi.org/10.1103/PhysRevD. 57.594, arXiv:hep-ph/9708366. - [48] G. Ross, Grand Unified Theories, Front. Phys., Westview Press, 2003, https://books.google.co.in/books?id=d6XBweYOD8QC. - [49] J. Schechter, J.W.F. Valle, Neutrino oscillation thought experiment, Phys. Rev. D 23 (1981) 1666. - [50] L. Wolfenstein, CP properties of Majorana neutrinos and double beta decay, Phys. Lett. B 107 (1981) 77. - [51] J. Valle, Neutrinoless double beta decay with quasi Dirac neutrinos, Phys. Rev. D 27 (1983) 1672–1674, http://dx.doi.org/10.1103/PhysRevD.27.1672. - [52] C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP violation, Phys. Rev. Lett. 55 (1985) 1039, http://dx.doi.org/10.1103/PhysRevLett.55.1039. - [53] J. Charles, et al., CP violation and the CKM matrix: assessing the impact of the asymmetric *B* factories, Eur. Phys. J. C 41 (2005) 1–131, http://dx.doi.org/10.1140/epjc/s2005-02169-1, arXiv:hep-ph/0406184.