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Thermal evolution of the Schwinger model with matrix product operators
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We demonstrate the suitability of tensor network techniques for describing the thermal evolution of
lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral
condensate in the Schwinger model, using matrix product operators to approximate the thermal
equilibrium states for finite system sizes with nonzero lattice spacings. We show how these techniques
allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for
a systematic estimation and control of all error sources involved in the calculation. The reached values
of the lattice spacing are small enough to capture the most challenging region of high temperatures and
the final results are consistent with the analytical prediction by Sachs and Wipf over a broad

temperature range.
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I. INTRODUCTION

Tensor network (TN) techniques have recently revealed
their potential to study lattice gauge theories (LGT).
Numerical studies have demonstrated that matrix product
states (MPS) can accurately describe ground state and
low excited levels of the Schwinger model [1-6] and of
related quantum link models [7,8], and tensor renormali-
zation group methods have been used to evaluate the path
integral [9,10]. More generally, a framework has been
proposed to construct gauge invariant TN states in higher
dimensions [11,12].

Thermal equilibrium states at arbitrary temperatures can
be studied using a TN operator Ansatz, independent of the
pure state approximations for low energy eigenstates.
Nonzero temperature studies have played a major role in
lattice QCD computations, establishing a crossover behav-
ior of QCD in the early Universe [13]. Such calculations
will be very important in the future for understanding QCD
matter; see [14]. Different from most LGT calculations, TN
methods work in the Hamiltonian formalism. In this
approach, it is in principle possible to follow the complete
thermal evolution of the system, and to map out the
temperature dependence of physical quantities over a broad
temperature regime.

In this work, we show that the matrix product operator
(MPO) Ansatz can accurately describe the thermal equi-
librium states of the Schwinger model. To this end, we
investigate the temperature dependence of the chiral con-
densate in the continuum limit for the massless case, for
which analytical results were provided in [15]. Our
results are consistent with the analytical prediction at all
(dimensionless) inverse temperatures gf € [0,6]. Our
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lattice calculation using MPO requires a series of consecu-
tive extrapolations. We describe how to carry out these
steps and demonstrate that all systematic errors inherent to
the method can be controlled and systematically improved.
Thus, the procedure yields reliable continuum values and
is applicable also when the exact value is completely
unknown.

We use Gauss’ law to integrate out the gauge degrees of
freedom and apply TN states to describe the fermionic
degrees of freedom in the exact physical subspace, as in
[3,4]. Here we demonstrate that this approach, initially
presented in [16], is also suitable for thermal states.
Alternatively, one could include both fermionic and
bosonic degrees of freedom and impose gauge symmetry
on the tensors, as in [1,5-8]. In that case the gauge degrees
of freedom need to be truncated, which introduces an
additional extrapolation in the procedure, which also has to
be taken into account in the systematic errors.

II. THE MODEL AND THE HAMILTONIAN
SETUP

The Schwinger model [17] or QED in 1 + 1 dimensions is
frequently used as a test bench for lattice calculations. In order
to apply TN methods, we work in the Hamiltonian formalism
(see e.g. [3]), which implies we have to impose Gauss’ law
as a constraint on physical states. The Kogut-Susskind
Hamiltonian [18] can be mapped to a spin system by a
Jordan-Wigner transformation [19]. Using Gauss’ law, the
gauge degrees of freedom can be eliminated [20], since the
electric flux on a link is completely determined by the spin
content and the background field, so that the model can be
written
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where 7 is the boundary electric field (on the leftmost link),
which can describe the background field, and the parameters

of the model are x = -5, u = Zm in terms of the lattice
g-a g-a
spacing, a, the fermion mass, m, and the coupling, g.

It is then possible to use a basis |£)|igii...iy_1)
to describe the physical space. For finite systems, the value
of ¢ is conserved. In the following, we consider the case
¢ =0 and omit it from the basis. We focus on the
temperature dependence of the chiral condensate,
¥ = (UW)/g, which is the order parameter of the chiral
symmetry breaking, and which in terms of spin operators

reads X = %Zn(—l)" %

III. THE ANSATZ

An MPS for a system of N sites with internal dimension
d and individual basis {|i)}¢, is a state of the form

|‘I'> = ?i,.,.iN_l
A}; is a D-dimensional matrix, and the bond dimension,
D, determines the number of free parameters in the Ansatz
[21-23]. MPS are known to provide good approximations
to ground states of local Hamiltonians in the gapped
phase [24] and have also been successfully used for more
general situations [25]. The analogous Amnsatz in the
space of operators [26-28] is called MPO, and can be
used to efficiently approximate thermal states of local
Hamiltonians [29,30].

To find an MPO approximation to the Gibbs state,
p x e a Suzuki-Trotter decomposition is applied to
the exponential, with the Hamiltonian split into several
terms whose exponentials are easily written or approxi-
mated as MPO. In the case of Hamiltonian (1), it is
convenient to split H = H, + H, + H_, where H,,) con-
tains the 6,0, + H.c. terms for even (odd) n, and H,
contains the mass terms and the long range o075, inter-
actions. The exponentials of H,, can be easily written as
exact MPO [28]. For H_, instead, the exponential can only
be approximated. Adopting a second-order Trotter expan-
sion and, for H,, a first-order Taylor expansion, we can
write

oo ) o 2)e
(2)

where 6 = §/M is the step width, and the final error for
fixed g will be O(5), dominated by the Taylor expansion.

_ tr(AY . AR)ig, ...iy_;), where each
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Starting from the identity operator, which corresponds to
infinite temperature, p(f =0), we apply successive
Euclidean evolution steps. After each of them a truncation
is carried out to find an MPO approximation to the result.
To this end, using a Choi isomorphism [31], the MPO is
mapped to an MPS with local physical dimension d?, and
an alternating least squares procedure is applied to mini-
mize the Euclidean distance between the vectorized MPO
for the new and evolved states. Since the truncation does
not preserve the positivity of the whole state, it is more
convenient to compute p(f/2)"p(B/2), where the Trotter
expansion explained above is used for each factor [32].
More details about the method can be found in the
Appendix.

IV. RESULTS

To compute the chiral condensate in the infinite volume
and continuum limits, we approximate the thermal state at
each gp € [0,6] over a range of values of x € [4,65]. For
each value, we consider various system sizes, with
N/y/x € [16,24] to ensure consistent physical volumes,
and for each of them, different step widths, &, and bond
dimensions. We thus need to control effects of successively
extrapolating in D, 6, N, and x.

The limited bond dimension, D, used for each fixed set
of values (x, N, o) induces a systematic truncation error.
The MPS family being complete, the results converge to the
exact value for the given problem in the limit of very large
D (of the order of the dimension of the operator space) [23].
From our finite D results, we estimate the final value of X as
the one obtained for the largest achieved bond dimension,
D .« and the error as the difference between this value and
the one obtained from D, — 20, as illustrated in the left
panel of Fig. 1.

A second source of systematic error is the finite step
width, 6. Although we use a second-order Suzuki-Trotter
expansion, the Taylor approximation in (2) induces linear
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FIG. 1 (color online). Left: convergence of condensate value
with bond dimension, D, for gf = 0.4, x = 6.25, N = 40 and
5 =5x 107*. Shown is the deviation with respect to the final
value, X = 0.01508769. The inset shows additionally the results
for § = 7 x 107* (circles) and 10~ (squares) on a common scale,
to compare the magnitude of D and ¢ errors. Right: linear &
extrapolation for the same x and gf and several system sizes.
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corrections, O(5). We can thus extrapolate linearly to
obtain the value as 6 — 0, as illustrated by the right panel
in Fig. 1 for selected examples. Furthermore, the Taylor
approximation requires that the value of 6 employed in the
calculation is below a certain threshold, to ensure
convergence of the expansion. We find that values
5 =5x10"%— 1073 are sufficiently small for the consid-
ered values of x and N.

The previous steps yield a result for each pair (x, N). As
in [3,4], we then find the thermodynamic limit by fitting the
results to a linear function in 1/N. The left panel of Fig. 2
shows how accurately this extrapolation fits our results for
the considered values of x.

From the infinite volume results for each lattice spacing
at fixed gf, we can perform the continuum extrapolation.
As we showed in [4], the condensate exhibits logarithmic
corrections O(alog(a)). Hence we try two fitting func-
tions, which additionally include linear or linear and
quadratic corrections in a,

b
F1(x) = Zeom + %mg(x) e
fz(x) = Zcom"‘%log(x) +\l?/2}+6;- (3)

To include the uncertainty from the choice of the functional
form of the fitting Ansarz, we finally take as central value
the result from the fit to f, and as systematic error the
difference between both. The right panel of Fig. 2 dem-
onstrates these fits for temperature gf = 4.0. We found
that quadratic corrections will only be significant at
lower temperatures. Higher order corrections do not pro-
vide any significant improvement for the fitting range
X € [4,65].

After performing for each value of gf all the steps
described above, we obtain for the chiral condensate the
temperature dependence shown in Fig. 4. Comparing to the
analytical result in [15], we find excellent agreement for all
gp > 0.5. Although the central values lie very close to the
exact results, the errors shown in Fig. 4 seem relatively
large because they include the propagated errors from the
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FIG. 2 (color online). Infinite volume (left) and continuum
(right) extrapolations of the condensate, X, at gf = 4.0. In the
right panel, extrapolations using f| (solid blue) and f, (dash-
dotted red curve) are shown.
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extrapolations in D, §, N, and x, as well as the systematic
error from the form of the fitting Ansatz for the continuum
extrapolation. Our approach makes it possible to fully
control all sources of uncertainties. This rigorous account
of errors is crucial to ensure that the technique can be used
in a general situation, for which no analytical results are
available.

Different kinds of errors contribute distinctly at different
temperatures. For small gf, cutoff effects are enhanced, and
systematic errors from the choice of the fitting Ansatz can
be an order of magnitude larger than other errors. Lowering
the temperature, the effect becomes smaller, while other
errors grow, in particular the propagated error from the
D — oo extrapolation. Interestingly, at intermediate values,
gp =~ 2, the slope of the N —» oo extrapolations changes
sign. Moreover, for this region of temperatures, the
continuum limit extrapolations from f; and f, are very
close. For larger gf, all errors grow, but the increase is faster
for D and o extrapolations so that at the end of our gff range
they are an order of magnitude larger than the systematic
error from the choice of the fitting Ansatz.

The approach is systematically improvable, because it is
clear how to reduce each uncertainty. For the present
analysis, the relatively most important error comes from
the extrapolation in D. We chose a rather conservative
criterion to estimate this error and it is natural to expect that
much more accurate results can be obtained by checking
the convergence in bond dimension with larger values of D.
The cost of the computation scales with D3, which
makes the scan over a rather broad range of D feasible.
It is nevertheless remarkable that the very accurate results
presented here were obtained with a relatively small
D <100. This shows how adequate the MPO Ansatz is
for thermal states in this gauge theory.

For the region of very small gf, we find a significant
deviation from the analytical results (see Fig. 4), although
the individual points at finite x are accurate enough,
because much smaller lattice spacings are required in order
to correctly capture the asymptotic behavior. Using the
procedure described above, it is possible to reach larger
values of x by incurring a higher computational cost, since
the required system size grows as /x to maintain a
consistent physical volume, and correspondingly the
threshold ¢ that ensures convergence decreases.

Using an alternative approximation for the exponential
of H, that avoids the Taylor expansion, it is however
possible to explore the region of larger x at a lower
computational cost. Indeed, e=°#: can be written exactly
as an MPO of bond dimension O(N). For systems of
several hundreds of sites this is unpractical, but this
exponential can be approximated by projecting out those
spin configurations that correspond to an electric flux larger
than a certain cutoff, L, on any of the links. This results in
an MPO with bond dimension 2L, + 1. Notice that this
truncation is equivalent to limiting the maximum
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FIG. 3 (color online). Condensate values with a truncation L
of the maximum electric flux per link. Left: finite volume
extrapolation for x =55, gf = 0.1 from L., =5 (left-pointing
red triangles), 8, 10, 12 and 15 (different shapes and colors,
indistinguishable in the plot). The inset shows the extrapolation in
Trotter parameter, 6, for N =170 and L., = 8 — 15. Right:
continuum limit for gf = 0.1 (left-pointing purple triangles) and
0.2 (green diamonds). The corresponding exact results from [15]
are indicated on the vertical axis. The inset shows explicitly the
dependence on the cutoff for these gf values at x = 55.

occupation number for the bosonic degrees of freedom, as
done in [1,5,6] for pure states. However, the latter results in
twice as large system sizes, since bosonic degrees of
freedom are kept explicitly, and, in principle, in local
dimensions that scale as (2L + 1)? for the additional sites
in the MPO [33].

Although the cost of applying the MPO for the projected
exponential is higher than that of the Taylor approximation,
the step width error is now O(8%), determined by the
second-order Trotter expansion, and there is no threshold
value for 6, which allows us to reach the same g with fewer
steps. To explore the small gf region, we study the range
x € [4,1024]. For each value of x, we compute different
system sizes, step widths and L, values, and for each of
them bond dimensions up to D = 160. As described above,
we successively extrapolate 1/D — 0 (as before), § — 0
(linear in 6%) and 1/N — 0, as illustrated by Fig. 3 (left). To
account for the additional systematic error due to the cutoff
parameter, we can also extrapolate in L.,. However,
comparing the results for L., € [5,15], we observe (see
Fig. 3) that the effect is very small, and results for L., > 8
are compatible within our numerical precision (inset of
Fig. 3, right), so here we present the results for L., = 10
and leave the detailed analysis of the cutoff effects to a
more technical work [35].

This relatively small L, allows us to study the lattice
effects for the smallest gf. As shown in Fig. 3, gf = 0.1
requires x =~ 300 or larger to obtain an accurate continuum
extrapolation. We observe that higher order corrections are
present and adopt as central value the result of the fit
F3(%) = Zeom + Elog(x) + e+ S+ 5 [36] and we
estimate the error from using different fitting ranges.
Notice that to properly deal with the uncertainty due to
the fit, we could run a statistical analysis as was done in [3],
but the simple estimate used here allows us to appreciate
the relevance of reaching large x values.
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FIG. 4 (color online). Temperature dependence of the chiral
condensate from data with x < 65 and exact gauge sector (red
triangles), compared to [15] (solid line). For the lowest g (right),
the results deviate from the exact ones. Using the L., = 10
truncation, we reach smaller lattice spacings and recover the
consistency with the analytical results (blue circles).

Finally, we obtain for the temperature dependence of the
chiral condensate the improved results shown in Fig. 4
(right), consistent with the analytical result at high
temperatures.

V. CONCLUSION

Using the massless Schwinger model as a benchmark,
we have demonstrated for the first time that finite matrix
product operators can successfully describe thermal equi-
librium states of lattice gauge theories. This complements
earlier works that proved the suitability of MPS for
describing the low energy states of the spectrum. We
have evaluated the thermal evolution of the chiral con-
densate in this model and found good agreement with the
analytical result [15] from infinite to almost zero temper-
ature. The high temperature region is the hardest one to
capture in the continuum limit, maybe counterintuitively,
since for typical condensed matter models it is easier to
describe. On the other hand, it is known that lattice
spacing effects in the high temperature region can be
non-negligible in conventional lattice simulations. We
have nevertheless shown that, using the MPO Ansatz, it
is possible to obtain precise results even at very small
lattice spacings.

Our approach offers a systematic procedure to evaluate
and control all systematic errors in the calculation, namely
the bond dimension of the Ansatz, step width of the Trotter
expansion for the exponential operators, finite volume and
continuum limit. Although not strictly necessary, a trunca-
tion of the maximum electric flux per link can be
introduced to enhance the numerical performance. The
effect of this additional cutoff parameter is very small, but
can equally be taken into account in the systematic error
analysis.

All this makes the MPS and MPO Ansditze very valuable
and promising tools to evaluate also other one-dimensional
Hamiltonian systems relevant for gauge field theories. The
most interesting open question is the extension of these
techniques to higher dimensions.
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APPENDIX: NUMERICAL METHOD

For completeness, we describe here the details of the
numerical method used in this paper.

To describe the thermal equilibrium state we use the
MPO Ansatz [26-28],

O = Z tr(MéOJO PN

{ikd}

MY g - ine1) (o - - - Jv—l-

(A1)

The thermal density operator can be written as imaginary
evolution of the identity operator [26], p(B) x e PH =
eM1e2". By applying a Choi isomorphism [31],
li)(j| = |i) ® |j), the operators can be vectorized. The
thermal state can thus be approximated as an MPS, by
applying the imaginary time evolution operator corre-
spondingto H=HQ 1+ 1Q HT on the initial vector-
ized identity (see Fig. 5). As shown in the main text, the
Hamiltonian contains noncommutative terms, SO Wwe
approximate the exponential operator as a sequence of
MPOs, to be applied on the MPS. To this end, we use a
second-order Suzuki-Trotter expansion,

e P [e_nge_%Hze_‘sHoe_nge_ng] (A2)
Each evolution step is thus approximated as the successive
action of five terms. The exponentials of the hopping terms,
H,p) = Zneven(odd) (640, +H.c.), have a simple exact

e 3He EI]_EIJ_H]_EIJ

FIG. 5. Schematic representation of the TN operations. Left:
applying the first exponential for the first step of imaginary time
evolution on the identity operator (which is an MPO with D = 1).
Center: vectorizing this first step allows us to work with the MPS
formalism. Right: after each application of the exponential, the
result is approximated by an MPS with bounded bond dimension.
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MPO expression with maximal bond dimension 4 [28],
constructed as simply the product of the individual expo-
nentials of the mutually commuting two-body terms. The
remaining term,

n=0 =0 <k
N-2 n
+ ) (1+220§>, (A3)
n=20 k=0
(even)

contains long-range terms o;0%,, and, although all terms
commute with each other, the product of individual
exponentials would yield a bond dimension exponentially
large with the system size, N.

A more efficient expression for the exponential exists
with bond dimension that only scales linearly in N. We can
indeed write H, as a sum of mutually commuting local
terms, H, = Y, h,, where, for n < N — 1,

7

and hy_; =51+ (=1)N"'65,_,], L, being the electric flux
on each link. The exponential of H, is diagonal in the z spin
basis, and its value on a basis vector can be written as a
product of the exponentials of each of these terms for the
corresponding state. Since the value of L,, by virtue of
Gauss’ law, is completely determined by the spin content
on sites k < n, the factor corresponding to a given link can
be determined from the total magnetization, ) , ., o}, to the
left of the corresponding site. Such information can be
encoded in the virtual index of an MPO, which, in a chain
of length N, could in principle assume values
L, €[-N/2,N/2]. The exponential can thus be written
exactly as an MPO determined by tensors M,, whose only
nonvanishing elements are (M), ; =e " for L, =
Loy +5[(=1)" + (07)i]-

Such exact expression produces an MPO with bond
dimension O(N'), which is not practical for the long chains
involved in our study. Thus, it is convenient to truncate the
MPO by allowing L,, i.e. the virtual index, to assume only
bounded values |L,| < L.y, so that the maximum bond
dimension is 2L, + 1. This corresponds to a truncation of
the physical space to only those spin configurations for which
all links have small enough electric flux, since the rest will be
projected out when multiplying by the truncated exponential.

Another, more economical approximation to the expo-
nential of H, can be achieved by a first-order Taylor
expansion, which can be written as an MPO with bond
dimension 3. In this approach, the whole physical space is

(A4)
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kept, so that no extrapolation in the L., parameter is
required. In our calculation, we use both approaches.
The exponentials in (A2) involve I:Ia =H,Q1+1Q®
HY for each a = e, o, z. But since both terms in each IEIO,
commute, the corresponding exponential is just the tensor
product of two exponentials, which can then be applied
sequentially or simultaneously. After every factor in (A2) is
written or approximated as an MPO, the effect of one
evolution step on a certain intermediate state, vectorized as

PHYSICAL REVIEW D 92, 034519 (2015)

an MPS, can be approximated as a new MPS with the
desired bond dimension. This is achieved by a global
optimization (see, e.g., [37] for algorithmic details), in

2
which the Euclidean distance ¢ =|||p’) — Olp)|| between

the new MPS, |p’), and the result of the operator O on the
original one, |p), is minimized by successively varying
each one of the tensors, and sweeping over the chain until
convergence (Fig. 5).
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