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Abstract

We show that radiation pulses from an X-ray Free-

Electron Laser (XFEL) with a planar undulator, which are

mainly polarized in the horizontal direction, exhibit a sup-

pression of the vertical polarization component of the power

at least by a factor λ2
w/(4πLg )2, where λw is the length of

the undulator period and Lg is the FEL field gain length. We

illustrate this fact by examining the XFEL operation under

the steady state assumption. In our calculations we consid-

ered only resonance terms: in fact, non resonance terms are

suppressed by a factor λ3
w/(4πLg )3 and can be neglected.

While finding a situation for making quantitative compari-

son between analytical and experimental results may not be

straightforward, the qualitative aspects of the suppression

of the vertical polarization rate at XFELs should be easy to

observe. We remark that our exact results can potentially

be useful to developers of new generation FEL codes for

cross-checking their results.

INTRODUCTION

In this paper we quantify the small component of the elec-

tric field in the vertical direction in radiation pulses produced

by an XFEL with horizontal planar undulator. In particular,

we show that for a typical XFEL setup the horizontally po-

larized component of radiation is greatly dominant, and that

only less that one part in a million of the total intensity is

polarized in the vertical plane.

The study of XFEL polarization characteristics is obvi-

ously deeply related to the problem of electromagnetic wave

amplification in XFEL, which refers to a particular class

of self-consistent problems. It can be separated into two

parts: the solution of the dynamical problem, i.e. finding

the motion of the electrons in the beam under the action of

given electromagnetic fields, and the solution of the elec-

trodynamic problem, i.e. finding the electromagnetic fields

generated by a given contribution of charge and currents.

The problem is closed by simultaneous solution of the field

equations and of the equations of motion.

Let us consider the electrodynamic problem more in detail.

The equation for the electric field ~E follows the inhomoge-

neous wave equation

c2∇2 ~E − ∂
2 ~E

∂t2
= 4πc2~∇ρ + 4π

∂~j

∂t
. (1)

Once the charge and current densities ρ and ~j are specified

as a function of time and position, this equation allows one

to calculate the electric field ~E at each point of space and

time [1]. The current density source provides the main con-

tribution to the radiation field in an FEL amplifier, and the

contribution of the charge density source to the amplification

process is negligibly small. This fact is commonly known

and accepted in the FEL community.1

Due to linearity, without the gradient term the solution

of Eq. (1) exhibits the property that the radiation field ~E

points in the same direction of the current density ~j. An

important limitation of such approximation arises when we

need to quantify the linear vertical field generated in the case

of an XFEL with planar undulator. In the case ~j points in

the horizontal direction (for a horizontal planar undulator),

according to Eq. (1), which is exact, only the charge term is

responsible for a vertically polarized component of the field:

if it is neglected, one cannot quantify the linear vertical field

anymore.

Similar to the process of harmonic generation, the process

of generation of the vertically polarized field component can

be considered as a purely electrodynamic one. In fact, the

vertically polarized field component is driven by the charge

source, but the bunching contribution due to the interaction

of the electron beam with the radiation generated by such

source can be neglected. This leads to important simpli-

fications. In fact, in order to perform calculations of the

radiation including the vertically polarization component

one can proceed first by solving the self-consistent problem

with the current source only. This can either be done in an

approximated way using an analytical model for the FEL

process or, more thoroughly, exploiting any existing FEL

code. Subsequently, the solution to the self-consistent prob-

lem can be used to calculate the first harmonic contents of

the electron beam density distribution. These contents enter

as known sources in our electrodynamic process, that is Eq.

(1). Solution of that equation accounting for these sources

gives the desired polarization characteristics.

Approximations particularly advantageous for our theo-

retical analysis include the modeling of the electron beam

density as uniform, and the introduction of a monochromatic

seed signal. Realistic conditions satisfying these assump-

tions are the use of a sufficiently long electron bunch with a

longitudinal stepped profile and the application of a scheme

in the SASE mode of operation for narrowing down the

radiation bandwidth. In the framework of this model it be-

comes possible to describe analytically all the polarization

properties of the radiation from an XFEL.

1 However, we have been unable to find a proof of this fact in literature,

except book [2] and review [3], which are only the publications, to the

authors’ knowledge, dealing with this issue.
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The simplicity of our model offers the opportunity for

an almost completely analytical description in the case of

an XFEL in the linear regime. A complete description of

the operation of an XFEL can be performed only with time-

dependent numerical simulation codes. Application of the

numerical calculations allows one to describe the most gen-

eral situation, including arbitrary electron beam quality and

nonlinear effects. Finding an analytical solution is always

fruitful for testing numerical simulation codes. Up to now,

in conventional FEL codes the contribution of the the charge

source is assumed to be negligible. However, the charge term

alone is responsible for the vertically polarized radiation

component, which is our subject of interest. Our analytical

results for the high-gain linear regime are expected to serve

as a primary standard for testing future FEL codes upgrades.

Here we will report only the main results of our calcula-

tions. Details can be found in [4].

RESONANCE APPROXIMATION

Paraxial Maxwell’s equations in the space-frequency do-

main can be used to describe radiation from ultra-relativistic

electrons (see e.g. [5]). We call the Fourier transform of the

real electric field in the time domain ~̄E⊥(z,~r⊥, ω), where

~r⊥ = x~ex + y~ey identifies a point on a transverse plane at

longitudinal position z, ~ex and ~ey being unit vectors in the

transverse x and y directions. Here the frequency ω is re-

lated to the wavelength λ by ω = 2πc/λ, c being the speed

of light in vacuum. From the paraxial approximation follows

that the electric field envelope
~̃
E⊥ =

~̄E⊥ exp [−iωz/c] does

not vary much along z on the scale of the reduced wavelength

λ/(2π). As a result, it can be shown that the following field

equation holds:

(

∇2
⊥ +

2iω

c

∂

∂z

)

~̃
E⊥(z,~r⊥, ω) =

−4π exp

[
i

∫ z

0

dz̄
ω

2cγ2
z ( z̄)

] [
iω

c2
~vo⊥ − ~∇⊥

]

× ρ̃(z,~r⊥ − ~ro⊥(z), ω) , (2)

where ~ro⊥(z), so (z) and vo are the transverse position, the

curvilinear abscissa and the velocity of a reference elec-

tron with nominal Lorentz factor γo that is injected on

axis with no deflection and is guided by the planar undu-

lator field. Such electron follows a trajectory specified by

~ro⊥(z) = rox~ex+roy~ey with rox (z) = K/(γo kw ) cos(kw z)

and roy (z) = 0. Here K is the undulator parameter defined

in terms of the maximum magnetic field and kw = 2π/λw ,

λw being the undulator period. The corresponding veloc-

ity is described by ~vo⊥(z) = vox~ex + voy~ey . Moreover,

γz (z) = 1/
√

1 − voz (z)2/c2 and voz (z) =

√

v2
o − vo⊥(z)2.

Finally, ρ̃ is related to the Fourier transform of the macro-

scopic charge density, ρ̄, by

ρ̄ = ρ̃(z,~r⊥ − ~ro⊥(z), ω) exp

[
iω

so (z)

vo

]
, (3)

so being the curvilinear abscissa along the trajectory.

With the aid of the appropriate Green’s function and using

the far-zone approximation a solution of Eq. (2) can be found

to be:

~̃
E⊥ = −

iω

cz

∫

d~l

∫ ∞

−∞
dz′ ρ̃(z′,~l, ω)exp

[
iΦT (z′,~l, ω)

]

×
[(

K

γ
sin

(

kw z′
)

+ θx

)

~ex + θy~ey

]
, (4)

where

ΦT = ω

{

z′

2γ2c

[
1 +

K2

2
+ γ2

(

θ2
x + θ

2
y

)

]

− K2

8γ2kwc
sin (2kw z′) − Kθx

γkwc
cos (kw z′)

}

+ω

{

Kθx

kwγc
− 1

c
(θx lx + θy ly ) + (θ2

x + θ
2
y )

z

2c

}

.(5)

Here θx and θy indicate the observation angles x/z and y/z.

Moreover, since in Eq. (4) we introduced explicitly the tra-

jectory inside the undulator, we need to limit the integration

in dz′ to a proper range within the undulator. We assume

that this is done by introducing a function of z′ as a factor to

ρ̃, which becomes zero outside properly defined range, thus

effectively limiting the integration range in z′.
In this article we are interested in considering fields and

electromagnetic sources originating from an FEL process.

Imposing resonance condition between electric field and

reference particle, the self-consistent FEL process automati-

cally restricts the amplification of radiation at frequencies

around the first harmonic ω1o = 2kwcγ̄2
z and at emission

angles θ2
max ≪ 1/γ̄2

z , where γ̄2
z = γ

2/(1 + K2/2). Our focus

onto FEL emission also explains the definition in Eq. (3). In

fact, introduction of ρ̃ is useful when ρ̃ is a slowly varying

function of z on the wavelength scale. If the charge density

distribution under study originates from an FEL process a

stronger condition is satisfied, namely ρ̃ is slowly varying

on the scale of the undulator period λw and, as the FEL

pulse itself, is peaked around the fundamental ω1o . The

words ‘peaked’ or ‘around’ the fundamental mean that the

bandwidth is ∆ω/ω1o ≪ 1. We quantify ‘how near’ the

frequency ω is to ω1o introducing the detuning parameter

C = (∆ω/ω1o )kw , with ∆ω = ω − ω1o . The detuning pa-

rameter C should indeed be considered as a function of z,

C = C(z). All other dependencies on z, for example due to

the fact that the energy of particles actually deviates from γ

and actually decreases during the FEL process, is accounted

for in ρ̃. We seek to calculate the first harmonic contribution

at frequencies ω around ω1o ,
~̃
E⊥1, by making use of the

well-known Anger-Jacobi expansion. Invoking the FEL pro-

cess allows to take the limit for C ≪ kw and θ2
max ≪ 1/γ̄2

z .

Keeping the dominant terms only we obtain

~̃
E⊥1 =

ω1o

cz
exp

[
i
ω1o

2c
z(θ2

x + θ
2
y )

]
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×
[

K

2γ
AJJ~ex +

2Kγ

2 + K2
BJJθxθy~ey

]

×
∫ ∞

−∞
dlx

∫ ∞

−∞
dly

∫ ∞

−∞
dz′

× exp

[
−i
ω1o

c

(

θx lx + θy ly
)

]

× exp

[
i
ω1o

2c

(

θ2
x + θ

2
y

)

z′
]
ρ̃(z′,~l, ω) exp[iCz′], (6)

where we have defined

AJJ = J0

(

K2

2(2 + K2)

)

− J1

(

K2

2(2 + K2)

)

, (7)

BJJ = J0

(

K2

2(2 + K2)

)

+ J1

(

K2

2(2 + K2)

)

, (8)

and Jp (·) indicates the Bessel function of the first kind of or-

der p. Note that usually computer codes present the product

ρ̃(z′,~l, ω) exp[iCz′] combined in a single quantity tipically

known as the complex amplitude of the electron beam mod-

ulation with respect to the phase ψ = kw z′ + (ω/c)z′ − ωt.

Regarding such product as a given function allows one not

to bother about a particular presentation of the beam mod-

ulation. Eq. (6) is our most general result, and is valid

independently of the model chosen for the current density

and the modulation. It can be used together with FEL simu-

lation codes for detailed calculations of the evolution of the

vertically polarization contribution to the FEL radiation.

In the case of an FEL, due to the presence of a maximum

angle θmax related with the self-consistent process, the angle-

integrated correction to the power from the horizontally

polarized radiation component only includes the leading

resonant term, and Eq. (6) can always be used to calculate

such correction at the first harmonic.

ANALYTICAL CASES

We now restrict our attention to the steady-state model

of an FEL amplifier. Because of the steady state assump-

tion we restrict our attention to one single frequency. This

means that, in the time domain, the electric field enve-

lope
~̃
E⊥1 must correspond to a real electric field at a cer-

tain frequency ω̄ = ω1o (1 + Ckw ) given by ~E(z,~r⊥, t) =
~E⊥1(z,~r⊥) exp[iω̄(z/c − t)]+C.C., where the symbol C.C.

indicates complex conjugation.

The power fractions into the two modes of polarization

are found to be

W(σ,π) =
c

2π

∫ ∞

−∞
dx

∫ ∞

−∞
dy |E⊥1(x,y) (z, x, y) |2 , (9)

where

~̃
E⊥1(z,~r⊥, ω) = 2π~E⊥1(z,~r⊥)δ(ω − ω̄) . (10)

In order to calculate W(σ,π) we make use of Eq. (9). The

expression for E⊥1(x,y) can be found in terms of
~̃
E⊥1 with

the help of Eq. (10). Finally, one needs to calculate
~̃
E⊥1,

which can be done using Eq. (6).

Under the assumption of a one-dimensional steady state

FEL amplifier we write the expression for the slowly-varying

amplitude of the charge density as

ρ̃(z,~r⊥, ω) =
jo (~r⊥)

vz
2πa(z)δ(ω − ω0) , (11)

where we defined the current density

jo (~r⊥) = − Io

2πσ2
exp

(

−
r2
⊥

2σ2

)

, (12)

and where we dropped the term in δ(ω + ω̄) passing to

complex notation, as done before with the field.

We will show that, typically, in the case of an XFEL with

a horizontal planar undulator, only less that one part in a

million of the total power at the first harmonic is polarized in

the vertical direction. For some experiments even such small

fraction of the π mode is of importance. The contribution

of the second harmonic can be calculated using results in

[6] and was studied in [4]. There it was found that the

contribution from the even harmonics can be completely

disregarded when the XFEL operates in linear regime. At

saturation, the contribution from the second harmonic can be

comparable with the first harmonic in the case when X-ray

optics harmonic separation is absent.

High-gain Linear Regime

We first model the case of an FEL amplifier in the high-

gain linear regime. We proceed approximating the detuning

parameter C as constant along the undulator. Let us restrict,

for simplicity, to the case of perfect resonance for C = 0.

This means that from now on ω̄ = ω1o . The high-gain

asymptote of the one-dimensional steady-state theory of

FEL amplifiers yields

a(z) = a f exp[(
√

3 + i)z/(2Lg )] , (13)

where we set the exit of the undulator (in the linear regime)

at z = 0 and a f = constant is the modulation level at z = 0.

Here Lg is the field gain length. The number of undulator

periods in the field gain length Lg is just Nw = (4πρ1D)−1,

where the FEL parameter ρ1D is defined in [7]. Based on

Eq. (6) we obtain

(

Wσ

Wπ

)

= Wo

(

AJJ
2ρ−1

1D
Gσ (N )

BJJ
2ρ1DGπ (N )

)

, (14)

where

Gσ (N ) =
1

2
√

3
exp[(1 − i

√
3)N] {π

+π exp
[
2i
√

3N
]
− i exp

[
2i
√

3N
]

Ei
(

N (−1 − i
√

3)
)

+iEi
(

iN (i +
√

3)
)}

(15)
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Figure 1: Illustration of the behavior of f (K ) (left) and

w(N ) (right).

Gπ (N ) =
1

6

{

3

N
−

(

−3i +
√

3
)

exp[(1 + i
√

3)N]

×
[
π − iEi

(

(−1 − i
√

3)N
)]
−

(

3i +
√

3
)

× exp[(1 − i
√

3)N]
[
π + iEi

(

i(i +
√

3)N
)]}

(16)

and

Wo = Wba2
f

(

Io

γIA

) (

K2

2 + K2

)

(17)

where Wb = mec2γIo/e is the total power of the electron

beam and N = ω1oσ
2/(cLw ) is the diffraction parameter

(or Fresnel number) with Lw = Lg in our case.

The ratio between the fractions radiated in the two modes

of polarization is therefore conveniently expressed as a func-

tion of three separate factors:

Wπ

Wσ

= f (K )g(Nw )w(N ) (18)

with

f (K ) =
B2
JJ

A2
JJ

, g(ρ1D ) = ρ2
1D,w(N ) =

Gπ (N )

Gσ (N )
. (19)

The first factor, f (K ), is only a function of the undulator

K parameter and is plotted in Fig. 1. The second factor,

g(ρ1D ) scales as the inverse number of undulator periods

squared, and is a signature of the fact that the gradient term

in the equation for the electric field scales as the inverse

number of undulator periods. The third factor, w(N ), is

only a function of the diffraction parameter that is, once the

wavelength and the undulator length are fixed, a function of

the electron beam size only. It is also plotted in Fig. 1. It

is unity for values of the diffraction parameter around unity,

but it quickly decreases for larger values of N . The power

fraction radiated in the π mode increases drastically with the

photon energy, partly due to a larger number of undulator

period per field gain-length, but mainly because of a larger

diffraction parameter.

As an example we consider a 250 pC electron beam at

a photon energy of about 9 keV for the SASE2 line of the

European XFEL, at the electron energy of 17.5 GeV. Here

K ≃ 3.6, the peak current is about 5 kA, and the rms sizes

of the electron beam in the horizontal and vertical directions

are about σx ≃ 15 µm and σy ≃ 18 µm respectively. For

our purposes of exemplification we consider a round beam

with σ = 16µm. The peak current density can then be

estimated as I0/(2πσ2). Finally, the undulator period is

λw = 40 mm. From these numbers we obtain the parameter

ρ1D ≃ 8 · 10−4. Plugging these numbers in Eq. (18) and

remembering the definition in Eq. (19)we obtain f (K ) ≃
2.5, g(ρ1D ) ≃ 6.4 · 10−7, N ≃ 3 and w(N ) ≃ 0.072, so that

the overall ratio Wπ/Wσ ≃ 1.13 · 10−7.

Constant Density Modulation

In analogy with the previous paragraph, we now proceed

to study the case of a constant density modulation along an

undulator of fixed length Lw , imitating the behavior of an

FEL at saturation. We can still set C(z) = 0. At variance

with the previous model we now write

ρ̃(z,~l) = jo
(

~l
)

2πa f HLg
(z)δ(ω − ω1o ) . (20)

Here a f = const, HLw
(z) = 1 for z in the range

(−Lw/2, Lw/2) and zero otherwise, with Lw the undula-

tor length, and jo is defined as in Eq. (12). One finds

(

Wσ

Wπ

)

= Wo

(

AJJ
2(4πNw )Fσ (N )

BJJ
2(4πNw )−1Fπ (N )

)

, (21)

where

Fσ (N ) = arctan

(

1

2N

)

+ N ln

(

4N2

4N2
+ 1

)

, (22)

Fπ (N ) =
1

N (1 + 4N2)
, (23)

and where parameters N and Wo are defined above.

Similarly as before, the ratio between the two fractions

radiated into the two modes of polarization is conveniently

expressed as a function of three separate factors:

Wπ

Wσ

= f (K )g(Nw )h(N ) (24)

with
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Figure 2: Illustration of the behavior of h(N ).

f (K ) =
B2
JJ

A2
JJ

, g(Nw ) =
1

(4πNw )2
, h(N ) =

Fπ (N )

Fσ (N )
. (25)

The function f has been defined in the previous paragraph.

Concerning the second factor g, we have an expression which

is similar to that in Eq. (19). The only difference is that here

we replaced ρ1D with (4πNw )−1, with Nw the number of

undulator periods in the undulator. The number of undulator

periods in a field gain length is just Nw = (4πρ1D)−1, and

therefore the second factor in Eq. (24) just amounts to ρ2
1D

for an undulator length Lw = Lg , Lg being, as before, the

field gain length. By setting the undulator length equal to the

field gain length the two models can be directly compared

by studying w(N ) as defined in Eq. (19) and h(N ) defined

in Eq. (25). We plot h(N ) explicitly in Fig. 2. As one can

see it differs from Fig. 1, due to the different model used.

Considering the same example made in the previous para-

graph we find again f (K ) ≃ 2.5, g(ρ1D ) ≃ 6.4 · 10−7, N ≃

3. Plugging the value for N into Eq. (25) we obtain h(N ) ≃
0.097, so that the overall ratio Wπ/Wσ ≃ 1.5 · 10−7.

The case of a constant density modulation treated in this

paragraph not only pertains an FEL at saturation, but also

the case of spontaneous emission in an undulator. A major

difference compared to the FEL case is that the FEL process

limits the detuning to values C ≪ kw and the angle of

interest up to θmax. Such limitations are not automatically

present in the case of spontaneous emission. However, if

we limit the acceptance angle of the spontaneous emission

to θmax and we assume the undulator length of order of the

FEL gain length, we expect the same ratio of the fractions

radiated in the two modes of polarization found in Eq. (24).
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