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The anomalous dimensions of operators in the purely gluonic SUð2; 1j2Þ sector of any planar
conformal N ¼ 2 theory can be read off from the N ¼ 4 SYM results by replacing the N ¼ 4

coupling constant with an interpolating function of the N ¼ 2 coupling constants [1], which we refer
to as the effective coupling. For a large class of N ¼ 2 theories, we compute the weak-coupling
expansion of these functions as well as the leading strong-coupling term by employing super-
symmetric localization. Via Feynman diagrams, we interpret our results as the relative (between
N ¼ 2 and N ¼ 4) finite renormalization of the coupling constant. Using the AdS=CFT dictionary,
we identify the effective couplings with the effective string tensions of the corresponding gravity
dual theories. Thus, any observable in the SUð2; 1j2Þ sector can be obtained from its N ¼ 4

counterpart by replacing the N ¼ 4 coupling constant with the universal, for a given theory, effective
coupling.
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I. INTRODUCTION AND SUMMARY

The recent studies of N ¼ 4 super Yang-Mills (SYM)
have lead to impressive exact results and novel insights for
four-dimensional gauge theories. In this paper we consider
the simplest next step in four dimensions: N ¼ 2 gauge
theories. So far, exact results in gauge theories have come
from using either integrability (see [2] for a review), locali-
zation [3], or a dual string theory description (AdS=CFT [4]).
The general problem of obtaining the gravity dual of

N ¼ 2 superconformal gauge theories has been studied in
[5–12] with partial success. However, theories that are
obtained as orbifolds of N ¼ 4 SYM have well-known
gravity duals [13,14] and, in particular, the Âr−1 quivers are
dual to AdS5 × S5=Zr, where the Zr does not affect the
AdS5 × S1 factor. The dual geometry of any N ¼ 2

superconformal theory has an AdS5 × S1 factor, since
the protected members of the N ¼ 2 chiral ring precisely
match the Kaluza-Klein reduction of the six-dimensional
tensor multiplet on this AdS5 × S1 factor [8,15]. Wilson
loops provide a way to probe the dual geometry and, in
particular, to measure the size of the AdS5 × S1 factor
because, on the string theory side, they are described by a
minimal surface which classically ends on the contour of
the Wilson loop. Calculating the expectation value of the
circular Wilson loop on both sides of the correspondence

has been one of the first successful tests of the N ¼ 4
AdS=CFT paradigm [16,17] and with this paper we begin a
similar program for N ¼ 2 theories.
In four dimensions, N ¼ 4 SYM is the unique, up to a

choice of the gaugegroup,maximally supersymmetric gauge
theory, and it has exactly one marginal coupling constant.
The space of conformal N ¼ 2 gauge theories is classified
by ADE [14,18–20] finite or affine Dynkin diagrams. By
sending a coupling constant to zero, one can obtain the
superconformal theories that correspond to the finite Dynkin
diagrams from the affine ones. For simplicity, in the present
article we will only consider the elliptic quivers based on the
affine Âr−1 Dynkin diagrams that can be obtained from Zr

orbifolds ofN ¼ 4 SYM. The simplest example in this class
is theZ2 elliptic quiver. This is the SUðNcÞ × SUðNcÞ theory
with two marginal couplings g, g

̬
which, in the limit g

̬
→ 0,

leads to superconformal QCD (SCQCD) with color group
SUðNcÞ andNf ¼ 2Nc flavor hypermultiplets that has been
studied extensively in [8,21–25].
In [1] we show that the purely gluonic SUð2; 1j2Þ sector

of composite operators in every N ¼ 2 theory, made out of
fields only in the vector multiplet ϕ, λIþ,Fþþ,Dþ _α, is closed
to all loops in planar perturbation theory. This sector
includes operators that correspond to string states classically
living only on the AdS5 × S1 factor of the dual geometry.
We also present a diagrammatic argument that anomalous
dimensions in the SUð2; 1j2Þ sector can be read off from
the N ¼ 4 ones up to a redefinition, due to finite renorm-
alization, of the coupling constant g2 → fðg2Þ, i.e.
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γN¼2ðg2Þ ¼ γN¼4ðfðg2ÞÞ; where g2 ¼ g2YMNc

ð4πÞ2 : ð1Þ

Thus, we can use the integrability of planar N ¼ 4 and the

results available to compute the anomalous dimensions for

planar N ¼ 2 theories of operators in this sector, as long as

we can compute the effective coupling fðg2Þ.
In this paper we compute these functions for the Âr−1

theories (15), and we interpret them as the relative finite
renormalization of the coupling constant

fðg2Þ − g2 ¼ g2½ðZN¼2
g Þ2 − ðZN¼4

g Þ2�: ð2Þ

The calculation of the effective couplings is done via the
evaluation of the expectation value of the circular Wilson
loop. Using localization, Pestun was able to prove the
conjecture of [16,17] that the expectation values of the
circular Wilson loops for any N ¼ 2 theory can be
obtained using matrix models [3]. Here, we use these
matrix models to calculate the Wilson loop expectation
values, and we show that

WN¼2ðg2Þ ¼ WN¼4ðfðg2ÞÞ; with

WN¼4ðg2Þ ¼ I1ð4πgÞ
2πg

; ð3Þ

where I1 is the first modified Bessel function of the first
kind. From Eqs. (1) and (3), we learn that the integrable
N ¼ 4 theory knows all about the combinatorics involved
in the Feynman diagram calculations. To get to the N ¼ 2
theory result, all we need to do is compute the relative finite
renormalization of the coupling constant that is encoded in
the effective coupling fðg2Þ. On the dual gravity side, the
effective couplings are interpreted as the renormalization of
the effective string tension,

T2
eff ¼

R4

ð2πα0Þ2 ¼ fðg2Þ: ð4Þ

For the Z2 quiver, the first correction of the effective
coupling fðg2Þ from the weak-coupling side was computed
in [23,26] using Feynman diagrams,

fðg2Þ ¼
� g2 þ 12ðg̬ 2 − g2Þζð3Þg4 þ � � � ; g; g

̬
→ 0

2 g2g
̬
2

g2þg
̬
2 þ � � � ; g; g

̬
→ ∞

;

ð5Þ

while the first term of the strong-coupling expansion was
written in [25] by using AdS=CFT. In Sec. III, we write the
first few orders of the weak-coupling expansion of fðg2Þ,
discuss their Feynman diagram interpretation, and give the
leading term in the strong-coupling limit.

II. THE DIAGRAMMATIC ARGUMENT AND THE
POWER OF GAUGE INVARIANCE

Classical gauge theory has local gauge invariance which
is broken by the addition of a gauge-fixing term during
quantization. The background field formalism (BFF) pro-
vides a way to keep manifest as much as possible of the
local gauge invariance. To use it, we separate the gauge
field Aμ into a classical and a quantum part: Aμ ¼ Aμ þQμ.
The bare and the renormalized quantities are related by the
renormalization factors

Aμ
bare ¼

ffiffiffiffiffiffiffi
ZA

p
Aμ

ren; Qμ
bare ¼

ffiffiffiffiffiffiffi
ZQ

p
Qμ

ren;

gbare ¼ Zggren; ξbare ¼ Zξξren; ð6Þ

where ξ is the gauge-fixing parameter. For simplicity, we
present only the Yang Mills part of the theory, but the
procedure carries over to quarks and also to supersym-
metric N ¼ 1 and N ¼ 2 theories in the appropriate
superspace [27–30].
In the background field gauge, the renormalization

factors are related as

Zg

ffiffiffiffiffiffiffi
ZA

p
¼ 1; ZQ ¼ Zξ; ð7Þ

and the final answer for any gauge invariant quantity will
only depend on the ZA factor. What is more, in the BFF the
renormalization factors for the quantum fields ZQ will
cancel for each individual diagram. This can be easily
seen by recalling a couple of BFF corollaries. In the
BFF Feynman diagrams, the classical fields Aμ cannot
propagate on the internal lines. They only appear as
external fields in correlation functions. Moreover, all off-
shell n-point functions hQμ1 � � �Qμl1

Aν1 � � �Aνl2
i renorm-

alize as Zl1=2
Q Zl2=2

A Zn
ghQμ1 � � �Qμl1

Aν1 � � �Aνl2
i. Finally,

each internal propagator hQμQνi carries a factor of
Z−1

Q . Composite local or nonlocal operators like Wilson
loops should be inserted in their renormalized form
Oren

i ðQren;ArenÞ¼
P

jZijObare
j ðZ1=2

Q Q;Z1=2
A AÞ where Zij

is the the mixing matrix.
In [1] we presented a diagrammatic argument that for any

planar and superconformal N ¼ 2 theory, the asymptotic
SUð2; 1j2Þ Hamiltonian is identical to all loops to that of
N ¼ 4 SYM, up to a redefinition of the coupling constant
g2 → fðg2Þ. Thus, this sector is integrable and anomalous
dimensions can be read off from theN ¼ 4 ones, up to this
redefinition.
A refined version of the diagrammatic argument in [1] is

reviewed below, based only on
(i) gauge invariance (background field method),
(ii) the chirality of the SUð2; 1j2Þ sector which

makes the non-renormalization theorem of [31,32]
applicable.
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To explain the argument, we begin by considering
N ¼ 2 theories obtained as orbifolds of N ¼ 4 SYM.
They are conformal by inheritance arguments [33,34].
When all the coupling constants are equal to each other
(orbifold point), all anomalous dimensions in the untwisted
sector are equal to the N ¼ 4 ones.
In order to compute the renormalization of operators, we

write down all the relevant diagrams and compute each one
of them in N ¼ 4 (at the orbifold point) as well as in
N ¼ 2 and subtract the results from each other. All the
individual UV-divergent Feynman diagrams that should be
calculated for the renormalization of operators in the
SUð2; 1j2Þ sector, are identical in both theories. The only
diagrams that are different from their N ¼ 4 counterparts
are finite and they are responsible for the relative finite
renormalization between the N ¼ 2 and the N ¼ 4 cou-
pling constants. Some examples of such diagrams are
depicted in Figs. 1, 2 and 3.
This procedure should be thought of as a novel regu-

larization prescription that cancels the divergencies of each
individual diagram. The fact that the difference of the two
diagrams is always finite stems from the finiteness of the
N ¼ 2 theories we are considering [18] and from the fact
that the purely gluonic tree level terms in both the N ¼ 2

and the N ¼ 4 Lagrangians are identical. With this power-
ful regularization prescription, we can simplify our com-
putations. All the combinatorics and symmetry factors of
the individual diagrams are identical in both theories. So,
we let theN ¼ 4 integrable model give them to us, and we
just have to compute the difference (2).
There is one possible way this argument could fail.

Going up to higher order in g, new nonlocal vertices will
appear in the effective action of N = 2 theories that are not
there for N ¼ 4 SYM. In N ¼ 2 superspace language, we
have the effective action Γ ¼ R

d4θF þ c:c:þ R
d8θH, see

[1]. However, none of these new nonholomorphic vertices
(from H) can contribute to the anomalous dimensions of
the SUð2; 1j2Þ sector [1] due to the nonrenormalization
theorem of [31,32]. Only the renormalized tree level
vertices from the holomorphic prepotential F will con-
tribute. Due to the fact that the ZQ cancel, the final result
depends only on ZA ¼ Z−2

g . Thus all anomalous dimen-

sions obey γiðg2Þ ¼ γN¼4
i ðfðg2ÞÞ with fðg2Þ given in (2).

Equipped with this observation, we turn to Pestun’s circular
Wilson loop. Pestun’s choice of localizing Q makes
manifest the fact that the Wilson loop receives contribu-
tions only from the holomorphic prepotential F and not
fromH, thus depending only on one single Z factor (in the
BFF) Zg.

III. WILSON LOOPS

Pestun’s matrix models provide an efficient way to
compute the expectation value of the circular Wilson loop,

WN¼2
k ¼

�
1

Nc
tr□Pexp

I
C
dsðiAðkÞ

μ ðxÞ_xμ þ ϕðkÞðxÞj_xjÞ
�
;

ð8Þ

where □ denotes the fundamental representation and C is
the circular loop located at the equator of S4. The adjoint

scalar ϕðkÞ and the gauge field AðkÞ
μ are in the vector

multiplet of the kth gauge group. Inserting in the path
integral a composite operator with fields only in the kth
vector multiplet selects the coupling g2k whose renormal-
ization we are computing,

WN¼2
k ðg1;…; grÞ ¼ WN¼4ðfkðg1;…; grÞÞ; ð9Þ

where fkðg1;…; grÞ ¼ g2k þ � � � is the effective coupling
constant of the kth gauge group.
Let us consider a cyclic quiver made out of r gauge

groups, corresponding to the untwisted affine Dynkin
diagram Âr−1. We follow the method and notations of
[35–38]. The partition function of the corresponding matrix
model is

FIG. 1 (color online). The Feynman diagram responsible for the
ζð3Þ contribution to fðg; g̬ Þ. The solid lines represents the
background N ¼ 2 vector superfield, the wiggly line the quan-
tum N ¼ 2 vector superfield, and the dashed blue lines, the
N ¼ 2 hyperfield.

FIG. 2 (color online). In this figure we present some represen-
tative Feynman diagrams that are responsible for the ζð5Þ
contribution to fðg; g̬ Þ.

FIG. 3 (color online). This figure shows a part of the ζð3Þ2
contribution created by nested Feynman diagrams.
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Z ¼
Z Yr

k¼1

daðkÞ
YNc

i<j¼1

× ðaðkÞi − aðkÞj Þ2e−
Nc
2g2
k

P
Nc
i¼1

ðaðkÞi Þ2
Z1-loopjZinstj2: ð10Þ

In the planar limit, the instanton contribution can be
neglected, while the one loop part is

Z1-loop ¼
Yr
k;l¼1

YN
i;j¼1

H
akl
2 ðaðkÞi − aðlÞj Þ; ð11Þ

where HðxÞ ¼ Q∞
n¼1 ð1þ x2

n2Þne−
x2
n and akl is the Cartan

matrix corresponding to Âr−1. By using the saddle point
approximation and replacing in the planar limit the eigen-

values aðkÞi by normalized densities ρkðxÞ that are localized
in an interval ½−μk; μk�, we obtain the following system of
coupled integral equations:

x
2g2k

¼ ⨍ μk

−μk

ρkðyÞ
x−y

dy−
1

2

Xr

l¼1

akl

Z
μl

−μl
ρlðyÞKðx−yÞdy; ð12Þ

for k ¼ 1;…; r. For small values of the couplings, the
widths of the densities tend towards zero and we can
expand the kernel KðxÞ ¼ −2

P∞
n¼1ð−1Þnζð2nþ 1Þx2nþ1.

Then we can solve the integral equations recursively and
compute the Wilson loop expectation values of Eq. (8) via

WN¼2
k ¼

�
1

Nc

XNc

i¼1

e2πa
ðkÞ
i

�
¼

Z
μk

−μk
ρkðxÞe2πxdx: ð13Þ

For the elliptic Z2 quiver with couplings g1 ¼ g, g2 ¼ g
̬
,

we obtain

fðg;g̬ Þ¼g2þ2ðg̬ 2−g2Þ½6ζð3Þg4−20ζð5Þg4ðg̬ 2þ3g2Þ
þg4ð70ζð7Þðg̬ 4þ5g

̬
2g2þ8g4Þ−2ζð2Þð20ζð5ÞÞg4

−2ð6ζð3ÞÞ2ðg̬ 4−g
̬
2g2þ2g4ÞÞ�þ���: ð14Þ

Inserting the above in WN¼4ðfðg; g̬ ÞÞ and taking the limit
g
̬
→ 0, we recover the N ¼ 2 SCQCD computation of

[35]. For the general superconformal cyclic Âr−1 quivers,
we obtain up to order Oðg10Þ,

fk ¼ g2k þ 6ζð3Þg4k½g2k−1 þ g2kþ1 − 2g2k� − 20ζð5Þg4k½g4k−1 þ g4kþ1 − 6g4k þ 2g2kðg2k−1 þ g2kþ1Þ�
þ g4k½70ζð7Þðg6k−1 þ g6kþ1 − 16g6k þ 3g4kðg2k−1 þ g2kþ1Þ þ 4g2kðg4k−1 þ g4kþ1ÞÞ − 2ζð2Þð20ζð5ÞÞg4kðg2k−1 þ g2kþ1 − 2g2kÞ
þ ð6ζð3ÞÞ2ð8g6k − 2g6k−1 − 2g6kþ1 þ g4k−1g

2
k−2 þ g2kþ2g

4
kþ1 − 6g4kðg2k−1 þ g2kþ1Þ þ 2g2kðg4k−1 þ g2k−1g

2
kþ1 þ g4kþ1ÞÞ� þ � � � ;

ð15Þ

while the leading term at strong coupling is

fk ¼ r
g21 � � � g2rP
r
i¼1

Q
j≠i g

2
j
þ � � � ; ð16Þ

which agrees with the AdS=CFT prediction [8,14,25]. The
Zr symmetry implies the following cyclic relation,

fkðg1;…; grÞ ¼ fkþlðg1þl;…; grþlÞ; ∀ k; l; ð17Þ

i.e., all the effective couplings are given by the same
function, up to a cyclic shift of the couplings.

IV. FEYNMAN DIAGRAM INTERPRETATION

Calculating fðg2Þ using Feynman diagrams is not as hard
as one would imagine because of its interpretation as the
relative finite renormalization of the coupling constant (2).
First of all, in the BFF one does not have to calculate the
renormalization of 3- or 4-point vertices as with usual
covariant gauges, but to use Zg ¼ Z−1=2

A and to compute
only the renormalization of the propagator hAðpÞAð−pÞi.
Moreover, to get (2), we do not need to calculate every

single diagram that contributes to the renormalization of the
propagator, but only the ones that are different between
N ¼ 2 andN ¼ 4 (or the orbifold ofN ¼ 4 at the orbifold
point). As we discussed in [1,23], for any N ¼ 2 super-
conformal theory the only possible way to get diagrams
different from the N ¼ 4 ones is to make a loop with
hypermultiplets and to let a vector field from a neighboring
vector multiplet propagate inside this loop. This narrows
down significantly the number of Feynman diagrams that
need to be computed.
It so happens that the type of diagrams that are different

from the N ¼ 4 ones are always finite, and they always
include as a basic building block the finite fan integrals of
[39]. For a fan with n faces, we have

ð18Þ

The first ζð3Þ contribution in (14) was computed in [23],
comes from the diagram depicted in Fig. 1, and is equal to
12g4g

̬
2ζð3Þ. Subtracting from it the N ¼ 4 result of

12g6ζð3Þ gives precisely the ζð3Þ coefficient in (14).
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The next correction comes with a ζð5Þ and is obtained from
diagrams, of different graph topologies, in which two
propagators are running in the bubble. For each graph
topology, there are three diagrams. In Fig. 2, we give an
example of the diagrams with the same topology. Their sum
is proportional to g

̬
4g4 þ 2g

̬
2g6, which happens to be the

same for all topologies. After subtracting theN ¼ 4 result,
which is proportional to 3g8, from the N ¼ 2 one, we
obtain the overall coefficient of 20ζð5Þ: g4ðg̬ 2 − g2Þðg̬ 2 þ
3g2Þ which is equal to the one in (14). Observe that the
overall sign of the ζð2n − 1Þ contribution is alternating,
because each wiggly line comes with a minus sign.
All fan diagrams come with maximum transcendentality

for the given loop level. However, as we see in (14) and
(15), less than maximum transcendentality contributions
can appear. These come from nested diagrams like the one
depicted in Fig. 3. For the general cyclic quiver with r > 2,
we start getting contributions from the next-to-nearest-
neighbor gauge groups for the ζð3Þ2 term of (15).
Finally, the origin of the ζð2Þζð5Þ contribution has not

been fully elucidated. We believe that it is due to scheme
dependence originating from the fact that the localization
computation is done on the sphere and not in flat space. A
careful calculation is in progress.

V. DISCUSSION AND FUTURE WORK

Building on [1], we have argued that the anomalous
dimensions of operators in the purely gluonic SUð2; 1j2Þ
sector of conformal N ¼ 2 gauge theories can be obtained
by taking the correspondingN ¼ 4 result and replacing the
N ¼ 4 coupling constant with the effective coupling fðg2Þ.
Localization provides exact results for the expectation
values of circular Wilson loops, from which we determine
the weak-coupling expansion as well as the leading strong-
coupling term of the effective couplings. Finally, we

interpreted fðg2Þ diagrammatically as the relative finite
renormalization of the coupling constant between the
N ¼ 2 and the N ¼ 4 theories (2). This provides a test
of our results using Feynman diagrams.
Based on the existence of an AdS dual description of

these N ¼ 2 gauge theories and on the interpretation of
the effective couplings as the effective string tensions
T2
eff ¼ fðg2Þ, we conjecture that all possible observables

that are restricted to the purely gluonic SUð2; 1j2Þ sector
can be computed by replacing theN ¼ 4 coupling constant
in the corresponding results with the universal effective
coupling fðg2Þ. Such observables include the cusp anoma-
lous dimension [40] and the Bremsstrahlung function [41]
(see also [42] for recent results) as well as lightlike Wilson
loops (see [43] and references therein) and correlation
functions [44,45].
In a future work, we will present similar results for the

asymptotically conformal quiver theories in which con-
formality is softly broken by adding mass terms for the
hypermultiplets. While our methods are applicable and g2

is again corrected only with finite renormalization, under-
standing the scheme dependence is subtle and requires
further investigation.
Oneway to test our results for the effective couplings is to

consider the anomalous dimension of the twist-two descend-
ant of Konishi. Using the anomalous dimension of Konishi
inN ¼ 4 SYM,which thanks to integrability is known up to
eight loops [46], we can predict the anomalous dimension of
the twist-two D2Z2 descendant to the same loop order for
any of the cyclic quivers. This prediction can be explicitly
checked by computing the wrapping corrections using
Feynman diagram calculations to at least four loops follow-
ing [47]. To conserve space, we restrict ourselves to five
loops and to the Â1 quiver. The contributions toΔ that differ
from the N ¼ 4 ones are marked in bold:

Δðg; g̬ Þ ¼ 4+ 12g2 − 48g4 + 48g4½7g2 − 3(g2 − g
̬ 2)ζ(3)] + 96g4½−26g4 + 6ζð3Þg4 − 15ζð5Þg4 + (g2 − g

̬ 2)(12g2ζ(3)

+ 5(3g2 + g
̬ 2)ζ(5))�+ 16g4½948g6 + 432g6ζð3Þ − 324g6ζð3Þ2 − 540g6ζð5Þ

þ 1890g6ζð7Þ− 3(g2 − g
̬ 2)[(8g4 + 5g2g

̬ 2 + g4)35ζ(7)

− g2(4g
̬ 2 + g2(12− ζ(2)))20ζ(5)− (2g4 − g2g

̬ 2 + g
̬ 4)(6ζ(3))2 + 42g4(6ζ(3))]�+ � � � : ð19Þ

Our results can also be used for observables outside the
SUð2; 1j2Þ sector. The all-loop dispersion relation and
scattering matrix for fields in the bifundamental hyper-
multiplet in the ϕ vacuum were derived in [22]

EbifðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðg − g

̬ Þ2 þ 16gg
̬
sin2

�
p
2

�s
; ð20Þ

and up to two unknown functions that we conjecture
are given by the effective couplings g ¼ fðg; g̬ Þ12 and

g
̬ ¼ f

̬
ðg; g̬ Þ12 that we calculated (14) in this paper. Due to

the Z2 symmetry, we have f
̬
ðg; g̬ Þ ¼ fðg̬ ; gÞ. Thus the

dispersion and the scattering matrix are now exactly known.
Our work is the four-dimensional equivalent of the result

of [48] for the ABJM theory [49], even though our methods
are very different. The quantum spectral curve and the slope
functions of Basso [50] can be used to check our logic.
Furthermore, the results for the interpolating function
hABJMðgÞ [48] can be combined with our method to derive
hABJðgÞ of the ABJ theory [51].
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The present paper contains the principles regarding
the computation of the effective couplings via localization
as well as their Feynman diagram interpretation. In a
forthcoming publication, we shall provide additional details
and give expressions concerning the strong-coupling
expansion and the implementation of mass terms for the
hypermultiplets.
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