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I give a short introduction to the covariant quark model and its applications to heavy quark
physics. The special emphasis will be devoted to the semileptonic, rare and radiative decays
of the Ap-baryon.

1 Introduction

This lecture is supposed to be a mini-review of the recent results obtained by the Dubna-Mainz-
Tiibingen Collaboration, see Refs. [1, 2, 3]. The research is aiming to study the semileptonic,
rare and radiative decays of the Aj-baryon by using the covariant quark model previously
developed by us.

The decay Ay, — ALT4™ (£ = e, u,7) is a rare b — s favor-changing neutral current process
that in the Standard Model proceeds through electroweak loop (penguin and W —box) diagrams.
This decay can be considered to be a welcome complement to the well-analyzed rare meson
decays B — K™ ¢4~ B, — ¢T0~ etc. to study the short— and long-distance dynamics of
rare decays induced by the transition b — s¢7¢~. However, the study of baryon decays is of
more interest because the A, baryon has spin one half compare with zero spin of the B—meson.
Therefore, the matrix element of the baryon decay possesses more rich helicity structure.

For the first time, the CDF Collaboration has reported on the measurement of the A, —
A+ T p~ total branching ratio: B(Ay — A+ pTp~) = (1.7340.42+£0.55) - 1076 [4]. Recently,
the LHCb Collaboration [5] has measured the differential branching fraction of this decay as
a function of the square of the dimuon invariant mass. Integrating the differential branching
fraction gives a branching fraction of B(A, — A+p*p~) = (0.9640.1640.1340.21)-1075. Here,
the uncertainties are statistical, systematic and due to the normalisation mode, A, — AJ/v,
respectively. The physics of heavy baryon decays appears to have entered a new era with these
experimental results.

There have been a number of theoretical papers on the rare A, — A baryon decays involving
the one-photon mode A, — A~ and the dilepton modes A, — A£T4~ (£ = e, 1, 7). They use the
same set of (penguin) operators or their non—Standard Model extensions to describe the short
distance dynamics but differ in their use of theoretical models to calculate the nonperturbative
transition matrix element (A]O; |Ap).

We use the covariant constituent quark model (for short: covariant quark model) as dynam-
ical input to calculate the nonperturbative transition matrix elements. In the covariant quark
model the current—induced transitions between baryons are calculated from two—-loop Feynman
diagrams with free quark propagators in which the divergent high energy behavior of the loop
integrations is tempered by Gaussian vertex functions. Quark confinement has incorporated in
an effective way, first, by introducing the scale integration in the space of a-parameters, and,
second, by cutting this scale integration on the upper limit which corresponds to an infrared
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cutoff. In this manner one removes all possible thresholds presented in the initial quark di-
agram. The cutoff parameter is taken to be the same for all physical processes. We adjust
other model parameters by fitting the calculated quantities of the basic physical processes to
available experimental data. One has to emphasize that the covariant quark model is a truly
frame—independent field—theoretic quark model in contrast to other constituent quark models
which are basically quantum mechanical with built—in relativistic elements. One of the advan-
tages of the covariant quark model is that it allows one to calculate the transition form factors
in the full accessible range of ¢?-values.

We review the basic notions of our dynamical approach — the covariant quark model for
baryons. In particular, we derive the phenomenological Lagrangians describing the interaction
of baryons with their constituent quarks. Then we introduce the corresponding interpolating
3—quark currents with the quantum numbers of the respective baryon and discuss the idea and
implementation of quark confinement. Finally, we apply our approach to the rare one-photon
decay Ay — Ay and the dilepton decay Ay — A(— pr~) + jegg(— £7£7). We present a detailed
discussion of the helicity formalism that allows one to write down the joint angular distribution
of the cascade decay Ay — A(— pr™) + Jegr(— £T47).

2 The covariant quark model for baryons
In the following we consider A = (Q[ud])-type baryons needed in the present application. They

consist of a heavy quark and two light quarks in a 'Sy spin 0 configuration. The coupling of a
A-type baryon to its constituent quarks is described by the Lagrangian

L) = gaA)-Ja(z)+ga Ja(z) - A(z),
Ja(z) = /dacl/dxg dngA($;$1,l‘2,l'3)Jéé\)(xl,aig,l‘g,),
Jé;\)(xl, XTo,x3) = €M QYN (xq) uT @2 (x2) C~5ad* (x3),
Ia(@) = Jl(@)n°,

where Q = s, ¢,b. Here the matrix C' = %42 is the usual charge conjugation matrix and the a;
(i =1,2,3) are color indices.

The vertex function F)y characterizes the finite size of the A-type baryon. We assume that
the vertex function is real. To satisfy translational invariance the function Fy has to fulfill the
identity

Fa(z+a;xy +a,20 + a,23 +a) = Fa(x;x1, 29, 23)

for any given four-vector a. In the following we use a particular form for the vertex function
3
Fa(w; a1, w2, 73) = 6 (2 — szxz) LN (Z(% - xj)2> (1)
i=1 i<j

where ®, is the correlation function of the three constituent quarks with the coordinates x1, x2,
x3 and masses my, ma, ms, respectively. The variable w; is defined by w; = m;/(mq +ma+ms3)
such that Z?Zl w; = 1.
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We shall make use of the Jacobi coordinates p; 2 and the CM coordinate = which are defined
by

T = x+%w3p1—%(2w2+w3)p2,
vy = x4 pwip + o (2w ws)pz,
r3 = x—%(wl—i—wg)pl—&—%(wl—wg)pg.

The CM coordinate is given by z = Z?:1 w;x;. In terms of the Jacobi coordinates one obtains
> (wi—x)* =pi+ 05
i<j

Note that the choice of Jacobi coordinates is not unique. By using the particular choice of
Jacobi coordinates given by Eq. (2) one obtains the following representation for the correlation
function ®, in Eq. (1)

4 4
Dy Z(xl —x ,>2 — /M/ d*pa e—ip1(ac1—x3)—ip2(:c2—:c3) (T)A(_Pf o P22) (2)
! (2m)* /) (2m)* ’

1<j

WPE=FD) =} [ [t a G )

P1:%(P1 +p2), PQZ—%(Pl—pQ)
This representation is valid for any choice of the set of Jacobi coordinates. The particular
choice (2) is a preferred choice since it leads to the specific form of the argument —P? — P§ =
—%(p% + p3 + p1p2). Since this expression is invariant under the transformations: p; < pa,
pa — —p2 — p1 and p; — —p; — pa, the r.h.s. in Eq. (2) is invariant under permutations of all
x; as it should be.

In the next step we have to specify the function ®,(—P? — P?) = &, (—P?) which charac-
terizes the finite size of the baryons. We will choose a simple Gaussian form for the function
(T)A:

Ba(—P?) = exp(P2/A3), (3)

where Ay is a size parameter parametrized the distribution of quarks inside a A-type baryon.
We use different values of the Ay parameter for different types of the A-type baryon: Ay, Aa,
and Ay, for the A, A, and A, baryons, respectively.

Since P? turns into — P2 in Euclidean space the form (3) has the appropriate falloff behavior
in the Euclidean region. We emphasize that any choice for ®, is appropriate as long as it falls off
sufficiently fast in the ultraviolet region of Euclidean space to render the corresponding Feynman
diagrams ultraviolet finite. The choice of a Gaussian form for ®, has obvious calculational
advantages.

The coupling constants gy are determined by the compositeness condition suggested by
Weinberg [6] and Salam [7] (for review, see Ref. [8]) and extensively used in our approach
(for details, see Ref. [9]). The compositeness condition in the case of baryons implies that the
renormalization constant of the baryon wave function is set equal to zero:

Zyn=1-3)\(my) =0
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where ¥/, is the on-shell derivative of the A-type baryon mass function ¥, i.e. )\ = X/,
at /= mp. The compositeness condition is the central equation of our covariant quark model.
The physical meaning, the implications and corollaries of the compositeness condition have
been discussed in some detail in our previous papers (see e.g. [10]).

2.1 Infrared confinement

We have shown in [10] how the confinement of quarks can be effectively incorporated in the
covariant quark model. In a first step, we introduced an additional scale integration in the space
of Schwinger’s a—parameters with an integration range from zero to infinity. In a second step
the scale integration was cut off at the upper limit which corresponds to the introduction of an
infrared (IR) cutoff. In this manner all possible thresholds present in the initial quark diagram
were removed. The cutoff parameter was taken to be the same for all physical processes. Other
model parameters such as the constituent quark masses and size parameters were determined
from a fit to experimental data.

Let us describe the basic features of how IR confinement is implemented in our model. All
physical matrix elements are described by Feynman diagrams written in terms of a convolution
of free quark propagators and the vertex functions. In computation of Feynman diagrams we
use, in the momentum space, the Schwinger representation of the quark propagator

m2 — k2

S(k) = mt ko (m+ ) /da eo(m*=k?)
0
The general form of a resulting Feynman diagrams is

I(p1,..,pm) = 76["04/ [d4k‘]€(1) X exp{—zn:ai [mzz — (Ki-f—Pi)Q}}, (4)

i=1

where K; represents a linear combination of loop momenta, P; stands for a linear combination of
external momenta and ® refers to the numerator product of propagators and vertex functions.
The integrand in Eq. (4) has a Gaussian form with the exponential factor

kak+2k’r+R:k1a”kJ+2klr2+R, (’L,]:].,,E),

W
1

where k; is a 4-vector of the “i”-loop integration, a is a £ x £ matrix depending on the parameters
«; and size parameters A, r; is a 4- vector composed from the external momenta p; and R is a
quadratic form of the external momenta. Tensor loop integrals are calculated with the help of
the differential representation
kye2kr _ lieﬂcr
¢ 2 (97‘1‘ m ’

which in general may be written in the form

/ [@*K]" P () cFakt2kr+R _ / @'k’ P <;88r> ckak+2kr+R _ p (;5) / (@] " ckakt2kr R,

where the polynomial operator means P(k) = ki ...kkm. After doing the loop integration
the differential operators 0/9dr;,, will give cause to outer momenta tensors. It may be done in
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effective way by using the identity

i m 10 _z2 T n _r2 10 r
/d aP(Q&‘)e a —/d Qe aP(?aT'_a)
0 0

The calculation of the polynomial P (%% - g) can be automized by using the commutator

[a%, %] = d;j g"”. We have written a FORM [11] program that achieves the necessary commu-
tations of the differential operators in a very efficient way.

The last point which remains to be discussed is the infrared cut-off we impose on the
integration over the Schwinger parameters. This integration is multidimensional with the limits
from 0 to +o0. In order to arrive to a single cut-off parameter we firstly transform the integral
over an infinite space into an integral over a simplex convoluted with only one-dimensional
improper integral. For that purpose we use the §-function form of the identity

1= dt§<t—iai>7 (VOéiZO)
/

i=1

from which follows

o'} 1 n
H:/dttn_l/anZé(l—ZOéi)XW(tO[l,...7ta1),
0 0 i=1

where W represents the integrand of Schwinger parameters. The cut-off A is then introduced
in a natural way

00 1/A2
/dtt”’l...e/dtt"’l....
0 0

Such a cut-off makes the integral to be an analytic function without any singularities. In this way
all potential thresholds in the quark loop diagrams are removed together with corresponding
branch points [10]. Within covariant quark model the cut-off parameter is universal for all
processes and its value, as obtained from a fit to data, is

Acut—oft = 0.181 GeV.

The numerical evaluations have been done by a numerical program written in the FORTRAN
code.

3 The rare baryon decays A, — A+ /7¢~ and A, — A+~

The effective Hamiltonian [12] leads to the quark decay amplitudes b — si*tl™ and b — sv:

Gr o
V2 2w

- ;ﬁpm@wwa+¢mym%@wwa_¢wﬂ@Mﬁ

MOb—stti™) = {cgff (807b) (£y,L) + Cro (30"b) (Lv,uys5L)
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and

Gr O
V242 T

where o4 = L(yiy” — 4/yH)q,, OF = y#(1 —4°) and A, = V,\ V.

The Wilson coefficient C§T effectively takes
into account, first, the contributions from the four-
quark operators Q;(i = 1,---,6) and, second,
the nonperturbative effects (long-distance contri-
butions) coming from the c¢-resonance contribu-
tions what are, as usual, parametrized by a Breit-
Wigner ansatz [13].

The Feynman diagrams contributing to the ex-
clusive transitions A, — Al and A, — A~y are
shown in Fig. 1.

The corresponding matrix elements of the ex-

clusive transitions A, — Al and A, — A~y are f‘ﬁguge 1: L leigrains ?f,ntmliltmg to
defined by e flavor-changing transition Agpaq —

Agruag + X, where X = L=y, 40~ or 7.

M(b— svy) = [mp (509 (1 +7°) b) + my (550" (1 —~°) b)] €,

Gr ot
V2 27w
+ Cho <A | sO"b | Ab> Z’yu’yg)g

M(Ay — AZC)

{ogff (A|50"b| Ay) by, 0

9 . _
- e (alsiot (14+7) b|Ab>W} (5)

and
_Gred
V2 472

The hadronic matrix elements in Egs. (5) and (6) are expanded in terms of dimensionless
form factors f{ (i = 1,2,3 and J =V, A, TV, TA), viz.

M(Ay — Ay) = mp CST (A | 50" (144°) b| Ap) e, - (6)

(Ba |57 b|B1) = aa(pe) £ (627" = F (®)io™ /My + Y (6" /M| (),
(Ba|59“970[B1) = a(p2) [ {(a*)7" = f5(aD)ic™ /My + fi(qP)a" /M| 7P ()
(B |5i0" /My b|By) = tia(pe) [T (a)(2"a* = ¢ d)/ME ~ [T (a%)io™ /M | (1),
(Bz|5i0"9° [Myb|By) = ta(pa) [ T2 (074 = 4" )/ M = f5 ()i /M |2 us (1)

Here, p1, M7 and ps, M> are momenta and masses of the ingoing and outgoing baryons, respec-
tively. The transfer momentum is equal to ¢ = p; — p2. One can see that, in comparison with
the Cabibbo-allowed b — ¢ and ¢ — s transitions, one has four more form factors flT S ki

The Ay — A~ decay rate is calculated according to

Rt = = § (S ) S () + (20
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The angular decay distribution for the cascade decay A, — A(— pm~ )~y can be written as

1 dU(Ap — A(— pr7)y)
Tiot dcosfp

1
=Br(A - pr7) B Br(Ap — Av)(1 — apcosbp),

where apg is the asymmetry parameter in the decay A — p + 7~ for which we take the experi-
mental value ap = 0.642 £ 0.013 [14].

As in the case of the rare meson decays B —
K&t 0= (0 = e, pu,7) treated in [15] one can ex-
ploit the cascade nature of the decay A, — A(—
P )+ Jor (— £T47) to write down a joint angular
decay distribution involving the polar angles 6, g
and the azimuthal angles x defined by the decay
products in their respective (center of mass) CM
systems as shown in Fig. 2.

We write out the three-fold angular decay dis-
tribution in a manner where we collect together
terms with the threshold behavior in a factor
v =/1—4m?/q? :v°, v! and v?. Including the ¢
dependence one obtains a four-fold joint angular
decay distribution for the decay of an unpolarized

Figure 2: Definition of angles 6, 0 and y

Ap. One has in the cascade decay A, — A(— pr~) +
+07)
2 2 2 2 Jeff(" 4 .
W (6,05, ) x 3Tq (Av%BHc@),
q
where the coefficients A,B and C' are given by
9 2 11 22 9 .9 11 22
A = @(1+cos o) (UM +U )+§s1n o (L' + L)

9 1
+ 35 B cosfp {sin29 (Ly +LF) + 3 (14 cos®0) (P + P22)}

+ 16%@ ap sin20 sinfp {COSX (Il}gl +I1§32) —siny (IQ}} JrI?fDQ)} ,
B = —% cos&[Pm—i—aB cos@BUlz}
= Y g sind sinfp [cosxlS}ffsinxlll}f},
42
Cc = % (U11+L11+522)+%a3 cosfp (P + Ly + SF) .

We have adopted the notations

Xmm

c_ AU 1 Gy (ol 2 0
T dg? 2 (2m)3 \ 27 12M2 7%
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where the bilinear expressions H}?m, (X=U,L,S,P,Lp,Sp,I1p,I2p,13p,I4p) are defined in
Ref. [2]. Here, |p2| = A\Y/2(M?, M3,¢%)/2M, is the momentum of the A-hyperon in the Aj-rest
frame. Note that we have included the statistical factor 1/(254, +1) = 1/2 in the definition of
the rate functions.

Putting in the correct normalization factors one obtains the differential rate dI'/dq?® which
reads

dU(Ap — A6He—) o2

2
" == <U11+22 JrL11+22> + 2my 3

2 2

. <U11 +L11 +522)

Here, and in the following, we do an importance sampling of our rate expressions by sorting
the contributions according to powers of the threshold factor v. When one wants to compare
our results to the corresponding results for the mesonic case written down in Ref. [15] one has
to rearrange the contributions in Ref. [15] accordingly. And, one has to take into account the
factor of 3 difference in the definition of the scalar structure function.

The total rate, finally, is obtained by ¢?-integration in the range

4m? < ¢* < (M) — My)?.

For the lower ¢? limit one has 4m? = (1.04 x 107¢,0.045, 12.6284) GeV? for £ = (e, u,7). The
upper limit of the ¢?-integration is given by (M, — Mj)? = 20.29 GeV?. For £ = (e, ) one
is practically probing the whole ¢? region while for £ = 7 the ¢>-range is restricted to the low
recoil half of phase-space starting at 1/q2 = 3.55 GeV just below the position of the ¥(2S)
vector meson resonance.

4 Numerical results

With the choice of dimensional parameters Ay, =

0.490 GeV, Ay, = 0.864 GeV and Ay, = 0.569 Mode Our results | Data [14]
GeV we get a reasonable agreement with current A, — Aetu, 2.0 21+06
data on exclusive Cabibbo-allowed decays of A [Tx AT, 20 20+£07
and A, as one can see from the Table 1. . Ay — Aoe 7, 6.6 6.53:%
For the magnetic moments we get the following Ay — Aot 7 6.6
: ch Vu :
results: Ay = Ar D, 13

pa, = =073, pa, =039, pay = =006, e g, Branching ratios of semileptonic

which compares well with data for the pa, and decays of heavy baryons (in %).

theoretical estimates for the pa, and pa, (see the
detailed discussion in Ref. [16]).

In particular, our present results for the magnetic moments of heavy A-hyperons are very
close to our predictions done before in the model without taking account of the mechanism of
quark confinement: py, = 0.42 and pp, = —0.06 [16].

We present our results for the branching ratios of the rare dileptonic decay A, — A¢T¢~ in
Table 2. The results without long-distance effects are shown in brackets. Our predictions for
the radiative decay A, — A~ are also displayed.

In our calculations we do not include the regions around the two charmonium resonances
Ree = J/1p, ¥(2S). We exclude the regions M,y —0.20 GeV to M /g +0.04 GeV and My 25y —
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0.10 GeV to My (25)+0.02 GeV. As stressed in Ref. [17] these regions are experimentally vetoed,
because the rates of nonleptonic decays A, — A + Rz, followed by the dileptonic decays of the
charmonium, are much larger than rates of the b — s-induced rare decays A, — ALT(™.
Vetoing the regions near the charmonium resonances leads to physically acceptable results —
the predictions with and without the inclusion of long—distance effects are comparable with each
other. Otherwise (without such a vetoing) the results with long—distance effects are dramatically
enhanced as shown in different theoretical calculations.

Mode Our results Data
Ay — Aete™ 1.0 (1.0)
Ay — Aptpu~ 1.0 (1.0) 0.96 £+ 0.16 £+ 0.13 £+ 0.21 [5]
1.73 + 0.42 £ 0.55 [4]

Ay — AT 0.2 (0.3)
[ A=Ay [ 40 ] <1310° \

Table 2: Branching ratios of rare decays A, — AT~ with (without) long-distance contribu-
tions and radiative decay A, — Ay (in units of 107°).

5 Summary and conclusions

We have given a short review of the covariant quark model with infrared confinement and applied
this approach to describe the semileptonic, rare and radiative decays of heavy Aj-baryon.

We have described from a unified point of view exclusive Cabibbo-allowed semileptonic
decays Ay — AL~ 0y, A, — MYy, and rare decays A, — AT/~, Ay — Ay with the use of
only three model parameters: the size parameters Ay , Ay, and Ay, defining the distribution
of quarks in the A, A, and A; baryons.

We have used the helicity formalism to express a number of observables in the rare baryon
decay Ay — A(— pr~) €L~ in terms of a basic set of hadronic helicity structure functions.
In the helicity method one provides complete information on the spin density matrix of each
particle in the cascade decay chain which can be conveniently read out by considering angular
decay distributions in the rest frame of that particular particle. The advantage of the helicity
method is that it is straightforward to define any of the observables of the problem and to
express them in terms of bilinear forms of the hadronic helicity matrix elements.

The helicity formulas can be used as input in a MC event generator patterned after the
existing event generator for Z°(1) — ¥ (— pr®)¢~, £ = (e,u) which is described and put
to use in [18] and which has been used by the NA48 Collaboration to analyze its data on the
above decay [19].
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