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The Schwinger model, or 1+1 dimensional QED, offers an interesting object of study, both at zero

and non-zero temperature, because of its similarities to QCD. In this proceeding, we present the

a full calculation of the temperature dependent chiral condensate of this model in the continuum

limit using Matrix Product States (MPS). MPS methods, in general tensor networks, constitute a

very promising technique for the non-perturbative study of Hamiltonian quantum systems. In the

last few years, they have shown their suitability as ansatzes for ground states and low-lying excita-

tions of lattice gauge theories. We show the feasibility of the approach also for finite temperature,

both in the massless and in the massive case.
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1. Introduction

Lattice gauge theory is a non-perturbative approach to investigate properties of gauge theories,

e.g. Quantum Chromodynamics (QCD), the theory of the strong interaction. Monte Carlo (MC)

simulations have been used extensively and have become the standard technique. However, the so-

called sign problem is a well-known obstacle in MC simulations of, among others, QCD at finite

chemical potential. Several approaches have been developed recently in order to overcome it, but

so far no definite solution has been found. Our method, based on the Hamiltonian formulation of

lattice gauge theories [1], uses tensor network (TN) techniques [2, 3, 4], introduced in the context

of quantum information and condensed matter physics. The TN approach is an efficient way to

approximate quantum many-body states and does not rely on MC simulations, thus it does not

suffer from the sign problem. As such, it has proven to be useful in investigating properties of

several condensed matter systems that could not be tackled with MC methods due to the sign

problem.

In the last years, we have studied the application of TN methods to lattice gauge theory, in

particular the Schwinger model as a testbed [5, 6, 7, 8, 9]. In one dimension, a particularly efficient

TN approach is the Matrix Product States (MPS) ansatz. We have applied it to perform numerical

studies of the Schwinger model at zero and non-zero temperature, showing the feasibility of this

approach and its ability to yield precise and well-controlled results. Other studies employing TN

methods have been recently reported in Refs. [10, 11, 12, 13, 14, 15].

In this proceedings, we show results of our calculations of the temperature dependence of the

chiral condensate in the massless and massive Schwinger model.

2. The Schwinger model for Nf = 1

We investigate the one-flavour Schwinger model, i.e. Quantum Electrodynamics in 1+1 di-

mensions. One of the features that it shares with QCD is chiral symmetry breaking, although its

mechanism, via the chiral anomaly, is different than in QCD. The order parameter of chiral symme-

try breaking is the chiral condensate Σ = 〈ψ̄ψ〉. In the massless case, the temperature dependence

of Σ was computed analytically by Sachs and Wipf [16]:

〈ψ̄ψ〉 =
mγ

2π
eγe2I(mγ/T ) =

{

mγ
2π e

γ for T → 0

2Te−πT /mγ for T → ∞,
(2.1)

where I(x) =
∫ ∞

0
dt

1−excosh(t) , γ = 0.57721 · · · and mγ = g/
√

π . The formula shows that chiral sym-

metry is broken at T = 0 and it gets fully restored (Σ = 0) only at infinite temperature. Moreover,

chiral symmetry restoration is smooth, without a phase transition.

The Hamiltonian of the one-flavour lattice Schwinger model (in the staggered discretization)

was derived and discussed in [1]:

H = x
N−2

∑
n=0

[

σ+
n σ−
n+1 +σ−

n σ+
n+1

]

+
µ
2

N−1

∑
n=0

[

1+(−1)nσ zn
]

+
N−2

∑
n=0

[L(n)]2 (2.2)

≡ Hhop+Hm+Hg, (2.3)

where x = 1/g2a2, µ = 2m/g2a, m denotes the fermion mass, a is the lattice spacing, g is the

coupling and N the number of lattice sites. The gauge field, L(n), can be integrated out using the
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Gauss law:

L(n+1)−L(n) = 1

2

[

(−1)n+1 +σ zn+1

]

. (2.4)

This leaves only L(n) at the boundary as an independent parameter and we take L(0) = 0, i.e. no

background electric field.

A convenient basis for the problem is thus |s0s1 · · ·〉 [6], where sn = {↓,↑} is the spin state at

site n and all the gauge degrees of freedom have been integrated out.

3. Tensor Network approach for thermal calculations

The thermal expectation value of Σ at a given inverse temperature β ≡ 1/T is:

〈ψ̄ψ〉 =
Tr [ψ̄ψρ(β )]

Tr [ρ(β )]
, (3.1)

where the (unnormalized) thermal density operator ρ(β ) ≡ e−βH . To investigate the temperature

dependence of the chiral condensate, one needs to compute ρ(β ) in the relevant range of β . The

operator ρ(β ) can be approximated in the TN description by [17]:

ρ(β ) ≈ ∑
{ik , jk}

Tr
[

M[0]i0 j0 · · ·M[N−1]iN−1 jN−1
]

|i0 . . . iN−1〉〈 j0 . . . jN−1|. (3.2)

Each tensor M[s]is jsnsns+1 at each site s = 0, · · · , N − 1 has four indices; two physical indices is, js =

0, · · · ,d−1 (here, d = 2) and two virtual indices ns = 0, · · · , D−1 introduced by the TN approx-

imation. The maximal value of the virtual index is named the bond dimension, D. This type of

TN approximation is based on Matrix Product States (MPS). To be more specific, the considered

operator is a Matrix Product Operator (MPO) [18, 19, 20]. The elements of tensors M[s]
is js
nsns+1 are

computed in the following way.

Using e−βH = (e−
β
M
H)M , we divide the inverse temperature β into M steps of width δ =

β/M. The operator e−δH needs to be approximated in order to apply it to the MPO ansatz. We

use a second order Trotter expansion, based on the decomposition H = He+Ho+Hz, where the

hopping part is Hhop = He+Ho and Hz contains the mass term and the long range effective terms

coming from the gauge part. The exponentials of He and Ho can be written exactly as MPOs with

a small bond dimension, but the exponential of Hz, which includes long range terms, has to be

approximated. This can be done using a first order Taylor expansion, so that each step is finally

written as a product of five operators,

exp(−δH) ≈ exp

(

−δ
2
He

)[

1− δ
2
Hz

]

exp(−δHo)
[

1− δ
2
Hz

]

exp

(

−δ
2
He

)

. (3.3)

In practice, the last factor of one step can be applied together with the first factor of the next one,

so that only four operators per step are needed. The dominant error in this approximation comes

from the Taylor expansion and is of O(δ ). It can, however, be controlled by extrapolating from a

few δ values to δ = 0.

To obtain an MPO approximation for the thermal density operator at a given temperature,

we start from the infinite temperature limit, β = 0, where ρ(0) is the identity operator, which

corresponds to an MPO with bond dimension one. On this state, we act with the succession of terms
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in Eq. (3.3), and approximate the result of each operation by an MPO which is found by minimizing

the Frobenius norm of the difference between the exact and approximated operators. These steps

produce an MPO approximation for the thermal density operator at an inverse temperature δ . By

iterating the procedure, we can increase the inverse temperature in steps of δ , until the maximum

desired value, which we choose to be close enough to the limit T = 0. After any given step, we can

compute the expectation value of the chiral condensate, given by Eq. (3.1).

Importantly, one of advantages of the TN approximation is that it can be fully controlled and

improved systematically by changing the bond dimension D. The MPO description becomes exact

for a sufficiently large D, namely exponential in the system size. However, for many physical

systems of interest, including the Schwinger model, a relatively small value of D is enough to

attain the desired precision in the desired observables. Fig. 1 shows an example of convergence in

D for the chiral condensate.

4. Results

One of the aims of this project is to confirm feasibility of TN in thermal calculations of lattice

gauge theory. For this purpose, we computed the chiral condensate of the one-flavour Schwinger

model at non-zero temperature and compared it with the continuum analytical result of Ref. [16].

To get the continuum result from the TN approach, one needs to perform the following extrapola-

tions: D→ ∞, δ → 0, the infinite volume extrapolation (N → ∞) and finally the continuum limit

extrapolation (x→ ∞). The extrapolations are carried out in the above specified order. Here, we

only show an example of the D-dependence of the chiral condensate (Fig. 1). For a comprehensive

description of our extrapolations, we refer to our recent paper [9].

4.1 Full physical basis approach

The basis used for the MPO approximation spans the exact physical space [6], so that the

results obtained following the procedure described above do not involve any truncation of the gauge

sector. In Fig. 2, we plot the temperature dependence obtained for the chiral condensate in the

continuum limit. Our results are consistent with the analytical result for gβ ≥ 0.5, showing that the

TN approach works well. The discrepancy in the high temperature region is caused by large cut-off

effects. Fig. 3 shows the continuum extrapolation at gβ = 0.4. We perform the extrapolation by

using two fit functions: (a) Σ = Σcont +
a1√
x

log(x)+ b1√
x

(solid blue), i.e. linear in the lattice spacing

with a logarithmic correction (referred to as linear+log), (b) Σ= Σcont+
a2√
x

log(x)+ b2√
x
+ c2
x

(dashed

red), i.e. additionally with a term quadratic in the lattice spacing (quadratic+log). We clearly see

that the results from these fits differ considerably and that the lattice spacings are not yet fine

enough to approach the analytical value (almost exactly zero) with good precision. Even though

our method already allowed to reach rather fine lattice spacings, corresponding to x= 65 (this can

be compared to typical lattice spacings reached in MC simulations of the Schwinger model, having

x ≤ 10), the precision that can be reached makes us susceptible even to terms cubic in the lattice

spacing. However, a fit with a term (1/
√
x)3 included is not meaningful without going to larger x.

At such large required values of x > 100, we would need very large system sizes to control finite

volume effects and such a computation was beyond the scope of this project. We therefore tried a

modified approach, described in the next subsection.
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Figure 1: D-dependence of the chiral condensate

for δ = 5 · 10−4 (red), 7 · 10−4 (blue), 10−3 (green)

at N = 40, x= 6.25 and gβ = 0.4.
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Figure 2: Chiral condensate in the continuum limit:

computed by MPO approximation (red symbols)

and analytical result [16] (black line).

4.2 Truncated gauge sector approach

The Taylor approximation described in the previous paragraphs requires a small δ step for

convergence. Since larger system sizes require the use of smaller δ steps, the computational cost

severely increases for larger system sizes, as the length of the chain has to increase as N ∝
√
x to

maintain a consistent physical volume.

An exact MPO expression of the exponential e−δHz is possible, with a bond dimension that

scales as N [9]. Although such exact expression is not practical for large system sizes, it is possible

to approximate it by an MPO truncated to a maximal bond dimension. Such scheme, described in

detail in the appendix of [9], corresponds to a truncation of the physical space to states where the

absolute value of the electric field on each link does not exceed a maximum value, lcut .

The gauge part of the Hamiltonian is diagonal in the spin basis. Then we can compute

e−δ ∑N−2
n=0 L(n)

2 |s0 · · ·〉= e−δ ∑N−2
n=0 l

2
n |s0 · · ·〉, where each value ln is determined from the spin (fermionic)

content on all sites i ≤ n using Gauss’ law (2.4). Thus, large values of ln are exponentially

suppressed in the thermal state, and hence a plausible assumption is to introduce a cut-off on

the allowed values of ln. To be more precise, we project out states where ln ≥ lcut for some

n= 0, · · · ,N−1.

This leads to high computational time savings if lcut is taken to be small. However, it can

potentially lead to wrong results if lcut is too small. We checked several values of lcut ≤ 16 and

concluded that a value of lcut = 10 is enough for the range of parameters under consideration

in this study. With this approach, we could reach lattice spacings corresponding to an order of

magnitude larger x and hence perform the continuum limit extrapolations more reliably, at a similar

computational cost as the full approach. This not only makes the chiral condensate consistent with

the analytical result for high temperatures, but also increases the precision for lower temperatures,

see Fig. 4. Note that the approximation described in this subsection is consistent with another

approach having an additional site for the gauge field [10].

5. Further extension: Schwinger model in massive case

Apart from investigating the exactly solvable massless case, our aim was to consider also
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Figure 3: Continuum extrapolation at gβ = 0.4, us-

ing two fit functions: linear+log and quadratic+log

(for the form of the fit functions, see text).
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Figure 4: Chiral condensate in the continuum limit

with our full basis approach (red triangles) and with

the truncated basis approach (blue circles).

the massive case, for which no exact solution is known. Approximations valid for small fermion

masses, however, exist, e.g. in Ref. [21]. Our aim is to obtain the temperature dependence of the

chiral condensate and thus show that the method works also in the massive case at T > 0 and test

the approximation of Ref. [21]. Note that we already considered the T = 0 massive case in Ref. [7].

We shortly report here on our computation for the fermion mass m/g = 0.5 using the trun-

cated gauge sector approach – see Fig. 5. We show the gβ -dependence of the subtracted chiral

condensate. To obtain these values, we performed the following steps: (a) checks that lcut = 10 is

large enough, (b) extrapolation to infinite bond dimension, (c) extrapolation to δ = 0, (d) infinite

volume extrapolation. This led us to the bare (unsubtracted) infinite volume chiral condensate for

several values of x. Such an unsubtracted condensate contains a divergence that we subtracted us-

ing the zero-temperature chiral condensate in the free case. The subtraction procedure is the same

as described in Ref. [7] for the T = 0 condensate. Note that the divergence at the considered lattice

spacings amounts to around 90% of the interacting lattice value.

The main plot of Fig. 5 shows how the T = 0 continuum value, computed by us in Ref. [7],

is approached. Temperatures corresponding to gβ > 4 are effectively low enough such that the

continuum extrapolation done at gβ = 6 should basically give the T = 0 continuum value. This

is illustrated in the inset, where we show a fit of our lattice data (after all the extrapolations and

divergence subtraction) using the linear+log fit function. Indeed, we obtain very good agreement

with the expected continuum value (black square). For more details about the thermal calculation

for the massive Schwinger model, we refer to our forthcoming paper [22].

6. Conclusion and outlook

We computed the temperature dependence of the chiral condensate of the one-flavour Schwinger

model using the Tensor Network approach. Both for the massless and massive case, we obtain

results compatible with expectations, thus demonstrating the feasibility of the method. The TN

approach is a prospective way of dealing with lattice gauge theories with a sign problem in MC

simulations, in particular with QCD at non-zero chemical potential. Although we have not yet ad-

dressed such theories, our research programme is an important step in this direction. Over the past

two years, we have shown that TN methods are able to yield precise and well-controlled results in
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Figure 5: Main plot: the temperature dependence of the chiral condensate for four selected lattice spacings.

Shown is also the T = 0 value from our calculation of Ref. [7]. Inset: continuum limit extrapolation using

the linear+log fit ansatz. The black square shows the T = 0 corresponding to the black line in the main plot.

All the values of the chiral condensate are the subtracted ones after D, δ and N extrapolations.

lattice gauge theories at zero and non-zero temperature. One of our directly next steps will be to

address a case of a model where the sign problem is present in MC simulations.
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