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Preface

The Helmholtz International Summer School: Physics of Heavy Quarks and Hadrons (HQ-2013), was

held at the Bogoliubov Laboratory of Theoretical Physics (BLTP) of the Joint Institute for Nuclear

Research (JINR), Dubna, Russia, in the period July 15-28, 2013. It was co-organized by Ahmed Ali

(DESY, Hamburg), Mikhail Ivanov (BLTP, JINR, Dubna) and Klaus Peters (GSI, Darmstadt), and was

attended by 70 participants (faculty + students), not counting the JINR physicists who attended some

lectures as non-registered participants. The school HQ-2013 continued the HISS-series, with the earlier

schools on the same topic held at JINR, Dubna, in 2002, 2005, and 2008.

The scientific program of HQ-2013 consisted of five regular (one-hour long) lectures in the morning

and afternoon sessions, with two contributed talks given by younger participants (students and post-

docs), each half-hour long, in the late afternoons. Altogether, we had fifty lectures by the faculty and 14

contributed talks. Being also a part of the series called Dubna International Advanced School on Theo-

retical Physics (DIAS-Th), the main emphasis of the HQ-2013 school was on the theoretical techniques

and calculational frameworks, such as the heavy quark effective theories, soft collinear effective theo-

ries, perturbative QCD, Lattice QCD, QCD sum rules, and QCD-inspired quark models. The lectures

ranged from pedagogical introductions to the state-of-the-art applications at the frontier of the heavy

quark and hadron physics. The interaction between theory and experiment is particularly strong in our

field. This aspect was also reflected in the HQ-2013 scientific program, as we heard the latest exper-

imental results on the heavy quark and quarkonia physics from the four LHC collaborations (ALICE,

ATLAS, CMS, and LHCb) and the Belle collaboration at the Japanese laboratory KEK. In addition, two

lectures were devoted to review the experimental exotic quarkonia sector, which covered the existing

experiments (CLEO, BaBar, Belle, CDF, D0 and the LHC experiments), and the planned experiment

PANDA at the FAIR facility in Darmstadt, Germany, and Belle-II at the Super-B factory at KEK, which

are expected to start taking data in several years from now. The scientific program also included a joint

session on the experimental and theoretical aspects of the Higgs physics, which was conducted as part

of the JINR Colloquium on particle physics. These talks were given by Fernando Barreiro (ATLAS

collboration), Guenakh Mitselmacher (CMS) and Dmitri Kazakov (Theory, BLTP, JINR, Dubna).

HISS series of schools have played an important role in bringing together an international faculty and

young physicists (Ph.D. and postdocs), mostly from Russia and Germany, to participate in two-week

long intense scientific discussions, which followed dedicated lectures on selected topics covering the

foundation and the frontiers of high energy physics and cosmology. These schools were held on a

particular topic with a frequency of once in three years, though the present school had a gap of five

years, with the previous school on heavy quarks and hadrons, held in 2008. In a fast developing field,

where a number of experimental facilities started to operate, foremost the LHC, we had a wealth of new

data and advances in theoretical calculations to match the experimental progress, presented at our school.

The scientific program was necessarily dense and detailed and required some effort to digest. However,

the two coffee breaks and a lunch interval provided an opportunity to follow up on some of the lectures

in a more relaxed atmosphere. The HQ-2013 school was also used by several collaborating theoretical

groups, whose members were participating, to discuss intensely their ongoing research projects, and this
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is also an aspect of the HISS program we wish to emphasize.

The school was supported financially by the Helmholtz Gemeinschaft under the HISS program, the Bo-

goliubov Laboratory of Theoretical Physics, JINR, DESY, Hamburg, GSI, Darmstadt, the Heisenberg-

Landau Program, and by the Russian Foundation for Basic Research (RFBR). The proceedings of the

2013 HISS School on Heavy Quarks and Hadrons are being published with the help of DESY. We thank

all the funding agencies and supporting institutes for their financial support, and the local organizing

committee of the school, for its help in running the scientific program and in taking care of the adminis-

trative aspects. We also thank the spokespersons of all the experimental collaborations, who nominated

their speakers and their respective institutes for partially contributing to the travel costs. Finally, we

thank Mrs. Maren Stein and Mrs. Kirsten Sachs of the DESY Library and Scientific Documentation

group for their help in preparing these proceedings.

Co-editors:

Ahmed Ali, Yury Bystritskiy, Mikhail Ivanov
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In Memoriam:

Eduard Alekseevich Kuraev

Eduard Alekseevich Kuraev sadly passed away on March 4, 2014, in Dubna, Russia. It is an invaluable

loss for the high energy physics community, in particular for his colleagues, and for us, for whom he

was a mentor, collaborator and friend.

Eduard was born on 17 October 1940 in a village Tblisskaya in the Knarsnodarsk region of the former

Soviet Union. He graduated from the University of Kharkov in 1962, under the supervision of the

well-known physicists Alexander Il’ch Akhiezer and Dmitrij Vasil’evich Volkov. Thereafter he started

his career as a theoretical physicist at the Kharkov Institute of Physics and Technology (KIPT), now

in Ukraine. He was from the start very much interested in QED; in particular, he helped Alexander

Il’ch in the second addition of the well-known book on Quantum Electrodynamics by Akhiezer and

Berestetsky in that he wrote a chapter about double-logarithmic asymptotics in QED. At Kharkov, he

wrote several papers, among others on the photon-photon scattering in QED. Attracted by the excellent

theoretical physics group at the Leningrad (now St. Petersburg) Institute of Nuclear Physics (INP) in

Gatchina, Eduard was a frequent visitor to INP, and started his collaboration with Lev Lipatov, which

was also the beginning of a life-long friendship between the two of them. In 1974 Eduard moved to

the Budker Institute of Nuclear Physics in Novosibirsk, earning his higher doctoral degree (D. Sc.) in

the Physical-Mathematical Sciences in 1986 from Novosibirsk. In 1992, Eduard joined the Bogoliubov

Laboratory for Theoretical Physics, JINR, Dubna, as a leading scientific researcher, where he worked

until his death.

Eduard Kuraev was a prolific writer! His earliest published papers date back to the mid sixties. A

representative paper from this earlier epoch is “Interference between coulomb and strong interactions at

high energies ”, JETP 60 (1971) 1211, written in collaboration with Lev Lipatov and collaborators (V.G.

Gorshkov and M.M. Nesterov). His last paper was on the high energy quark (electron)-proton peripheral

collisions, written with Azad Inshalla Ahmadov, which appeared at the end of January 2014 (arxiv:

1401.7746). In between these two, he co-authored some 350 scientific papers, according to the high

energy physics database InSPIRE. They were mostly about the applications of QED and QCD in high

energy reactions, in particular, electron-positron annihilation, deep inelastic lepton-nucleon scatterings,

proton-proton (antiproton) collisions, Drell-Yan production, and parton evolution processes involving

both high-Q2 and low x domains, using techniques based on the renormalization groups. His work on

radiative corrections in e+e− annihilation, often carried out in collaboration with Victor Fadin, provides

a standard theoretical framework used in the experimental analysis of data, and is still very much en

vogue. However, he will be best remembered for his renowned papers on multi-Reggeon processes

in Non-abelian gauge theories and on the Pomeranchuk singularities. Written in collaboration with

Lev Lipatov and Victor Fadin, during 1975 - 1977, they have climbed steadily in their popularity and

impact, and are now considered as classic papers in gauge theories. They are invaluable in a quantitative

understanding of deep inelastic phenomena in the small Bjoken-x region as well as in elucidating the

behaviour of strong interactions in the Regge limit. We list some of them below to celebrate these

scientific milestone.
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• The Pomeranchuk Singularity in Nonabelian Gauge Theories, E.A. Kuraev, L.N. Lipatov, and

Victor S. Fadin, Sov.Phys.JETP 45 (1977) 199, Zh.Eksp.Teor.Fiz. 72 (1977) 377.

• Multi - Reggeon Processes in the Yang-Mills Theory, E.A. Kuraev, L.N. Lipatov, and Victor

S. Fadin, Sov.Phys.JETP 44 (1976) 443-450, Zh.Eksp.Teor.Fiz. 71 (1976) 840, Erratum-ibid. 45

(1977) 199.

• On the Pomeranchuk Singularity in Asymptotically Free Theories, Victor S. Fadin, E.A. Kuraev,

and L.N. lipatov, Phys. Lett. B60 (1975) 50.

The second of the above listed papers, together with a subsequent one by Ian Balitsky and Lev Lipatov

[Sov. J. Nucl. Phys. 28 (1978) 822], are collectively called the BFKL papers. They initiated an

entire field of high energy physics, associated with the BFKL pomeron and the BFKL parton evolution

equation.

Eduard Kuraev had a penchant for solving calculationally difficult problems. This was, and has remained

since then, a hallmark of a dedicated group of particle theorists in the former Soviet Union, which

excelled in combining intuitive ideas with an extraordinary technical ability and astonishing energy for

hard work, personified, among others, by Eduard. He had a passion for sharing his ideas, discoveries

and results, and in teaching and educating young researchers. Often equipped with nothing more than a

black board and chalks, and his encyclopedic knowledge of QED and QCD, he was ready to listen and

discuss with anyone who came by and knocked at his office door. He took great pleasure in collaborating

with other fellow physicists and students, without any prejudice or hierarchy, which is amply reflected

in his list of publications. According to InSPIRE, he collaborated with well over a hundred fellow

physicists - an unusually high number for a theorist.

At a personal level, Eduard was an extremely modest person, to the extent of self-denial, and an ex-

ccedingly caring one, who would share with others whatever he had. Oblivious of the administrative

constraints to which most of the scientists are subjected, Eduard was completely absorbed in his science

and other intellectual pursuits. Being oriented towards science, in particular physics and mathematics,

but also very much interested in the literature, novels, poems, history and science fiction, he was an avid

reader. Curious about new ideas and unexplained phenomena in nature, he was often a source of creative

conjectures and brilliant explanations. With Eduard’s death, we have lost an exceptional physicist and a

great human being, who combined professional excellence with remarkable kindness and humility. He

remained an enthusiastic supporter of the Dubna schools on theoretical physics, including the Helmholtz

summer school on the physics of the heavy quarks and hadrons, held during July 15 -28, 2013, in which

he lectured. These proceedings are dedicated to his cherished memory.
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Higgs boson production and couplings with the

ATLAS detector

Fernando Barreiro1,

1 Universidad Autónoma de Madrid, Madrid, Spain

I briefly review the status of Higgs boson production and couplings with the ATLAS
detector at the LHC.

1 Introduction

The Higgs boson is the last missing piece in the Standard model. The Higgs boson is necessary
to tame the singularities appearing in the amplitudes for elastic longitudinally polarizedWL and
ZL’s as well as to avoid infinities in loops involving them. With the Higgs, the calculability of
gauge theories is recovered, and for that it is necessary that the tree level Higgs boson couplings
to fermions and gauge bosons take precise values, namely: a) H →WW,ZZ : gMW , gMZ

cosθW
and

b)H → ff̄ :
gMf

2MW
.

Without a Higgs boson the validity of the Standard Model would extend up to scales of the
order of 1 TeV . With a light Higgs i.e. mH in the range between 100− 170 GeV , the Standard
Model can make consistent predictions up to scales close to the Planck scale i.e. 1019 GeV .
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Figure 1: The cross sections for Higgs production (left) via ggF − V BF − (W,Z)H − (tt̄)H
from top to bottom, and the Higgs boson branching ratios (right) in the SM.

In p− p collisions at 7 TeV , the production cross-sections for a Higgs boson with a mass in
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the range 100 GeV to 1 TeV are shown on the left hand side of Fig. 1. Clearly, the dominant
production process is gg fusion, suppressed by an order of magnitude is vector boson fusion
(VBF) and Higgs strahlung (VH, V=W,Z). The production in association with tt̄ (ttH) is
marginal at present energies/luminosities. The branching ratios for Higgs boson decays into
gauge bosons and fermion pairs are shown on the right hand side.

Thus, searching for the Higgs boson is essentially searching for a handful of events some-
times in the presence of huge backgrounds. It is therefore imperative to check that not only
QCD multijet processes are measured with enough accuracy, but also those with smaller cross-
sections, like boson pair and tt̄ production, and to check that they agree with SM predictions,
as illustrated in Fig. 2.
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Figure 2: The cross sections for several SM processes (left) and for top production (right).

The search for Higgs has been made possible by the excellent performance of the ATLAS
detector and most important the LHC machine which has delivered approximately 5 pb−1 at
7 TeV in 2011 and 20 pb−1 at 8 TeV in 2012, Fig. 3.

2 Production and couplings

It is now well over a year since the discovery of a Higgs-like particle, by the ATLAS and CMS
Collaborations, was announced at CERN. At that time, July 2012, no conclusive evidence i.e.
5σ effect, had been observed in any given particular channel. The purpose of this talk is to
review the progress made since then.

SM Higgs boson production processes as well as background production processes are mod-
elled with detailed MC programmes including detector effects, as shown in Table 1, see [1] for
more details.

2.1 The channel H → γγ

This channel is particularly sensitive to physics BSM since the decay proceeds via loops. Events
are required to have two isolated high pT photons with invariant mass in the range 100−160GeV .

2
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Table 1: Event generators used to model the signal and the main background processes.

Process Generator
ggF, VBF POWHEG+PYTHIA
WH, ZH, tt̄H PYTHIA
H → ZZ → 4l decay PROPHECY4f
W+jets, Z/γ∗+jets ALPGEN+HERWIG

POWHEG+PYTHIA, SHERPA
tt̄, tW , tb MC@NLO+HERWIG
tqb AcerMC+PYTHIA6
qq̄ →WW POWHEG+PYTHIA6
gg →WW gg2WW+HERWIG
qq̄ → ZZ∗ POWHEG+PYTHIA
gg → ZZ∗ gg2ZZ+HERWIG
WZ MadGraph+PYTHIA6, HERWIG
Wγ+jets ALPGEN+HERWIG
Wγ∗ MadGraph+PYTHIA6 for mγ∗ < 7 GeV

POWHEG+PYTHIA for mγ∗ > 7 GeV
qq̄/gg → γγ SHERPA

The main background is continuum γγ production, with smaller contributions from γ+ jet and
dijet production. The selected events are separated into 14 mutually exclusive categories in
order to increase sensitivity to the overall Higgs signal as well as to specific VBF and VH
production modes. This is done by demanding that the two isolated photons are accompanied
by two forward jets, by leptons, EmissT , or by two low mass jets. These extra requirements are
designed to enhance the sensitivity to a given production mechanism. The left hand side of Fig.
4 shows for instance how one can select VBF candidates with the help of a BDT algorithm.
On the right hand side we show the photon pair invariant mass. A clear peak is observed at
mH = 126.8± 0.2(stat.)± 0.7(syst) GeV over a smooth background. The observed significance
is 7.4σ with 4.3σ expected from the SM.

3

HIGGS BOSON PRODUCTION AND COUPLINGS WITH THE ATLAS DETECTOR

HQ2013 3



BDT response

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

E
v
e

n
ts

 (
n

o
rm

a
li
s
e

d
 t

o
 u

n
it
y
)

0

0.05

0.1

0.15

0.2

0.25

Data 2012 (sidebands)

 + jjγj + jγ + γγ

=125 GeVHVBF m

=125 GeV
H

ggF  m

ATLAS
­1

Ldt = 20.7 fb∫ = 8 TeV s

γγ→H

100 110 120 130 140 150 160

E
v
e
n
ts

 /
 2

 G
e
V

2000

4000

6000

8000

10000

γγ→H

­1
Ldt = 4.8 fb∫ = 7 TeV s

­1
Ldt = 20.7 fb∫ = 8 TeV s

ATLAS

Data 2011+2012
=126.8 GeV (fit)

H
SM Higgs boson m

Bkg (4th order polynomial)

 [GeV]γγm
100 110 120 130 140 150 160E

v
e

n
ts

 ­
 F

it
te

d
 b

k
g

­200

­100

0

100

200

300

400

500

Figure 4: Selecting VBF with a BDT algorithm, left, and the diphoton invariant mass (right).

2.2 The channel H → 4l

Despite the small branching ratio, this channel provides sensitivity to the Higgs coupling to Z
bosons because of the large signal to background ratio. Events are required to have two pairs
of same flavour, opposite charge, high pT isolated leptons. The main backgrounds are ZZ∗

continuum production, top pair and Z + bb̄ production. The 4l invariant mass is shown on the
left hand side of Fig. 5. From it one can extract mH = 124.3 ± 0.6(stat.) ± 0.5(syst.) GeV .
The observed significance is 6.6σ with 4.4σ expected in the SM.
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Figure 5: The distributions in m4l, left, and mll, right, in the H → ZZ∗ → 4l and H →
WW ∗ → lνlν modes.

2.3 The channel H → WW ∗ → lνlν

This channel is interesting because it is sensitive to the Higgs boson coupling to W bosons.
It has a large rate, but due to the production of neutrinos in the W decays, it is not possible
to reconstruct the W pair invariant mass. The selection criteria require two high pT opposite

4
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charge isolated leptons plus EmissT . Dominant backgrounds are WW ∗ continuum production,
top pair and Wt production and Drell-Yan. The selected events are classified into different
categories depending on the associated jet multiplicity. The dilepton mass for eµ events with
Njet = 0 is shown on the right hand side of Fig. 5. A clear excess of events for masses below
∼ 50 GeV is observed which can be attributed to H →WW → eνµν.

2.4 Higgs boson mass and production strengths

To derive a combined mass measurement one uses the profile likelihood method Λ(mH) with
the individual strengths µγγ and µ4l as nuissance parameters. The combined mass is measured
to be

mH = 125.5 ± 0.2 (stat) +0.5
−0.6 (sys) GeV (1)

In order to measure the production strength, µ, one uses the profile likelihood Λ(µ) method
for the previously determined mass. The result are shown on the left hand side of Fig. 6. The
overall signal production strength is:

µ = 1.33 ± 0.14 (stat) ± 0.15 (sys) (2)

To test the sensitivity to VBF production alone, the data are also fitted with µVBF/µggF+ttH

as a free parameter, obtaining

µVBF/µggF+ttH = 1.4+0.4
−0.3 (stat) +0.6

−0.4 (sys) (3)

from the combination of the three channels, see the right hand side of Fig. 6.
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Figure 6: The fitted signal strengths for various channels.

2.5 Coupling measurements

The coupling scale factors κj are defined in such a way that the cross sections σj and the
partial decay widths Γj associated with the SM particle j scale with κ2

j compared to the SM
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prediction. It is assumed that the signals observed in the different channels come from a single
Higgs resonance with narrow width.

Results are extracted from fits to the data using the profile likelihood ratio Λ(~κ), where the
κj couplings are treated either as parameters of interest or as nuisance parameters, depending
on the measurement.

The first benchmark considered here assumes one coupling scale factor for fermions, κF , and
one for bosons, κV ; in this scenario, the H → γγ and gg → H loops and the total Higgs boson
width depend only on κF and κV , with no contributions from physics beyond the Standard
Model (BSM). The strongest constraint on κF comes indirectly from the gg → H production
loop. The results are shown on the left hand side of fig. 7. The 68% CL intervals of κF and
κV , obtained by profiling over the other parameter, are:

κF ∈ [0.76, 1.18] (4)

κV ∈ [1.05, 1.22] (5)

with similar contributions from the statistical and systematic uncertainties.

Many BSM physics scenarios predict the existence of new heavy particles, which can con-
tribute to loop-induced processes such as gg → H production and H → γγ decay. In the
approach used here, it is assumed that the new particles do not contribute to the Higgs boson
width and that the couplings of the known particles to the Higgs boson have SM strength
(i.e. κi=1). Effective scale factors κg and κγ are introduced to parameterise the gg → H and
H → γγ loops. The results of their measurements from a fit to the data are shown on the r.h.s
of Fig. 7. The best-fit values when profiling over the other parameters are:

κg = 1.04 ± 0.14 (6)

κγ = 1.20 ± 0.15 (7)
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Figure 7: Determination of coupling scale factors.
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3 Higgs spin-parity measurements

Evidence for the spin 0 nature of the newly discovered Higgs boson is presented in [2]. The
JP = 0+ hypothesis of the SM is compared to several alternative hypotheses with JP =
0−, 1+, 1−, 2+. The measurements are based on the kinematic properties of the three final
states H → γγ, H → ZZ → 4l and H → WW → lνlν. To improve the sensitivity to different
spin–parity hypotheses, several final states are combined. To test the JP = 0− spin–parity
hypothesis, only the H → 4l decay mode is used, while for the JP = 1+, 1− hypotheses the
H → ZZ,WW are combined. For the JP = 2+ study, all three decay modes are combined. A
likelihood function L(JP , µ, ~θ) that depends on the spin–parity assumption of the signal is con-
structed as a product of conditional probabilities over binned distributions of the discriminant
observables in each channel:

L(JP , µ, ~θ) =

Nchann.∏

j

Nbins∏

i

P
(
Ni,j | µj · S(JP )

i,j (~θ) +Bi,j(~θ)
)
×Aj(~θ) (8)

where µj represents the nuisance parameter associated with the signal rate in each channel j.

The symbol ~θ represents all other nuisance parameters. The likelihood function is therefore
a product of Poisson distributions P corresponding to the observation of Ni,j events in each

bin i of the discriminant observable(s), given the expectations for the signal, S
(JP )
i,j (~θ), and

for the background, Bi,j(~θ). Some of the nuisance parameters are constrained by auxiliary

measurements through the functions Aj(~θ).
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Figure 8: The background subtracted |cosθ∗| for the channel H → γγ compared with expecta-
tions from 0+ and 2+ hypotheses.

The test statistic q used to distinguish between the two signal spin–parity hypotheses is
based on a ratio of likelihoods:

q = log
L(0+, ˆ̂µ0+ ,

ˆ̂
θ0+)

L(JP , ˆ̂µJP ,
ˆ̂
θJP )

, (9)
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where L(0+, ˆ̂µ0+ ,
ˆ̂
θ0+) is the maximum likelihood estimator, evaluated under the 0+ hypothesis

and JP stands for an alternative spin–parity assumption.

3.1 H → γγ

This decay mode is sensitive to the spin of the Higgs boson through the measurement of the
polar angle distribution of the photons in the Higgs rest frame. For this channel ths SM spin
hypothesis ia compared only to the JP = 2+, as shown in Fig. 8 where background subtracted
distributions are presented.
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Figure 9: BDT response compared to the expectations for the SM and JP = 0−, 1+ hypothesis.

3.2 H → ZZ∗ → 4l

The two lepton pair masses as well as the five angles needed to describe the decay are fed into
a BDT algorithm. The BDT response is shown in Fig. 9.

3.3 H → WW ∗ → eνµν + 0 − jets

Two variables found to be sensitive to the spin hypothesis are fed into a MVA, i.e. the lepton
pair invariant mass, mll and their azimuthal separation, ∆φll.

3.4 Summary on spin results

To illustrate the exclusion results obtained from the previous analysis we show two figures. In
the left hand side of Fig. 10 we show the q distribution for the 0+ and 0− hypotheses from
the H → ZZ∗ → 4l channel. The data, vertical black line, are in agreement with the SM and
exclude the 0− hypothesis at 97.8% CL. On the right hand side we show a summary of the
exclusion limits obtained upon combining the information from all three channels.
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Figure 10: The q distributions for the 0+ and 0− hypotheses, left, and obtained exclusion limits
for non SM JP assignments, right.

4 Direct searches for Higgs decays to fermion pairs

No convincing signals have been observed yet in the decay modes H → ττ and H → bb̄. For
the latter the most promising production mechanism is Higgsstrahlung. In the l.h.s. of Fig. 11
we show the mass distribution of the bb̄ pair, produced in association with a vector boson, with
all backgrounds subtracted but for V V production. No clear signal at ∼ 125 GeV . The fitted
production strength is, see the r.h.s. of Fig.11, µ = 0.2 ± 0.5(stat) ± 0.4(syst) GeV , [3].
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5 Search for charged Higgs bosons

To give a flavour of the kind of charged Higgs boson searches carried out by ATLAS, [4], we
show results for light (i.e. below top quark mass) charged Higgs boson searches in the decay
channel H+ → cs̄. The mode is searched for in the top quark pair production channel where
one top decays according to the dominant Wb mode, with the W decaying leptonically, and
the second one decays via Hb. The final state consists of one high pT lepton, large mising
transverse energy, two tagged b’s and at least two high pT additional jets. The invariant mass
of the dijet system, resulting from a kinematic fit to the full top quark pair, is shown in Fig.
12 left hand side. Good agreement with the SM is observed and limits are placed on possible
H+ signals assuming BR(H+ → cs̄) = 100%, right hand side of Fig. 12.
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Figure 12: The dijet mass distribution for data and MC, left, and exclusion limits, right.

6 Conclusions

There is increasing evidence that the Higgs-like particle discovered a year ago, is the Higgs
boson predicted in the SM. We look forward to the 14 TeV run where we will be able to reduce
the uncertainties in present coupling strength measurements, find direct evidence for H → ττ
and/or H → bb̄ and put more stringent limts on possible non SM Higgses.
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Recent CMS Results on

Heavy Quarks and Hadrons

Alice Bean for the CMS Collaboration

University of Kansas, Lawrence, KS 66045, United States

Using dedicated dimuon triggers with the CMS detector, several results are presented from
data collected during 2010, 2011, and 2012. Polarization measurements are shown for the
J/Ψ and Υ states. A search for states decaying to Υ(1S)π+π− is presented. The Λ0

b

lifetime has been measured. An observation of the decay BS → µ+µ− decay is presented.

1 Introduction

Studies of the b-quark are key to understanding the nature of the strong force.[1] The heavy-
quark expansion model of nonperturbative quantum chromodynamics provides a framework for
predicting properties of b-hadrons. Here, the heavy quarks in the meson move at non-relativistic
speeds, so the relativistic corrections are small. The CMS Collaboration has previously pub-
lished b-hadron production cross section results for: pp→ ΛbX → J/ΨΛX [2], pp→ B+X [3],
pp→ B0X [4], and pp→ BSX → J/ΨφX [5]. Figure 1 shows these results compared to Monte
Carlo simulations using the Monte Carlo at Next to Leading Order (MC@NLO)/POWHEG [6]
generator. The properties of quarkonia states such as J/Ψ, J/Ψ(2S), and Υ(nS), have also
been predicted with NRQCD [7].

The CMS Collaboration has recorded proton-proton data at the Large Hadron Collider
during 2010, 2011, and 2012. During 2010 and 2011, the center of mass energy was 7 TeV
and during 2012, data were taken at 8 TeV. The central feature of the CMS apparatus [8]
is a superconducting solenoid of 6 m internal diameter. A tracker, consisting of silicon pixel
and silicon strip layers, is immersed in a 3.8 T axial magnetic field of the superconducting
solenoid. The pixel tracker consists of three barrel layers and two endcap disks at each barrel
end. The strip tracker has 10 barrel layers and 12 endcap disks at each barrel end. The tracker
provides an impact parameter resolution of ∼15µm and a transverse momentum pT resolution
of about 1.5% for 100 GeV particles. Muons are measured in gas-ionisation detectors that are
embedded in the steel return yoke outside the solenoid. In the barrel, there is a drift tube
system interspersed with resistive plate chambers, and in the endcaps there is a cathode strip
chamber system, also interspersed with resistive plate chambers. The CMS experiment uses a
right-handed coordinate system, with the origin at the nominal interaction point, the x axis
pointing towards the center of the LHC ring, the y axis pointing up (perpendicular to the plane
of the LHC ring), and the z axis along the anticlockwise-beam direction. The polar angle θ is
measured from the positive z axis and the pseudorapidity is defined by η = − ln[tan(θ/2)]. The
azimuthal angle φ is measured from the positive x axis in the plane perpendicular to the beam.

Decay channels with muons are measured well in the detector. For the results presented
here, the muon triggers were used to select events. As the data-taking has progressed, the
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Figure 1: Summary of b-hadron cross section measurements performed by CMS with 7 TeV
p-p collision at LHC. The inner error bars of the data points correspond to the statistical
uncertainty, whil the outer (thinner) error bars correspond to the quadratic sum of statistical
and systematic uncertainties. The outermost brackets correspond to the total error, including
a luminosity uncertainty which is also added in quadrature.

collider has continued to improve on the luminosity and the earlier low values of the transverse
muon momenta pT for these triggers have been raised thus limiting the bandwidth for the later
datasets for B-physics studies. For proton-proton collisions at a center of mass energy of 7 TeV,
the Υ(1S), Υ(2S), and Υ(3S) cross sections are measured as a function of the dimuon transverse
momentum and rapidity. A search for the decay Xb → Υ(1S)π+π−, with Υ(1S) → µ+µ− is
presented. The angular distributions are examined for the J/Ψ, Ψ(2S), Υ(1S), Υ(2S), and
Υ(3S) to determine their polarizations. The Λ0

b lifetime is measured. Finally, the Bs → µ+µ−

branching ratio is measured.

2 Cross section measurements for Υ(nS) states

Quarkonium production in hadron collisions is still not well understood [9]. Using 35.8 ±
1.4 pb−1 of data taken at a center of mass energy of 7 TeV, the Υ(1S), Υ(2S), and Υ(3S)
production cross sections were measured. Their decays to dimuons were used. The product
of the Υ(nS) differential cross section and the dimuon branching fraction is determined from
the signal yield determined from an extended unbinned maximum likelihood fit to the dimuon
invariant mass spectrum, corrected by the acceptance and the efficiency. After integrating
over the Υ transverse momentum range pT < 50 GeV/c and rapidity range |y(Υ)| < 2.4, the
Υ(nS) cross sections times dimuon branching fractions are found to be: σ(pp → Υ(1S)X) ×
B(Υ(1S) → µ+µ−) = (3.06 ± 0.02+0.20

−0.18 ± 0.12) nb, σ(pp → Υ(2S)X) × B(Υ(1S) → µ+µ−) =

(0.910± 0.011+0.055
−0.046 ± 0.036) nb, and σ(pp→ Υ(3S)X)×B(Υ(3S) → µ+µ−) = 0.490± 0.010±

2
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0.029 ± 0.020) nb. Here, the first uncertainty is statistical, the second is systematic and the
third is associated with the integrated luminosity of the sample. Figure 2 shows that the cross
sections are relatively flat as a function of rapidity until about 1.6 where they then fall quickly.
The ratios of the differential cross sections for the Υ(nS) are also found to rise linearly as
function of the transverse momentum of the Υ until about 20 GeV/c where they then become
consistent with being constant. More information can be found in the reference [10].

Figure 2: Acceptance-corrected differential production cross sections of the Υ(nS) as a function
of rapidity. The bands represent the satistical uncertainty and the error bars represent the total
uncertainty, except for those from the Υ(nS) polarization and integrated luminosity.

3 Search for a bottomonium state decaying to Υ(1S)π+π−

An exotic charmonium state X(3872) has been observed by many including the CMS collabora-
tion [11]. A theory for this state has not been established. Recently, the CMS collaboration has
searched for the corresponding narrow bottomonium state (Xb) that would decay to Υ(1S)π+π−

followed by Υ(1S) → µ+µ− using a dataset of proton-proton collisions taken at a center of mass
energy of 8 TeV that corresponds to an integrated luminosity of 20.65 fb−1.

The reconstruction of the potential Xb meson and the normalization channel Υ(2S) →
Υ(1S)π+π− starts with the reconstruction of the Υ(1S) → µ+µ− and two oppositely charged
pion candidates. Selection criteria are introduced that include the thresholds on transverse
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momenta, a mass window for the Υ(1S), quality requirements on kinematic fits, and requiring
the minimum distance in the pseudorapidity and azimuthal angles to be small for the pions
with respect to the Υ(1S) candidate momentum. The study was conducted in the kinematic
region pT [Υ(1S)π+π−] > 7.2 GeV/c and y[Υ(1S)π+π−] < 2.0. No significant signal is seen
and an upper limit on the ratio of σ[pp→ Xb → Υ(1S)π+π−]/σ[pp×Υ(2S) → Υ(1S)π+π−] is
set in the range of 0.008-0.046 at the 95% confidence level [12].

4 Polarization studies for J/Ψ and Υ states

So far, the polarization of J/Ψ mesons is not satisfactorily described in the context of NRQCD.
Here, the perturbative color-singlet production is complemented by possible nonperturbative
transitions from colored quark pairs to the observable bound states. The high pT quarkonia
S-wave states directly produced are predicted to be transversely polarized with respect to the
direction of their own momentum [13]. The CMS collaboration has studied the polarizations
from prompt Υ(1S), Υ(2S), Υ(3S), J/Ψ, and Ψ(2S) decays using a data sample collected at a
center of mass energy of 7 TeV with integrated luminosity of 4.9 fb−1.

The polarization of the JPC = 1− states is measured through a study of the angular
distribution from the decay to µ+µ− usingW (cos θ, φ|λ) α 1

(3+λθ) (1+λθ cos2 θ+λφ sin2 θ cos 2φ+

λθφ sin 2θ cosφ), where θ and φ are the polar and azimuthal angles, respectively, of the µ+ with
respect to the z axis of the chosen polarization frame. The three frame-dependent anisotropy
parameters are extracted in three polarization frames and presented here for the center of
helicity (HX) frame where the z axis coincides with the direction of the quarkonium momentum
in the laboratory. Prompt decays are found by examining the proper time distribution. For
the Υ(nS) states, Figure 3 shows for the rapidity range 0.0-0.6, one dimensional profiles of the
polarization parameters as a function of the pT of the Υ state and similar values are obtained
for the 0.6-1.2 rapidity range [14]. Similarly, for the J/Ψ and Ψ(2S) states, Figure 4 shows the
distributions as a function of pT for several |y| bins [15]. All of the polarization parameters
are compatible with zero or no transverse polarization. This is in disagreement with existing
next-to-leading-order NRQCD theoretical expectations [16].

5 The Λ0
b lifetime

Using approximately 5 fb−1 of data collected in 2011, the Λ0
b lifetime was measured using the

decay Λ0
b → J/ΨΛ with Λ → pπ− and J/Ψ → µ+µ−. Dimuon triggers optimised for selecting

events with J/Ψ candidates were used. The four charged particles (µ+µ−pπ−) allow for a full
reconstruction of the Λ0

b baryon. After particle quality cuts, kinematic vertex fits are used to
find the Λ, the J/Ψ, and the proper decay time of the Λ0

b candidate. An unbinned extended
maximum-likelihood fit is performed to determine the Λ0

b lifetime which uses the invariant mass
of the Λ0

b candidate, the proper decay time and its uncertainty calculated per candidate. A
projection of the invariant-mass and proper decay time distributions and the results of the fit
is shown in Figure 5. Since the overall efficiency, determined through simulation, is consistent
with being independent of the proper decay time, no efficiency correction is used. However, the
largest systematic error is assigned to this source in addition to other systematic errors from
alignment, event selection, and the fit model. The Λ0

b lifetime is found to be 1.503 ± 0.052
(stat.)±0.031 (syst.) ps [17].
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Figure 3: The λθ, λφ, and λθφ parameters (top to bottom) for the Υ(1S), Υ(2S), and Υ(3S)
states (left to right), in the HX frame, for the rapidity < 0.6 range. The bands represent
68.3, 95.5 and 99.7% C.L. intervals, while the error bars indicate the 68.3% C.L. interval when
neglecting systematic uncertainties.

6 Observation of the decay BS → µ+µ−

A search for the rare decays B0
S → µ+µ− and B0 → µ+µ− in pp collisions at center of mass

energies of 7 and 8 TeV, with data samples corresponding to integrated luminosities of 5 and
20 fb−1, respectively [19] is performed. At tree-level, flavor-changing neutral-current decays are
forbidden in the standard model. However, these decays may proceed through higher-order loop
diagrams so small branching fractions are predicted of B(B0

S → µ+µ−) = (3.57 ± 0.30) × 10−9

and B(B0 → µ+µ−) = (1.07 ± 0.10) × 10−10 [18].

The search for the B → µµ signal, where B denotes either B0
S or B0, is performed in the

dimuon invariant mass regions around the respective masses. The signal region was kept blind
until all selection criteria were established. Selection variables included those which constrained
isolated muons to a common vertex. The final selection is performed using boosted decision
trees trained to distinguish between signal and background candidates. The combinatorial
background is evaluated by extrapolating the data in nearby mass sidebands to the signal

5
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Figure 4: Measurements of the λθ, λφ, and λθφ parameters (top to bottom) for the J/Ψ (left)
and J/Ψ(2S) (right) in the HX frame, as a function of the Ψ(nS) pT for all rapidity ranges.
The error bars represent the 68.3% C.L. total uncertainties.

region. Monte Carlo simulations are used to account for background from B and Λb decays. A
normalization sample of B+ → J/ΨK+ → µ+µ−K+ decays is used. An unbinned maximum-
likelihood fit to the dimuon invariant mass distribution gives a branching fraction B(B0

S →
µ+µ−) = (3.0+1.0

−0.9) × 10−9, where the uncertainty includes both statistical and systematic
contributions. An excess with respect to background of B0

S → µ+µ− is seen with a significance
of 4.3 standard deviations. An upper limit at the 95% C.L. of B(B0 → µ+µ−) < 1.1 × 10−9 is
determined. As can be seen from Figure 6, the results are in agreement with expectations from
the standard model.
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Figure 6: Categorized boosted decision tree scan of the ratio of the joint likelihood B(B0
S →

µ+µ−) and B(B0 → µ+µ−). The insets show the likelihood ratio scan for each of the branching
fractions when the other is profiled together with other nuisance parameters. The significance
at which the background-only hypothesis is rejected is also shown.
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Mesons with open charm and beauty:

an overview

P. Colangeloa, F. De Fazioa, F. Giannuzzia,b and S. Nicotria,b
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bDipartimento di Fisica, Universitá degli Studi di Bari, Italy

The spectrum of mesons with open charm and beauty is analyzed using heavy quark
symmetry arguments. A classification of the newly observed states is presented, together
with predictions for several unobserved resonances.

1 Heavy meson doublets

A QCD framework for the analysis of hadrons containing a single heavy quark can be set
up using the heavy quark (HQ) limit, and is formalized in the heavy quark effective theory
(HQET) [1]. This is an effective theory of QCD formulated for Nf heavy quarks Q with mass
mQ ≫ ΛQCD, with the four-velocity of Q fixed. The theory displays heavy quark spin-flavour
symmetries, i.e. the invariance under SU(2Nf ) transformations, which are symmetries of the
QCD Lagrangian in the heavy quark limit. Within this framework, several heavy hadron
properties can be studied, with important results represented, for instance, by the relations
among semileptonic transition form factors in weak heavy hadron matrix elements [2]. The
heavy meson spectrum can also be studied from the point of view of the heavy quark limit
[3]: this is particularly interesting, due to the numerous recently discovered charm and beauty
resonances needing to be recognized [4].

The classification of heavy Qq̄ mesons (q is a light quark) in the HQ limit relies on the
decoupling of the heavy quark spin sQ from the spin of the light antiquark and gluons. The
separate conservation in strong interaction processes of sQ and of the total angular momentum
sℓ of the light degrees of freedom permits a classification of the heavy mesons according to the
value of sℓ. Mesons can be collected in doublets: the two states in each doublet (spin partners)
have total spin J = sℓ± 1

2 and parity P = (−1)ℓ+1, with ℓ the orbital angular momentum of the

light degrees of freedom and ~sℓ = ~ℓ + ~sq (sq is the light antiquark spin). Within each doublet
the two states are degenerate in the HQ limit and, due to flavour symmetry, the properties of
the states in a doublet can be related to those of the corresponding states differing for the heavy
quark flavour. Corrections can be systematically included considering next-to-leading terms in
an expansion in the inverse heavy quark mass.

We focus on the meson doublets with ℓ = 0, 1, 2 (s−, p− and d−wave states in the quark
model), discussing their properties in the HQ limit and considering a few next-to-leading correc-
tions. This allows us to study how the observed charmed and beauty mesons fit in the theoretical
classification. Moreover, using data in the charm sector, the properties of the corresponding
beauty mesons can be predicted.

Important information for a proper identification comes from the heavy meson decays to

120 HQ2013



light pseudoscalar mesons, whose features depend on the quantum numbers of the decaying
resonances. An effective Lagrangian approach, with the heavy meson doublets represented by
effective fields and the octet of light pseudo Goldstone mesons grouped in a single field, can be
formulated imposing the invariance under heavy quark spin-flavour transformations and chiral
transformations of the light pseudo Goldstone boson fields. This allows to infer the properties of
the heavy meson doublets in the HQ limit, namely that the two degenerate states in a doublet
have the same full width, that the sum of the partial widths of a state in a doublet to another
heavy state in another doublet with emission of a light meson is the same for the two members
of a doublet, that the ratios of partial decay widths for a given state are related, that the partial
decay widths are independent of the heavy quark flavour [3].

The lightest Qq̄ mesons correspond to ℓ = 0, hence sPℓ = 1
2

−
. This doublet consists of two

states with JP = (0−, 1−), denoted as (P, P ∗). For ℓ = 1 one has sPℓ = 1
2

+
with JP = (0+, 1+)

(the states are (P ∗
0 , P

′
1)), and sPℓ = 3

2

+
with JP = (1+, 2+) ((P1, P

∗
2 )). ℓ = 2 corresponds to

either sPℓ = 3
2

−
(states (P ∗

1 , P2) ) or sPℓ = 5
2

−
( (P ′∗

2 , P3)). An analogous notation holds for the

radial excitations with n = 2 (denoted by a tilde: P̃ , P̃ ∗, ...). The effective fields describing the
various doublets in the HQ limit are listed below, with a = u, d, s light flavour index. The fields,
defined including a factor

√
mQ, have dimension 3/2 and annihilate mesons of four velocity v

which is conserved in strong interaction processes.

sPℓ =
1

2

−
: Ha =

1 + v/

2

[
P ∗
aµγ

µ − Paγ5

]

sPℓ =
1

2

+

: Sa =
1 + v/

2

[
P ′µ

1aγµγ5 − P ∗
0a

]

sPℓ =
3

2

+

: Tµa =
1 + v/

2

[
Pµν2a γν − P1aν

√
3

2
γ5

[
gµν − 1

3
γν(γµ − vµ)

]]
(1)

sPℓ =
3

2

−
: Xµ

a =
1 + v/

2

[
P ∗µν

2a γ5γν − P ′∗
1aν

√
3

2

[
gµν − 3

2
γν(γµ + vµ)

]]

sPℓ =
5

2

−
: X ′µν

a =
1 + v/

2

[
Pµνσ3a γσ − P ∗′αβ

2a

√
5

3
γ5

[
gµαg

ν
β − 1

5
γαg

ν
β(γ

µ − vµ) − 1

5
γβg

µ
α(γν − vν)

]]
.

The octet of light pseudoscalar mesons is introduced defining ξ = e
iM
fπ and Σ = ξ2, with M

incorporating the fields of π,K and η (fπ = 132 MeV):

M =




√
1
2π

0 +
√

1
6η π+ K+

π− −
√

1
2π

0 +
√

1
6η K0

K− K̄0 −
√

2
3η


 . (2)

Imposing invariance under heavy quark spin-flavour and light quark chiral transformations, an
effective QCD Lagrangian can be constructed [5, 6], with kinetic terms of the heavy meson
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doublets and of the Σ field reading:

L =
f2
π

8
Tr[∂µΣ∂µΣ

†] + i T r[H̄bv
µDµbaHa]

+ Tr[S̄b (i vµDµba − δba ∆S)Sa] + Tr[T̄αb (i vµDµba − δba ∆T )Taα] (3)

+ Tr[X̄α
b (i vµDµba − δba ∆X)Xaα] + Tr[X̄ ′αβ

b (i vµDµba − δba ∆X′)X ′
aαβ ] ,

with Dµba = −δba∂µ+Vµba = −δba∂µ+
1

2

(
ξ†∂µξ + ξ∂µξ

†)
ba

and Aµba =
i

2

(
ξ†∂µξ − ξ∂µξ

†)
ba

.

The parameters ∆F (with F = S, T, X, X ′) correspond to the mass splittings between the
higher mass doublets and the lightest one described by H:

∆F = MF −MH , (4)

with M (F ) the spin-averaged masses of the doublets:

MH =
3MP∗ +MP

4
, MS =

3MP ′
1
+MP∗

0

4
, MT =

5MP∗
2

+ 3MP1

8
,

MX =
5MP2

+ 3MP∗
1

8
, MX′ =

7MP3
+ 5MP ′∗

2

12
. (5)

Corrections to the heavy quark limit involve symmetry breaking terms suppressed by powers
of 1/mQ [7]. For instance, the Lagrangian terms

L1/mQ
=

1

2mQ

{
λHTr[H̄aσ

µνHaσµν ] + λSTr[S̄aσ
µνSaσµν ] + λTTr[T̄

α
a σ

µνTαa σµν ]

+λXTr[X̄
α
a σ

µνXaασµν ] + λX′Tr[X̄ ′αβ
a σµνX ′αβ

a σµν ]
}

(6)

break the mass degeneracy between the members of the various doublets. The constants λH ,
λS , λT , λX and λX′ are related to the hyperfine splittings:

λH =
1

8

(
M2
P∗ −M2

P

)
, λS =

1

8

(
M2
P ′

1
−M2

P∗
0

)
, λT =

3

16

(
M2
P∗

2
−M2

P1

)
,

λX =
3

16

(
M2
P2

−M2
P∗

1

)
, λX′ =

5

24

(
M2
P3

−M2
P ′∗

2

)
. (7)

The transitions F → HM (with F = H,S, T,X,X ′ and M a light pseudoscalar meson),
at the leading order in the light meson momentum and heavy quark mass expansion, can be
described by the Lagrangian interaction terms [5]:

LH = g Tr
[
H̄aHbγµγ5Aµ

ba

]

LS = hTr
[
H̄aSbγµγ5Aµ

ba

]
+ h.c.

LT =
h′

Λχ
Tr
[
H̄aT

µ
b (iDµ 6A + i6DAµ)baγ5

]
+ h.c.

LX =
k′

Λχ
Tr
[
H̄aX

µ
b (iDµ 6A + i6DAµ)baγ5

]
+ h.c. (8)

LX′ =
1

Λχ
2Tr

[
H̄aX

′µν
b

[
k1{Dµ,Dν}Aλ + k2(DµDλAν +DνDλAµ)

]
ba
γλγ5

]
+ h.c.;
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these terms involve the coupling constants g, h, h′, ki (we set k = k1 + k2, and the chiral
symmetry-breaking scale Λχ to Λχ = 1 GeV). LS and LT describe positive parity heavy meson
transitions with the emission of light pseudoscalar mesons in s− and d− wave, respectively, LX
and LX′ the transitions of higher mass mesons of negative parity, belonging to the X and X ′

doublets, with the emission of light pseudoscalar mesons in p− and f− wave. At the same order
in the expansion in the light meson momentum, the structure of the Lagrangian terms for radial
excitations of the various doublets is unchanged, since it is dictated only by the spin-flavour
and chiral symmetries, but the coupling constants are replaced by new ones, g̃, h̃, etc.

In this basic framework all data for mesons with open charm and beauty can be analyzed,
and a classification scheme for the observed resonances can be elaborated. In Table 1 we propose
the assignment for the observed charmed cq̄, cs̄, and beauty bq̄, bs̄ (with q = u, d) mesons to
the various doublets [4], justified by the arguments presented below.1

Table 1: Observed open charm and open beauty mesons organized in HQ doublets. States
denoted by (⋆) have uncertain assignment; they are classified according to the scheme proposed
in this study.

sP
ℓ JP cq̄ (n=1) cq̄ (n=2) cs̄ (n=1) cs̄ (n=2) bq̄ (n=1) bs̄ (n=1)

H 1
2

− 0− D(1869) D(2550) ⋆ Ds(1968) B(5279) Bs(5366)
1− D∗(2010) D∗(2600) ⋆ D∗

s (2112) D∗
s1(2700) B∗(5325) B∗

s (5415)

S 1
2

+ 0+ D∗
0(2400) D∗

s0(2317)
1+ D′

1(2430) D′
s1(2460) DsJ(3040) ⋆

T 3
2

+ 1+ D1(2420) Ds1(2536) DsJ(3040) ⋆ B1(5721) Bs1(5830)
2+ D∗

2(2460) D∗
s2(2573) B∗

2 (5747) B∗
s2(5840)

X 3
2

− 1−

2−

X ′ 5
2

− 2− D(2750) ⋆
3− D(2760) ⋆ DsJ(2860) ⋆

2 Arguments for the classification

The analysis of the doublets with either ℓ = 1
2

+
, 3

2

±
, . . . , or n > 1 is based on the mass and

width experimental data collected in Tables 2 and 3. The sPℓ = 3
2

+
charmed doublets are filled

by (D1(2420), D∗
2(2460)) and (Ds1(2536), D∗

s2(2573)) in the non-strange and strange sector,
respectively; their widths are quite narrow, as expected for mesons with d-wave decays.

(D∗
0(2400), D′

1(2430)) and (D∗
s0(2317), D′

s1(2460)) can be identified with the members of

the sPℓ = 1
2

+
charm doublet, although they present intriguing features. The non-strange states

follow the expectation of being broad, due to their s-wave strong decays. After the first evidences
of broad cq̄ states [11], the separate identification of the two states and the measurement of
their masses and widths is due to Belle [12]. On the contrary, the strange partners, first
observed in 2003 [13], are very narrow: they are below the DK (for D∗

s0(2317)) and D∗K
(for D′

s1(2460)) thresholds, their isospin-conserving decays are kinematically forbidden, and

1The recently observed structures DJ (3000) and D∗
J (3000), mentioned in the text, are not included in the

Table.
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Table 2: Measured mass and width of the observed excited open charm mesons, as reported
by the PDG [8] (with the states denoted by † omitted from summary tables), excluding the
data on D∗0,+(2600), D0(2750) and D∗0,+(2760) which are from BaBar [9]; new experimental
results on these states have also been provided by LHCb [10]. The widths of D∗+(2600) and
D∗+(2600) are kept fixed in the experimental BaBar analysis [9]. The bounds are at 95% CL.

cq̄ mass (MeV) Γ (MeV) cs̄ mass (MeV) Γ (MeV)

D∗0
0 (2400) 2318 ± 29 267 ± 40

D∗±
0 (2400)† 2403 ± 14 ± 35 283 ± 24 ± 34 D∗

s0(2317) 2317.8 ± 0.6 < 3.8

D′0
1 (2430)† 2427 ± 26 ± 25 384 ±107

75 ±74

D′
s1(2460) 2459.6 ± 0.6 < 3.5

D0
1(2420) 2421.4 ± 0.6 27.4 ± 2.5

D±
1 (2420) 2423.2 ± 2.4 25 ± 6 Ds1(2536) 2535.12 ± 0.13 0.92 ± 0.03 ± 0.04

D∗0
2 (2460) 2462.6 ± 0.6 49.0 ± 1.3

D∗±
2 (2460) 2464.3 ± 1.6 37 ± 6 D∗

s2(2573) 2571.9 ± 0.8 17 ± 4

D0(2550)† 2539.4 ± 4.5 ± 6.8 130 ± 12 ± 13

D∗0(2600) 2608.7 ± 2.4 ± 2.5 93 ± 6 ± 13

D∗+(2600) 2621.3 ± 3.7 ± 4.2 93 (fixed) D∗
s1(2700) 2709 ± 4 117 ± 13

D0(2750) 2752.4 ± 1.7 ± 2.7 71 ± 6 ± 11

D∗0(2760) 2763.3 ± 2.3 ± 2.3 60.9 ± 5.1 ± 3.6

D∗+(2760) 2769.7 ± 3.8 ± 1.5 60.9 (fixed) DsJ(2860) 2863.2±4.0
2.6 58 ± 11

DsJ(3040)† 3044 ± 8±30
5 239 ± 35±46

42

the observed strong decays Dsπ
0 and D∗

sπ
0 violate isospin conservation. Their identification

with the doublet (D∗
s0, D

′
s1) is supported by analyses of the radiative decays [14] and by lattice

QCD studies [15]. A puzzling aspect is the mass degeneracy between the strange states and
their non-strange partners. Another issue is the possible mixing between the two 1+ states: in
the case of non-strange mesons, Belle has determined a small mixing angle: θ ≃ −0.10 rad [12].

DsJ (2860) and D∗
s1(2700) in Table 1 were observed in the DK final state at the B factories

[16, 17], and confirmed in pp collisions at the LHC [18]. The spin-parity JP = 1− of D∗
s1(2700)

has been established studying the production in B decays. D∗
s1(2700) and DsJ(2860) are also

seen to decay to D∗K [19], hence they have natural parity JP = 1−, 2+, 3−, · · · ; the D∗K
mode excludes the assignment JP = 0+ for DsJ (2860). Additional information comes from the
ratios of decay rates [19]

B(D∗
s1(2700) → D∗K)

B(D∗
s1(2700) → DK)

= 0.91±0.13±0.12 ,
B(DsJ (2860) → D∗K)

B(DsJ (2860) → DK)
= 1.10±0.15±0.19 , (9)

where D(∗)K = D(∗)0K+ + D(∗)+K0
S . As discussed below, for D∗

s1(2700) the ratio coincides
with the result in the heavy quark limit if D∗

s1(2700) is identified with the first radial excitation
of D∗

s(2112) [20]. The classification of DsJ(2860) is more uncertain. The resonance decays to
both DK and D∗K, hence it may be identified with the lowest lying n = 1 state with either
JPsℓ

= 1−3/2, i.e. D∗
s1 in the X doublet, or JPsℓ

= 3−5/2, i.e. the state Ds3 in the X ′ doublet.

Another possibility is the identification with the radial excitation with n = 2 and JPsℓ
= 2+

1/2,

i.e. the state D̃∗
s2 in the T̃ doublet. Allowed decay modes are into DK, Dsη, D

∗K and D∗
sη.

Considering the ratios of strong decay rates in the three possible cases, the identification of
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DsJ(2860) with Ds3 was proposed [21], which explains the quite narrow width as due to the f -
wave decays. On the other hand, D∗

s1 and D̃∗
s2 decay in p- and d- wave, respectively; therefore,

the first one is expected to be broader, while a larger mass, M(D̃∗
s2) ≃ 3.157 GeV, is predicted

by the quark model for the second one [22]. We shall return below to DsJ (2860).
A broad structure in the D∗K distribution was also observed, DsJ (3040) [19]. Absence of

signal in the DK distribution suggests unnatural parity JP = 1+, 2−, 3+, · · · . The lightest
not yet observed states with these quantum numbers are the two JP = 2− states of the ℓ = 2

doublets, Ds2 with sPℓ =
3

2

−
and D′∗

s2 with sPℓ =
5

2

−
. JP = 3+ corresponds to a doublet with

sPℓ =
7

2

+

, the mass of which is expected to be larger. In the case of radial excitations, the

identification with the states with n = 2, JP = 1+, and sPℓ =
1

2

+

(the meson D̃′
s1) or sPℓ =

3

2

+

(the meson D̃s1) is possible. In the heavy quark limit, the two JP = 1+ are expected to be
broader than the two JP = 2+ states, hence DsJ (3040) is likely to be identified with one of
the two axial-vector mesons. This justifies the classification of DsJ (3040) as one of the two
states with JP = 1+, n = 2, proposed in Table 1. The properties of the corresponding spin and
non-strange partners can be predicted accordingly [23].

The last four states in Table 1 are the non-strange cq̄ mesons discovered by BaBar in
e+e− → cc̄ → D(∗)πX [9], with measured mass and width in Table 2, recently confirmed by
LHCb [10]. The ratios

B(D∗0(2600) → D+π−)

B(D∗0(2600) → D∗+π−)
= 0.32±0.02±0.09 ,

B(D∗0(2760) → D+π−)

B(D∗0(2750) → D∗+π−)
= 0.42±0.05±0.11

(10)
measured by BaBar can be used for the classification. Moreover, for the D∗+π− mode, infor-
mation comes from the cos θH distribution, with θH the angle between the primary pion π−

and the slow pion π+ from the D∗+ decay. For D∗(2600), this distribution suggests natural
parity, consistent with the observation in both Dπ and D∗π. The ∼ cos2 θH distribution for
D0(2550) is compatible with a JP = 0− state. Babar suggested that (D(2550), D∗(2600))
compose the H̃, JP = (0−, 1−) doublet of n = 2 radial excitations of (D, D∗) mesons, while
(D(2750), D∗(2760)), can be identified with the ℓ = 2, n = 1 states [9], mainly from comparison
with quark model results [24]. Since there are two possible doublets with ℓ = 2, the identification
with the JP = (2−, 3−) doublet would come together with the assignment DsJ (2860) = Ds3,
and in this case DsJ(2860) and D∗(2760) represent corresponding states with and without
strangeness. Other classifications have been proposed [25] and discussed [4].

Finally, other broad states, denoted as DJ(3000) and D∗
J(3000), have been recently observed

in the region around 3000 MeV by LHCb in the final states D∗+π−, D+π− and D0π+ [10].
They are not included in this overview, as their assignment deserves a dedicated study.

The masses and widths of the beauty excited states, observed at LEP [26], Tevatron [27]
and LHCb [28], are collected in Table 3.

Table 3: Mass and width (in MeV) of the observed open beauty excited mesons [8].
bq̄ mass Γ bs̄ mass Γ

B0
1(5721) 5723.5 ± 2.0 B0

s1(5830) 5828.7 ± 0.4

B∗0
2 (5747) 5743 ± 5 22.7+3.8+3.2

−3.2−10.2 B∗0
s2 (5840) 5839.7 ± 0.6 1.56 ± 0.13 ± 0.47
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3 Mass parameters

The assignments proposed in Table 1 are supported by the values of the HQ parameters: the
average masses MF in Eq. (5), the mass splitting ∆F and the hyperfine splitting λF parameters
in Eq. (7) that we collect in Table 4. Flavour symmetry implies that the mass splitting ∆F

is the same regardless of the heavy quark flavour of the doublets, and that the mass splitting
λF between spin partners in a doublet is independ of the heavy flavour. Indeed, from the
Lagrangian (3) and (6), one has:

∆
(c)
F = ∆

(b)
F , λ

(c)
F = λ

(b)
F .

The observed deviations, due to both light flavour and heavy quark mass effects, suggest the
size of the higher order symmetry breaking terms: as an example, the strange quark mass effect
is visible in MF .

Table 4: Spin averaged masses M̄F (in MeV), mass splittings ∆F (in MeV) and hyperfine
splitting parameters λF (in MeV2) defined in Eq.(5) and (7).

cū cd̄ cs̄ bū bd̄ bs̄

MH 1971.45 ± 0.12 1975.12 ± 0.10 2076.4 ± 0.4 5313.7 ± 0.3 5313.8 ± 0.3 5403 ± 2

M H̃ 2591.4 ± 3.3

MS 2400 ± 28 2424.1 ± 0.5

MT 2447.1 ± 0.5 2449.0 ± 1.6 2558.1 ± 0.5 5735.7 ± 3.2 5834.7 ± 0.5

MX′ 2758.8 ± 2.3

∆S 429 ± 28 347.7 ± 0.6
∆T 475.7 ± 0.5 473.9 ± 1.6 481.7 ± 0.6 421.9 ± 3.2 431.7 ± 2.1
∆X′ 787.4 ± 2.3

λH (262.3 ± 0.2)2 (261.2 ± 0.2)2 (270.9 ± 0.6)2 (246.8 ± 1.2)2 (245.9 ± 1.2)2 (256.3 ± 6.4)2

λH̃ (211.2 ± 13.4)2

λS (254 ± 54)2 (290.9 ± 0.9)2

λT (195 ± 2)2 (193 ± 7)2 (187.7 ± 2.1)2 (205 ± 28)2 (149.9 ± 6.7)2

λX′ (112 ± 24)2

Using the input from Table 1, predictions can be worked out for the masses of unobserved
states, namely the missing n = 1 and n = 2, JPsℓ

= (0−, 1−)1/2 charmed mesons, see Table 5.
Moreover, in the HQ limit and using charm data, the beauty meson properties can be computed.
For F = H̃, S, T , X ′ and T̃ , with the data in Table 4 predictions for beauty doublets can be
worked out, Table 6. Noticeably, B∗

s0 and B′
s1 turn out to be below the BK and B∗K thresholds;

they are expected to be very narrrow, with main Bsπ
0 and B∗

sπ
0 decay modes [29, 30]. The

masses of the resonances recently observed by CDF [31] and LHCb [32] in the Bπ channel follow
the expectations.

Table 5: Predicted mass and width (in MeV) of two not yet observed charm mesons, together
with their spin partners.

D̃(s) (0−, n = 2) D̃∗
(s) (1−, n = 2) D′∗

(s)2 (2−) D(s)3 (3−)

cq̄ D(2550) D∗(2600) D(2750) D(2760)
cs̄ mass 2643 ± 13 D∗

s1(2700) 2851 ± 7 DsJ(2860)
Γ 33.5 ± 3.3 20.5 ± 2.4
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Table 6: Predicted mass and width (in MeV) of doublets of excited beauty mesons. For the
decay widths of B∗

s0 and B′
s1 see the text.

B̃(s)(0
−, n = 2) B̃∗

(s)(1
−, n = 2) B∗

(s)0(0
+) B′

(s)1(1
+) B′∗

(s)2(2
−) B(s)3(3

−)

bq̄ M 5911 ± 5 5941 ± 3 5708 ± 23 5753 ± 31 6098 ± 2 6103 ± 3
Γ 149 ± 15 186 ± 18 269 ± 58 268 ± 70 103 ± 8 129 ± 10

bs̄ M 5997 ± 6 6027 ± 8 5707 ± 1 5766 ± 1 6181 ± 5 6186 ± 5
Γ 76 ± 9 118 ± 14 57 ± 6 78 ± 7

4 Strong decays

Two-body heavy meson decays in final states comprising a light pseudoscalar meson can be
analyzed using the Lagrangian (8). A prime role is played by the effective strong coupling
constants, for which the following information is available.

g governs the strong transition among states in the H doublet. The measurement Γ(D∗±) =
96±4±22 KeV [8], recently improved by BaBar: Γ(D∗±) = 83.5±1.7±1.2 KeV [33], corresponds
to the value in Table 7; it is larger than a set of theoretical results in the HQ limit and at finite
mQ [34, 35, 36], and agrees with more recent calculations [37].

h controls the decays S → HM , and can be obtained using data on the cq̄ doublet S, with
q = u, d. From the widths of (D∗

0(2400), D′
1(2430)) in Table 2, the value in Table 7 can be

derived, which agrees with QCD sum rule [35] and lattice QCD determinations [36]. The
predicted widths of the corresponding beauty mesons are in Table 6.

h′ is involved in T → HM decays, and can be determined from Table 2. The obtained value in
Table 7 translates into a prediction for theDs1(2536) decay width: Γ(Ds1(2536)) = 0.305±0.002
MeV. The BaBar determination in Table 2 [38], is larger than this result, a possible consequence
of the mixing with the axial-vector state D′

s1(2460) [39]. In the case of the beauty T doublet,
the width of the B∗0

2 meson has been measured, giving h′ = 0.36 ± 0.09, with a O(30%)
deviation form the charm value. The computed widths of the sPℓ = 3/2+ beauty states are:
Γ(B1) = 13.6 ± 0.6 MeV, Γ(Bs1) = 0.016 ± 0.002 MeV and Γ(B∗

s2) = 0.9 ± 0.1 MeV, the last
one compatible with the recent LHCb result [28].

g̃ governs the decays H̃ → HM , with H̃ the radial excitations of H. Observed states that fit
in such a doublet, with and without strangeness, are D(2550), D∗(2600) and the strange one
D∗
s1(2700). From their measured widths we obtain the value in Table 7. The predicted width

of the spin partner of D∗
s1(2700) using the mass fixed in Sec. 3, is in Table 5, and the expected

widths of the corresponding beauty resonances are in Table 6.

k. In the classification of DsJ (2860) as the JP = 3− state of the X ′ doublet, the resonances
(D(2750), D∗(2760)) fill the corresponding non strange doublet. From their mass and width
we obtain the coupling k = k1 + k2 in Table 7. This allows to predict the width of the D′∗

s2, the
spin partner of DsJ(2860), and of the analogous beauty state, see Tables 5 and 6. The results
from other assignments to DsJ (2860) are discussed in [4].

Information comes from ratios of decay rates in which the dependence on the strong cou-
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Table 7: Coupling constants in the effective Lagrangian (8), obtained from the experimental
data and using the classification in Table 1.

g h h′ g̃ k

0.64 ± 0.075 0.56 ± 0.04 0.43 ± 0.01 0.28 ± 0.015 0.42 ± 0.02

plings cancels out. For a meson F(s) decaying to P(s)M and P ∗
(s)M , these ratios are relevant:

R(F )
π =

B(F → D∗π)

B(F → Dπ)
,

R
(Fs)
K =

B(Fs → D∗K)

B(Fs → DK)
, R(Fs)

η =
B(Fs → Dsη)

B(Fs → DK)
, R∗(Fs)

η =
B(Fs → D∗

sη)

B(Fs → DK)
. (11)

D(∗)π(K) indicates D(∗)0π+(K+) + D(∗)+π0(KS) for charged states and to D(∗)0π0(KS) +
D(∗)+π−(K−) for neutral ones. Table 8 reports the predictions for D∗(2600) and D∗

s1(2700),
identified with D̃∗ and D̃∗

s , respectively; for D∗0
2 (2460) and D∗

s2(2573), and for D∗(2760) and
DsJ(2860) identified with D3 and Ds3. A detailed discussion is in [4]. Here we only mention a
few issues.

• For D∗
s1(2700), the results in Table 8 agree with the measurement in Eq.(9) [19], support-

ing the classification of this state as D̃∗
s1.

• Identifying D∗(2760) with D3 and D(2750) with its spin partner D′∗
2 , one obtains the ratio

B(D∗0(2760) → D+π−)

B(D∗0(2750) → D∗+π−)

∣∣∣
X′

= 0.660 ± 0.001. On the other hand, in the hypothesis that

(D(2750), D∗(2760)) fill the (D̃′
1, D̃

∗
2) doublet, the result is

B(D∗0(2760) → D+π−)

B(D∗0(2750) → D∗+π−)

∣∣∣
T̃

=

0.563±0.001. The measurement (10) does not discriminate between the two possibilities.

• If DsJ (2860) is identified with Ds3, the ratios in Table 8 do not compare favorably with
the measurement in Eq.(9) [21]. A possible reason is the existence of the spin partner
with very close mass, M(D∗′

s2) = 2851 ± 7 MeV, difficult to resolve in the common D∗K
decay mode. If the signal measured to give Eq.(9) includes the decay D∗′

s2 → D∗K, the
actual measurement is the D(∗)K sample produced from both the states, hence

R̄(2860) =
Γ(DsJ (2860) → D∗K) + Γ(D∗′

s2(2851) → D∗K)

Γ(DsJ (2860) → DK)
,

whose prediction is: R̄(2860) = 0.99 ± 0.05, compatible with (9).

• For the beauty system, the computed ratio RK for B∗
s2 is confirmed by the LHCb mea-

surement: RK = (9.1 ± 1.3 ± 1.2) × 10−2 [28].

5 Conclusions

Using the heavy quark symmetry as a guideline, the observed cq̄ and bq̄ mesons can be classified
in doublets. Of course, finite heavy quark mass effects, such as those inducing a mixing be-
tween states with the same JP belonging to different doublets, could distort the picture: their
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Table 8: Computed ratios R
(F )
M .

cq̄ Rπ cs̄ RK0 Rη R∗
η

D∗0(2600) 1.22 ± 0.01 D∗
s1(2700) 0.91 ± 0.03 0.195 ± 0.006 0.05 ± 0.01

D∗0
2 (2460) 0.440 ± 0.001 D∗

s2(2573) 0.086 ± 0.002 0.018 ± 0.001 -
D∗0(2760) 0.514 ± 0.004 DsJ(2860) 0.39 ± 0.01 0.132 ± 0.003 0.025 ± 0.001

bq̄ Rπ bs̄ RK Rη R∗
η

B̃∗ 1.63 ± 0.005 B̃∗
s 1.43 ± 0.015 0.132 ± 0.008 0.11 ± 0.015

B∗
2 0.87 ± 0.01 B∗

s2 0.07 ± 0.005 - -
B3 0.92 ± 0.005 Bs3 0.815 ± 0.006 0.103 ± 0.002 0.063 ± 0.003

D

D*
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D0
* H2400L
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* H2460L DH2750L
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Figure 1: Spectrum of cq̄ mesons organized in spin doublets. The structures denoted as
DJ(3000)0 and D∗

J (3000)0 [10] are not included in the plot.

description in terms of the effective theory would require additional parameters. A posteriori,
looking at data, one can estimate the size of such effects, and check the scaling rules and the
main features determined by the heavy quark symmetry.

A comprehensive assignment is proposed in Table 1; in the case of charm, the spectrum is
depicted in Figs.1 and 2. The properties of missing states are predicted accordingly. A wealth
of new interesting information is expected from the ongoing experiments.
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Lectures on new physics searches in B → D(∗)τντ
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The Standard model’s predictions for the rates for B → D∗τντ and B → Dτντ differ
from the experimental results. The difference might be accounted by the presence of
new physics. The understanding of the non-perturbative QCD dynamics in the meson
transitions is crucial in order to refine the searches for new physics effects. We give short
introduction to heavy quark effective theory (HQET) and then investigate the most general
set of lowest dimensional effective operators leading to helicity suppressed modifications
of b → c (semi)leptonic transitions. The contributions of these operators to B → D(∗)τντ

decay amplitudes can be found by determining the differential decay rate, longitudinal D∗

polarization fraction, D∗ − τ opening angle asymmetry and the τ helicity asymmetry. We
identify the size of possible new physics contributions constrained by the present B →
D(∗)τντ rate measurements and find significant modifications are still possible in all these
observables. Then we discuss few models of new physics scenarios which can contribute in
both decay modes.

1 Introduction

In these lecture notes we present the short introduction to theoretical aspects of semileptonic
decays 1 of B mesons, with an emphasis on the search for New physics (NP) in B → D(∗)τντ
processes. The semileptonic transitions are driven by the charged current interactions that
originate from the exchange of the W boson in the Standard Model (SM). In theories beyond
Standard Model (BSM), new particle could affect the physics of the decays as well. We explore
these possibilities in subsequent sections.

The semileptonic decays have played significant role in the history of the particle physics,
providing the basis for the construction of the SM. The four fermion interaction (Fermi’s theory)
was constructed as model of beta decays of nuclei. It has been further modified to include the
parity violation through V − A interactions [2], [3] and strangeness changing decays (Cabbibo
mixing [4]). The theory breaks down at sufficiently high energies as it contains the dimensionful
coupling parameter, and consequently a physical (electroweak) scale, v. The need for deeper,
short distance understanding has been realized in a form of intermediate vector boson theory
involving charged, massive spin one mediator. The developments that followed were leading
towards the SM theory. The physics of the electroweak scale is currently probed at the Large
Hadron Collider (LHC) experiments.

Following the observation of CP violation in weak interactions [5], Kobayashi and Maskawa
(KM) [6] suggested that the CP violation can be explained with the introduction of the third
generations of quarks. Consequently, the quark mixing matrix (known as Cabibbo-Kobayashi-

1involving lepton(s) and a hadron in the final state
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Maskawa (CKM) matrix) can be parametrized in terms of three angles and one imaginary
phase. The imaginary phase cannot be absorbed through the redefinitions of the quark fields
and is source of all CP violation in the SM. This mechanism has been experimentally confirmed
to be the dominant origin of the CP violation (see e.g. [7] and references therein), which led
to the Nobel prize awarded to Kobayashi and Maskawa in 2008. The semileptonic decays are
used for the extraction of the corresponding CKM elements, e.g. Wolfenstein’s parameters λ
and A [22] are precisely determined from the K → πℓν and b → cℓν transitions respectively.
The underlying assumption is that these processes are fully described by the SM.

The CKM fits show impressive agreement with the KM mechanism, see e.g. [9], [10]. It is,
however, worth to note that the fit gets significantly worse when the results of branching ratio
of tauonic B → τν decay is included [1], [9], [10].

B physics provides some stringent tests of the SM at low energies. Recent measurements of
B(Bs → µ+µ−) and CP violation in Bs → J/ψφ decays considerably constrain contributions
of NP to these observables. Semileptonic B decays play an important role in B physics, as
their branching ratios are rather large and allow for extensive experimental studies. The decays
are schematically represented by the diagram in the Fig. 1. The inclusive B → Xcℓν and
exclusive (with D(∗) in the final state) processes are used for determination of Vcb matrix
element. Inclusive determination uses the differential decay spectrum of final lepton’s energy
and hadronic, q2 spectrum. It relies on operator product expansion (OPE) and Heavy Quark
Effective Theory (HQET), [23], [24]. Average result of inclusive determinations is given in [1],
|Vcb| = (41.9 ± 0.7) · 10−3. Exclusive determinations also rely on HQET. In the infinite quark
mass limit, all form factors are given by Isgur-Wise function, the function of product of four-
velocities of B and D(∗) mesons. Heavy Quark Symmetry defines normalization rate at w =
1 a point of maximal momentum transfer, q2 = (mB − mD(∗))2 and Vcb is obtained from
extrapolation to w = 1. Exclusive determinations are less precise at the present and give [1]
|Vcb| = (39.6 ± 0.9) × 10−3.

Recently, there has been an increased interest in study of NP effects in semileptonic decays
of B mesons involving tau leptons in the final state after the BaBar Colalboration published
the results that show the excess in the following ratios [25]

R∗
τ/ℓ = B(B → D∗τν)/B(B → D∗ℓν) = 0.332 ± 0.030 , (1)

Rτ/ℓ = B(B → Dτν)/B(B → Dℓν) = 0.440 ± 0.072 . (2)

Both results are consistent with measurements previously performed by Belle Collaboration [26].

The BaBar’s results turned out to be larger than the SM predictions R∗,SM
τ/ℓ = 0.252(3) [43] and

RSM
τ/ℓ = 0.296(16) [13], [43] with 3.4σ significance when the two observables are combined [42].

The eventual confirmation of these result might point to effects of NP in b→ cℓν transitions.
We interpret these results as signs of the NP and correspondingly study the NP contributions
through the effective field theory formalism. Consequently we discuss several specific models
that can produce the specific effective higher dimensional operators.

Some of leading questions in the flavour physics are related to so called SM flavour puzzle.
The flavour parameters (masses, mixing angles and a KM phase) are hierarchical; the quark
masses span several orders of magnitude and are all (except the top’s mass) much smaller than
the electroweak scale. Since the SM can be taken as an effective description of physics at
low energies, its Lagrangian may be supplemented with dimension six quark flavour changing
operators that parametrize the FCNCs which appear at subleading order in the SM. If the NP
has generic flavour structure such that the dimensionless couplings in these operators are of
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order O(1) then the measurements of FCNC observables constrain the scale of new physics
to be bigger than ∼ 102 · · · 104 TeV [7]. However, the unnaturalness of the Higgs boson mass
parameter is widely believed to be a problem which seeks for the resolution at the scale of
around one TeV. Thus, if the new physics that solves the hierarchy problem exists at this scale,
then it is constrained to have non-generic structure with couplings that resemble the SM. If
this is the case, there is so called NP flavour puzzle.

There are several ways of dealing with the flavour violations in the NP models. One pos-
sibility is that of an Natural Flavour Conservation (NFC). As an example, the procedure of
diagonalization of the mass matrices in the SM leaves the Yukawa couplings of quarks to Higgs
boson flavour diagonal. Introduction of the second scalar doublet is theoretically well motivated
for several reasons (see [12]). However it leads to appearance of two Yukawa matrices which
are in general not simultaneously diagonalizable. Weinberg and Glashow [20] and Paschos [21]
noted that if the quark of given helicity and charge has Yukawa interactions with only one Higgs
doublet, FCNC Yukawa interactions are avoided at Lagrangian level. This can be achieved by
the imposing the new discrete symmetries (for the most recent review of 2HDMs see e.g. [12].
The NP models in which all flavour and CP violation (in physical basis) originates from the
CKM matrix belong to the class of models that satisfy Minimal Flavour Violation (MFV), [15],
[16], see also lectures [17]. Within this criterion it is possible to relate the flavour violation for
different sectors (e.g. FCNCs in processes involving B and K mesons [16]). We return to these
scenarios through some specific examples later. The lectures are divided in the following sec-
tions: after introduction, sec. 2 describes parametrization of the amplitudes and form factors,
sec. 3 introduces basic elements of heavy quark effective theory. In sec. 4 and 5 we consider the
possible effects of the charged scalars from 2HDMs that couple more strongly to massive tau
leptons and whose impact on the semileptonic processes involving the light lepton in final state
is negligible. In sec. 6 we discuss the leptoquark model with the particular phenomenological
ansatz for Yukawa couplings with leptons and quarks. The particular form of the ansatz can
be consistently embedded into realistic GUT model.

2 Parametrization of the amplitudes and form factors

2.1 B → Dℓνℓ

The amplitude for the process B → Dℓν is given by product of matrix elements of the vector
minus axial (V −A) quark (hadronic) current Hµ ≡ c̄γµ(1 − γ5)b between the B and D meson
states and leptonic V −A current, Lµ = l̄γµ(1− γ5)νl between states of vacuum and l− ν pair,

A =
GF√

2
Vcb〈l(k1), ν̄l|Lµ|0〉 × 〈D(p′)|Hµ|B̄(p)〉. (3)

Both B̄(bq̄) and D(cq̄) mesons are pseudoscalars (JP = 0−), so the the matrix element of
the axial current between states B and D vanishes, due to the conservation of parity in QCD.
It is easy to understand this fact if we note that the axial current changes sign under parity
transformations, so that overall matrix element changes sign. The matrix element of the vector
current needs a non-perturbative QCD evaluation. We may use the Lorentz covariance to
parametrize it in terms of form factors

〈D(p′)|V µ|B̄(p)〉 = f+(q2)(p+ p′)µ + f−(q2)(p− p′)µ, (4)
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where the squared transferred momentum varies in the range m2
l ≤ q2 ≤ (mB −mD)2. Alter-

natively, the matrix element can be parametrized by:

〈D(pD)|c̄γµb|B̄(pB)〉 =
(
pµB + pµD − m2

B −m2
D

q2
qµ
)
f+(q2) +

m2
B −m2

D

q2
qµf0(q

2) , (5)

and the form factor f0(q
2) is suppressed in the case of light lepton, as can be seen from the

formula for the decay rate:

dΓ

dq2
(B → Dℓν̄ℓ) =

G2
F |Vcb|2

192π3m3
B

(
1 − m2

l

q2

)2

λ1/2

[
λ
(
1 +

m2
l

2q2

)
f+(q2)2

+
3

2

m2
l

q2
(m2

B −m2
D)2f0(q

2)2

]
,

(6)

where function λ is given by λ(m2
B ,m

2
D, q

2) = (m2
B −m2

D − q2)2 − 4m2
Dq

2. Also, in order to
avoid the spurious pole at q2 = 0, the kinematic constraint f+(0) = f0(0) is implied.

b

q

c

W b

q

c

Figure 1: Diagrams contributing to the semileptonic B decays: SM exchange of W boson (left)
and the exchange of the charged Higgs boson from the extended scalar sector (right)

In models that include charged scalar, the matrix element of scalar density is used 〈D|c̄b|B〉.
We may use the (anomalous Ward’s) identity

qµ〈D|c̄γµb|B〉 = (mb −mc)〈D|c̄b|B〉, (7)

to derive the formula for scalar density:

〈D|c̄b|B〉 =
m2
B −m2

D

mb −mc
f0(q

2). (8)

In the formula for decay rate, this term is also suppressed by m2
l /q

2, so that charged scalars do
not influence the decays involving light leptons.

Recently Fermilab Lattice and MILC Collaborations [28] performed the calculation of f+(q2)
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and f0(q
2) form factors in 2 + 1 lattice QCD using the Fermilab’s action [27]. The results are

presented in the Fig. 1. in [28]. They calculate the following two observables:

R(D) = 0.316(12)(7)

PL(D) = 0.325(4)(3).
(9)

Also, authors of the Ref. [29] find the similair result (R(D) = 0.31 ± 0.02) by combining the
experimental and theoretical input.

2.1.1 B → D∗ℓν

The matrix elements of the V −A current between the pseudo-scalar B̄ and vector D∗ mesons
depend on four independent form factors, V (q2), A0(q

2), A1(q
2) and A2(q

2)

〈D∗(p′, ǫα)|c̄γµb|B(p)〉 =
2iV (q2)

mB +mD∗

ǫµναβǫ
∗νpαp′β , (10a)

〈D∗(p′, ǫα)|c̄γµγ5b|B(p)〉 = 2mD∗ A0(q
2)
ǫ∗ · q
q2

qµ + (mB +mD∗)A1(q
2)

(
ǫ∗µ − ǫ∗ · q

q2
qµ

)

−A2(q
2)

ǫ∗ · q
mB +mD∗

(
(p+ p′)µ − m2

B −m2
D∗

q2
qµ

)
. (10b)

The calculation of the matrix element of V − A current in B → D∗ transition turns out to be
untrivial problem in Lattice QCD and results are unavailable at this moment. However, we may
learn something about these form factors by using the HQET, which is the topic of the next
section. We note that the form factor A0(q

2) does not enter the decay rates of the decays that
involve the leptons of negligible mass (electron, muon). It is important to learn more about
this form factor from the non-perturbative QCD, as it may hide the resolution for the current
disagreement with the experiment.

3 Heavy quark effective theory and B decays

In this section we present the short introduction to Heavy quark symmetry and corresponding
effective theory. More detailed and complete expositions of the subject can be found in nu-
merous reviews. Clear exposition is given by [34], where also the higher order corrections are
explained.

The degrees of freedom (fields) of Quantum Chromodynamics (QCD) at short distance are
quarks and gluons. Lagrangians that describe the phenomena change through Renormalization
Group (RG) transformations. This is the leading idea of Wilsonian effective field theory. The
important feature of the QCD is asymptotic freedom2. At short distances, or equivalently in
processes characterized by high momentum transfer, the effective gauge coupling becomes weak
and the perturbative methods of calculation are well applicable. In deep infra-red, instead of
gluons and quarks it is often more useful to define the theory in terms of another effective
degrees of freedom. Such Lagrangians are based on some approximate symmetries of QCD. In
principle, it is possible to match them to fundamental QCD Lagrangian, but because QCD is
genuine strongly coupled theory at large distances, this is rarely possible in practice. At

2This property is in four dimensions unique to the non-Abelian theories, QCD being an example.
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the energy scales smaller than approximately ΛQCD = 0.2GeV , new complex structures arise
which are intractable to analytical calculation tools. Such a phenomenon is confinement of
gluons and quarks. The hadronic properties are therefore described within QCD using the
numerical calculations on space-time lattices.

On the other hand, the progress has been made by discovering the approximate symmetries
of the hadronic systems; the earliest example being the isospin symmetry. This is approximate
symmetry that arises due to the difference in mass of up and down quarks, mu−md much smaller
than the characteristic QCD scale. Another example is chiral symmetry SU(2)L×SU(2)R, the
approximate symmetry of QCD that originates from the observation that masses of both u
and d quarks are much smaller than the QCD scale. The treatment simplifies by going to the
effective theory where mu,d are set to zero. Chiral symmetry is spontaneously broken in reality,
but the resulting effective theory (Chiral Perturbation Theory) allows systematic calculations
of corrections of order mu,d/ΛQCD.

In this chapter we will explain the basic physical picture of HQET, which we construct
when we recognize the new spin-flavour symmetry of QCD of the systems containing one heavy
quark (c or b). We will be interested in the hadron that contains a heavy quark whose mass
mQ ≫ ΛQCD and light degrees of freedom which we denote light cloud (complicated cloud of
light quarks and soft gluons3). In such hadron, and here we will consider mesons, mass be-
comes rather irrelevant for the non-perturbative dynamics of the light cloud. Exchange of the
momentum between light cloud and heavy quark are of the order of ΛQCD and the changes in
four-velocity4 of heavy quark are of order ΛQCD/mQ, so quark can be modelled as static source
of colour with conserved velocity. The creation of heavy quark-antiquark pairs is absent. This
also means that light cloud does not probe the relativistic degrees of freedom of heavy quark,
so its spin and colour magnetism decouple.

It is then instructive to construct the effective theory in which mQ can be taken to infinity
while keeping the velocity of heavy quark fixed. Flavour of heavy quark can be changed by
the interaction with some external current (i.e. through W boson field) but as long as the
new flavour is also heavier than the QCD scale, light cloud stays the same. This observations
still does not allow us to calculate the properties of the light cloud, but is useful in finding
the connections between the properties of different mesons containing heavy quarks. Also, the
systematic method of obtaining the corrections of order 1/MQ will be provided. The situation
is reminiscent of the well known observation in atomic physics in which chemical properties
of the atoms are independent on the isotope of the nucleus. The only parameters that mat-
ters is electric charge of nucleus, while its spin and mass decouple, up to some required precision.

3.1 HQET Lagrangian

The HQET is constructed to give simple description of processes in which heavy quark interacts
with the light quark by the exchange of soft gluons. The high energy scale (cutoff) of this theory
is of order mQ. Momentum of heavy quark is

pµQ = pµM − qµ = mQv
µ + kµ (11)

where pM is momentum of meson, qµ is momentum of the light cloud, and we define the residual
momentum as kµ = (mM −mQ)vµ − qµ, much smaller than the mQ. Velocity is normalized

3Light cloud is also called ”brown muck” in some literature.
4In the rest of the text the four-velocity is simply denoted as velocity.
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to v2 = 1 in our metric convention. The velocity of the heavy quark is vµQ =
pµ

Q

mQ
= vµ + kµ

mQ

and we notice that in the limit mQ → ∞ meson travels at the same four-velocity as heavy
quark. This means that the interaction with the light cloud leaves the velocity of heavy quark
conserved.
Let us approach to construction of HQET by writing the heavy quark field in the following
form:

Q(x) = e−mQv·x[Qv(x) + Qv(x)], (12)

where new fields are defined as

Qv(x) = emQv·x 1 + 6v
2

Q(x),

Qv = emQv·x 1 − 6v
2

Q(x).

(13)

Notice that fields Qv(x) and Qv(x) are constrained by:

6vQv(x) = Qv(x), 6vQv(x) = −Qv(x). (14)

Field Qv(x) produces the effects at leading order, whereas the field Qv produces the 1/mQ

effects. We work in Dirac basis of gamma matrices, in which Q(x)v is upper component of
quark Dirac spinor, as it can be seen from first equation in (13), because the matrix (1 + 6v)/2
becomes (1 + γ0)/2, in the rest frame of heavy quark.

Field Q(x) annihilates heavy quark with velocity v, but does not create antiquark. This field
is called ”large component”. Since in the HQET the creation of heavy quark-antiquark pairs is
absent, quark and antiquark live in totally different regions in momentum space, infinitely far
away in the limit mQ → ∞. For simplicity, we will now deal with one quark field only, although
everything can be done with antiquark also; the only changes are v → −v and Qv → Qv. In
that case the effects of the quark component are absent [31].

Let us insert the expansion (12) into the relevant kinetic part of QCD Lagrangian to get:

L = Q̄(i6D −mQ)Q(x)

= Q̄viv ·DQv − Q̄v(iv ·D + 2mQ)Qv + Q̄vi6D⊥Qv +Qvi6D⊥Q̄v,
(15)

where Dµ
⊥ = Dµ− vµv ·D. For illustration we give explicit derivation of the first term in above

formula:

Q̄ve
mQ v·x(i6D −mQ)emQ v·xQv

= Q̄v[mQ(6v − 1) + i6D]Qv

= Q̄viQv 6DQv

= Q̄v
1 + i6v

2
i6D1 + i6v

2
Qv

= Q̄viv ·DQv.

(16)

where third and fourth row are obtained by use of constraints (14). A remark is in order at this
point. The QCD Lagrangian (15) is the effective Lagrangian whose parameters are defined at
the scale of order of heavy quark mass, while the effects of short distance gluons are integrated
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out. It is the fact that after integrating out short distance field modes a la Wilson, besides
the running of dimensionless couplings, the tower of higher dimensional operators appears.
We neglect these operators in the Lagrangian(15), but their effects can be introduced through
radiative αS corrections, which are perturbative due to the asymptotic freedom.

From the Lagrangian (15) we see that field Qv(x) is massless, while the field component
Qv has mass 2mQ. These massive degrees of freedom we integrate out. We could proceed by
writing the generating functional for QCD with the Lagrangian (16), and then explicitly solve
the path integral for field Qv, which would lead to the generating functional determined by
the action functional containing the HQET Lagrangian. This method of derivation has been
achieved in Ref. [39].
Instead of performing this procedure, we will use the observation that the integrating out the
dynamical degree of freedom is equivalent up to overall normalization constant to solving the
equation of motion for the variable and then substituting back to the Lagrangian, under the
condition that the integral is of Gaussian type. It turns out that the renormalization constant
is functional determinant that can be absorbed into the normalization of generating functional
in gauge invariant manner, (see Ref. [39]).
We first insert the expansion (12) of the quark field into the QCD equation of motion that
follows from the Lagrangian (15) and get the:

i6DQv + (i6D − 2mQ)Qv = 0 (17)

Multiplying the above equation by P− =
1− 6v

2 and solving for Qv one gets:

Qv =
1

iv ·D + 2mQ − iǫ
i6D⊥Qv. (18)

One can see that small component is really suppressed by powers of order 1/mQ, and after the
insertion of this relation to the starting Lagrangian (15), one obtains the Lagrangian of HQET:

Leff. = Q̄viv ·DQv + Q̄vi6D⊥
1

iv ·D + 2mQ − iǫ
i6D⊥Qv. (19)

We can now expand the non-local second term from the above Lagrangian in powers of 1/mQ.
We use the following identity

Q̄v 6D⊥ 6D⊥ = Q̄vD
2Qv − Q̄v(D · v)2Qv +

g

2
Q̄vσ

µνFµνQv. (20)

The resulting expansion up to first order in 1/mQ is then the following one

LHQET = Q̄v i vDQv +
1

2mQ
Q̄vD

µ(ηµν − vµvν)D
νQv +

g

4mQ
Q̄vσ

µνFµνQv. (21)

In the heavy quark rest frame (~v = 0) 1/mQ terms correspond to non-relativistic kinetic energy
term and QCD version of Pauli’s term, respectively. In the infinite mass limit, only the first
term in the Lagrangian is present and the HQ symmetries are evident. In the presence of two
heavy quarks (b and c) the Lagrangian contains the sum of two corresponding terms. Since
there is no dependence in mQ, the SU(2) flavour symmetry emerges. Coupling of the gluons
to spin of the heavy quark is also contained in higher order term - we get the spin symmetry.
One can conclude that the heavy quark symmetry group is then SU(4). The new symmetry
implies some immediate application in spectroscopy of heavy mesons, see e.g. [36].
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3.2 Weak matrix elements and HQ

Let us now introduce the basic physical picture that allows the derivation of the relations
between different matrix elements of electroweak currents.
In HQ limit the state of the meson can be factorized as a product of states corresponding to
the state of heavy meson and light cloud

|M, jQ, jl〉 ≃ |Q, jQ〉|light cloud, jl〉. (22)

Imagine that we want to calculate the matrix element of any covariant weak current between
two (not necessarily the same) states of pseudoscalar heavy mesons 〈P ′, jQ, j′l |Γ|P, jQ, jl〉, in
the kinematical point in which there is no change in velocity, v = v′. Using the factorization
we get

〈P ′, jQ, j
′
l |Γ|P, jQ, jl〉 ≃ 〈Q, jQ |Γ|Q′, j′Q〉〈light cloud′, j′l | light cloud, jl〉

= 〈Q, jQ |Γ|Q′, j′Q〉δjl,j′l .
(23)

While there is no velocity change, the state of the light cloud is left unchanged and the overlap
(scalar product) of light cloud states is equal to 1. Also, if the flavour of the final heavy quark
state is changed, the overlap of light clouds is still the same. In this way it is possible to connect
matrix elements of the weak currents between different heavy mesons. In more general situation
the overlap is not trivial but can be parametrized by the function of the product of velocities
w = v · v′.
The HQ symmetry alone will not let us discover anything about this function and some non-
perturbative method of calculation, like QCD sum rules will be needed, but nevertheless relation
(23) contains great deal of information [31].

3.3 Isgur-Wise function

In this section we use the basic idea from previous section and study the matrix elements of
weak hadronic vector and axial currents between the meson states B and D(∗). Following ref.
[34], usual relativistic normalization of meson states is given by:

〈M(p′)|M(p)〉 = 2E(2π)3δ3(~p− ~p′). (24)

Since HQ symmetry relates heavy quarks at equal velocities, and the dependence of the mass of
heavy quark is absent, it is more suitable to use the following mass independent normalization:

〈M(v′)|M(v)〉 =
2E

mM
(2π)3δ3(~p− ~p′), (25)

with trivial relation to the conventional definition.
In HQ limit |M(v)〉 is only characterized by configuration of its light degrees of freedom.

Let us consider the elastic scattering of pseudoscalar meson P (v) → P (v′) by an external
vector current. Action of the current is to replace v → v′ and the corresponding change in the
momentum of the light cloud is:

q2 ≃ Λ2
QCD(v′ − v)2 ≃ Λ2

QCD(v · v′ − 1). (26)
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Lorentz covariance imposes the parametrization of the current matrix element by the functions
h± in the following way:

〈P (v′)|Q̄v′γµQ(v)|P (v)〉 = h+(w) (v + v′)µ + h−(w)(v − v′)µ, (27)

where w = v · v′ is conveniently chosen Lorentz invariant variable. By contracting the both
sides of above definition with (v−v′)µ and using the constraints (14), one finds that h−(w) = 0.
Let us now switch the notation and give function h+ special name, h+(w) ≡ ξ(w). Due to the
HQ flavour symmetry, the dynamics of light cloud does not differentiate between two different
heavy quarks, so the following relation is also true:

〈P ′(v′)|Q̄v′γµQ(v)|P (v)〉 = ξ(w) (v + v′)µ, (28)

where P ′ is a different psudoscalar meson. The universal function ξ(w) is called Isgur-Wise func-
tion, [38], and in HQ limit it describes any matrix element of the type 〈M ′, j′Q, j

′
l |Γ|M, jQ, jl〉,

where Γ is arbitrary Dirac’s covariant current.
For equal velocities, jµ = Q̄′

vγ
µQv is conserved current of heavy quark symmetry.5 The

corresponding conserved charges are the generators of this flavour symmetry:

NQ′Q =

∫
d3xj0(x). (29)

The diagonal elements are number operators and off-diagonal terms change one heavy quark to
another NQ′Q|P (v)〉 = |P ′(v)〉. It then follows that:

〈P ′(v)|NQ′Q|P (v)〉 = 〈P (v)|P (v)〉 = 2v0(2π)3δ3(0), (30)

and comparing to the relation (28) one concludes:

ξ(1) = 1, (31)

which can be understood in terms of the heuristic physical picture we gave in the previous
section. Isgur-Wise function can be visualized as the overlap of the light clouds boosted relative
to each other by v · v′.
The recoil energy of the meson P ′ in its rest frame is given by:

E = mP ′(v · v′ − 1) (32)

so the kinematical point v · v′ = 1 is called zero recoil point. Now let us apply the above results
to the usual parametrization of B → D form factors in the relativistic normalization of meson
states (24):

〈D(p′)|c̄γµb|B(p)〉 = f+(q2)
[
(p+ p′)µ − m2

B −m2
D

q2
qµ
]

+ f0(q
2)
m2
B −m2

D

q2
qµ,

(33)

5which can be checked from the leading term of the Lagrangian (21)

10

LECTURES ON NEW PHYSICS SEARCHES IN B → D(∗)τντ

HQ2013 41



where the transferred momentum q = p − p′. Comparing (33) to (28) we get the following
relations:

ξ(v · v′) = lim
m→∞

Rf+(q2)

= lim
m→∞

R
[
1 − q2

(mB +mD)2

]−1

f0(q
2),

(34)

where the constant R is given as R =
m2

B+m2
D−q2

2mBmD
and

v · v′ =
m2
B +m2

D − q2

2mBmD
. (35)

The limit m → ∞ is taken in such a way that v · v′ is kept fixed. The relations (34) are valid
as long as the momentum of the light cloud is not large enough to probe the scale mQ. This
condition is fairly satisfied in the case of B → D transition, for which

ΛQCD ≪ mb,c, (36)

due to smallness of the factor

(v · v′ − 1)max =
(m2

B −m2
D)2

2mBmD
= 0.6. (37)

The new spin symmetry leads to relation between pseudoscalar and vector meson matrix ele-
ments, as well. The vector meson with longitudinal polarization ǫ3 is related to pseudoscalar
meson in the effective theory through the action of the spin operator:

|V (v, ǫ3)〉 = 2S3
Q|P (v)〉. (38)

It then follows that

〈V ′(v′, ǫ3)|Q̄′
v′ΓQv|P (v)〉 = 〈P ′(v′)|Q̄′

v′(2S
3Γ)Qv|P (v)〉. (39)

We can evaluate the above expression in the rest frame of the final meson:

v′µ = (1, 0, 0, 0),

ǫµ3 = (0, 0, 0, 1),

S3 =
1

2
γ5γ

0γ3.

(40)

We then obtain the following commutation relations, for vector current:

2[S3
Q′ , V 0 −A0] = A3 − V 3 ,

2[S3
Q′ , V 3 −A3] = A0 − V 0 ,

2[S3
Q′ , V 1 −A1] = i(A2 − V 2) ,

2[S3
Q′ , V 2 −A2] = −i(A1 − V 1) .

(41)
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Combining (39) and (41) one relates the matrix elements of weak vector minus axial current
between the psudoscalars meson to the Isgur-Wise function:

〈V ′(v′, ǫ)|Q̄vγµ(1 − γ5)Qv|P (v)〉 = iǫµναβǫ∗νvαvβ ξ(v · v′)−
[ǫ∗µ(v · v′ + 1) − vµǫ∗ · v] ξ(v · v′). (42)

where the completely antisymmetric Levi-Civita symbol is normalized as ǫ0123 = −1. In more
conventional parametrization vector minus axial matrix element is given by:

〈D(p′, ǫ)|c̄γµ(1 − γ5)b|B(p)〉 =
2iǫµναβ

mB +mD∗
ǫ∗νp

′
αpβV (q2)

−
[
(mB +mD∗)ǫ∗µA1(q

2) − ǫ∗ · q
mB +m∗

D

(p′ + p)µA2(q
2)
]

− 2mD∗

ǫ∗ · q
q2

qµA0(q
2).

(43)

The function A3(q
2) is given as linear combination of form factors A1(q

2) and A2(q
2), subject

to a constraint A3(0) = A0(q
2) to cancel unphysical pole at q2 = 0:

A3(q
2) =

mB +mD

2mD∗

A1(q
2) − mB −mD∗

2mD∗

A2(q
2) (44)

Comparing (42) to (43) one finds the following relations [40]:

ξ(v · v′) = lim
m→∞

R∗V (q2) = lim
m→∞

R∗A0(q
2) = lim

m→∞
R∗A2(q

2)

lim
m→∞

R∗
[
1 − q2

(mB +mD∗)2

]−1

A1(q
2),

(45)

where R∗ = 0.9 is the D∗ version of constant R in the case of D meson.
Caprini, Lellouch and Neubert obtained dispersive constraints on the form factors in B → (D∗)
transitions fully exploiting the HQS including the 1/m corrections, [41]. The full expressions
for form factors can be found in Appendix of Ref. [43], where the form factor A0(q

2) is also
estimated. The recent results on the extraction of Isgur-Wise function from experimental
results, as well as several other useful results are found in [58].

4 New physics and helicity amplitudes

Let us introduce the following effective Hamiltonian

Heff =
4GFVcb√

2
Jbc,µ

∑

ℓ=e,µ,τ

(
ℓ̄γµPLνℓ

)
+ h.c. , (46)

where PL,R ≡ (1∓γ5)/2, while Jµbc is b→ c charged current that includes the V −A current and
additional beyond SM current given by the derivative of (pseudo)scalar density, and contributes
to the helicity suppressed amplitude and becomes important in the process with the tau lepton
is in final state:

Jµbc = c̄γµPLb+ gSLi∂
µ(c̄PLb) + gSRi∂

µ(c̄PRb) . (47)
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The leptonic current has the structure as in the SM, however, using the equation of motion
it can be shown that the above Hamiltonian can be realized in Two Higgs Doublet Models

(2HDM) of the type II [12], where the dimensionful coupling gSR ∼ −mb
tan2 β
m2

H+
.

It is convenient to introduce the helicity amplitudes formalism for a simpler calculations of
decay distributions. Let the momenta of the initial B meson, final M (D or D∗) meson, the
final final charged lepton and (anti)neutrino be p, p′, k1, k2, respectively. The angle θl is defined
as the angle between three momenta6 of D∗ and ℓ in the ℓ− ν center of mass (CM) frame (see
Fig. 2).
Let us introduce the lepton helicity amplitude, where ml is the helicity of the lepton in ℓν CM
frame

Lλl,m(q2, cos θℓ) = ǫ̃µ(m)〈l(k1,ml)νℓ(k2)|l̄γµ(1 − γ5)νℓ|0〉, (48)

and hadronic helicity amplitude:

HmM ,m(q2, cos θℓ) = ǫ̃∗µ(m)〈M(p′, ǫ)|l̄γµ(1 − γ5)νℓ|B̄(p)〉, (49)

where ǫ̃(m) are polarization vectors of virtual W boson (in the case of SM) or, equivalently, of
the lepton-neutrino pair. The mM labels the polarization of the vector meson in the final state.
The ǫ̃(m) satisfy the normalization and completeness relations

ǫ̃∗(m)ǫ̃(m′) = gmm′ ,
∑

mm′

ǫ̃µ(m)ǫ̃∗(m′) = gµν . (50)

The polarization vectors of the meson M satisfy the analogous relations:

ǫ∗α(m)ǫα(m′) = −δmm′ ,
∑

mm′

ǫ̃α(m)ǫ̃∗(m′)δmm′ = −gαβ +
pαp

′
β

m2
M

. (51)

Then the SM amplitudes can be expressed as the following sum of products of helicity ampli-
tudes, where m takes values (t, 0,±)

Aλτ ,mM

SM =
GF√

2

∑

m

ηmHλM ,mLλℓ,m. (52)

The factor ηm takes the values η±,0 = 1 and ηs = −1. In the same way we can calculate the
hadronic helicity amplitudes for effective vector current (47) and observe that the additional
terms in the current affect only H0t helicity amplitude:

H0t = HSM
0t

[
1 + (gSR − gSL)

q2

mb +mc

]
. (53)

In Ref. [43] several observables were explored and the contributions from the Hamiltonian (46)
is possible in all of them (for updated results see also [44]).

6for masses of the particles we reserve the explicit labels written in subscript
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l

B

Figure 2: The relevant kinematical variables in the semileptonic B decay

In the following we shortly summarize the findings from the paper [43]. The helicity am-
plitudes H00 and H0t contribute to amplitudes involving D∗

L’s, leading to a prediction for
the longitudinal decay rate. One can also study the singly differential longitudinal rate ratio
R∗
L(q2) defined analogously to R∗(q2) as described in [43]. A simple angular (opening an-

gle) asymmetry is defined as the difference between partial rates where the angle θ between
the D∗ and τ three-momenta in the τ − ν̄τ rest-frame is bigger or smaller than π/2. In the
decay modes with light leptons, this asymmetry (Aℓθ) can be used to probe for the presence
of right-handed b → c currents, since these contribute with opposite sign to H±± relative to
the SM. In the tau modes, it is sensitive only to the real part of NP gSR − gSL contribu-
tions and thus provides complementary information compared to the total rate (or R∗). On
the other hand, the inclusive asymmetry Aθ integrated over q2 is very small in the SM with
Aθ,SM = −6.0(8)%; for our NP benchmark point we obtain Aθ,NP = 3.4% , but even values as
low as −30% are still allowed. In [43] it was found that the tau spin asymmetry, defined as
Aλ(q

2) = [dΓτ/dq
2(λτ = −1/2) − dΓτ/dq

2(λτ = 1/2)]/[dΓτ/dq
2], where λτ = ±1/2 are tau

helicities defined in τντ center of mass frame, can provide additional useful information.

5 Lepton flavour universality violation in B decays

During the last three years there has been a systematic disagreement between the experimen-
tal and SM predicted theoretical values for the branching ratio of B → τν. The latest Belle
collaboration result B(B− → τ−ν̄τ ) = (0.72+0.27

−0.25 ± 0.11)× 10−4 [45] ameliorates somewhat the
enduring tension with the measured value of sin 2β in the global CKM fit. However, the current
world average experimental value still deviates from the SM prediction by 2.6σ significance if
Gaussian errors are assumed [9].

The B meson coupling constant is the only hadronic parameter entering the theoretical
branching ratio prediction. The errors of the most recent lattice QCD results are at the level
of 5% [46] and already sub leading compared to the dominant parametric uncertainty due to
|Vub|. One can eliminate the Vub dependence completely by introducing the LFU probing ratio
Rπ
τ/ℓ ≡ [τ(B0)/τ(B−)][B(B− → τ−ν̄τ )/B(B̄0 → π+ℓ−ν̄ℓ)] = 0.73±0.1. This is to be compared

to the SM prediction of Rπ,SM
τ/ℓ = 0.31(6) [42]. The measured value is more than a factor of 2
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bigger - a discrepancy with 2.6σ significance if Gaussian errors are assumed.
The τ lepton in the final state of the (semi)leptonic B meson decays is particularly interesting
due to the large τ mass which allows to probe parts of amplitudes in B meson (semi)leptonic
decays which are not accessible if the final state contains only light leptons. Possible NP

effects in the ratios R(∗)
τ/ℓ and Rπ

τ/ℓ can be approached by using the effective Lagrangian ap-

proach [42], [43].
We interpret the above anomalies as a possible sign of lepton flavour universality violation

(LFUV). The lepton flavour universality is one of the key predictions of the SM and is strongly
constrained in the pion and kaon sectors, where it was found to be in excellent agreement
with the SM. The signs of LFUV in B decays might be signs of NP which we parametrize
through the following extension of the SM Lagrangian with a set of higher dimensional opera-
tors (Qi) that are generated at a NP scale Λ above the electroweak symmetry breaking scale
v = (

√
2/4GF )1/2 ≃ 174 GeV

L = LSM +
∑

a

za
Λda−4

Qi + h.c. (54)

The label da stands for the dimensions of the operators Qa, while za are the dimensionless
Wilson coefficients (below we also use ca ≡ za(v/Λ)da−4). Two restrictions are enforced: (i)
dangerous down-type flavour changing neutral currents (FCNCs) and (ii) LFU violations in
the pion and kaon sectors are not to be generated at the tree level. The lowest dimensional

operators that can modify R
(∗)
τ/ℓ and Rπ

τ/ℓ are then

QL = (q̄3γµτ
aq3)J µ

3,a , Qi
R = (ūR,iγµbR)(H†τaH̃)J µ

3,a , (55a)

QLR = i∂µ(q̄3τ
aHbR)

∑
jJ

µ
j,a , Qi

RL = i∂µ(ūR,iH̃
†τaq3)

∑
jJ

µ
j,a , (55b)

where τa = σa/2, J µ
j,a = (l̄jγ

µτalj), H̃ ≡ iσ2H
∗ and i, j are generational indices.

Figure 3: Preferred parameter regions for effective operators Qi
R (left plot, as a funciton of complex cR Wilson

coefficient, and ǫR fixed to the best fit value), and for Qi
RL (right plot, as a function of real cRL Wilson coefficient

and the mixing ratio ǫRL). The best fit points are marked with an asterisk.

We work in the down quark mass basis, where qi = (V ji∗CKMuL,j , dL,i)
T , and charged lepton

mass basis, li = (V ji∗PMNSνL,j , eL,i)
T . The requirement that there are no down-type tree-level

FCNCs imposes flavour alignment in the down sector for the operators QL,QLR and Qi
RL. An

15

SVJETLANA FAJFER, IVAN NIŠANDŽIĆ
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additional possibility is to assume [43] the presence of new light invisible fermions, imitating the
missing energy signature of SM neutrinos in the b → uiτν decays. In the presence of general
flavour violating NP, contributions to b → u transitions are not generally related to b → c
transitions. In the case of Qi

R for example, the SM expectations are rescaled by |1− cR/2Vcb|2
in the case of Rτ/ℓ and by |1 + ǫRcR/2Vub|2 for Rπ

τ/ℓ. The parameters (ci, ǫi) can be obtained

by fitting the data using CKM inputs from the global fit as given in [42]. The results are
presented in Fig. 3. Among existing NP models the two-Higgs doublet models (2HDMs) are
obvious candidates to induce the Qi

RL operators. Unfortunately, none of the 2HDMs with
natural flavour conservation can simultaneously account for the three considered LFU ratios,
while in ref. [42] a 2HDM with more general flavour structure has been considered explaining
all the observed deviations. The results of the fits to 2HDM of Type III (this model has general
flavour structure) are given in Ref. [61].

6 The leptoquark and B → D(∗)τν

In this section we shortly describe effects of the leptoquark which residues in the SM represen-
tation (3, 2, 7/6) on the B → D(∗) transition. This field can be embedded into 45 dimensional
representation of SU(5) which can help in providing the unification of the SM gauge couplings
in non-supersymmetric framework. Also, this representation may correct the mass relations
between the down-type quarks and charged leptons [47]. Out of four scalar leptoquarks that
couple to leptons and quarks through renormalizable couplings, the two are viable: (3, 2, 1/6)
and (3, 2, 7/6). Other possibilities, (3, 1,−1/3) and (3, 3,−1/3), can destabilize proton, [54].
Since the (3, 2, 1/6) couples to right-handed neutrino, for minimality reasons we stick to the
analysis of the impact of ∆ ≡ (3, 2, 7/6) leptoquark [48], which couples to the SM fermions
through the following interaction Lagrangian

L = ℓR Y ∆†Q+ ūR Z ∆̃†L+ h.c. (56)

In the mass diagonal basis of the down-type quarks and charged leptons, the two isospin com-
ponents of the scalar couple to quarks and leptons as following:

L(2/3) = (ℓ̄RY dL)∆(2/3)∗ + (ūR[ZVPMNS ]νL)∆(2/3) + h.c ,

L(5/3) = (ℓ̄R[Y V †
CKM ]uL)∆(5/3)∗ − (ūRZℓL)∆(5/3) + h.c.

(57)

In the first two generations, the flavour violation is well fitted with the parameters CKM and
PMNS, so in order to explain the BaBar’s anomaly with the leptoquark contribution we may
require the couplings of ∆ to b̄τ and not to b̄e and b̄µ bilinear. Also, we require that only c
quark and not u or t couple to neutrinos. This can be achieved by demanding the following
Yukawa couplings ansatz :

Y =




0 0 0
0 0 0
0 0 y33


 , ZVPMNS =




0 0 0
z21 z22 z23
0 0 0


 . (58)

The ∆(5/3) Yukawa couplings are related to these by the CKM and PMNS rotations as follows:

Y V †
CKM = y33




0 0 0
0 0 0
V ∗
ub V ∗

cb V ∗
tb


 , Z =




0 0 0
z̃21 z̃22 z̃23
0 0 0


 . (59)
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After integrating out heavy ∆ field and performing appropriate Fierz transformations, we derive
the following Hamiltonian relevant for b→ cℓν transition

H =
4GF√

2
Vcb

[
(τ̄Lγ

µνL)(c̄LγµbL) + gS(τ̄RνL)(c̄RbL) + gT (τ̄Rσ
µννL)(c̄RσµνbL)

]
, (60)

including the SM contribution, where the dimensionless couplings gS,T are introduced through

the definition: gS(m∆) = 4gT (m∆) ≡ 1
4
y33z23
2m2

∆

√
2

GFVcb
. This relation between Wilson’s coefficients

is valid at matching scale m∆ which we set to the reference mass of m∆ = 500 GeV and changes
due to the QCD anomalous dimensions of scalar and tensor operators. The scale dependence
of the operators is cancelled in the leading logarithm approximation by the scale dependence
of corresponding Wilson’s coefficients:

gS(mb) =

(
αS(mb)

αS(mt)

)− γS

2β
(5)
0

(
αS(mt)

αS(m∆)

)− γS

2β
(6)
0

gS(m∆) ,

gT (mb) =

(
αS(mb)

αS(mt)

)− γT

2β
(5)
0

(
αS(mt)

αS(m∆)

)− γT

2β
(6)
0

gS(m∆).

(61)

Anomalous dimension coefficients are γS = −8, γT = 8/3 and coefficient β
(f)
0 = 11 − 2/3nf ,

where nf is a number of active quark flavours. The coefficients are then run to the beauty quark
scale, µ = mb = 4.2 GeV, at which the matrix elements of hadronic currents are calculated.
Difference between running of gS and gT modifies the original matching scale relation to

gT (mb) ≃ 0.14 gS(mb). (62)

Figure 4: Constraints on the couplings to bτ (y33) and to cµ (z̃22) coming from the 1 σ region of R(∗)
τ/ℓ

(thin

hyperbolic region), 90 % CL upper bounds on τ → µγ (dark band) and τ → eγ (bright band). Muon magnetic
moment upper bound is denoted by horizontal dashed lines. Vertical dashed lines are the perturbativity cuts in
the y33 direction. Doubly (singly) hatched region is the 1σ (2σ) region

17

SVJETLANA FAJFER, IVAN NIŠANDŽIĆ
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The presence of both (pseudo)scalar and tensor operators requires the calculation of ma-
trix elements of the (pseudo)scalar and tensor matrix elements. The matrix element of the
(pseudo)scalar operator can be readily calculated by using the identity (7).
Further, the matrix elements of tensor operator between the B and D states can be parametrized
with the single function T (q2) [29]

〈D(pD)|c̄σµνb|B̄(pB)〉 = −i(pµBpνD − pµDp
ν
B)

2fT (q2)

mB +mD
, (63)

while the matrix element of tensor operator between B and vector D∗ state has the form [58]

〈D∗(pD∗ , ǫ)|c̄σµν(1 − γ5)b|B̄(pB)〉 = T0(q
2)

ǫ∗ · q
(mB +mD∗)2

ǫµναβ p
α
B p

β
D∗ + T1(q

2)ǫµναβp
α
Bǫ

∗β

+ i
[
T3(q

2)(ǫ∗µpB,ν − ǫ∗νpB,µ) + T4(q
2)(ǫ∗µpD∗,ν − ǫ∗νpD∗,µ)

+ T5(q
2)

ǫ∗ · q
(mB +mD∗)2

(pB,µpD∗,ν − pB,νpD∗,µ)
]
. (64)

The scalar and tensor helicity amplitudes can be readily calculated by using:

AmM ,mℓ

S = −gSHmM

S Lmτ

l

AmM ,mℓ

T = −gT
∑

m,m′

ηmηm′HmM

m,m′L
mℓ

m,m′ . (65)

where the tensor helicity amplitudes are given in analog to (48) and (49), with the only differ-
ence that we now calculate contractions of the tensorial matrix elements with two polarization
vectors of the ℓ− ν pair, see e.g. [53].
The corresponding form factors are discussed in [29], [58], [48] and are out of scope of the
present text.
It turns out that multitude of the processes constrain the above Yukawa couplings ansatz, par-
ticularly l′ → lγ lepton flavour changing processes. More details on relevant calculations can
be found in [48]. Here we insert only the final graph with all constraints, see Fig. 4. It turns
out that the contribution of ∆ can fit the BaBar’s anomaly through the minimal predictive
couplings ansatz, and also have interplay with the physics of GUT scale.
The Yukawa ansatz (58) can be consistently implemented in SU(5) GUT model and the prefer-
able ratios of the couplings z̃i can be evaluated. This shows remarkable potential of low energy
precision flavour constraints for physics of very high energies.

7 Summary

We investigated possibilities to observe NP contributions in B → D∗τντ and B → Dτντ . In
addition to the ratio of B → D∗τντ and B → Dτντ , the NP might modify a number of new
variables. The study is performed within most general framework of the effective Lagrangian,
as well as within few models of NP. The complete study of a particular leptoquark contribution
in B → D∗τντ and B → Dτντ has been performed, accompanied by the constraints coming
from from low energy phenomenology. The existing discrepancy can be well explained within
a proposed model.
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Spectroscopy and Regge Trajectories of Heavy

Quarkonia
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The mass spectra of charmonia and bottomonia are calculated in the framework of the
relativistic quark model. The Regge trajectories of heavy quarkonia are constructed. All
daughter trajectories are almost linear and parallel, while parent trajectories exhibit some
nonlinearity. Such nonlinearity occurs only in the vicinity of ground states and few lowest
excitations and is more pronounced for bottomonia, while it is only marginal for charmo-
nia. The obtained results are compared with available experimental data, and a possible
interpretation of the new charmonium-like states above open charm production threshold
is discussed.

1 Introduction

In recent years a vast amount of experimental data on the heavy quarkonium spectroscopy
has been accumulated [1]. The number of known states is constantly increasing. Thus, in
the last eight years more than ten new charmonium-like states have been discovered [2]. The
total number of charmonium states, listed in the Particle Data Group Listings [1], is 25 at
present. Some of the new states (such as ηc(2S), hc, χc2(2P ), etc.) are the long-awaited
ones within the quark model, while some others, with masses higher than the threshold of the
open charm production, have narrow widths and unexpected decay properties [2]. There are
theoretical indications that some of these new states could be the first manifestation of the
existence of exotic hadrons (tetraquarks, molecules, hybrids etc.), which are predicted in QCD
[3]. In order to explore such options, a comprehensive understanding of the heavy quarkonium
spectroscopy up to rather high orbital and radial excitations is required. The experimentally
known bottomonium spectrum consists of 20 states [1]. Therefore, the investigation of the
masses of the excited heavy quarkonia states presents an important and interesting problem.
To achieve this goal one should treat the quark dynamics in mesons completely relativistically.
Here we extend the approach previously used for the investigation of light meson spectroscopy
[4] to heavy quarkonia. In order to improve our description, leading radiative corrections to
the heavy quark potential [5] are also taken into account. Such corrections are suppressed by
additional powers of αs, which are rather small for heavy quarkonia, and are known only in the
framework of the v2/c2 expansion. Therefore we treat them perturbatively. The calculation of
the masses of highly orbitally and radially excited states up to the fifth excitation is carried
out. On this basis, the Regge trajectories for charmonia and bottomonia can be constructed
both in the total angular momentum J and radial quantum number nr, and properties like
linearity, parallelism and equidistance of these trajectories can be checked. There are reasons
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to expect that the parent Regge trajectories can be nonlinear [6, 7] due to the compactness of
their ground and lowest excited states, which puts them in the region where both the linear
confining and Coulomb parts of the quark-antiquark potential play a comparable role.

2 Relativistic quark model

In the relativistic quark model based on the quasipotential approach a meson is described by the
wave function of the bound quark-antiquark state, which satisfies the quasipotential equation
of the Schrödinger type [8, 9]

(
b2(M)

2µR
− p2

2µR

)
ΨM (p) =

∫
d3q

(2π)3
V (p,q;M)ΨM (q), (1)

where

µR =
M4 − (m2

1 −m2
2)

2

4M3
, b2(M) =

[M2 − (m1 +m2)
2][M2 − (m1 −m2)

2]

4M2
. (2)

Here M is the meson mass, m1,2 are the quark masses, and p is their relative momentum.
The kernel V (p,q;M) in Eq. (1) is the QCD-motivated quasipotential operator of the

quark-antiquark interaction, which is constructed with the help of the off-mass-shell scattering
amplitude, projected onto the positive energy states. It is assumed that the effective interaction
is the sum of the usual one-gluon exchange term with the mixture of long-range vector and scalar
linear confining potentials

V (p,q;M) = ū1(p)ū2(−p)
{

4

3
αsDµν(k)γµ1 γ

ν
2 + V Vconf(k)Γµ1Γ2;µ + V Sconf(k)

}
u1(q)u2(−q), (3)

where the vector confining potential contains the Pauli interaction: Γµ(k) = γµ + iκ
2mσµνk

ν .
Here αs is the QCD coupling constant, Dµν is the gluon propagator in the Coulomb gauge, γµ
and u(p) are the Dirac matrices and spinors and k = p − q; κ is the Pauli interaction constant
characterizing the anomalous chromomagnetic moment of quarks. Vector and scalar confining
potentials in the nonrelativistic limit reduce to

V Vconf(r) = (1 − ε)(Ar +B), V Sconf(r) = ε(Ar +B), (4)

where ε is the mixing coefficient. Therefore, in this limit the Cornell-type potential is reproduced
VNR(r) = − 4

3
αs

r +Ar +B.
All the model parameters have the same values as in our previous papers [8, 4, 10]: the

constituent quark masses mu = md = 0.33 GeV, ms = 0.5 GeV, mc = 1.55 GeV, mb = 4.88
GeV, and the parameters of the linear potential A = 0.18 GeV2 and B = −0.16 GeV. The value
of the mixing coefficient of vector and scalar confining potentials ε = −1 has been determined
from the consideration of charmonium radiative decays [8] and matching heavy quark effective
theory (HQET). Finally, the universal Pauli interaction constant κ = −1 has been fixed from
the analysis of the fine splitting of heavy quarkonia 3PJ - states [8]. In this case, the long-range
chromomagnetic interaction of quarks, which is proportional to (1 + κ), vanishes in accordance
with the flux-tube model.

The investigations of the heavy quark dynamics in heavy mesons indicate that the charm
quark is not heavy enough to be considered as nonrelativistic. Indeed, estimates of the averaged
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velocity squared for the ground-state charmonium give the value 〈v2/c2〉 ∼ 0.25. For excited
charmonium states the 〈v2/c2〉 values are even higher. Therefore, a reliable calculation of the
charmonium spectroscopy requires a completely relativistic treatment of the charmed quark
without an expansion in its velocity. The quasipotential (3) can in principal be used for arbitrary
quark masses. The substitution of the Dirac spinors into (3) results in an extremely nonlocal
potential in the configuration space. Clearly, it is very hard to deal with such potentials
without any additional approximations. In order to simplify the relativistic QQ̄ potential,

we make the following replacement in the Dirac spinors: ǫ1,2(p) =
√
m2

1,2 + p2 → E1,2 ≡
(M2 −m2

2,1 +m2
1,2)/2M (see the discussion of this point in [4, 10]). This substitution makes

the Fourier transformation of the potential (3) local. The resulting QQ̄ potential then reads

V (r) = VSI(r) + VSD(r), (5)

where the explicit expression for the spin-independent VSI(r) and spin-dependent VSD(r) parts
can be found in Ref. [4].

3 Results and discussion

We solve the quasipotential equation with the quasipotential (5), which nonperturbatively ac-
counts for the relativistic dynamics of both heavy quarks, numerically. Then we add the
one-loop radiative corrections and the additional one-loop correction for bottomonium due to
the finite mass [8] of the charmed quark by using perturbation theory. The calculated masses of
charmonia and bottomonia are given in Tables 1,2, where n = nr + 1, nr is the radial quantum
number, L, S and J are the quantum numbers of the orbital, total spin and total angular mo-
menta, respectively. They are confronted with available experimental data from PDG [1], good
agreement is found. It is important to note that the nonperturbative relativistic treatment gives
a better agreement with data than our previous heavy quarkonium mass spectrum calculation
[8], where only relativistic corrections up to v2/c2 order were taken into account. However,
the differences between former and new predictions are rather small for most of the low-lying
states and become noticeable only for higher excitations, where relativistic effects turn out to
be particularly important.

In our analysis we calculated masses of both orbitally and radially excited heavy quarkonia
up to rather high excitation numbers (L = 5 and nr = 5). This makes it possible to construct
the Regge trajectories in the (J,M2) and (nr,M

2) planes using the following definitions:
(a) the (J,M2) Regge trajectory: J = αM2 + α0;
(b) the (nr,M

2) Regge trajectory: nr = βM2 + β0,
where α, β are the slopes and α0, β0 are the intercepts. These relations arise in most models
of quark confinement, but with different values of the slopes.

In Figs. 1, 2 we plot the Regge trajectories in the (J,M2) and (nr,M
2) planes for char-

monia and bottomonia. We see that the calculated charmonium masses fit nicely to the linear
trajectories in both planes (maybe with the exception of the parent trajectories, where the J/ψ
and ηc mesons seem to have slightly lower masses). These trajectories are almost parallel and
equidistant. For the bottomonium the situation is more complicated. The daughter trajectories,
which involve both radially and orbitally excited states, turn out to be almost linear. On the
other hand, the parent trajectories, which start from ground states, are exhibiting a nonlinear
behaviour in the lower mass region. Such nonlinearity is most pronounced in bottomonium.
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State Theory Experiment State Theory Experiment
n2S+1LJ JPC meson mass n2S+1LJ JPC meson mass

11S0 0−+ 2981 ηc(1S) 2980.3(1.2) 23D1 1−− 4150 ψ(4160) 4153(3)
13S1 1−− 3096 J/ψ(1S) 3096.916(11) 23D2 2−− 4190
21S0 0−+ 3635 ηc(2S) 3637(4) 23D3 3−− 4220
23S1 1−− 3685 ψ(2S) 3686.09(4) 21D2 2−+ 4196 X(4160)? 4156(2925)
31S0 0−+ 3989 33D1 1−− 4507
33S1 1−− 4039 ψ(4040) 4039(1) 33D2 2−− 4544
41S0 0−+ 4401 33D3 3−− 4574
43S1 1−− 4427 ψ(4415) 4421(4) 31D2 2−+ 4549
51S0 0−+ 4811 43D1 1−− 4857
53S1 1−− 4837 43D2 2−− 4896
61S0 0−+ 5155 43D3 3−− 4920
63S1 1−− 5167 41D2 2−+ 4898
13P0 0++ 3413 χc0(1P ) 3414.75(31) 13F2 2++ 4041
13P1 1++ 3511 χc1(1P ) 3510.66(7) 13F3 3++ 4068
13P2 2++ 3555 χc2(1P ) 3556.20(9) 13F4 4++ 4093
11P1 1+− 3525 hc(1P ) 3525.41(16) 11F3 3+− 4071
23P0 0++ 3870 χc0(2P ) 3918.4(1.9) 23F2 2++ 4361
23P1 1++ 3906 23F3 3++ 4400
23P2 2++ 3949 χc2(2P ) 3927.2(2.6) 23F4 4++ 4434
21P1 1+− 3926 21F3 3+− 4406
33P0 0++ 4301 13G3 3−− 4321
33P1 1++ 4319 13G4 4−− 4343
33P2 2++ 4354 X(4350)? 4351(5) 13G5 5−− 4357
31P1 1+− 4337 11G4 4−+ 4345
43P0 0++ 4698 13H4 4++ 4572
43P1 1++ 4728 13H5 5++ 4592
43P2 2++ 4763 13H6 6++ 4608
41P1 1+− 4744 13H5 5+− 4594
13D1 1−− 3783 ψ(3770) 3772.92(35)
13D2 2−− 3795
13D3 3−− 3813 X(3820) 3823.5(2.5)
11D2 2−+ 3807

Table 1: Charmonium mass spectrum (in MeV).
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State Theory Experiment State Theory
n2S+1LJ JPC meson mass n2S+1LJ JPC

11S0 0−+ 9398 ηb(1S) 9398.0(3.2) 23D1 1−− 10435
13S1 1−− 9460 Υ(1S) 9460.30(26) 23D2 2−− 10443
21S0 0−+ 9990 ηb(2S) 9999(4) 23D3 3−− 10449
23S1 1−− 10023 Υ(2S) 10023.26(31) 21D2 2−+ 10445
31S0 0−+ 10329 33D1 1−− 10704
33S1 1−− 10355 Υ(3S) 10355.2(5) 33D2 2−− 10711
41S0 0−+ 10573 33D3 3−− 10717
43S1 1−− 10586 Υ(4S) 10579.4(1.2) 31D2 2−+ 10713
51S0 0−+ 10851 43D1 1−− 10949
53S1 1−− 10869 Υ(10860) 10876(11) 43D2 2−− 10957
61S0 0−+ 11061 43D3 3−− 10963
63S1 1−− 11088 Υ(11020) 11019(8) 41D2 2−+ 10959
13P0 0++ 9859 χb0(1P ) 9859.44(52) 13F2 2++ 10343
13P1 1++ 9892 χb1(1P ) 9892.78(40) 13F3 3++ 10346
13P2 2++ 9912 χb2(1P ) 9912.21(40) 13F4 4++ 10349
11P1 1+− 9900 hb(1P ) 9899.3(1.0) 11F3 3+− 10347
23P0 0++ 10233 χb0(2P ) 10232.5(6) 23F2 2++ 10610
23P1 1++ 10255 χb1(2P ) 10255.46(55) 23F3 3++ 10614
23P2 2++ 10268 χb2(2P ) 10268.65(55) 23F4 4++ 10617
21P1 1+− 10260 hb(2P ) 10259.8(1.2) 21F3 3+− 10615
33P0 0++ 10521 13G3 3−− 10511
33P1 1++ 10541 χb(3P ) 10534(9) 13G4 4−− 10512
33P2 2++ 10550 13G5 5−− 10514
31P1 1+− 10544 11G4 4−+ 10513
43P0 0++ 10781 13H4 4++ 10670
43P1 1++ 10802 13H5 5++ 10671
43P2 2++ 10812 13H6 6++ 10672
41P1 1+− 10804 13H5 5+− 10671
13D1 1−− 10154
13D2 2−− 10161 Υ(1D) 10163.7(1.4)
13D3 3−− 10166
11D2 2−+ 10163

Table 2: Bottomonium mass spectrum (in MeV).
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Figure 1: Parent and daughter (J,M2) Regge trajectories for charmonium (left) and bottomo-
nium (right) states with natural (P = (−1)J ) parity. Diamonds are predicted masses. Available
experimental data are given by dots with particle names. The dashed line corresponds to a
nonlinear fit for the parent trajectory.

The origin of this nonlinearity can be easily understood, if one compares the mean radii of these
states.

State
√

〈r2〉ψ
√
〈r2〉Υ State

√
〈r2〉ψ

√
〈r2〉Υ

1S 0.37 0.22 2D 0.99 0.76
1P 0.59 0.41 1H 1.08 0.85
2S 0.71 0.50 3P 1.09 0.84
1D 0.74 0.54 2F 1.09 0.85
2P 0.87 0.65 4S 1.16 0.90
1F 0.87 0.65 3D 1.18 0.94
3S 0.94 0.72 4P 1.26 1.01
1G 0.98 0.75 5S 1.32 1.07

Table 3: Mean square radii
√

〈r2〉 for the spin-singlet states
of charmonia and bottomonia (in fm).

The values of the mean square
radii

√
〈r2〉 of charmonia and

bottomonia, calculated in our
model, are given in Table 3.
The static potential of the
quark-antiquark interaction is
plotted in Fig. 3 (solid line).
In this figure we also separately
plot the contributions from lin-
ear confinement (dashed line)
and of the modulus of the
Coulomb potential (dotted line).
As seen form Fig. 3, the
Coulomb potential dominates
for distances less than 0.15 fm, while the confining potential is dominant for distances larger
than 0.5 fm. In the intermediate region both potentials play an equally important role. There-
fore the light mesons and charmonia (with the exception of the ηc and J/ψ which are in the
intermediate region) have characteristic sizes which belong to the region, where the confining
potential dominates in the interquark potential. This leads to the emergence of the linear
Regge trajectories. On the contrary, the ground and few first excited states of bottomonia have
smaller sizes and fall into the region, where the Coulomb part of the potential gives an impor-
tant contribution. As a result, the parent Regge trajectories of bottomonia are nonlinear, while
the daughter trajectories (which fall into the region, where the confining potential is dominant)
are still linear ones. In Ref. [6] an interpolating formula between the limiting cases of pure
Coulomb and linear interactions was proposed. It can be written as follows:

(a) for the parent trajectory in the (J,M2) plane: M2 =
(
J − γ1

(J+2)2 + γ0

)
/γ,
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Figure 2: The (nr,M
2) Regge trajectories for vector (S-wave), tensor and vector (D-wave)

charmonium (left) and bottomonium (right) states (from bottom to top). Notations are the
same as in Fig. 1.

(b) for the J = 1 trajectory in the (nr,M
2) plane: M2 =

(
nr − τ1

(nr+2)2 + τ0

)
/τ,

where the parameters γ, τ , γ0, τ0 and γ1, τ1 determine the slopes, intercepts and nonlinearity of
the Regge trajectories, respectively [9]. We find that the nonlinearity of the charmonium Regge
trajectories is almost negligible, and its account does not significantly improve the quality of
the fit compared to the linear one.

3.1 Comparison with experiment
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L

Figure 3: Static potential of the quark-
antiquark interaction without the constant
term (solid line). Dashed line shows the lin-
ear confining potential contribution, while
dotted line corresponds to the modulus of
the Coulomb potential.

We first discuss the recently found quarkonium
states below the open flavour production thresh-
old. The observation and measurement of the
mass of the pseudoscalar ground state ηb [1] pro-
vides a significant information about the spin-
spin interaction in heavy quarkonia. The aver-
aged bottomonium hyperfine splitting measured
in Υ(3S) → ηb(1S)γ, Υ(2S) → ηb(1S)γ and
Υ(2S) → ηb(2S)γ decays is ∆Mhfs(1S) ≡
MΥ(1S) − Mηb(1S) = 69.3 ± 2.8 MeV and
∆Mhfs(2S) ≡ MΥ(2S) − Mηb(2S) = 48.7 ± 2.3 ±
2.1 MeV [1, 11]. Very recently the Belle Collabora-
tion [12] reported the first observation of the radia-
tive transitions hb(1P ) → ηb(1S)γ and hb(2P ) →
ηb(2S)γ. The measured ηb(1S) mass is 9401.0 ±
1.9+1.4

−2.4 MeV, ηb(2S) mass is 9999.0±3.5+2.8
−1.9 MeV

and the hyperfine splittings ∆Mhfs(1S) = 59.3 ±
1.9+2.4

−1.4 MeV and ∆Mhfs(2S) = 24.3+4.0
−4.5 MeV [12].

Our predictions for these splittings, ∆Mhfs(1S) = 62 MeV and ∆Mhfs(2S) = 33 MeV, are in
agreement with the experimental values. Note that our model correctly predicts the branching
ratios of the corresponding radiative decays [8].

Another important experimental test of the structure of the spin splittings in heavy quarko-
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nia comes from the measurement of the masses of the spin-singlet P levels first in charmo-
nium hc(1P ) [1] and very recently in bottomonium hb(1P ) and hb(2P ) [13]. The measured
masses of these states almost coincide with the spin-averaged centroid of the triplet states
〈M(3PJ)〉 = [M(χQ0) + 3M(χQ1) + 5M(χQ2)]/9. The hyperfine mass splittings ∆Mhfs(nP ) ≡
〈M(n3PJ)〉 −M(n1P1) in bottomonium are found to be ∆Mhfs(1P ) = (1.62 ± 1.52) MeV and
∆Mhfs(2P ) = (0.48+1.57

−1.22) MeV [13]. This observation indicates that the spin-spin contribution
is negligible for P levels, and thus shows the vanishing of the long-range chromomagnetic in-
teraction in heavy quarkonia. In our model this is the result of the choice of the value of the
long-range chromomagnetic quark moment κ = −1. Note that our original predictions [8] for
the spin-singlet masses are confirmed by these measurements.

The recently observed Υ(13D2) state is the only D-wave state found below the threshold of
open flavour production. Our prediction for its mass (see Table 2) is in good agreement with
the measured value. It will be interesting to observe other Υ(1D) states in order to test further
our understanding of spin-orbit and spin-spin interactions in heavy quarkonia. The mass of the
newly observed χb(3P ) state is also in accord with our prediction.

Next we discuss the observed states above the open flavour production threshold. The most
well-established states are the vector 1−− states. For charmonium PDG [1] lists seven such
states: ψ(3770), ψ(4040), ψ(4160), X(4260), X(4360), ψ(4415) and X(4660), from which only
the ψ states are included in the PDG Summary Tables [1]. These states are believed to be
ordinary cc̄ charmonium (with isospin I = 0). They are well described by our model (see
Table 1): ψ(4040) and ψ(4415) are the 33S1 and 43S1 states, while ψ(3770) and ψ(4160) are
the 13D1 and 23D1 states, respectively. These ψ states fit well to the corresponding Regge
trajectories (see Fig. 2). On the other hand, the three new vector states X are considered as
unexpected exotic states (their isospin is not determined experimentally). Indeed, we do not
have any cc̄ candidates for these states in Table 1. Contrary, in Ref. [14] we have found that these
states can be described in our model as tetraquarks composed from a diquark and antidiquark
([cq][c̄q̄], q = u, d). In particular, the X(4260) and X(4660) states can be interpreted as the
1−− states of such tetraquarks with a scalar diquark [cq]S=0 and scalar antidiquark [c̄q̄]S=0

in the relative 1P and 2P states and predicted masses 4244 MeV and 4666 MeV, respectively
[14]. The X(4360) can be viewed as the 1−− tetraquark with the axial vector diquark [cq]S=1

and axial vector antidiquark [c̄q̄]S=1 in the relative 1P state, which mass is predicted to be
4350 MeV [14].

The three vector bottomonium states, Υ(10580), Υ(10860) and Υ(11020), observed above
open bottom threshold [1], are rather well described in our model as 43S1, 53S1 and 63S1 states
(see Table 2), the mass of Υ(11020) being somewhat higher than the experimental value. They
fit to the corresponding Regge trajectory in Fig. 2.

The experimentally observed 2P charmonium states are χc2(2P ) and χc0(2P ) which masses
are predicted slightly higher (by about 20 MeV and 45 MeV, respectively) in our model. From
Table 1 we see that the exotic state X(3872) cannot be described as the 1++ 23P1 cc̄ state
or the 2−+ 11D2 cc̄ state. If this state belonged to either 2P or 1D multiplets, this could
signal a large fine splitting in these multiplets, since the X(3872) mass is 55 MeV below
χc2(2P ) and 100 MeV above ψ(3770). As we see from Table 1, our model does not sup-
port such large fine splittings. In Ref. [14] we argued that X(3872) can be considered as the
1++ ground state tetraquark, composed from the scalar and axial vector diquark and antidi-
quark (([cq]S=0[c̄q̄]S=1 + [cq]S=1[c̄q̄]S=0)/

√
2)), which mass is predicted to be 3871 MeV. As we

see from Table 1, the X(4160) and X(4350) can be attributed judging from the mass value
and charge parity C = + both to the pseudo tensor 2−+ spin-singlet 21D2 and tensor 2++
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spin-triplet 33P2 charmonium states, respectively. They fit well to the corresponding Regge
trajectories in Figs. 1, 2.

The X(4140) state, observed by CDF in B+ → K+φJ/ψ decays [15], can correspond in our
model to the scalar 0++ charmed-strange diquark-antidiquark [cs]S=1[c̄s̄]S=1 ground state with
predicted mass 4110 MeV, or the axial vector 1++ one ([cs]S=0[c̄s̄]S=1 + [cs]S=1[c̄s̄]S=0)/

√
2)

with calculated mass 4113 MeV [14]. Two of the three charmonium-like charged X± states
reported by Belle [16], which are explicitly exotic, can be interpreted in our model as tetraquark
states. We do not have tetraquark candidate for the X(4040)+ structure, while the X(4250)+

can be considered as the charged partner of the 1− 1P state [cu]S=0[c̄d̄]S=0 or as the 0− 1P
state of the ([cu]S=0[c̄d̄]S=1 +[cu]S=1[c̄d̄]S=0)/

√
2) tetraquark with predicted masses 4244 MeV

and 4267 MeV, respectively [14]. The X(4430)+ could be the first radial (2S) excitation of the
1+ X(3872) tetraquark or the 0+ 2S [cu]S=1[c̄d̄]S=1 tetraquark, which have very close masses
4431 MeV and 4434 MeV [14].

As we see, a consistent picture of the excited quarkonium states emerges in our model. All
well-established states and most of the states, which need additional experimental confirmation,
can be interpreted as excited quarkonium or diquark-antidiquark tetraquark states.

4 Conclusions

The mass spectra of charmonia, bottomonia and Bc mesons were calculated in the framework of
the relativistic quark model based on the quasipotential approach. Highly radially and orbitally
excited quarkonium states were considered. On this basis, the Regge trajectories of heavy
quarkonia were constructed both in the (J,M2) and (nr,M

2) planes. A different behaviour of
these trajectories was observed for parent and daughter trajectories. All daughter trajectories
turn out to be almost linear and parallel, while parent trajectories exhibit some nonlinearity.
Such nonlinearity occurs only in the vicinity of ground states and few lowest excitations and
is mostly pronounced for bottomonia. For charmonia this nonlinearity is only marginal, and
its account does not significantly improve the fit. It was shown that the masses of the excited
states of heavy quarkonia are determined by the average distances between quarks larger than
0.5 fm, where the linear confining part of the quark-antiquark interaction dominates. This
leads to the emergence of almost linear Regge trajectories. On the other hand, a few lowest
quarkonium states have average sizes smaller than 0.5 fm and fall in the region, where both
the Coulomb and confining potentials play an important role. As a result, the parent Regge
trajectories exhibit a certain nonlinearity in this region.

A detailed comparison of the calculated heavy quarkonium masses with available exper-
imental data was carried out. It was found that all data for the states below open flavour
production threshold are well reproduced in our model: the difference between predicted and
measured masses does not exceed few MeV. For higher excited states, which are above this
threshold, most of the well-established conventional states are also well described by our ap-
proach, the difference between theory and experiment being somewhat larger, but still within
20 MeV. In this case the multichannel consideration is desirable. It was shown that these states
fit well to the corresponding Regge trajectories. Other states, which have unexpected proper-
ties and are therefore believed to have an exotic origin, were also discussed. As it was shown
in our previous calculation [14], most of these states can be described as diquark-antidiquark
tetraquarks. Therefore we have a self-consistent picture of the heavy quarkonium spectra.
Future experimental studies of yet unobserved conventional quarkonium states and a clarifica-
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tion of the nature and quantum numbers of the exotic quarkonium-like states will provide an
additional test of our model.

The authors are grateful to A. Ali, M. A. Ivanov, V. A. Matveev and V. I. Savrin for useful
discussions. This work was supported in part by the Russian Foundation for Basic Research
under Grant No.12-02-00053-a.
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Weak Decays of Bs Mesons

R.N. Faustov1, V.O. Galkin1
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Russia

The branching fractions of the semileptonic and rare Bs decays are calculated in the
framework of the QCD-motivated relativistic quark model. The form factors of the weak Bs

transitions are expressed through the overlap integrals of the initial and final meson wave
functions in the whole accessible kinematical range. The momentum transfer dependence
of the form factors is explicitly determined without additional model assumptions and
extrapolations. The obtained results agree well with available experimental data.

1 Introduction

In recent years significant experimental progress has been achieved in studying properties of Bs
mesons. The Belle Collaboration considerably increased the number of observed Bs mesons and
their decays due to the data collected in e+e− collisions at the Υ(10860) resonance [1]. On the
other hand, Bs mesons are copiously produced at Large Hadron Collider (LHC). First precise
data on their properties are coming from the LHCb Collaboration. Several weak decay modes
of the Bs meson were observed for the first time [2]. New data are expected in near future.

In this lecture we consider the weak Bs transition form factors and decay rates in the
framework of the relativistic quark model based on the quasipotential approach in quantum
chromoynamics (QCD) [4]. We previously applied this model for the calculation of the weak
B transitions [5]. Recently Belle and BaBar Collaborations [3] published new more precise
data on differential distributions in B → πlνl and B → ρlνl decays. In Fig. 1 we compare
predictions of our model with these data. From this figure we see that our predictions agree
well with new data. The fit of our model predictions to the combined Belle and BaBar data
yields the following values of the CKM matrix element Vub

• B → πlνl decays |Vub| = (4.07 ± 0.07exp ± 0.21theor) × 10−3

• B → ρlνl decays |Vub| = (4.03 ± 0.15exp ± 0.21theor) × 10−3

• combined data on B → π(ρ)lνl |Vub| = (4.06 ± 0.06exp ± 0.21theor) × 10−3

These values are in good agreement with the averaged value extracted from the inclusive B
decays [6] |Vub| = (4.41 ± 0.15+0.15

−0.19) × 10−3.

2 Relativistic quark model

All considerations in this lecture are done in the framework of the relativistic quark model. The
model is based on the quasipotential approach in quantum field theory with the QCD motivated
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Figure 1: Comparison of predictions of our model with the recent experimental data (Belle
2011, 2013; BaBar 2012) for the B0 → π+l−ν decay and Belle (2013) data for the B → ρlν
decay.

interaction. Hadrons are considered as the bound states of constituent quarks and are described
by the single-time wave functions satisfying the three-dimensional Schrödinger-like equation,
which is relativistically invariant [7]:

(
b2(M)

2µR
− p2

2µR

)
ΨM (p) =

∫
d3q

(2π)3
V (p,q;M)ΨM (q), (1)

where

µR =
M4 − (m2

1 −m2
2)

2

4M3
, b2(M) =

[M2 − (m1 +m2)
2][M2 − (m1 −m2)

2]

4M2
, (2)

M is the meson mass, m1,2 are the quark masses, and p is their relative momentum. The inter-
action quasipotential V (p,q;M) consists of the perturbative one-gluon exchange part and the
nonperturbative confining part [7]. The Lorentz structure of the latter part includes the scalar
and vector linearly rising interactions. The long-range vector vertex contains the Pauli term
(anomalous chromomagnetic quark moment) which enables vanishing of the spin-dependent
chromomagnetic interaction in accord with the flux tube model.

For the consideration of the meson weak decays it is necessary to calculate the matrix
element of the weak current between meson states. In the quasipotential approach, such a
matrix element between a Bs meson with mass MBs

and momentum pBs
and a final F meson

with mass MF and momentum pF is given by [7]

〈F (pF )|JWµ |Bs(pBs
)〉 =

∫
d3p d3q

(2π)6
Ψ̄F pF

(p)Γµ(p,q)ΨBs pBs
(q), (3)

where Γµ(p,q) is the two-particle vertex function and ΨM pM
(p) are the meson (M = Bs, F )

wave functions projected onto the positive energy states of quarks and boosted to the moving
reference frame with momentum pM , and p,q are relative quark momenta.

The explicit expression for the vertex function Γµ(p,q) can be found in Ref. [4]. It contains
contributions both from the leading order spectator diagram and from subleading order dia-
grams accounting for the contributions of the negative-energy intermediate states. The leading
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order contribution contains the δ function which allows us to take one of the integrals in the
matrix element (3). Calculation of the subleading order contribution is more complicated due
to the dependence on the relative momentum in the energies of the initial heavy and final light
quarks. For the energy of the heavy quarks we use heavy quark expansion. For the light quark
such expansion is not applicable. However, if the final F meson is light (K, ϕ etc.) than it has a
large (compared to its mass) recoil momentum (|∆max| = (M2

Bs
−M2

F )/(2MBs
) ∼ 2.6 GeV) in

almost the whole kinematical range except the small region near q2 = q2max (|∆| = 0). This also
means that the recoil momentum of the final meson is large with respect to the mean relative
quark momentum |p| in the meson (∼ 0.5 GeV). Thus one can neglect |p| compared to |∆| in

the light quark energies ǫq(p+∆) ≡
√
m2
q + (p + ∆)2, replacing it with ǫq(∆) ≡

√
m2
q + ∆2 in

expressions for the subleading contribution. Such replacement removes the relative momentum
dependence in the energies of quarks and thus permits the performance of one of the integra-
tions in the subleading contribution using the quasipotential equation. Since the subleading
contributions are suppressed the uncertainty introduced by such procedure is small. As a re-
sult, the weak decay matrix element is expressed through the usual overlap integral of initial
and final meson wave functions and its momentum dependence can be determined in the whole
accessible kinematical range without additional assumptions.

3 Semileptonic Bs decays to Ds mesons

The matrix elements of weak current JW between meson ground states are usually parametrized
by the following set of the invariant form factors

〈Ds(pDs
)|c̄γµb|Bs(pBs

)〉 = f+(q2)

[
pµBs

+ pµDs
− M2

Bs
−M2

Ds

q2
qµ
]
+f0(q

2)
M2
Bs

−M2
Ds

q2
qµ, (4)

〈D∗
s(pD∗

s
)|c̄γµb|B(pBs

)〉 =
2iV (q2)

MBs
+MD∗

s

ǫµνρσǫ∗νpBsρpD∗
sσ, (5)

〈D∗
s(pD∗

s
)|c̄γµγ5b|Bs(pBs

)〉 = 2MD∗
s
A0(q

2)
ǫ∗ · q
q2

qµ + (MBs
+MD∗

s
)A1(q

2)

(
ǫ∗µ − ǫ∗ · q

q2
qµ
)

−A2(q
2)

ǫ∗ · q
MBs

+MD∗
s

[
pµBs

+ pµD∗
s
−
M2
Bs

−M2
D∗

s

q2
qµ

]
. (6)

To calculate the weak decay matrix element we employ the heavy quark expansion, which
permits us to take one of the integrals in the subleading contribution of the vertex function
to the weak current matrix element. As a result we express all matrix elements through the
usual overlap integrals of the meson wave functions. We find that the decay form factors can
be approximated with sufficient accuracy by the following expressions:

(a) f+(q2), V (q2), A0(q
2) = F (q2) =

F (0)
(
1 − q2

M2

)(
1 − σ1

q2

M2
B∗

c

+ σ2
q4

M4
B∗

c

) , (7)

(b) f0(q
2), A1(q

2), A2(q
2) = F (q2) =

F (0)(
1 − σ1

q2

M2
B∗

c

+ σ2
q4

M4
B∗

c

) , (8)
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whereM = MB∗
c

= 6.332 GeV for the form factors f+(q2), V (q2) andM = MBc
= 6.272 GeV for

the form factor A0(q
2); the values F (0) and σ1,2 are given in Table 1.

Bs → Ds Bs → D∗
s

f+ f0 V A0 A1 A2

F (0) 0.74 0.74 0.95 0.67 0.70 0.75
F (q2max) 1.15 0.88 1.50 1.06 0.84 1.04
σ1 0.200 0.430 0.372 0.350 0.463 1.04
σ2 −0.461 −0.464 −0.561 −0.600 −0.510 −0.070

Table 1: Form factors of weak Bs → D
(∗)
s transitions.

The values of σ1,2

are determined with
a few tenths of per-
cent errors. The
main uncertainties of
the form factors orig-
inate from the ac-
count of 1/m2

Q cor-
rections at zero re-
coil only and from the
higher order 1/m3

Q

contributions and can be roughly estimated in our approach to be about 2%.

In Table 2 we confront our predictions for the form factors of semileptonic decays Bs →
D

(∗)
s eν at maximum recoil point q2 = 0 with results of other approaches [8, 9, 10, 11, 12].

f+(0) V (0) A0(0) A1(0) A2(0)
our 0.74 ± 0.02 0.95 ± 0.02 0.67 ± 0.01 0.70 ± 0.01 0.75 ± 0.02
[8] 0.61 0.64 0.56 0.59
[9] 0.7 ± 0.1 0.63 ± 0.05 0.52 ± 0.06 0.62 ± 0.01 0.75 ± 0.07
[10] 0.57+0.02

−0.03 0.70+0.05
−0.04 0.65+0.01

−0.01 0.67+0.01
−0.01

[11] 0.86+0.17
−0.15

[12] 0.74+0.05
−0.05 0.63+0.04

−0.04 0.61+0.04
−0.04 0.59+0.04

−0.04

Table 2: Comparison of theoretical predictions for the form factors of

semileptonic decays Bs → D
(∗)
s eν at maximum recoil point q2 = 0.

Different quark
models are used
in Refs. [8, 10,
12], while the
QCD and light
cone sum rules
are employed in
Refs. [9, 11]. We
find that these
significantly dif-
ferent theoreti-
cal calculations
lead to rather
close values of the decay form factors. One of the main advantages of our model is its ability
not only to obtain the decay form factors at the single kinematical point, but also to determine
its q2 dependence in the whole range without any additional assumptions or extrapolations.

Using these weak decay form factors we calculate the total semileptonic decay rates. It
is necessary to point out that the kinematical range accessible in these semileptonic decays is
rather broad. Therefore the knowledge of the q2 dependence of the form factors is very impor-
tant for reducing theoretical uncertainties of the decay rates. Our results for the semileptonic

Bs → D
(∗)
s lν decay rates are given in Table 3 in comparison with previous calculations. The

authors of Ref.[9] use the QCD sum rules, while the light cone sum rules approach is adopted
in Ref. [11]. Different types of constituent quark models are employed in Refs. [12, 10, 13] and
the three point QCD sum rules are used in Ref. [14]. We see that our predictions are consistent
with results of quark model calculations in Refs. [12, 10]. They are approximately two times
larger than the QCD sum rules and light cone sum rules results of Refs. [9, 11], but slightly
lower than the values of Refs. [13, 14].

Using the same approach we calculate the form factors of Bs decays to radially and orbitally
excited Ds mesons. The predictions for the branching fractions for Bs decays to radially ex-
cited Ds mesons are given in Table 4. We find that semileptonic Bs decays to the pseudoscalar
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Decay this paper [9] [10] [11] [12] [13] [14]

Bs → Dseν 2.1 ± 0.2 1.35 ± 0.21 1.4-1.7 1.0+0.4
−0.3 2.73-3.00 2.8-3.8

Bs → Dsτν 0.62 ± 0.05 0.47-0.55 0.33+0.14
−0.11

Bs → D∗
seν 5.3 ± 0.5 2.5 ± 0.1 5.1-5.8 5.2 ± 0.6 7.49-7.66 1.89-6.61

Bs → D∗
sτν 1.3 ± 0.1 1.2-1.3 1.3+0.2

−0.1

Table 3: Comparison of theoretical predictions for the branching fractions of semileptonic decays

Bs → D
(∗)
s lν (in %).

Ds(2S) and vector D∗
s(2S) mesons have close values. Decay Br

Bs → Ds(2S)eν 0.27 ± 0.03
Bs → Ds(2S)τν 0.011 ± 0.001
Bs → D∗

s(2S)eν 0.38 ± 0.04
Bs → D∗

s(2S)τν 0.015 ± 0.002

Table 4: Predictions for the branch-
ing fractions of semileptonic decays

Bs → D
(∗)
s (2S)lν (in %).

Our predictions for the branching fractions of the
semileptonic Bs decays to orbitally excited Ds mesons
are given in Table 5 in comparison with other calcula-
tions. We find that decays to Ds1 and D∗

s2 mesons are
dominant. First we compare with our previous calcula-
tion [15] which was performed in the framework of the
heavy quark expansion. We give results found in the
infinitely heavy quark limit (mQ → ∞) and with the ac-
count of first order 1/mQ corrections. It was argued [15]
that 1/mQ corrections are large and their inclusion significantly influences the decays rates.
The large effect of subleading heavy quark corrections was found to be a consequence of the
vanishing of the leading order contributions to the decay matrix elements, due to heavy quark
spin-flavour symmetry, at the point of zero recoil of the final charmed meson, while the sublead-
ing order contributions do not vanish at this kinematical point. Here we calculated the decay
rates without application of the heavy quark expansion. We find that nonperturbative results
agree well with the ones obtained with the account of the leading order 1/mQ corrections [15].
This means that the higher order in 1/mQ corrections are small, as was expected. Then we
compare our predictions with the results of calculations in other approaches. The authors of
Refs. [16, 13] employ different types of constituent quark models for their calculations. Light
cone and three point QCD sum rules are used in Refs. [11]. In general we find reasonable
agreement between our predictions and results of Refs. [16, 11], but results of the quark model
calculations [13] are slightly larger.

The first experimental measurement of the semileptonic decay Bs → Ds1µν was done by
the D0 Collaboration [17]. The branching fraction was obtained by assuming that the Ds1

production in semileptonic decay comes entirely from the Bs decay and using a prediction for
Br(Ds1 → D∗K0

S) = 0.25. Its value Br(Bs → Ds1Xµν)D0 = (1.03± 0.20± 0.17± 0.14)% is in
good agreement with our prediction 0.84 ± 0.9 given in Table 5.

Recently the LHCb Collaboration [18] reported the first observation of the orbitally excited
D∗
s2 meson in the semileptonic Bs decays. The decay to the Ds1 meson was also observed.

The measured branching fractions relative to the total Bs semileptonic rate are Br(Bs →
D∗
s2Xµν)/Br(Bs → Xµν)LHCb = (3.3±1.0±0.4)%, Br(Bs → Ds1Xµν)/Br(Bs → Xµν)LHCb =

(5.4 ± 1.2 ± 0.5)%. The D∗
s2/Ds1 event ratio is found to be Br(Bs → D∗

s2Xµν)/Br(Bs →
Ds1Xµν)LHCb = 0.61 ± 0.14 ± 0.05. These values can be compared with our predictions if
we assume that decays to Ds1 and D∗

s2 mesons give dominant contributions to the ratios.
Summing up the semileptonic Bs decay branching fractions to ground state, first radial and
orbital excitations of Ds mesons we get for the total Bs semileptonic rate Br(Bs → Xµν) =
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Decay this paper m→ ∞ with [16] [13] [11]
[15] 1/mQ [15]

Bs → D∗
s0eν 0.36 ± 0.04 0.10 0.37 0.443 0.49-0.571 0.23+0.12

−0.10

Bs → D∗
s0τν 0.019 ± 0.002 0.057+0.028

−0.023

Bs → D′
s1eν 0.19 ± 0.02 0.13 0.18 0.174-0.570 0.752-0.869

Bs → D′
s1τν 0.015 ± 0.002

Bs → Ds1eν 0.84 ± 0.09 0.36 1.06 0.477
Bs → Ds1τν 0.049 ± 0.005
Bs → D∗

s2eν 0.67 ± 0.07 0.56 0.75 0.376
Bs → D∗

s2τν 0.029 ± 0.003

Table 5: Comparison of the predictions for the branching fractions of the semileptonic decays

Bs → D
(∗)
sJ lν (in %).

Bs → K Bs → K∗

f+ f0 fT V A0 A1 A2 T1 T2 T3

F (0) 0.284 0.284 0.236 0.291 0.289 0.287 0.286 0.238 0.238 0.122
F (q2max) 5.42 0.459 0.993 3.06 2.10 0.581 0.953 1.28 0.570 0.362
σ1 −0.370 −0.072 −0.442 −0.516 −0.383 0 1.05 −1.20 0.241 0.521
σ2 −1.41 −0.651 0.082 −2.10 −1.58 −1.06 0.074 −2.44 −0.857 −0.613

Table 6: Calculated form factors of weak Bs → K(∗) transitions.

(10.2±1.0)%. Then using the calculated values from Table 5 we get Br(Bs → D∗
s2µν)/Br(Bs →

Xµν)theor = (6.5 ± 1.2)%, Br(Bs → Ds1µν)/Br(Bs → Xµν)theor = (8.2 ± 1.6)%, and
Br(Bs → D∗

s2µν)/Br(Bs → Ds1µν)theor = 0.79 ± 0.14. The predicted central values are larger
than experimental ones, but the results agree with experiment within 2σ.

The following total semileptonic Bs branching ratios were found: (1) for decays to ground

state D
(∗)
s mesons Br(Bs → D

(∗)
s eν) = (7.4 ± 0.7)% and Br(Bs → D

(∗)
s τν) = (1.92 ± 0.15)%;

(2) for decays to radially excited D
(∗)
s (2S) mesons Br(Bs → D

(∗)
s (2S)eν) = (0.65 ± 0.06)%

and Br(Bs → D
(∗)
s (2S)τν) = (0.026± 0.003)%; (3) for decays to orbitally excited D

(∗)
sJ mesons

Br(Bs → D
(∗)
sJ eν) = (2.1 ± 0.2)% and Br(Bs → D

(∗)
sJ τν) = (0.11 ± 0.01)%. We see that these

branching fractions significantly decrease with excitation. Therefore, we can conclude that
considered decays give the dominant contribution to the total semileptonic branching fraction
Br(Bs → Dseν + anything). Summing up these contributions we get the value (10.2 ± 1.0)%,
which agrees with the experimental value Br(Bs → Dseν + anything)Exp. = (7.9 ± 2.4)% [6].

4 Charmless semileptonic Bs decays

Comparing the invariant form factor decomposition (4)–(6) with the results of the calculations
of the weak current matrix element in our model we determine the form factors in the whole
accessible kinematical range through the overlap integrals of the meson wave functions. The
explicit expressions are given in Ref. [4]. For the numerical evaluations of the corresponding
overlap integrals we use the quasipotential wave functions of Bs and K(∗) mesons obtained
in their mass spectra calculations [7]. The weak Bs → K(∗) transition form factors can be
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approximated with good accuracy by Eqs. (7), (8). The obtained values F (0) and σ1,2 are
given in Table 6.

Decay this paper [19] [20]

Bs → Keνe 1.64 ± 0.17 1.27+0.49
−0.30 1.47 ± 0.15

Bs → Kτντ 0.96 ± 0.10 0.778+0.268
−0.201 1.02 ± 0.11

Bs → K∗eνe 3.47 ± 0.35 2.91 ± 0.26
Bs → K∗τντ 1.67 ± 0.17 1.58 ± 0.13

Table 7: Comparison of theoretical predictions for the
branching fractions of semileptonic decays Bs → K(∗)lνl
(in 10−4).

Using these form factors we get
predictions for the total decay rates.
The kinematical range accessible in
the heavy-to-light Bs → K(∗) tran-
sitions is very broad, making knowl-
edge of the q2 dependence of the
form factors to be an important is-
sue. Therefore, the explicit deter-
mination of the momentum depen-
dence of the weak decay form fac-
tors in the whole q2 range without any additional assumptions is an important advantage of
our model. The calculated branching fractions of the semileptonic Bs → K(∗)lνl decays are
presented in Table 7 in comparison with other theoretical predictions [19, 20]. The perturba-
tive QCD factorization approach is used in Ref. [19], while in Ref. [20] light cone sum rules are
employed. From the comparison in Table 7 we see that all theoretical predictions for the Bs
semileptonic branching fractions agree within uncertainties. This is not surprising since these
significantly different approaches predict close values of the corresponding weak form factors.

We employ the same approach for the calculation of the form factors of the weak Bs decays

to orbitally excited K
(∗)
J mesons. The total semileptonic Bs → K

(∗)
J lνl branching fractions

are given in Table 8. We see that our model predicts close values (about 1 × 10−4) for all

semileptonic Bs branching fractions to the first orbitally excited K
(∗)
J mesons. Indeed, the

difference between branching fractions is less than a factor of 2. This result is in contradic-
tion to the dominance of specific modes (by more than a factor of 4) in the heavy-to-heavy

semileptonic B → D
(∗)
J lνl and Bs → D

(∗)
sJ lνl decays, but it is consistent with predictions for the

corresponding heavy-to-light semileptonic B decays to orbitally excited light mesons [21]. The
above mentioned suppression of some heavy-to-heavy decay channels to orbitally excited heavy
mesons was mostly pronounced in the heavy quark limit and then slightly reduced by the heavy
quark mass corrections which are found to be large. Thus our result once again indicates that
the s quark cannot be treated as a heavy one and should be considered to be light instead, as
we always did in our calculations.

In Table 8 we compare our predictions for the semileptonic Bs branching fractions to or-

bitally excited K
(∗)
J mesons with previous calculations [22, 23, 24, 25, 11, 26]. The consideration

in Ref. [22] is based on QCD sum rules. The light cone sum rules are used in Refs. [23, 25], while
Refs. [24, 11, 26] employ the perturbative QCD approach. Reasonable agreement between our
results and other predictions [22, 23, 26] is observed for the semileptonic Bs decays to the scalar
and tensor K mesons. The values of Ref. [24] are almost a factor 3 higher. For the semileptonic
Bs decays to axial vector K mesons predictions are significantly different even within rather
large errors. Therefore experimental measurement of these decay branching fractions can help
to discriminate between theoretical approaches.

We see that total branching fractions of semileptonic Bs decays to ground and first orbitally
excited K mesons have close values of about 5×10−4. Summing up these contributions, we get
(9.5± 1.0)× 10−4. This value is almost 2 orders of magnitude lower than our prediction for the
corresponding sum of branching fractions of the semileptonic Bs toDs mesons as it was expected
from the ratio of CKM matrix elements |Vub| and |Vcb|. Therefore the total semileptonic Bs
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Decay this paper [22] [23] [24] [25] [11] [26]

Bs → K∗
0eνe 0.71 ± 0.14 0.36+0.38

−0.24 1.3+1.3
−0.4 2.45+1.77

−1.05

Bs → K∗
0 τντ 0.21 ± 0.04 0.52+0.57

−0.18 1.09+0.82
−0.47

Bs → K1(1270)eνe 1.41 ± 0.28 4.53+1.67
−2.05 5.75+3.49

−2.89

Bs → K1(1270)τντ 0.30 ± 0.06 2.62+1.58
−1.31

Bs → K1(1400)eνe 0.97 ± 0.20 3.86+1.43
−1.75 0.03+0.05

−0.02

Bs → K1(1400)τντ 0.25 ± 0.05 0.01+0.02
−0.01

Bs → K∗
2eνe 1.33 ± 0.27 0.73+0.48

−0.33

Bs → K∗
2 τντ 0.36 ± 0.07 0.25+0.17

−0.12

Table 8: Comparison of theoretical predictions for the branching fractions of semileptonic decays

Bs → K
(∗)
J lνl (in 10−4).

Bs → ηs Bs → ϕ
f+ f0 fT V A0 A1 A2 T1 T2 T3

F (0) 0.384 0.384 0.301 0.406 0.322 0.320 0.318 0.275 0.275 0.133
F (q2max) 3.31 0.604 1.18 2.74 1.64 0.652 0.980 1.47 0.675 0.362
σ1 −0.347 −0.120 −0.897 −0.861 −0.104 0.133 1.11 −0.491 0.396 0.639
σ2 −1.55 −0.849 −1.34 −2.74 −1.19 −1.02 0.105 −1.90 −0.811 −0.531

Table 9: Calculated form factors of weak Bs → ηs and Bs → ϕ transitions.

decay branching fraction is dominated by the decays to Ds mesons and in our model is equal to
(10.3±1.0)% in agreement with the experimental value Br(Bs → Xeνe)Exp. = (9.5±2.7)% [6].

5 Rare semileptonic Bs decays

Now we apply our model for the consideration of the rare Bs decays. Using described above
method we explicitly determine the form factors in the whole accessible kinematical range
through the overlap integrals of the meson wave functions. They again can be approximated
with good accuracy by Eqs. (7), (8). The obtained values of F (0) and σ1,2 are given in Ta-
ble 9. Using these form factors we consider the rare semileptonic decays. In the calculations
the usual factorization of short-distance (described by Wilson coefficients) and long-distance
(which matrix elements are proportional to hadronic form factors) contributions in the effective
Hamiltonian for the b→ s transitions is employed. The effective Wilson coefficient ceff9 contains
additional pertubative and long-distance contributions. The long-distance (nonperturbative)
contributions are assumed to originate from the cc̄ vector resonances (J/ψ, ψ(2S), ψ(3770),
ψ(4040), ψ(4160) and ψ(4415)) and have a usual Breit-Wigner structure. In Fig. 2 we confront
our predictions for differential branching fractions, dBr/dq2, and the longitudinal polarization
fraction, FL, with experimental data from PDG (CDF) [6] and recent LHCb [27] data. By
solid lines we show results for the nonresonant branching fractions, where long-distance contri-
butions of the charmonium resonances to the coefficient ceff9 are neglected. Plots given by the
dashed lines contain such resonant contributions. For decays with the muon pair two largest
peaks correspond to the contributions coming from the lowest vector charmonium states J/ψ
and ψ(2S), since they are narrow. The region of these resonance peaks is excluded in exper-
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Figure 2: Comparison of theoretical predictions for the differential branching fractions
dBr(Bs → ϕµ+µ−)/dq2 and the ϕ longitudinal polarization FL with available experimental
data.

imental studies of these decays. Contributions in the low recoil region originating from the
higher vector charmonium states, which are above the open charm threshold, are significantly
less pronounced. The LHCb values for the differential branching fractions in most q2 bins are
lower than the CDF ones, but experimental error bars are rather large. Our predictions lie just
in between these experimental measurements. For the ϕ longitudinal polarization fraction, FL,
only LHCb data are available which agree with our results within uncertainties.the differential
branching fractions, forward-backward asymmetry and longitudinal polarization fraction.

In Table 10 we present our predictions for the nonresonant branching fractions of the rare
semileptonic Bs decays and compare them with previous calculations [28, 29, 30, 31, 20] and
available experimental data [6, 27]. In Ref. [28] the form factors were calculated on the basis
of the light-cone QCD sum rules within the soft collinear effective theory. The authors of
Ref. [29] employ the light front and constituent quark models for the evaluation of the rare
decay branching fractions. Three-point QCD sum rules are used for the analysis of the rare
semileptonic Bs decays into η(η′) and lepton pair in Ref. [30]. In Ref. [31] calculations are based
on the light-front quark model, while light-cone sum rules in the framework of heavy quark
effective field theory are applied in Ref. [20]. The analysis of the predictions given in Table 10
indicate that these significantly different approaches give close values of order 10−7 for the rare
semileptonic Bs → ϕ(η(′))l+l− decay branching fractions and of order 10−8 for Bs → K(∗)l+l−

decays. Experimental data are available for the branching fraction of the Bs → ϕµ+µ− decay
only. As we see from the table all theoretical predictions are well consistent with each other
and experimental data for the Bs → ϕµ+µ− decay from PDG [6]. Note that very recently the
LHCb Collaboration [27] also reported measurement of this decay branching fraction with the
value 7.07+0.97

−0.94 × 10−7 which is somewhat lower than previous measurements. Our prediction
is consistent with the latter value within 2σ.

6 Conclusions

The form factors parametrizing the transition matrix of the weak current between the Bs and

heavy (D∗
s , D

(∗)
sJ ) or light ( K(∗), K(∗)

J , η(ϕ)) mesons were calculated on the basis of the
relativistic quark model with the QCD-motivated quark-antiquark interaction potential. All
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Decay this paper [28] [29] [30] [31] [20] Exp.[6]
Bs → ηµ+µ− 3.8 ± 0.4 3.4 ± 1.8 3.12 2.30 ± 0.97 2.4 1.2 ± 0.12
Bs → ητ+τ− 0.90 ± 0.09 1.0 ± 0.55 0.67 0.373±0.156 0.58 0.34 ± 0.04
Bs → ηνν̄ 23.1 ± 2.3 29 ± 15 21.7 13.5 ± 5.6 17

Bs → η′µ+µ− 3.2 ± 0.3 2.8 ± 1.5 3.42 2.24 ± 0.94 1.8
Bs → η′τ+τ− 0.39 ± 0.04 0.47±0.25 0.43 0.280±0.118 0.26
Bs → η′νν̄ 19.7 ± 2.0 24 ± 13 23.8 13.3 ± 5.5 13
Bs → ϕµ+µ− 11.6 ± 1.2 16.4 11.8 ± 1.1 12.3+4.0

−3.4

Bs → ϕτ+τ− 1.5 ± 0.2 1.51 1.23 ± 0.11
Bs → ϕνν̄ 79.6 ± 8.0 116.5 <54000

Bs → Kµ+µ− 0.24 ± 0.03 0.14 0.199±0.021
Bs → Kτ+τ− 0.059±0.006 0.03 0.074±0.007
Bs → Kνν̄ 1.42 ± 0.14 1.01

Bs → K∗µ+µ− 0.44 ± 0.05 0.38 ± 0.03
Bs → K∗τ+τ− 0.075±0.008 0.050±0.004
Bs → K∗νν̄ 3.0 ± 0.3

Table 10: Comparison of theoretical predictions for the nonresonant branching fractions of the
rare semileptonic Bs decays and available experimental data (in 10−7).

relativistic effects, including boosts of the meson wave functions and contributions of the inter-
mediate negative-energy states, were consistently taken into account. The main advantage of
the adopted approach consists in that it allows the determination of the momentum transfer
dependence of the form factors in the whole accessible kinematical range. Therefore no addi-
tional assumptions and ad hoc extrapolations are needed for the description of the weak decay
processes which have rather broad kinematical range. This significantly improves the reliability
of the obtained results.

The calculated form factors were used for considering the semileptonic and rare Bs decays.
The differential and total decay branching fractions as well as asymmetry and polarization
parameters were evaluated. The obtained results were confronted with previous investigations
based on significantly different theoretical approaches and available experimental data. Good
agreement of our predictions with measured values is observed.

The authors are grateful to A. Ali, D. Ebert, C. Hambrock, M. A. Ivanov, V. A. Matveev,
A. Sibidanov and V. I. Savrin for useful discussions. This work was supported in part by the
Russian Foundation for Basic Research under Grant No.12-02-00053-a.
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On possible role of scalar glueball-quarkonia

mixing in the f(0)(1370,1500,1710) resonances

produced in charmonia decays

S.B. Gerasimov1

1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna
141980, Russia

The next to lowest mass scalar multiplet is treated as the qq̄, P -wave nonet, weakly mixed
with the lower - mass, presumably qqq̄q̄ S-wave nonet and, in principle, with the JPC =
0++ -glueball. The modified Gell-Mann-Okubo-type mass-formulas are used to derive and
discuss the quark-gluon configuration structure of the obtained meson states which are then
used to obtain the relations between the decay ratios Br(J/ψ → ωf0)/Br(J/ψ → φf0),
where f0(1720) ∼= G is the glueball, the f0(1370) and f0(1506) are quarkonium states.
Some other relations between the radiative and radiationless decays of the lowest mass
charmonium states into scalar resonances are presented and discussed.

1. As is known, the precise understanding of mass and dynamics of the glueball decays
is problematic up to now in spite of very large number of works devoted to the problems
mentioned. We concentrate on the mass region 1.3 ÷ 1.7 GeV occupied by the spin-zero 0++

mesons. In this group of mesons there are three isoscalar mesons with similar masses which, in
the presence of the nearly lying isotriplet and isodoublet ones, suggest the overpopulated nonet
where a possible glueball is hidden within structures of the three isoscalar states. Whether this
idea is right or wrong one should deduce from data on the reactions creating them as well as
from the relations between the branching ratios of their decays. With this in mind, we present
the results of a simple approach enabling one to discuss an acute problem of the existence and
properties of glueballs with quantum numbers IGJPC = 0+0++ (for the different approaches,
see [1] and references mentioned therein).

2. We define the 3× 3 mass-matrix ˆV (i) as acting on the basis vectors N,S,G to transform
them into one of three vectors of the physical meson states f0(i):

(f0(i)) = V̂ (i) ·




N
G
S


 (1)

where

N =
1√
2
(uū+ dd̄), S = ss̄,

and G is the glueball.
We consider the mass-matrices V̂ (i) taking into account explicitly the different appearance

of the two types of gluon effects in mixing states of the differing flavor. In a certain sense, we
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follow the way proposed in old works by Isgur [2] to connect the strong ”non-ideality” of the
SU(3)-singlet-octet mixing angle in the lowest pseudoscalar and scalar meson nonet with the
overwhelmingly strong, as compared to the respective term in the vector or tensor meson nonet,
annihilation term in the mass-matrix inducing the non-diagonal qq̄ ↔ ss̄, (q = u, d) transitions.
We remind that the celebrated Gell-Mann–Okubo formula

3m2
f8 = 4m2

K∗
0
−m2

a0

follows as the mass sum rule after exclusion of parameters introduced into the general mass
term of the phenomenological meson lagrangian

∆L = M2 · Tr(V8V8) − µ2 · Tr(V8V8λ8) (2)

Okubo [3] proposed to replace V8 → V9 in the GMO mass operator and drop the term propor-
tional to Tr(V9). The well-known ”ideal mixing ” mass relations

m2(ρ) = m2(ω), 2m2(K∗) −m2(ρ) = m2(φ)

are fulfilled for the vector and reasonably well for tensor qq̄ nonets but poor for the pseudoscalar
one.

The standard hierarchy of meson masses following from the effective lagrangian with the
SU(3) breaking is

m2(ss̄) ≥ m2(qs̄) ≥ m2(qq̄).

The idea to relate the apparently specific situation for the pseudoscalar meson sector with
additional strong annihilation mechanism transforming the given flavor quark field combinations
into each other was put forward phenomenologically by Isgur [2] and is now interpreted as
mediated by short-range fluctuations in the quark-gluon vacuum.

We follow these ideas in the further generalized form via introducing the ”bare” scalar
glueball mass and nondiagonal glueball-quarkonium transition-mass into the spin-zero meson
mass-matrices.

Hence, in the N
′

= 1√
2
(uū+ dd̄)

′

, S
′

= (ss̄)
′

basis our symmetric real mass-matrix acquires

the following form:

M̂2 =




M2
N ′ + 2AQ

√
2AG

√
2AQ√

2AG M2
G AG√

2AQ AG M2
S′ +AQ


 (3)

After reducing it to the diagonal form we should get the matrix of the eigenvalues M̂2
ph:

M̂2
ph =




M2
f0

(1) 0 0

0 M2
f0

(2) 0

0 0 M2
f0

(3)




We start treating the mass relations with the higher-mass scalar 0++-sector:

Ma0
= 1474 ± 19,MK∗

0
= 1425 ± 50

Mf0(1) = 1370 ± 50,Mf0(2) = 1505 ± 6,

Mf0(3) = 1720 ± 7

2

S. B. GERASIMOV

74 HQ2013



where all values are in MeV [4].
We define the ”bare” mass values MN ′ and MS′ devoid of the strong annihilation contribu-

tions via
MN ′ = Ma0

,MS′
2 = 2MK∗

0

2 −Ma0

2,

A short digression: the second relation is alike of the S-wave vector quarkonia, but we would
like to note the opposite mass hierarchy sequence

M2(ss̄)
′ ≤M2(qs̄)

′ ≤M2(qq̄)
′

which can follow from the suggested [5] mixing of two scalar nonets composed of light (u,d,s)-
quarks: the low-mass, presumably the two-quark-two-antiquark-nonet with the total orbital
angular moment L = 0 and (mass2) ≤ 1GeV 2 and the higher-mass, quark-antiquark states
with orbital moment L = 1.

Phenomenologically, we can indicate this just by changing the sign of the constant µ2 in the
general SU(3) mass formula (2) and by formally introducing the ”primed” quark amplitudes
including the mentioned 4-quark admixtures and satisfying the inverted mass sequence.

The physical meaning of terms in the mixing-mass matrix is following. The term AQ in the
mass matrix represents the dynamical self-mass term determined by the short-ranged, quark-
flavor changing processes, while MG and AG are the ”bare” gluon mass and the non-diagonal
self-mass term arising in the course of quarkonium-glueball transitions. These three unknown
terms have to be found by solution of the system of three non-linear equations representing the
equalities of three invariants of the diagonalization process: the trace, the determinant and the
sum of main minors of the matrices before and after diagonalization. The diagonalized mass-
matrix is assumed to contain only experimentally defined masses of scalar meson resonances.
Successively excluding unknown variables AQ and AG in favor of MG, we solve numerically the
resulting equation by varying the remaining unknown MG under constraint AG

2 ≥ 0. There is
trivial ”decoupling-solution” AG = 0 and MG ≃Mf0(3) and none for the ”postulated” AG

2 > 0
representing, by convention, the nonzero mixing of the glueball G with the remaining quarkonia.
Therefore, we have to accept for the physical glueball mass our solution practically coinciding
with the mass of Mf0(3) and to derive conclusion about the decoupling of the gluon from two
near-by f0-quarkonium:

MG(ph) ≃ 1730 MeV ⇐⇒ Mf0(3) = 1720 ± 7 MeV (4)

The state vectors of f0(1506) and f0(1370) are obtained then by the diagonalization of the rest
2 × 2 matrix:

f0(1506) = 0.868 ·N ′ ± 0.496 · S′

(5) (5)

f0(1370) = ∓0.496 ·N ′

+ 0.868 · S′

.(6) (6)

The choice of signs (upper→ (u),or lower→ (l)) remains to be done on the physics ground.
3. The sensitive check of our results can be obtained from the radiative and hadronic

decays of the lowest mass charmonium states. In the radiative transitions, it is natural to
accept the dominance of diagrams of the annihilation of bound cc̄-quarks to photon and the
pair of intermediate gluon followed by the hadronization process, for instance, J/ψ → γgg →
γ+hadrons. We accept the following approximations. First, we drop the 4-quark admixtures to
the f0(1370; 1500) quarkonium state vectors following a kind of the minimal ”quark-counting”
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approximation for the ”hard” annihilation processes. In the processes with the two quarkoni-
ums in the final state we keep only the singlet SU(3) projection for the final total hadron state
in the transitions gluons → hadrons(nqq̄ ≥ 2). Further, the final phase volume factors will be
taken into account as the only explicitly taken into account momentum-dependent character-
istics of the processes. Firstly we apply the simple SU(3)-symmetry approach to ratio of the
branching ratio J/ψ → γf0(1370) vs J/ψ → γf0(1506) to fix the signs in (5)-(6). Rewriting
(5)-(6) in terms of the SU(3)-basis vectors and leaving only coefficients referring to the transi-
tion gg → qq̄|singlet in the matrix elements, we obtain

Γ(J/ψ→γ+f0(1370))
Γ(J/ψ→γ+f0(1506))

= |~k(f0(1370))|
|~k(f0(1506))|

·




.9042

.4262

.0922

.9962


 =




4.74

.009




(5; 6u)

(5; 6l)

From this point onwards we accept the lower signs in (5)-(6) because the Br(J/ψ → γf0(1370))
remains unknown and is presumably lower or much lower than measured radiative transitions
to f0(1506) and f0(1720) resonances. The ratio of the 3-momenta stands for the ratio of the
phase space factors accepted for the decays of the type A → B + C and giving a minimal
kinematic dependence in terms of particle masses in the initial and final states. Under these
assumptions, we turn to several processes with participation of the vector φ(1.02)- and ω(.783)-
mesons that serving to be good flavor ”filters” for the state vectors of scalars participating in
a particular reaction. The matrix elements of the process (J/ψ → V + f0(1720)) includes a
series of the virtual transitions, symbolically, J/ψ → 3g → V + gg → V + f0(1720), that are
proportional to the well-known SU(3)-singlet component of the ω- and φ- meson, and to the
form-factors of the 3gV -vertex. As gluons are assumed to be effectively-hard vector quanta
we replace approximately the ratios of the full ω- and φ− form-factors by the respective ratios
of their radial ”functions-at-zero-distance”, entering the ratios of the widths of V → e−e+ -
decays, according to the Van Royen - Weisskopf [6] relation. Thus

Rωφ(f0(1720)) =
|~kωf0(1720)|
|~kφf0(1720)|

· (tanθV )−2 · V
2
ω (0)

V 2
φ(0)

≃ 1.1; (Exp : 1.33 ± .34)[4] (7)

To get ratios Rωφ(f0(1370)) and Rωφ(f0(1506)) we need to consider the contributions of both
(1)V ×(1)f - and (8)V ×(8)f - terms in the ratios. We apply the SU(3) isoscalar factor −(1/

√
8)

corresponding to the singlet content of each (8)V × (8)f0 (see,e.g [4]) and will treat both terms
as acting either coherently or incoherently in all ratios. Comparing the results we found that the
incoherent squaring option seem applies better for Rωφ(f0(1370)) where the BES2 Collaboration
has observed the Jψ → f0(1370)φ → 2πφ -decay channel [7] and does not report the similar
channel with ω-meson presumably due to its lower probability. Therefore

Rωφ(f0(1370)) =
|~kωf0(1370)|
|~kφf0(1370)|

· [(1)ω × (1)f0(1370)]
2 + [(8)ω × (8)f0(1370)]

2 · (1/
√

8)2

[(1)φ × (1)f0(1370)]
2 + [(8)φ × (8)f0(1370)]

2 · (1/
√

8)2
≃ .76 (8)

Rωφ(f0(1506)) =
|~kωf0(1506)|
|~kφf0(1506)|

·
[(1)ω × (1)f0(1506)]

2 + [(8)ω × (8)f0(1506) ]
2 · (1/

√
8)2

[(1)φ × (1)f0(1506)]
2 + [(8)φ × (8)f0(1506)]

2 · (1/
√

8)2
≃ 2.04 (9)

The approximate or even moderate-broken SU(3)flav-symmetry seems, however, not applica-
ble to pair-wise decays of more heavy scalar charmonium χc0(3.414) to f0(1370, 1506, 1720).

4

S. B. GERASIMOV

76 HQ2013



As was measured by BES Collaboration [8], the branching ratios upper-bounds for the tran-
sitions χc0(3.414) → f0(1370)f0(1506); f0(1720)f0(1506) are much less than the branching ra-
tio χc0(3.414) → f0(1370)f0(1720) assuming the dominant contribution of the strange quarks
in the intermediate processes gg → ss̄, due to larger values their momentum-scale depen-
dent mass as compared to the masses of the non-strange quarks [9]. To estimate the rel-
evance of this idea we apply the extremal case of taking into account the contribution of
only strange quarks to ratio of the transitions χc0(1P ; 3.414) → f0(1.720) + f0(1370)) and
χc0(1P ; 3.414) → f0(1.720) + f0(1506)). Returning to the quark-flavor basis (5)-(6) with the
fixed lower signs, using the needed values of Br(f0 → ππ(KK̄)) from [4] to exclude them from
the experimentally measured ratios, we obtain

Rf0(1.37),f0(1.50)(χc0(3414)) =
|~kf0(1370),f0(1720)|
|~kf0(1506),f0(1720)|

· [.8682]

[.4962]
≃ 3.9 (10)

while the lower limit of the experimental value is 13 ± 4.6 + 6.8(−4.4) [8]. It is seen that even
with the use of the extreme assumption about strange quark domination in the mechanism of
the χc0 → f0(1370; (1506)) + f0(1720) decays the accord with experimental ratio is a marginal
one.

To conclude, the further accumulation of more precise data on the decays of more massive
scalar, tensor, etc., charmonium states into the meson resonances including the scalar glueball
G(0++) ∼= f0(1720) decoupled off nearby quarkonium scalars , will provide more constrained
and unequivocal way to study the dynamics of the gluon degrees of freedom in QCD.

The author is grateful to Organizers of the Heavy Quark School-2013 (JINR, Dubna) for
invitation to take part in it.
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Effective weak Lagrangians in the Standard Model

and B decays

Andrey Grozin

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Weak processes (e.g., B decays) with characteristic energies ≪ MW can be described by
an effective theory which does not contain W , Z and other heavy particles (Higgs, t).
Its Lagrangian contains four-fermion interaction operators. Essentially it is the theory
proposed by Fermi and improved by Feynman, Gell-Mann, Marshak, Sudarshan.

1 Introduction

We don’t know all physics up to infinitely high energies (or down to infinitely small distances).
All our theories are effective low-energy (or large-distance) theories (except The Theory of
Everything if such a thing exists). There is a high energy scale M where an effective theory
breaks down. Its Lagrangian describes light particles (mi ≪ M) and their interactions at low
momenta (pi ≪ M). In other words, it describes physics at large distances ≫ 1/M ; physics
at small distances . 1/M produces local interactions of these light fields. The Lagrangian
contains all possible operators (allowed by symmetries). Coefficients of operators of dimension
n+ 4 contain 1/Mn. If M is much larger than energies we are interested in, we can retain only
renormalizable terms (dimension 4), and, maybe, a power correction or two.

In order to describe weak processes with characteristic energies ≪ MW , such as b decays,
we can use an effective theory without W±, Z0, Higgs, t. In these lectures we consider effective
Lagrangians for some b decay processes. Coefficients of local interaction operators in this
Lagrangian are obtained by matching at µ ∼MW . In order to calculate b decays one needs to
know these coefficients at a much lower µ ∼ mb. They are obtained by solving renormalization
group equations. One needs to calculate the matrix of anomalous dimensions of the operators
entering the effective Lagrangian.

Of course, the knowledge of the Lagrangian is not sufficient. In order to obtain full or differ-
ential decay rates into various channels, we need to calculate these decay rates in the framework
of the effective theory. The largest energy scale in such calculations is mb; all information about
physics at the scale MW is contained in the coefficients of interaction operators in the effective
Lagrangian. For total decay rates into a channel with some flavor quantum numbers if is suf-
ficient to calculate the spectral density of the correlator of the relevant interaction operators;
this is a single-scale problem with the scale mb (in some cases one has also to take mc 6= 0
into account). For more detailed decay characteristics is is often useful to construct further
effective theories for energy scales ≪ mb (HQET, SCET; Fig. 1). One performs matching at
µ ∼ mb to obtain coefficients in such effective Lagrangians, and then evolves them to lower µ
using renormalization group. We shall not discuss these questions here.

Effective Lagrangians for B decays are discussed in great detail in the excellent lectures by
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SM

∑
Ci(µ)Oi(µ)

HQET, SCET

MW

mb

RG

Figure 1: Hierarchy of effective theories.

A. Buras [1]; the reader is encouraged to use them for learning any information missing here.
References to the relevant papers can be found in [2]. Here I don’t cite original papers, except
a few ones which contain material directly used in these lectures.

The traditional Fermi constant G is not used in these lectures, because it is better to see
the powers of 1/MW and coupling constants explicitly. We mainly work at the leading 1/M2

W

order, see Sect. 2 for brief comments about 1/M4
W . Powers of couplings depend on the process:

g2
2 for ordinary weak decays, g2

2e for b→ sγ, g4
2 for B0 ↔ B̄0 oscillations (Sect. 5).

The matrix γ5 is not used. Left fermion fields are used; this is, of course, necessary, because
left and right fields interact differently in the Standard Model. Some operators with left fields
vanish at d = 4 (and thus become evanescent, Sect. 3.4); this is the only role played by the
index L [3].

2 b→ cl−ν̄l

The amplitude of the semileptonic decay b→ cl−ν̄l in the Standard Model (Fig. 2a) is

M =
g2
2

2
Vcb

1

M2
W − q2

(ūcLγ
αubL) (ūlLγαvνL) (2.1)

where
g2 =

e

sin θW

is the SU(2) gauge coupling constant. Expanding in q2/M2
W ≪ 1, we have at the leading order

M =
g2
2

2M2
W

Vcb(ūcLγ
αubL) (ūlLγαvνL) . (2.2)

2
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This amplitude can be reproduced from the effective Lagrangian (Fig. 2b)

L =
g2
2

2M2
W

Vcb(c̄Lγ
αbL) (l̄LγανL) . (2.3)

b

c

l−

νl
W

q

a

b

c

l−

νl

b

Figure 2: b semileptonic decay in the full theory (a) and in the effective theory (b).

Now we shall discuss one-loop QCD renormalization of the operator

O0 = (c̄0Lγ
αb0L) (l̄LγανL) (2.4)

(we are not going to consider electroweak loop corrections; therefore, the lepton fields don’t
renormalize). This bare operator is related to the renormalized one as

O0 = Z(αs(µ))O(µ) , O(µ) = Z−1(αs(µ))O0 (2.5)

in the MS scheme. In the matrix element of the bare operator

<O0> = Z<O>

αs/ε term comes only from Z. This matrix element is

<O0> = Zq




+



, (2.6)

where Zq is the MS quark field renormalization constant. We need only the 1/ε term in the αs
correction.

The UV divergence of the vertex (Fig. 3) does not depend on external momenta, therefore
we may set them to 0:

Λ1 = −iCF g2
0

∫
ddk

(2π)d
1

(k2)3

(
gµν − ξ

kµkν
k2

)
γµ/kγα/kγν ⊗ γα

= −iCF g2
0

∫
ddk

(2π)d
1

(k2)2

[
1

d
γµγλγαγλγµ − ξγα

]
⊗ γα

= −iCF g2
0

∫
ddk

(2π)d
1

(k2)2

[
(d− 2)2

d
− ξ

]
γα ⊗ γα

(2.7)
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k

kk

Figure 3: The one-loop correction to the vertex function of O0.

where A⊗B means (ūcLAubL) (ūlLBvνL), and the gluon propagator is

Dµν(k) =
1

k2

[
gµν − ξ

kµkν
k2

]
.

Of course, we need some IR regularization here, e.g. a non-zero mass in the denominator:
∫

ddk

(k2)2
⇒
∫

ddk

(k2 −m2)2
⇒ i

(4π)2
1

ε
(2.8)

(this is a simplest example of infrared rearrangement). Substituting the well-known one-loop
Zq and keeping only 1/ε in the αs correction, we obtain

<O0> =
[
1 − CF

αs
4πε

(1 − ξ)
] [

1 + CF
αs
4πε

(1 − ξ)
]

= 1 . (2.9)

Hence Z(αs) = 1 — the vector current does not renormalize. This is true to all orders in αs as
follows from the Ward identity. Note that we haven’t used γ5 in this calculation: it is hidden
in the index L of the external fermion wave functions; this implicitly means the anticommuting
γ5. Hence the axial current with the anticommuting γ5 does not renormalize too; this is obvious
— we can always anticommute γ5 out of the calculation.

It is not difficult to construct an effective Lagrangian which reproduces results of the full
theory expanded up to 1/M4

W . The b→ cl−ν̄l decay matrix element (2.1 with this accuracy is

M =
g2
2

2M2
W

Vcb

(
1 +

q2

M2
W

)
(ūcLγ

αubL) (ūlLγαvνL) ; (2.10)

it follows from the effective Lagrangian

L =
g2
2

2M2
W

Vcb(c̄Lγ
αbL)

(
1 − ∂2

M2
W

)
(l̄LγανL) . (2.11)

When calculating any process with the 1/M4
W accuracy, we can include in a diagram either a

single 1/M4
W vertex from the effective Lagrangian, or up to two 1/M2

W vertices. We need to
investigate renormalization of the dimension-8 operators which appear in the 1/M4

W term in
the Lagrangian; there is a finite number of such operators. We also need to renormalize bilocal
products of pairs of dimension-6 operators which appear in the 1/M2

W term in the Lagrangian.
In addition to renormalization of each operator, local dimension-8 counterterms are needed. In
general, at any order in 1/M2

W a finite number of renormalization constant is needed, and the
theory retains its predictive power.
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3 b→ cdū

3.1 Effective Lagrangian

In this Section we shall discuss the non-leptonic decay where all four flavors are different at the
leading order in electroweak interaction. Its full-theory matrix element at the 1/M2

W level is
reproduced by the effective Lagrangian

L =
g2
2

2M2
W

VcbV
∗
ud(c̄Lγ

αbL) (d̄LγαuL) . (3.1)

b

c

d

uW
q

a

b

c

d

u

b

Figure 4: b→ cdū decay in the full theory (a) and in the effective theory (b).

We need to include a full set of operators closed under renormalization to the Lagrangian.
It consists of two operators

O1 = (c̄Liγ
αbiL) (d̄Ljγαu

j
L) , O2 = (c̄Liγ

αbjL) (d̄Ljγαu
i
L) . (3.2)

In d = 4 we can use Fierz rearrangement1

(ψ̄1Lγ
αψ2L) (ψ̄3Lγαψ4L) = (ψ̄3Lγ

αψ2L) (ψ̄1Lγαψ4L) (3.3)

to re-write these operators as

O1 = (d̄Ljγ
αbiL) (c̄Liγαu

j
L) , O2 = (d̄Ljγ

αbjL) (c̄Liγαu
i
L) . (3.4)

Fierz rearrangement is especially simple (3.3) in the case when all four wave functions are left:
there is exactly one structure possible in the right-hand side (1⊗ 1, γ5 ⊗ γ5, σ

αβ ⊗ σαβ vanish;
γαγ5 ⊗ γαγ5 reduces to γα ⊗ γα).

Sometimes the operator

O′
2 = (c̄Lt

aγαbL) (d̄Lt
aγαuL) = TF

(
O2 −

O1

Nc

)
(3.5)

1We know persons who became bosons. Markus Fierz has become a verb: physicists say “this can be proved
by fierzing” or “let’s fierz this product”.
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is used instead of O2. This relation follows from Cvitanović algorithm for SU(Nc)

(ta)ij(t
a)kl = TF

[
δilδ

k
j −

1

Nc
δijδ

k
l

]
,

= TF


 − 1

Nc


 (3.6)

(this is the color Fierz rearrangement).
The column vector of the bare operators O0 is related to that of the renormalized operators

O(µ) as
O0 = Z(αs(µ))O(µ) , O(µ) = Z−1(αs(µ))O0 , (3.7)

where Z is the matrix of renormalization constants. Differentiating this formula, we obtain the
renormalization group equation

dO(µ)

d log µ
+ γ(αs(µ))O(µ) = 0 , (3.8)

where the anomalous dimension matrix is

γ = Z−1 dZ

d log µ
= − dZ−1

d log µ
Z . (3.9)

The effective Lagrangian can be written via either bare or renormalized operators:

L =
g2
2

2M2
W

VcbV
∗
udc

T
0 O0 =

g2
2

2M2
W

VcbV
∗
udc

T (µ)O(µ) , (3.10)

where c(µ) = ZT (αs(µ))c0 is the column vector of Wilson coefficients. It satisfies the RG
equation

dc(µ)

d log µ
= γT (αs(µ))c(µ) . (3.11)

Dividing (3.11) by the RG equation for αs(µ) we obtain

dc

d logαs
= −γ

T (αs)

2β(αs)
c , (3.12)

where
β(αs) = β0

αs
4π

+ · · · , γT (αs) = γT0
αs
4π

+ · · ·

At the leading (one-loop) order the solution is the matrix exponent

c(µ) =

(
αs(µ)

αs(MW )

)− γT
0

2β0

c(MW ) . (3.13)

If eigenvectors vi of γT0 (γT0 vi = λivi) form a full basis2, then

c(µ) =
∑

Ai

(
αs(µ)

αs(M)

)− λi

2β0

vi , (3.14)

2In some rare exceptional cases the Jordan form of γT
0 may contain blocks of sizes > 1; then the form of the

solution is slightly different.
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where c(MW ) =
∑
Aivi.

The Wilson coefficients ci(µ0) at some scale µ0 are determined by matching — equating
some S-matrix elements in the full theory (expanded in pi/MW ) and in the effective theory.
It is most convenient to use µ0 ∼ MW ; then ci(µ0) are given by perturbative series in αs(µ0)
containing no large logarithms. They contain all the information about physics at the scale MW

which is important for low-energy processes. The Wilson coefficients ci(µ) at low normalization
scales µ are obtained by solving the RG equations. The effective theory knows nothing about
MW ; the only information about it is contained in ci(µ). When the effective Lagrangian is
applied to some physical process with small momenta pi ≪ MW , it is most convenient to use
µ of the order of the characteristic momenta: then the results will contain no large logarithms.
This solution of the RG equation sums large logarithmic terms in perturbation series.

3.2 One-loop anomalous dimensions

The matrix element of the bare operator O0
1

<O0
1> = Z2

q

[
b

c
u

d

+ +

+ + + +

]

(3.15)

has two color structures
T1 = δcbδ

d
u , T2 = δdb δ

c
u

(the quark color indices coincide with the quark names). The matrix element of O0
2 can be

obtained by simple substitutions of the color structures.
The contribution of Fig. 5a differs from (2.7) only by adding the color factor T1:

Λ1 = CFT1
αs
4πε

(1 − ξ)γα ⊗ γα . (3.16)

Fig. 5b has the color structure TF (T2 −T1/Nc) (3.6). We only need the 1/ε UV divergence,
and hence we may do the γ-matrix algebra at d = 4. Fierz rearrangement makes this calculation
identical to the previous one:

Λ2 = TF

(
T2 −

T1

Nc

)
αs
4πε

(1 − ξ)γα ⊗ γα . (3.17)

We can also do this calculation explicitly:

Λ2 = TF

(
T2 −

T1

Nc

)
αs
4πε

[
1

d
γαγλγµ ⊗ γµγλγα − ξγα ⊗ γα

]
, (3.18)
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Figure 5: One-loop O0
1 vertex diagrams.

where γµ ⊗ γµ comes from the gluon propagator, and γλ ⊗ γλ from /k ⊗ /k after averaging over
k directions. The γ-matrix structure appearing here can be calculated at d = 4 using Fierz
rearrangement:

γαγλγµ ⊗ γµγλγα = γµγλγ
αγλγµ ⊗ γα = 4γα ⊗ γα , (3.19)

and we again obtain (3.17).
Fig. 5c also has the color structure TF (T2 − T1/Nc). It differs from Fig. 5b by the fact

that one k is directed against the quark line (thus producing −), and by the opposite order of
γ-matrices on the second quark line:

Λ3 = −TF
(
T2 −

T1

Nc

)
αs
4πε

[
1

d
γαγλγµ ⊗ γαγλγµ − ξγα ⊗ γα

]
,

cf. (3.18). We can reduce this structure to the previous one by anticommuting γ-matrices on
the second line:

γαγλγµ = −γµγλγα + 2 (gαλγµ − gαµγλ + gλµγα) ,

and hence
γαγλγµ ⊗ γαγλγµ = −γαγλγµ ⊗ γµγλγα + 2(3d− 2)γα ⊗ γα . (3.20)

Finally,

Λ3 = −TF
(
T2 −

T1

Nc

)
αs
4πε

(4 − ξ)γα ⊗ γα . (3.21)

Adding mirror-symmetric diagrams and inserting the external leg renormalization Z2
q , we

obtain the matrix element of the bare operator O0
1:

<O0
1> =

[
1 − 2CF

αs
4πε

(1 − ξ)
] [

T1

+ 2CFT1
αs
4πε

(1 − ξ)

+ 2TF

(
T2 −

T1

Nc

)
αs
4πε

(1 − ξ)

− 2TF

(
T2 −

T1

Nc

)
αs
4πε

(4 − ξ)

]
γα ⊗ γα

= <O1>− 6TF
αs
4πε

(
<O2>− <O1>

Nc

)
.

(3.22)
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It is gauge invariant, as expected. In the case of the operator O0
2, Fig. 5b has the color structure

CFT2, and Fig. 5a, c — TF (T1 − T2/Nc) (3.6):

<O0
2> =

[
1 − 2CF

αs
4πε

(1 − ξ)
] [

T2

+ 2TF

(
T1 −

T2

Nc

)
αs
4πε

(1 − ξ)

+ 2CFT2
αs
4πε

(1 − ξ)

− 2TF

(
T1 −

T2

Nc

)
αs
4πε

(4 − ξ)

]
γα ⊗ γα

= <O2>− 6TF
αs
4πε

(
<O1>− <O2>

Nc

)
.

(3.23)

We arrive at the renormalization constant matrix

Z = 1 + 6TF
αs
4πε

( 1
Nc

−1

−1 1
Nc

)
(3.24)

at one loop. In general, if

Z = 1 +
αs
4πε

z1 ,

then
dZ

d log µ
= −2ε

αs
4πε

z1 = γ0
αs
4π

,

and
γ0 = −2z1 . (3.25)

Therefore, in our case

γ0 = −12TF

( 1
Nc

−1

−1 1
Nc

)
. (3.26)

It is easy to solve the eigenvalue problem γT0 v± = λ±v±:

v± =

(
1

±1

)
, λ± = −12TF

(
1

Nc
∓ 1

)
. (3.27)

Substituting the initial condition at µ = MW

c(MW ) =

(
1
0

)
=

1

2

[(
1
1

)
+

(
1

−1

)]
, (3.28)

we obtain the running Wilson coefficients (3.14)

c(µ) =
1

2



(

1
1

)(
αs(µ)

αs(MW )

)− λ+

2β0

+

(
1

−1

)(
αs(µ)

αs(MW )

)− λ−

2β0


 . (3.29)

Alternatively, one can introduce the operators

O± = O1 ±O2 , (3.30)
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so that

L = c+O+ + c−O− , c± =
c1 ± c2

2
.

With the one-loop accuracy, these operators renormalize independently:

O0
± = Z±(αs(µ))O±(µ) .

Substituting the initial conditions

c+(MW ) = c−(MW ) =
1

2
,

we obtain the one-loop running

c±(µ) =
1

2

(
αs(µ)

αs(MW )

)− λ±

2β0

. (3.31)

However, the operators O± do mix starting from two loops, and therefore don’t produce a great
simplification.

3.3 One-loop matching

As already discussed, Wilson coefficients c(µ0) (µ0 ∼ MW ) are obtained by matching on-shell
matrix elements in the full theory and the effective one. Matching can be done at any on-shell
momenta and quark masses; it is most convenient to use the kinematic point where all mi = 0
and pi = 0. The full-theory matrix elements should be expanded in (mi, pi)/MW to some
order for obtaining the coefficients in the effective Lagrangian up to the corresponding order
in 1/MW . In particular, just setting all mi = 0, pi = 0 produces the leading term in this
expansion, 1/M2

W .
With the one-loop accuracy the full-theory matrix element is

(Zos
q )2

[
+ +

+ + + +

]
,

(3.32)

where Zos
q is the quark filed renormalization constant in the on-shell scheme (Zq = 1 if all

mi = 0: loop corrections contain no scale). The one-loop diagrams in the first line of this
equation vanish: they contain massless vacuum triangles with zero external momenta.
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The effective-theory matrix element is given by the tree diagram Fig. 4b with the coupling
constants c0i . All loop corrections vanish because they are scale-free. Note that the full-theory
renormalized on shell matrix element is UV finite but contains IR divergences. The effective-
theory one contains both UV and IR divergences which cancel each other producing vanishing
loop corrections. IR divergences in the effective theory coincide with those in the full theory,
because the effective theory is designed to reproduce the small-momenta behavior of the full
one. Thus IR divergences cancel in the matching equation, and c0i contain UV 1/ε terms. They
are removed by renormalization when calculating ci(MW ).

k

kk

a

k

−k

k

b

Figure 6: One-loop full-theory diagrams.

The diagram Fig. 6a is

−iTF
(
T2 −

T1

Nc

)
g2
0

∫
ddk

(2π)d
γα/kγµ ⊗ γν/kγα
(M2

W − k2)(k2)3

(
gµν − ξ

kµkν
k2

)
;

after averaging over k directions it becomes

TF

(
T2 −

T1

Nc

)
g2
0M

−2−2ε
W

(4π)d/2
I

[
1

d
γαγλγµ ⊗ γµγλγα − ξγα ⊗ γα

]
,

where the integral I is
1

iπd/2

∫
ddk

(M2
W − k2)(−k2)2

= IMd−6
W

(the power of MW is given by dimension counting). Similarly, the diagram Fig. 6b is

−TF
(
T2 −

T1

Nc

)
g2
0M

−2−2ε
W

(4π)d/2
I

[
1

d
γαγλγµ ⊗ γαγλγµ − ξγα ⊗ γα

]
.

It is easy to calculate I using partial fractions:

I =
1

iπd/2

∫
ddk

[
1

1 − k2
+

1

(−k2)2
− 1

−k2

]
= Γ

(
1 − d

2

)

(we set MW = 1; integrals of powers of −k2 vanish). Adding mirror-symmetric diagrams, we
obtain the full-theory matrix element

1

M2
W

[
T1γ

α ⊗ γα + TF

(
T2 −

T1

Nc

)
g2
0M

−2ε
W

(4π)d/2
2

d
Γ

(
1 − d

2

)
γαγλγµ ⊗ (γµγλγα − γαγλγµ)

]
;
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using (3.20) we arrive at

1

M2
W

{
T1γ

α ⊗ γα − 12TF

(
T2 −

T1

Nc

)
g2
0M

−2ε
W

(4π)d/2
1

d
Γ

(
1 − d

2

)

×
[
(d− 2)γα ⊗ γα − 1

3

(
γαγβγγ ⊗ γγγβγα − 4γα ⊗ γα

)]}
.

(3.33)

In addition to
1

M2
W

(
c01T1 + c02T2

)
γα ⊗ γα

(Fig. 4b), this result contains contributions of two bare evanescent operators E0
1,2. We shall see

in Sect. 3.4 that they are not zero; however, they are equal to the renormalized O1,2(µ) times
factors containing αs, and may be neglected with the present accuracy. We obtain the bare
Wilson coefficients

c01 = 1 − 6
TF
Nc

g2
0M

−2ε
W

(4π)d/2
Γ(ε)

(
1 +

ε

2

)
,

c02 = 6TF
g2
0M

−2ε
W

(4π)d/2
Γ(ε)

(
1 +

ε

2

)
.

(3.34)

Using the renormalization constant matrix (3.24) we see that 1/ε UV divergences cancel in the
renormalized Wilson coefficients:

c1(µ) = 1 − 12
TF
Nc

αs(µ)

4π

(
log

µ

MW
+

1

4

)
,

c2(µ) = 12TF
αs(µ)

4π

(
log

µ

MW
+

1

4

)
.

(3.35)

It is most convenient to perform matching at µ = MZ ; ci(MZ) are given by series in αs(MZ)
containing no logarithms:

c1(MW ) = 1 − 3
TF
Nc

αs(MW )

4π
,

c2(MW ) = 3TF
αs(MW )

4π
.

(3.36)

They can be used as initial conditions for RG equations to find ci(µ) for µ≪MW .

3.4 Evanescent operators

In dimensional regularization we have to consider, in addition to the physical operators

O0
1 = (c̄L0iγ

αbiL0) (d̄L0jγαu
j
L0) ,

O0
2 = (c̄L0iγ

αbjL0) (d̄L0jγαu
i
L0) ,

(3.37)

also evanescent operators

E0
1 = (c̄L0iγ

αγβγγbiL0) (d̄L0jγγγβγαu
j
L0) − 4O0

1 ,

E0
2 = (c̄L0iγ

αγβγγbjL0) (d̄L0jγγγβγαu
i
L0) − 4O0

2 .
(3.38)
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At d = 4, Fierz rearrangement

(c̄L0iγ
αγβγγbiL0) (d̄L0jγγγβγαu

j
L0) = (d̄L0jγγγβγ

αγβγγbiL0) (c̄L0iγαu
j
L0)

= 4(d̄L0jγ
αbiL0) (c̄L0iγαu

j
L0) = 4(c̄L0iγ

αbiL0) (d̄L0jγαu
j
L0)

states that they vanish. However, these bare operators exist at d 6= 4. If we use the standard
MS renormalization prescription, we’ll see that the renormalized operators E1,2(µ) also don’t
vanish. This is not what we want. Therefore we have to modify the MS prescription to ensure
vanishing of renormalized evanescent operators [4].

Recall (Sect. 3.2) that the renormalized matrix element of the bare operator
(c̄L0iΓb

i
L0) (d̄L0jΓ̄u

j
L0) up to one loop,

Z2
q

[
+ 2 µ λ

µ
λ

+ 2
µ λ

µ

λ
+ 2

µ λ µλ

]
,

is
(
1 − 2CF

αs
4πε

)
T1Γ ⊗ Γ̄ + 2CFT1

αs
4πε

1

d
γµγλΓγλγµ ⊗ Γ̄

+ 2TF

(
T2 −

T1

Nc

)
αs
4πε

1

d
Γγλγµ ⊗ γµγλΓ̄ − 2TF

(
T2 −

T1

Nc

)
αs
4πε

1

d
Γγλγµ ⊗ Γ̄γλγµ .

(3.39)

For the operator (c̄L0iΓb
j
L0) (d̄L0jΓ̄u

i
L0) we have to adjust the color structures:

(
1 − 2CF

αs
4πε

)
T2Γ ⊗ Γ̄ + 2CFT2

αs
4πε

1

d
Γγλγµ ⊗ γµγλΓ̄

+ 2TF

(
T1 −

T2

Nc

)
αs
4πε

1

d
γµγλΓγλγµ ⊗ Γ̄ − 2TF

(
T1 −

T2

Nc

)
αs
4πε

1

d
Γγλγµ ⊗ Γ̄γλγµ .

(3.40)

We obtain the matrix elements

<O0
1> = T1Ô + TF

(
T2 −

T1

Nc

)
αs
4πε

(
−6Ô + Ê

)
,

<O0
2> = T2Ô + CFT2

αs
4πε

1

2
Ê + TF

(
T1 −

T2

Nc

)
αs
4πε

(
−6Ô +

1

2
Ê

)
,

<E0
1> = T1Ê − CFT1

αs
4πε

48εÔ + TF

(
T2 −

T1

Nc

)
αs
4πε

(
−48εÔ − 14Ê + F̂

)
,

<E0
2> = T2Ê + TF

(
T1 −

T2

Nc

)
αs
4πε

(
96εÔ − 10Ê +

1

2
F̂

)
,

(3.41)

where

Ô = γα ⊗ γα ,

Ê = γαγβγγ ⊗ γγγβγα − 4Ô ,

F̂ = γαγβγγγδγε ⊗ γεγδγγγβγα − 16Ô
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are the γ-matrix structures of the physical operators Oi, the evanescent operators Ei, and the
further evanescent operators

F 0
1 = (c̄L0iγ

αγβγγγδγεbiL0) (d̄L0jγεγδγγγβγαu
j
L0) − 16O0

1 ,

F 0
2 = (c̄L0iγ

αγβγγγδγεbjL0) (d̄L0jγεγδγγγβγαu
i
L0) − 16O0

2 .
(3.42)

which we need to introduce for calculating one-loop corrections to Ei.
We want renormalized evanescent operators to vanish:

(
O0

E0

)
= Z(αs(µ))

(
O(µ)

0

)
, E(µ) = 0 . (3.43)

This vanishing should not be spoiled by the RG evolution. Therefore, the anomalous dimension
matrix should have the structure

γ(αs) =

(
γOO γOE
0 γEE

)
, (3.44)

d

d log µ

(
O(µ)

0

)
+

(
γOO γOE
0 γEE

)(
O(µ)

0

)
, (3.45)

The evolution of the physical operators is not affected by evanescent ones:

dO(µ)

d log µ
+ γOO(αs(µ))O(µ) = 0 . (3.46)

The RG evolution of the Wilson coefficients of the physical (cO) and evanescent (cE) operators
is given by

d

d log µ

(
cO(µ)
cE(µ)

)
=

(
γTOO 0
γTOE γTEE

)(
cO(µ)
cE(µ)

)
,

or

d cO(µ)

d log µ
= γTOOcO(µ) ,

d cE(µ)

d log µ
= γTOEcO(µ) + γTEEcE(µ) .

(3.47)

The evolution of cO(µ) does not involve cE(µ); cE(µ) 6= 0, but they are irrelevant because they
are multiplied by E(µ) = 0.

Now let’s have a close look at the one-loop matrix elements (3.41). We see that the matrix
elements of the bare evanescent operators Ei contain terms with the physical γ-matrix structure
Ô finite at ε → 0! When we start from an evanescent γ-matrix structure (such as Ê), which
is 0 at d = 4, multiply it by some additional γ-matrices from a one-loop diagram, and extract
a physical γ-matrix structure (such as Ô), the coefficient must be proportional to ε. However,
when it is multiplied by 1/ε from the UV divergence of the loop integral, the result is a finite
contribution. This UV divergence does not depend on external momenta and masses, hence this
physical term in the matrix element is similarly universal. Therefore we can use the one-loop
renormalization constant of the form

Z = 1 +

(
b c
aε d

)
αs
4πε

, (3.48)
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so that
<E(µ)> = 0 , <E0> = a<O(µ)>

αs
4π

. (3.49)

In other words, the renormalization constant is no longer minimal:

Z = 1 +

(
Z10 +

Z11

ε

)
αs
4π

,

Z10 =

(
0 0
a 0

)
, Z11 =

(
b c
0 d

)
.

(3.50)

The anomalous dimension (3.9) is

γ = γ0
αs
4π

, γ0 = −2Z11 ; (3.51)

it has the required structure (3.44). When calculating the one-loop anomalous dimension, it is
safe to forget about evanescent operators (as we did in Sect. 3.2).

Now let’s discuss renormalization at two loops. We need a non-minimal renormalization
matrix

Z(αs) = 1 +

(
Z10 +

Z11

ε

)
αs
4π

+

(
Z20 +

Z21

ε
+
Z22

ε2

)(αs
4π

)2

. (3.52)

The anomalous dimension matrix must be finite at ε→ 0; from this requirement we obtain

Z22 =
1

2
Z11(Z11 − β0) =

1

2

(
b(b− β0) bc+ cd− β0c

0 d(d− β0)

)
. (3.53)

As usual, 1/ε2 terms in the two-loop Z are not independent — they are given by products
of one-loop terms. The lower left corner is 0: ε from γ-matrix algebra moves this term to
Z21, see below. Supposing that the self-consistency condition (3.53) is satisfied, the anomalous
dimension matrix (3.9) is

γ(αs) = γ0
αs
4π

+γ1

(αs
4π

)2

, γ0 = −2Z11 , γ1 = −2(2Z21−Z10Z11−Z11Z10+β0Z10) . (3.54)

Let

Z21 =

(
e f
g h

)
; (3.55)

g is the 1/ε2 divergences of the two-loop integral (which does not depend on external momenta)
times ε from γ-matrix algebra. The lower left corner of γ1 must vanish; this gives the second
self-consistency condition

g =
1

2
(ab+ da− β0a) . (3.56)

This contribution of 1/ε2 two-loop divergences is also given by products of one-loop terms.
What we are really interested in is the upper left corner γOO which determines the evolution

of physical operators and Wilson coefficients. With the two-loop accuracy

γOO = −2b
αs
4π

− 2(2e+ ca)
(αs

4π

)2

. (3.57)

To calculate it correctly, we need not only e — the 1/ε part of two-loop diagrams with the
insertion of a physical operator, but also a and c — one-loop terms related to evanescent
operators. Forgetting about them would produce a wrong result.
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3.5 Two-loop anomalous dimensions

Some typical diagrams for the calculation of the two-loop anomalous dimension matrix are
shown in Fig. 7. We need only UV 1/ε divergences; the most efficient way to calculate them is
to set all external momenta to 0, and to insert a small mass m into all denominators as an IR
regulator [5, 3]. This is similar to what we did at one loop.

Figure 7: Some two-loop diagrams for the vertex functions of O1,2.

Then all diagrams reduce to the Euclidean scalar integrals (Fig. 8)

1

πd

∫
ddk1 d

dk2

(k2
1 +m2)n1(k2

2 +m2)n2((k1 − k2)2 +m2)n3
= In1n2n3

m2(d−n1−n2−n3) . (3.58)

If one of the indices is ≤ 0, it reduces to a trivial product of one-loop integrals. When all the
indices are > 0, we can use integration by parts [6]:

[
d− 3n1 + 3n11

+ + n22
+(3− − 1−) + n33

+(2− − 1−)
]
I = 0 . (3.59)

This relation, together with symmetric ones, reduces any In1n2n3
to trivial cases and a single

non-trivial master integral I111.

n1

n3

n2

Figure 8: The two-loop massive vacuum integral.

It can be found using Mellin–Barnes representation

n
=

1

Γ(n)

1

2πi

∫ +i∞

−i∞
dz Γ(−z)Γ(n+ z)m2z n+ z

. (3.60)
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Substituting

n1

n3

n2

=
Γ
(
d
2 − n3

)
Γ
(
n1 + n3 − d

2

)
Γ
(
n2 + n3 − d

2

)
Γ(n1 + n2 + n3 − d)

Γ
(
d
2

)
Γ(n1)Γ(n2)Γ(n1 + n2 + 2n3 − d)

, (3.61)

we obtain [6]

In1n2n3
=

1

Γ
(
d
2

)
Γ(n1)Γ(n2)Γ(n3)

1

2πi

∫ +i∞

−i∞
dz Γ(−z)Γ

(
d
2 − n3 − z

)

Γ(n3 + z)Γ
(
n1 + n3 − d

2 + z
)
Γ
(
n2 + n3 − d

2 + z
)
Γ(n1 + n2 + n3 − d+ z)

Γ(n1 + n2 + 2n3 − d+ 2z)
.

(3.62)

We can close the integration contour to the right. there are two series of right poles, z = n and
z = n+ d

2 − n3, producing two hypergeometric series. In particular, the master integral is [6]

I111 =
Γ2(ε)

1 − ε

[
2F1

(
1, ε
3
2

∣∣∣∣
1

4

)
+

1

1 − 2ε
2F1

(
1,−1 + 2ε

1
2 + ε

∣∣∣∣
1

4

)]
. (3.63)

This exact result can be expanded in ε.

Note that γ5 is not used in the calculation [3]: it is hidden in the index L of the external
fermion wave functions. These wave functions determine which γ-matrix structures vanish at
d = 4, and hence which operators are evanescent.

4 b→ s

In this section we shall consider processes in which the number of b quarks reduce by 1, the
number of s quarks increases by 1, and the other flavor numbers don’t change. We shall consider
the lowest order in electroweak interactions, but taking into account QCD corrections. The
process b→ sγ requires an additional factor e. We shall not discuss it here. Several additional
operators appear in the effective Lagrangian at the next order in electroweak interaction, but
it is not difficult to extend the methods discussed here to b→ sγ.

At first sight one might think that the diagram in Fig. 9 can produce the operator

g s̄LG
a
µνt

aσµνb

of dimension 5. But here b must be bR, otherwise the operator vanishes at d = 4; and this is
impossible at mb = 0. Therefore in fact the operator

Og = gmbs̄LG
a
µνt

aσµνbR (4.1)

of dimension 6 is produced. It is called the gluon dipole operator; it is a mixture of magnetic
and electric dipole interactions.
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b s

q

Figure 9: The bsg vertex.

The coefficient of this operator in the effective Lagrangian is

g2
2

M2
W

∑

q=u,c,t

VqbV
∗
qsE(xq) , (4.2)

where

xq =
m2
q

M2
W

, (4.3)

and the function E(xq) can be easily calculated from the vacuum integral of Fig. 9 which
depends on two masses, MW and mq. But

∑

q=u,c,t

VqbV
∗
qs = 0 (4.4)

due to unitarity of the matrix V . Therefore we can rewrite (4.2) as

g2
2

M2
W

∑

q=u,c,t

VqbV
∗
qs [E(xq) − E(0)] .

The only xq substantially different from 0 is xt; therefore, the coefficient of the dipole opera-
tor (4.1) in the effective Lagrangian is

g2
2

M2
W

VtbV
∗
ts [E(xt) − E(0)] . (4.5)

In order to obtain a non-vanishing contribution from the on-shell diagram in Fig. 9 we
expanded in inmb up to the linear term. Alternatively, we can expand it in the gluon momentum
q up to the linear term, and obtain a non-vanishing operator

g s̄LD
νGaµνt

aγµbL . (4.6)

Due to the QCD equation of motion,

DνGaµν = g
∑

q

q̄taγµq . (4.7)

Therefore we can rewrite the operator (4.6) as

Op = g2 (s̄Lt
aγαbL)

∑

q

(q̄taγαq) , (4.8)
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up to an EOM-vanishing operator. On-shell matrix elements of EOM-vanishing operators
vanish; we can safely omit them from the effective Lagrangian, which is constructed to reproduce
the correct S-matrix. The operator Op is called penguin3. Its coefficient in the Lagrangian is
given by a formula similar to (4.5).

Of course, there is also the operator Oc1 (Fig. 10a); we need a set of operators closed under
renormalization, and hence have to include also Oc2:

Oc1 = (c̄Liγ
αbiL) (s̄Ljγαc

j
L) , Oc2 = (c̄Liγ

αbjL) (s̄Ljγαc
i
L) . (4.9)

The similar operators

Ou1 = (ūLiγ
αbiL) (s̄Ljγαu

j
L) , Ou2 = (ūLiγ

αbjL) (s̄Ljγαu
i
L) (4.10)

have CKM-suppressed coefficients.

b

c

s

cW

a

b

u

s

uW

b

Figure 10: b→ cc̄s (a) and b→ uūs (b).

Similarly, we should take into account not just one penguin operator Op (4.8), but both
color structures:

Op1 = (s̄Liγ
αbiL)

∑

q

(q̄jγαq
j) , Op2 = (s̄Liγ

αbjL)
∑

q

(q̄jγαq
i) (4.11)

(Op = TF g
2(Op2 − Op1/Nc)). Unlike the operators O1,2 (3.2) (or Oc1,2 (4.9)), the penguin

operators contain full quark fields q in Σq, not just their L components. Therefore the operators

Op3 = (s̄Liγ
αγβγγbiL)

∑

q

(q̄jγγγβγαq
j) , Op4 = (s̄Liγ

αγβγγbjL)
∑

q

(q̄jγγγβγαq
i) (4.12)

with 3 γ-matrices don’t reduce to (4.11) plus evanescent operators, and should be included
in our full set of operators. On the other hand, the operators with 5 γ matrices do reduce
to (4.11), (4.12) plus evanescent ones.

Thus we arrive at the effective Lagrangian for b→ s processes:

L =
g2
2

2M2
W

[
V ∗
csVcb (cc1Oc1 + cc2Oc2) + V ∗

usVub (cu1Ou1 + cu2Ou2)

+ V ∗
tsVtb

(
cgOg +

4∑

i=1

cpiOpi

)]
.

(4.13)

3In 1977 John Ellis made a bet with Melissa Franklin at a bar: if he loses a game of darts, he has to use the
word “penguin” in his next paper. He lost, and has drawn the diagram in Fig. 9 in a penguin-like shape.
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The Wilson coefficients at µ = MW are obtained by matching: cc1, cu1, cg are 1 + O(αs);
cc2, cu2, cpi are O(αs). In order to find them at a low µ ∼ mb, we need to solve the RG
equations (3.11), and hence we need the anomalous dimension matrix of these operators.

Processes like b → sγ involve an extra electromagnetic interaction, and require some addi-
tional operators. There is the photon dipole operator Oγ similar to the gluon one Og (4.1, and
photon penguin operators similar to (4.11), (4.12).

5 B0 ↔ B̄0

Finally, we shall briefly discuss a process which at the order g4
2 : B0 ↔ B̄0 oscillations (Fig. 11).

They are described by the effective Lagrangian

L =
g4
2

512π2M2
W

cO , O = (d̄Lγ
αbL) (d̄Lγ

αbL) . (5.1)

The Wilson coefficient is given by

c =
∑

q,q′=u,c,t

V ∗
qbVqdV

∗
q′bVq′dS(xq, xq′) , (5.2)

where S(xq, xq′) = S(xq′ , xq) is given by the one-loop vacuum integrals (Fig. 11) with three
masses: MW , mq, mq′ (xq is defined by (4.3)). Due to (4.4),

c =
∑

q,q′=u,c,t

V ∗
qbVqdV

∗
q′bVq′d [S(xq, xq′) − S(xq, 0)] = V ∗

tbVtd
∑

q=u,c,t

V ∗
qbVqd [S(xq, xt) − S(xq, 0)] ,

because only xt substantially differs from 0. Finally,

c = V ∗
tbVtd

∑

q=u,c,t

V ∗
qbVqd [S(xq, xt) − S(xq, 0) − S(0, xt) + S(0, 0)]

= (V ∗
tbVtd)

2
[S(xt, xt) − 2S(xt, 0) + S(0, 0)] .

(5.3)

b q d

d q′ b

b

q

d

d

q′

b

Figure 11: Diagrams of bd̄↔ db̄ transitions.

We don’t need to calculate the one-loop anomalous dimension of the operatorO (5.1) because
it has been already done in Sect. 3.2:

γ0 = λ+ = 12TF

(
1 − 1

Nc

)
, (5.4)

see (3.27) (the operator similar to O− is zero).
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6 Conclusion
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Heavy quark physics in the covariant quark model

Mikhail A. Ivanov

BLTP JINR, 141980 Dubna, Russia

I give a short introduction to the covariant quark model and its applications to heavy quark
physics. The special emphasis will be devoted to the semileptonic, rare and radiative decays
of the Λb-baryon.

1 Introduction

This lecture is supposed to be a mini–review of the recent results obtained by the Dubna-Mainz-
Tübingen Collaboration, see Refs. [1, 2, 3]. The research is aiming to study the semileptonic,
rare and radiative decays of the Λb-baryon by using the covariant quark model previously
developed by us.

The decay Λb → Λ ℓ+ℓ− (ℓ = e, µ, τ) is a rare b − s favor-changing neutral current process
that in the Standard Model proceeds through electroweak loop (penguin andW−box) diagrams.
This decay can be considered to be a welcome complement to the well–analyzed rare meson
decays B → K(∗) ℓ+ℓ−, Bs → φ ℓ+ℓ− etc. to study the short– and long–distance dynamics of
rare decays induced by the transition b → s ℓ+ℓ−. However, the study of baryon decays is of
more interest because the Λb baryon has spin one half compare with zero spin of the B−meson.
Therefore, the matrix element of the baryon decay possesses more rich helicity structure.

For the first time, the CDF Collaboration has reported on the measurement of the Λb →
Λ+µ+µ− total branching ratio: B(Λb → Λ+µ+µ−) = (1.73± 0.42± 0.55) · 10−6 [4]. Recently,
the LHCb Collaboration [5] has measured the differential branching fraction of this decay as
a function of the square of the dimuon invariant mass. Integrating the differential branching
fraction gives a branching fraction of B(Λb → Λ+µ+µ−) = (0.96±0.16±0.13±0.21)·10−6. Here,
the uncertainties are statistical, systematic and due to the normalisation mode, Λb → ΛJ/ψ,
respectively. The physics of heavy baryon decays appears to have entered a new era with these
experimental results.

There have been a number of theoretical papers on the rare Λb → Λ baryon decays involving
the one-photon mode Λb → Λγ and the dilepton modes Λb → Λ ℓ+ℓ− (ℓ = e, µ, τ). They use the
same set of (penguin) operators or their non–Standard Model extensions to describe the short
distance dynamics but differ in their use of theoretical models to calculate the nonperturbative
transition matrix element 〈Λ|Oi |Λb〉.

We use the covariant constituent quark model (for short: covariant quark model) as dynam-
ical input to calculate the nonperturbative transition matrix elements. In the covariant quark
model the current–induced transitions between baryons are calculated from two–loop Feynman
diagrams with free quark propagators in which the divergent high energy behavior of the loop
integrations is tempered by Gaussian vertex functions. Quark confinement has incorporated in
an effective way, first, by introducing the scale integration in the space of α-parameters, and,
second, by cutting this scale integration on the upper limit which corresponds to an infrared
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cutoff. In this manner one removes all possible thresholds presented in the initial quark di-
agram. The cutoff parameter is taken to be the same for all physical processes. We adjust
other model parameters by fitting the calculated quantities of the basic physical processes to
available experimental data. One has to emphasize that the covariant quark model is a truly
frame–independent field–theoretic quark model in contrast to other constituent quark models
which are basically quantum mechanical with built–in relativistic elements. One of the advan-
tages of the covariant quark model is that it allows one to calculate the transition form factors
in the full accessible range of q2–values.

We review the basic notions of our dynamical approach — the covariant quark model for
baryons. In particular, we derive the phenomenological Lagrangians describing the interaction
of baryons with their constituent quarks. Then we introduce the corresponding interpolating
3–quark currents with the quantum numbers of the respective baryon and discuss the idea and
implementation of quark confinement. Finally, we apply our approach to the rare one-photon
decay Λb → Λγ and the dilepton decay Λb → Λ(→ pπ−) + jeff(→ ℓ+ℓ−). We present a detailed
discussion of the helicity formalism that allows one to write down the joint angular distribution
of the cascade decay Λb → Λ(→ pπ−) + jeff(→ ℓ+ℓ−).

2 The covariant quark model for baryons

In the following we consider Λ = (Q[ud])-type baryons needed in the present application. They
consist of a heavy quark and two light quarks in a 1S0 spin 0 configuration. The coupling of a
Λ-type baryon to its constituent quarks is described by the Lagrangian

LΛ
int(x) = gΛ Λ̄(x) · JΛ(x) + gΛ J̄Λ(x) · Λ(x) ,

JΛ(x) =

∫
dx1

∫
dx2

∫
dx3 FΛ(x;x1, x2, x3)J

(Λ)
3q (x1, x2, x3) ,

J
(Λ)
3q (x1, x2, x3) = ǫa1a2a3 Qa1(x1)u

T a2(x2)C γ
5 da3(x3) ,

J̄Λ(x) = J†
Λ(x)γ0 ,

where Q = s, c, b. Here the matrix C = γ0γ2 is the usual charge conjugation matrix and the ai
(i = 1, 2, 3) are color indices.

The vertex function FΛ characterizes the finite size of the Λ-type baryon. We assume that
the vertex function is real. To satisfy translational invariance the function FN has to fulfill the
identity

FΛ(x+ a;x1 + a, x2 + a, x3 + a) = FΛ(x;x1, x2, x3)

for any given four-vector a . In the following we use a particular form for the vertex function

FΛ(x;x1, x2, x3) = δ(4)(x−
3∑

i=1

wixi) ΦΛ

(∑

i<j

(xi − xj)
2

)
(1)

where ΦΛ is the correlation function of the three constituent quarks with the coordinates x1, x2,
x3 and masses m1, m2, m3, respectively. The variable wi is defined by wi = mi/(m1+m2+m3)

such that
∑3
i=1 wi = 1.

2
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We shall make use of the Jacobi coordinates ρ1,2 and the CM coordinate x which are defined
by

x1 = x + 1√
2
w3 ρ1 − 1√

6
(2w2 + w3) ρ2 ,

x2 = x + 1√
2
w3 ρ1 + 1√

6
(2w1 + w3) ρ2 ,

x3 = x − 1√
2

(w1 + w2) ρ1 + 1√
6

(w1 − w2) ρ2 .

The CM coordinate is given by x =
∑3
i=1 wixi. In terms of the Jacobi coordinates one obtains

∑

i<j

(xi − xj)
2 = ρ2

1 + ρ2
2 .

Note that the choice of Jacobi coordinates is not unique. By using the particular choice of
Jacobi coordinates given by Eq. (2) one obtains the following representation for the correlation
function ΦΛ in Eq. (1)

ΦΛ

(∑

i<j

(xi − xj)
2

)
=

∫
d4p1

(2π)4

∫
d4p2

(2π)4
e−ip1(x1−x3)−ip2(x2−x3) Φ̄Λ(−P 2

1 − P 2
2 ) , (2)

Φ̄Λ(−P 2
1 − P 2

2 ) = 1
9

∫
d4ρ1

∫
d4ρ2 e

iP1ρ1+iP2ρ2 ΦΛ(ρ2
1 + ρ2

2) ,

P1 = 1√
2
(p1 + p2) , P2 = − 1√

6
(p1 − p2) .

This representation is valid for any choice of the set of Jacobi coordinates. The particular
choice (2) is a preferred choice since it leads to the specific form of the argument −P 2

1 − P 2
2 =

− 2
3 (p2

1 + p2
2 + p1p2). Since this expression is invariant under the transformations: p1 ↔ p2,

p2 → −p2 − p1 and p1 → −p1 − p2, the r.h.s. in Eq. (2) is invariant under permutations of all
xi as it should be.

In the next step we have to specify the function Φ̄Λ(−P 2
1 − P 2

2 ) ≡ Φ̄Λ(−P 2) which charac-
terizes the finite size of the baryons. We will choose a simple Gaussian form for the function
Φ̄Λ:

Φ̄Λ(−P 2) = exp(P 2/Λ2
Λ) , (3)

where ΛΛ is a size parameter parametrized the distribution of quarks inside a Λ-type baryon.
We use different values of the ΛΛ parameter for different types of the Λ-type baryon: ΛΛs

, ΛΛc

and ΛΛb
for the Λ, Λc and Λb baryons, respectively.

Since P 2 turns into −P 2
E in Euclidean space the form (3) has the appropriate falloff behavior

in the Euclidean region. We emphasize that any choice for ΦΛ is appropriate as long as it falls off
sufficiently fast in the ultraviolet region of Euclidean space to render the corresponding Feynman
diagrams ultraviolet finite. The choice of a Gaussian form for ΦΛ has obvious calculational
advantages.

The coupling constants gΛ are determined by the compositeness condition suggested by
Weinberg [6] and Salam [7] (for review, see Ref. [8]) and extensively used in our approach
(for details, see Ref. [9]). The compositeness condition in the case of baryons implies that the
renormalization constant of the baryon wave function is set equal to zero:

ZΛ = 1 − Σ′
Λ(mΛ) = 0
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where Σ′
Λ is the on-shell derivative of the Λ-type baryon mass function ΣΛ, i.e. Σ′

Λ = ∂ ΣΛ/∂ 6p,
at 6p = mΛ. The compositeness condition is the central equation of our covariant quark model.
The physical meaning, the implications and corollaries of the compositeness condition have
been discussed in some detail in our previous papers (see e.g. [10]).

2.1 Infrared confinement

We have shown in [10] how the confinement of quarks can be effectively incorporated in the
covariant quark model. In a first step, we introduced an additional scale integration in the space
of Schwinger’s α–parameters with an integration range from zero to infinity. In a second step
the scale integration was cut off at the upper limit which corresponds to the introduction of an
infrared (IR) cutoff. In this manner all possible thresholds present in the initial quark diagram
were removed. The cutoff parameter was taken to be the same for all physical processes. Other
model parameters such as the constituent quark masses and size parameters were determined
from a fit to experimental data.

Let us describe the basic features of how IR confinement is implemented in our model. All
physical matrix elements are described by Feynman diagrams written in terms of a convolution
of free quark propagators and the vertex functions. In computation of Feynman diagrams we
use, in the momentum space, the Schwinger representation of the quark propagator

S(k) =
m+ 6k
m2 − k2

= (m+ 6k)
∞∫

0

dα e−α(m
2−k2) .

The general form of a resulting Feynman diagrams is

Π (p1, . . . , pm) =

∞∫

0

dnα

∫ [
d4k
]ℓ

Φ × exp

{
−

n∑

i=1

αi

[
m2
i − (Ki + Pi)

2
]}

, (4)

where Ki represents a linear combination of loop momenta, Pi stands for a linear combination of
external momenta and Φ refers to the numerator product of propagators and vertex functions.
The integrand in Eq. (4) has a Gaussian form with the exponential factor

kak + 2kr +R = kiaijkj + 2kiri +R, (i, j = 1, . . . , ℓ),

where ki is a 4-vector of the “i”-loop integration, a is a ℓ×ℓ matrix depending on the parameters
αi and size parameters Λ, ri is a 4- vector composed from the external momenta pi and R is a
quadratic form of the external momenta. Tensor loop integrals are calculated with the help of
the differential representation

kµi e
2kr =

1

2

∂

∂ri µ
e2kr ,

which in general may be written in the form

∫ [
d4k
]ℓ
P (k) ekak+2kr+R =

∫ [
d4k
]ℓ
P

(
1

2

∂

∂r

)
ekak+2kr+R = P

(
1

2

∂

∂r

)∫ [
d4k
]ℓ
ekak+2kr+R,

where the polynomial operator means P (k) = kµ1

1 . . . kµm
m . After doing the loop integration

the differential operators ∂/∂ri µ will give cause to outer momenta tensors. It may be done in

4
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effective way by using the identity

∞∫

0

dnα P

(
1

2

∂

∂r

)
e−

r2

a =

∞∫

0

dnα e−
r2

a P

(
1

2

∂

∂r
− r

a

)
.

The calculation of the polynomial P
(

1
2
∂
∂r − r

a

)
can be automized by using the commutator

[ ∂
∂rµ

i
, rνj ] = δij g

µν . We have written a FORM [11] program that achieves the necessary commu-

tations of the differential operators in a very efficient way.
The last point which remains to be discussed is the infrared cut-off we impose on the

integration over the Schwinger parameters. This integration is multidimensional with the limits
from 0 to +∞. In order to arrive to a single cut-off parameter we firstly transform the integral
over an infinite space into an integral over a simplex convoluted with only one-dimensional
improper integral. For that purpose we use the δ-function form of the identity

1 =

∞∫

0

dt δ

(
t −

n∑

i=1

αi

)
, (∀αi ≥ 0)

from which follows

Π =

∞∫

0

dt tn−1

1∫

0

dnα δ

(
1 −

n∑

i=1

αi

)
×W (tα1, . . . , tα1) ,

where W represents the integrand of Schwinger parameters. The cut-off λ is then introduced
in a natural way

∞∫

0

dt tn−1 . . .→
1/λ2∫

0

dt tn−1 . . . .

Such a cut-off makes the integral to be an analytic function without any singularities. In this way
all potential thresholds in the quark loop diagrams are removed together with corresponding
branch points [10]. Within covariant quark model the cut-off parameter is universal for all
processes and its value, as obtained from a fit to data, is

λcut−off = 0.181 GeV.

The numerical evaluations have been done by a numerical program written in the FORTRAN
code.

3 The rare baryon decays Λb → Λ + ℓ+ℓ− and Λb → Λ + γ

The effective Hamiltonian [12] leads to the quark decay amplitudes b→ sl+l− and b→ sγ:

M(b→ sℓ+ℓ−) =
GF√

2

αλt
2π

{
Ceff

9 (s̄Oµb)
(
ℓ̄γµℓ

)
+ C10 (s̄Oµb)

(
ℓ̄γµγ5ℓ

)

− 2

q2
Ceff

7

[
mb

(
s̄ iσµq (1 + γ5) b

)
+ms

(
s̄ iσµq (1 − γ5) b

)] (
ℓ̄γµℓ

)}
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and

M(b→ sγ) = −GF√
2

eλt
4π2

Ceff
7

[
mb

(
s̄ iσµq (1 + γ5) b

)
+ms

(
s̄ iσµq (1 − γ5) b

)]
ǫµ ,

where σµq = i
2 (γµγν − γνγµ)qν , O

µ = γµ(1 − γ5) and λt ≡ V †
tsVtb.

ΛQ[ud] ΛQ′[ud]

X

Q Q′

u

d

Figure 1: Diagrams contributing to
the flavor-changing transition ΛQ[ud] →
ΛQ′[ud] +X , where X = ℓ−ν̄ℓ, ℓ+ℓ− or γ.

The Wilson coefficient Ceff
9 effectively takes

into account, first, the contributions from the four-
quark operators Qi(i = 1, · · · , 6) and, second,
the nonperturbative effects (long–distance contri-
butions) coming from the cc̄-resonance contribu-
tions what are, as usual, parametrized by a Breit-
Wigner ansatz [13].

The Feynman diagrams contributing to the ex-
clusive transitions Λb → Λℓ̄ℓ and Λb → Λγ are
shown in Fig. 1.

The corresponding matrix elements of the ex-
clusive transitions Λb → Λℓ̄ℓ and Λb → Λγ are
defined by

M(Λb → Λℓ̄ℓ) =
GF√

2

αλt
2π

{
Ceff

9 〈Λ | s̄ Oµ b |Λb〉 ℓ̄γµℓ

+ C10 〈Λ | s̄ Oµ b |Λb〉 ℓ̄γµγ5ℓ

− 2mb

q2
Ceff

7 〈Λ | s̄ iσµq (1 + γ5) b |Λb〉 ℓ̄γµℓ
}

(5)

and

M(Λb → Λγ) = −GF√
2

eλt
4π2

mb C
eff
7 〈Λ | s̄ iσµq (1 + γ5) b |Λb〉 ǫµ . (6)

The hadronic matrix elements in Eqs. (5) and (6) are expanded in terms of dimensionless
form factors fJi (i = 1, 2, 3 and J = V,A, TV, TA), viz.

〈B2 | s̄ γµ b |B1〉 = ū2(p2)
[
fV1 (q2)γµ − fV2 (q2)iσµq/M1 + fV3 (q2)qµ/M1

]
u1(p1) ,

〈B2 | s̄ γµγ5 b |B1〉 = ū2(p2)
[
fA1 (q2)γµ − fA2 (q2)iσµq/M1 + fA3 (q2)qµ/M1

]
γ5u1(p1) ,

〈B2 | s̄ iσµq/M1 b |B1〉 = ū2(p2)
[
fTV1 (q2)(γµq2 − qµ 6q)/M2

1 − fTV2 (q2)iσµq/M1

]
u1(p1) ,

〈B2 | s̄ iσµqγ5/M1 b |B1〉 = ū2(p2)
[
fTA1 (q2)(γµq2 − qµ 6q)/M2

1 − fTA2 (q2)iσµq/M1

]
γ5u1(p1) .

Here, p1,M1 and p2,M2 are momenta and masses of the ingoing and outgoing baryons, respec-
tively. The transfer momentum is equal to q = p1 − p2. One can see that, in comparison with
the Cabibbo-allowed b→ c and c→ s transitions, one has four more form factors fTV,TA1,2 .

The Λb → Λγ decay rate is calculated according to

Γ(Λb → Λγ) =
α

2

(
GFmb |λt|Ceff

7

4π2
√

2

)2
(M2

1 −M2
2 )3

M3
1

[(
fTV2 (0)

)2

+
(
fTA2 (0)

)2
]
.
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The angular decay distribution for the cascade decay Λb → Λ(→ pπ−)γ can be written as

1

Γtot

dΓ(Λb → Λ(→ pπ−)γ)

d cos θB
= Br(Λ → pπ−)

1

2
Br(Λb → Λγ)(1 − αB cos θB) ,

where αB is the asymmetry parameter in the decay Λ → p+ π− for which we take the experi-
mental value αB = 0.642 ± 0.013 [14].

ℓ+

ℓ−

θB θ

χ

x

z

Λb

Λ

p

π−

J
µ
eff

Figure 2: Definition of angles θ, θB and χ
in the cascade decay Λb → Λ(→ pπ−) +
Jeff(→ ℓ+ℓ−) .

As in the case of the rare meson decays B →
K(∗)ℓ+ℓ− (ℓ = e, µ, τ) treated in [15] one can ex-
ploit the cascade nature of the decay Λb → Λ(→
pπ−)+ jeff(→ ℓ+ℓ−) to write down a joint angular
decay distribution involving the polar angles θ, θB
and the azimuthal angles χ defined by the decay
products in their respective (center of mass) CM
systems as shown in Fig. 2.

We write out the three-fold angular decay dis-
tribution in a manner where we collect together
terms with the threshold behavior in a factor
v =

√
1 − 4m2

ℓ/q
2 : v0, v1 and v2. Including the q2

dependence one obtains a four-fold joint angular
decay distribution for the decay of an unpolarized
Λb. One has

W (θ, θB , χ) ∝ 32 q2

9

(
Av2 +B v + C

2m2
ℓ

q2

)
,

where the coefficients A,B and C are given by

A =
9

64
(1 + cos2 θ)

(
U11 + U22

)
+

9

32
sin2 θ

(
L11 + L22

)

+
9

32
αB cos θB

[
sin2 θ

(
L11
P + L22

P

)
+

1

2
(1 + cos2 θ)

(
P 11 + P 22

) ]

+
9

16
√

2
αB sin 2θ sin θB

[
cosχ

(
I111
P + I122

P

)
− sinχ

(
I211
P + I222

P

) ]
,

B = − 9

16
cos θ

[
P 12 + αB cos θB U

12
]

− 9

4
√

2
αB sin θ sin θB

[
cosχ I312

P − sinχ I412
P

]
,

C =
9

16

(
U11 + L11 + S22

)
+

9

16
αB cos θB

(
P 11 + L11

P + S22
P

)
.

We have adopted the notations

Xmm′ ≡ dΓmm
′

X

dq2
=

1

2

G2
F

(2π)3

(
α|λt|
2π

)2 |p2| q2 v
12M2

1

Hmm′

X ,
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where the bilinear expressions Hmm′

X (X = U,L, S, P, LP , SP , I1P , I2P , I3P , I4P ) are defined in
Ref. [2]. Here, |p2| = λ1/2(M2

1 ,M
2
2 , q

2)/2M1 is the momentum of the Λ-hyperon in the Λb-rest
frame. Note that we have included the statistical factor 1/(2SΛb

+ 1) = 1/2 in the definition of
the rate functions.

Putting in the correct normalization factors one obtains the differential rate dΓ/dq2 which
reads

dΓ(Λb → Λ ℓ+ℓ−)

dq2
=
v2

2
·
(
U11+22 + L11+22

)
+

2m2
ℓ

q2
· 3

2
·
(
U11 + L11 + S22

)
,

Here, and in the following, we do an importance sampling of our rate expressions by sorting
the contributions according to powers of the threshold factor v. When one wants to compare
our results to the corresponding results for the mesonic case written down in Ref. [15] one has
to rearrange the contributions in Ref. [15] accordingly. And, one has to take into account the
factor of 3 difference in the definition of the scalar structure function.

The total rate, finally, is obtained by q2–integration in the range

4m2
ℓ ≤ q2 ≤ (M1 −M2)

2 .

For the lower q2 limit one has 4m2
ℓ = (1.04 × 10−6, 0.045, 12.6284) GeV2 for ℓ = (e, µ, τ). The

upper limit of the q2–integration is given by (MΛb
−MΛ)2 = 20.29 GeV2. For ℓ = (e, µ) one

is practically probing the whole q2 region while for ℓ = τ the q2–range is restricted to the low
recoil half of phase-space starting at

√
q2 = 3.55 GeV just below the position of the Ψ(2S)

vector meson resonance.

4 Numerical results

Mode Our results Data [14]
Λc → Λe+νe 2.0 2.1 ± 0.6
Λc → Λµ+νµ 2.0 2.0 ± 0.7

Λb → Λce
−ν̄e 6.6 6.5+3.2

−2.5

Λb → Λcµ
−ν̄µ 6.6

Λb → Λcτ
−ν̄τ 1.8

Table 1: Branching ratios of semileptonic
decays of heavy baryons (in %).

With the choice of dimensional parameters ΛΛs
=

0.490 GeV, ΛΛc
= 0.864 GeV and ΛΛb

= 0.569
GeV we get a reasonable agreement with current
data on exclusive Cabibbo-allowed decays of Λc
and Λb as one can see from the Table 1.

For the magnetic moments we get the following
results:

µΛs
= −0.73 , µΛc

= 0.39 , µΛb
= −0.06 ,

which compares well with data for the µΛs
and

theoretical estimates for the µΛc
and µΛb

(see the
detailed discussion in Ref. [16]).

In particular, our present results for the magnetic moments of heavy Λ-hyperons are very
close to our predictions done before in the model without taking account of the mechanism of
quark confinement: µΛc

= 0.42 and µΛb
= −0.06 [16].

We present our results for the branching ratios of the rare dileptonic decay Λb → Λℓ+ℓ− in
Table 2. The results without long-distance effects are shown in brackets. Our predictions for
the radiative decay Λb → Λγ are also displayed.

In our calculations we do not include the regions around the two charmonium resonances
Rcc̄ = J/ψ,Ψ(2S). We exclude the regions MJ/Ψ−0.20 GeV to MJ/Ψ+0.04 GeV and MΨ(2S)−
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0.10 GeV to MΨ(2S)+0.02 GeV. As stressed in Ref. [17] these regions are experimentally vetoed,
because the rates of nonleptonic decays Λb → Λ +Rcc̄, followed by the dileptonic decays of the
charmonium, are much larger than rates of the b → s-induced rare decays Λb → Λℓ+ℓ−.
Vetoing the regions near the charmonium resonances leads to physically acceptable results —
the predictions with and without the inclusion of long–distance effects are comparable with each
other. Otherwise (without such a vetoing) the results with long–distance effects are dramatically
enhanced as shown in different theoretical calculations.

Mode Our results Data
Λb → Λe+e− 1.0 (1.0)
Λb → Λµ+µ− 1.0 (1.0) 0.96 ± 0.16 ± 0.13 ± 0.21 [5]

1.73 ± 0.42 ± 0.55 [4]
Λb → Λτ+τ− 0.2 (0.3)

Λb → Λγ 4.0 < 1.3 103

Table 2: Branching ratios of rare decays Λb → Λℓ+ℓ− with (without) long–distance contribu-
tions and radiative decay Λb → Λγ (in units of 10−6).

5 Summary and conclusions

We have given a short review of the covariant quark model with infrared confinement and applied
this approach to describe the semileptonic, rare and radiative decays of heavy Λb-baryon.

We have described from a unified point of view exclusive Cabibbo-allowed semileptonic
decays Λb → Λcℓ

−ν̄ℓ, Λc → Λℓ+νℓ and rare decays Λb → Λℓ+ℓ−, Λb → Λγ with the use of
only three model parameters: the size parameters ΛΛs

, ΛΛc
and ΛΛb

defining the distribution
of quarks in the Λ, Λc and Λb baryons.

We have used the helicity formalism to express a number of observables in the rare baryon
decay Λb → Λ(→ pπ−) ℓ+ℓ− in terms of a basic set of hadronic helicity structure functions.
In the helicity method one provides complete information on the spin density matrix of each
particle in the cascade decay chain which can be conveniently read out by considering angular
decay distributions in the rest frame of that particular particle. The advantage of the helicity
method is that it is straightforward to define any of the observables of the problem and to
express them in terms of bilinear forms of the hadronic helicity matrix elements.

The helicity formulas can be used as input in a MC event generator patterned after the
existing event generator for Ξ0(↑) → Σ+(→ pπ0)ℓ−ν̄ℓ ℓ = (e, µ) which is described and put
to use in [18] and which has been used by the NA48 Collaboration to analyze its data on the
above decay [19].
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Applications of QCD Sum Rules

to Heavy Quark Physics

Alexander Khodjamirian

Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät,
Universität Siegen, D-57068 Siegen, Germany

In these lectures, I present several important applications of QCD sum rules to the decay
processes involving heavy-flavour hadrons. The first lecture is introductory. As a study
case, the sum rules for decay constants of the heavy-light mesons are considered. They
are relevant for the leptonic decays of B-mesons. In the second lecture I describe the
method of QCD light-cone sum rules used to calculate the heavy-to-light form factors
at large hadronic recoil, such as the B → πℓνℓ form factors. In the third lecture, the
nonlocal hadronic amplitudes in the flavour-changing neutral current decays B → K(∗)ℓℓ
are discussed. Light-cone sum rules provide important nonfactorizable contributions to
these effects.

Introduction

The method of sum rules in quantum chromodynamics (QCD) developed in [1] relates hadronic
parameters, such as decay constants or transition form factors, with the correlation functions
of quark currents. Let me outline the three key elements of this method.

• Correlation function of local quark currents is defined. The simplest, two-point
correlation function is formed by two quark-antiquark current operators sandwiched be-
tween the QCD vacuum states. This is a function of the 4-momentum transfer between
the currents. In the region of large spacelike momentum transfers, the correlation func-
tion represents a short-distance fluctuation of quark-antiquark fields. The propagation
of quarks and antiquarks at short distances is asymptotically free, the gluon exchanges
being suppressed by a small QCD coupling. In addition, the interactions with “soft” (low
momentum) quark-antiquark and gluon fields populating the QCD vacuum have to be
taken into account.

• Operator-product expansion (OPE) of the correlation function is worked out. This
expansion provides an analytical expression for the correlation function at spacelike mo-
mentum transfers, with a systematic separation of short- and long-distance effects. The
former are described by Feynman diagrams with quark and gluon propagators and vertices,
whereas the latter are encoded by universal parameters related to the nonperturbative
QCD dynamics. In the case of two-point sum rules, these parameters are the averaged
local densities of the QCD vacuum fields, the condensates. The contributions of vac-
uum effects in OPE are suppressed by inverse powers of the large momentum and/or
heavy-quark mass scale, allowing one to truncate the expansion at some maximal power.
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• Hadronic dispersion relation for the correlation function is employed. The basic
unitarity condition allows one to express the imaginary part (spectral density) of the
correlation function in terms of the sum and/or integral over all intermediate hadronic
states with the quantum numbers of the quark currents. On the other hand, employing
the analyticity of the correlation function in the momentum transfer variable, one relates
the OPE result at spacelike momentum transfers to the integral over hadronic spectral
density. In this way a link between QCD and hadrons is established, and the resulting
relation between the OPE expression and hadronic sum is naturally called a “QCD sum
rule”.

After this general description of the method, let me quote a shorter but more emotional
definition of QCD sum rules: ”Snapshots of hadrons or the story of how the vacuum medium
determines the properties of the classical mesons which are produced, live and die in the QCD
vacuum”, given as a title to the review [2] written by one of the founders of this method.

Due to a vast amount of applications of QCD sum rules accumulated during many years,
these lectures represent only a brief guide to the field, exemplifying applications to a few
important processes involving heavy flavoured hadrons. More detailed reviews are listed in
[3, 4, 5, 6].

1. Lecture: Calculating the B-meson decay constant

In this introductory lecture, I consider, as a study case, the QCD sum rule derivation for an
important hadronic parameter – the B-meson decay constant.

1.1 B-meson leptonic decays

s

t

�

B�

t

�

b

W

Z

(a) (b)

Figure 1: Diagram of the weak leptonic decay B− → τ ν̄τ (a) and one of the diagrams of the FCNC
leptonic decay Bs → µ+µ− (b). The initial B meson is denoted by a blob.

The decay diagrams are shown in Fig. 1. The first leptonic decay is a weak transition B− →
ℓν̄ℓ via virtual W boson exchange. For ℓ = τ its branching fraction was measured at B factories
[7]. The second decay, B̄s → ℓ+ℓ−, is a rare flavour-changing neutral current (FCNC) transition
generated by the loop diagrams with heavy particles (t,Z,W ). Its recent observation at LHC
[8] was a great experimental achievement. Although short-distance electroweak interactions are
quite different, these decays have one common feature: the initial B-meson annihilates and the
final state contains no hadrons i.e. it is a vacuum (lowest energy) state of QCD. The decay
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amplitude of the weak decay in Standard Model (SM):

A(B− → τ−ν̄τ )SM =
GF√

2
Vub τ̄ γ

µ(1 − γ5)ντ 〈0|ūγµγ5b|B−〉 , (1)

contains the simplest possible hadronic matrix element

〈0|ūγµγ5b|B(pB)〉 = ipµBfB , (2)

in which the local operator of b → u weak transition current is sandwiched between B and
the vacuum state. The above formula in terms of a constant parameter fB reflects the fact
that pµB is the only 4-momentum involved in this hadronic matrix element and p2

B = m2
B . The

quantity fB is the B-meson decay constant we are interested in. In order to use the experimental
measurement of the decay branching fraction:

BR(B−→τ−ν̄τ ) =
G2
F |Vub|2
8π

m2
τmB

(
1 − m2

τ

m2
B

)2

f2
BτB− , (3)

where τB− is the lifetime of B−, one needs to know fB from the theory. This will allow one to
to extract the fundamental CKM parameter |Vub| or to check if there is an admixture of new
physics, e.g., of a charged Higgs boson exchange, in this decay.

The rare leptonic decay, Bs → µ+µ− , is even more sensitive to new physics contributions,
due to the presence of heavy particle loops . But the corresponding hadronic matrix element

〈0|s̄γµγ5b|Bs(pB)〉 = ipµBfBs
(4)

is very similar to Eq. (2), and the squared decay constant f2
Bs

enters the decay width. The CKM
suppressed Bd → µ+µ− decay contains the decay constant of Bd. Due to isospin symmetry
between u and d quarks, fBd

≃ fBu
≡ fB with a good accuracy. On the other hand, fBs

and fB
noticeably differ, because the SU(3)flavor symmetry is violated by the quark mass difference
ms −mu,d. Hence, an accurate calculation of fBs

has to take into account the finite s-quark
mass.

We conclude that a QCD calculation of fB is indispensable for disentangling the fundamental
flavour-changing transitions from the measurements of leptonic B decays.

1.2 B-meson decay constant in QCD

Figure 2: B meson tran-
sition to vacuum

The task is to calculate the hadronic matrix element (2) which is
shown in Fig. 2, separated from the electroweak part of the leptonic
decay amplitude. The wavy lines and loops in this figure indicate
gluons and quark-antiquark pairs interacting with the valence b and
ū quarks inside B− meson. But these lines and loops are only illus-
trative: it is not possible to directly attribute QCD Feynman graphs
to a hadronic amplitude.

The quantum field theory of quarks, gluons and their interactions
is encoded in the QCD Lagrangian:

LQCD(x) = −1

4
GaµνG

aµν(x) +
∑

q=u,d,s,c,b,t

q̄ i(x)(iDµγ
µ −mq)q

i(x) (5)

3

APPLICATIONS OF QCD SUM RULES TO HEAVY QUARK PHYSICS

HQ2013 111



where Dµ = ∂µ − igs
λa

2 A
a
µ is the covariant derivative, Gaµν = ∂µA

a
ν − ∂µA

a
ν + gsf

abcAaµA
a
ν is

the gluon-field strength tensor and gs is the quark-gluon coupling, so that αs = g2
s/(4π), with

summation over the colour indices i = 1, 2, 3 and a = 1, ...8. From Eq. (5) one derives the
basic elements of the QCD Feynman graphs: quark and gluon propagators and quark-gluon,
3-gluon and 4-gluon vertices. In QCD, a crucial role is played by quark-gluon loop diagrams
generating an effective scale dependent coupling αs(µ). As we know, it logarithmic decreases at
large scales µ (asymptotic freedom) as illustrated in Fig. 3. The perturbation theory in terms of
Feynman diagrams of quark-gluon interactions is well defined only at large energy/momentum
transfers. Inversely, at small momenta (long distances) as is shown in the same Fig. 3
the coupling grows. At momentum transfers smaller than a few hundred MeV the perturbation
theory for quarks and gluons in QCD is senseless. An intrinsic scale ΛQCD ∼ 200 − 300
MeV emerges, the quarks, antiquarks and gluons interact strongly. Moreover, they are only
observable in a form of coulourless bound states - the hadrons, one of them is the B meson.

αs
(Q)

Q

confinement

asympt.

freedom

1 GeV

~0.5

hadronization              perturbative QCD               

Λ QCD

Figure 3: Dependence of the effective coupling in QCD on the
energy/momentum scale Q.

Another important feature
of QCD is that the vac-
uum state in this theory
is not an “empty space”.
It contains fluctuating quark-
antiquark and gluon fields with
characteristic wave lengths of
O(1/ΛQCD). Averaged densi-
ties of these fields known as
vacuum condensate densities
play an important role in our
story. In fact, the most impor-
tant role will be played by the
quark condensate with a den-
sity parametrized as the vac-
uum average of the Lorentz-
and colour-invariant local op-
erator 〈0|qiqi|0〉 ≡ 〈q̄q〉 6= 0,
(q = u, d, s) with dimension d = 3. Let me remind you that 〈q̄q〉 6= 0 reflects the sponta-
neous breaking of chiral symmetry in QCD. One acquires a set of vacuum condensate densities
with dimensions d = 3, 4, 5, .. formed by all possible colourless Lorentz-invariant operators built
from quark and gluon fields. E.g., the d = 4 operator formed from two gluon-field strengths
yields the gluon condensate density 〈0|(αs/π)GaµνG

aµν |0〉 ≡ 〈GG〉 6= 0. Importantly, there is
no d = 2 condensate in QCD. A review on vacuum condensates can be found in [9].

Returning to the process of B-meson annihilation, from the point of view of QCD it is impor-
tant that the energy scale of quark-gluon interactions binding b and ū inside B is characterized
by the mass difference between the meson (mB ≃ 5.3 GeV) and heavy b-quark:

Λ̄ ∼ mB −mb ∼ 500 − 700 MeV. (6)

To quantify the above estimate we literally take mb = 4.6 − 4.8 GeV, the so called “pole”
quark mass. Important is that quarks and gluons inside the B meson have energies ≤ Λ̄ and
hence interact strongly. At such scales no perturbative expansion in αs(Λ̄) is possible and
QCD Feynman graphs cannot be used. Moreover, in addition to ”valence” quarks, the partonic
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components with soft gluons and q̄q -pairs inside B-meson

|B−〉 = |bū〉 ⊕ |būG〉 ⊕ |būq̄q〉 ⊕ . . . (7)

are becoming important in forming the complete “wave function” of the hadronic state |B〉.
We also have to keep in mind that the QCD vacuum state 〈0| is populated by nonperturbative
fluctuating quark-antiquark and gluon fields. We conclude that for the hadronic matrix element
〈0|ūγ5b|B〉 ∼ fB there is no solution in QCD within perturbation theory.

One possibility to calculate this matrix element is to use a numerical simulation of QCD on
the lattice. An impressive progress in this direction has been achieved in recent years. We will
stay within continuum QCD and follow the method of QCD sum rules.

1.3 Correlation function of heavy-light quark currents

According to the original idea [1], (see also one of the first papers on this subject [10]) we start
from defining a suitable correlation function: an object calculable in QCD and simultaneously
related to the hadronic parameter fB :

Πµν(q) =

∫
d4x eiqx〈0|T{ū(x)γµγ5b(x)ū(0)γµγ5b(0)}|0〉 . (8)

This is an amplitude of an emission and absorbtion of the bu quark pair in the vacuum by
the external current ūγµγ5b and its conjugate b̄γµγ5u with a 4-momentum q. The b → u
current is the same as in the hadronic matrix element (2) of the leptonic decay. To simplify
the further derivation, it is convenient to deal with a Lorentz-invariant amplitude, multiplying
the above correlation function by the 4-momenta: qµqνΠµν(q) ≡ Π5(q

2). This is equivalent to
taking divergences of the axial current operators under the x integral: ∂µ(ūγµγ5b) = (mb +
mu)ūiγ5b ≡ j5 and replacing the axial currents by the pseudoscalar ones, hence we may redefine
the correlation function to a slightly different form

Π5(q
2) =

∫
d4x eiqx〈0|T{j5(x)j†5(0)}|0〉 , (9)

so that Π5(q
2) depends only on the invariant 4-momentum square. We accordingly modify the

definition of the decay constant

pµB〈0|ūγµγ5b|B(pB)〉 = 〈0|j5|B(pB)〉 = m2
BfB (10)

Let us consider the correlation function (9) in the region q2 ≪ m2
b . In the rest frame, ~q = 0,

q2 = q20 and the energy deficit to produce a real B meson state from the current is ∆q0 = mB−
q0 ∼ mb, up to small corrections. Thus, the propagation of the bū pair emitted by the current
j5(x) and absorbed by the current j+5 (0) lasts a time interval ∆x0 ∼ 1/∆q0 ∼ 1/mb, much
shorter than a time/distance interval ∆x0 ∼ ∆xi ∼ 1/ΛQCD typical for the nonperturbative,
strong interaction regime of QCD. Hence the quark-antiquark pair propagation described by the
correlation function at q2 ≪ m2

b remains highly virtual and therefore calculable in perturbative
QCD.

In the leading order of perturbation theory, the function Π5(q
2) is determined by a simple

quark-loop diagram shown in Fig. 4 (upper left). Gluon radiative corrections to this diagram,
one of them shown in Fig. 4 (upper right) are suppressed by small coupling αs(µ ∼ mb). The
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b

u

q

loop gluon exchange

quark condensate gluon condensate

Figure 4: Diagrams corresponding to the correlation function (9): simple quark-antiquark loop diagram
(upper left), one of the perturbative gluon-exchanges (upper right), quark condensate (lower left) and
one of the gluon condensate diagrams (lower right).

simple loop diagram and radiative gluon corrections expressed via two- and three-loop diagrams
(the latter were calculated in [11]) form the perturbative part of the correlation function Π(q2).

Additional diagrams shown in Fig 4 take into account the interactions with QCD vacuum
fields. A detailed calculation of the quark condensate diagram shown in Fig. 4 (lower left)
can be found e.g. in the review [4]. The gluon condensate diagrams (one of them in Fig 4
(lower right)) are more complicated because they represent a combination of the loop and
vacuum insertions. Useful methods to calculate these diagrams are introduced in the review
[12]. Technically, one uses Feynman rules of QCD and considers the vacuum quark-antiquark
pairs and gluons as external static fields. There are also contributions combining the quark-
antiquark and gluon vacuum lines. All condensate diagrams forming the nonperturbative part
of Π5(q

2) and calculated at q2 ≪ m2
b contain a short-distance part, formed by the propagating

quarks and antiquarks, and a long-distance part approximated by locally averaged condensate
densities. This is how a short-distance quark-antiquark fluctuation “sees” the QCD vacuum or
makes the “snapshots of QCD vacuum” in terms of [2].

The result for the correlation Π5(q
2) is an analytical expression in terms of quark masses

mb, mu, quark-gluon coupling αs and universal QCD condensate densities. Interpreting the
calculational procedure as a systematic OPE is another important theoretical aspect. An intro-
duction to the OPE adapted for the correlation functions in the presence of vacuum condensates
can be found e.g., in [2, 5]. Formally, one expands the product of the two current operators in
a series of local operators

T{j5(x)j†5(0)} =
∑

d=0,3,4,..

Cd(x
2,mb,mu, αs)Od(0) (11)

with growing dimensions built from quark, antiquark fields and gluon field strength
Taking vacuum average of the above formula and integrating it over x we recover the cor-

relation function

Π5(q
2) =

∫
d4x eiqx〈0|T{j5(x)j†5(0)}|0〉 =

∑

d=0,3,4,..

Cd(q
2,mb,mu, αs)〈0|Od|0〉 , (12)

where Cd(q
2, ...) =

∫
d4xeiqxCd(x

2, ...). Evidently, only the operators with vacuum quantum
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numbers (Lorentz-scalar, C-, P -, T -invariant, colourless) contribute to the r.h.s :

O0 = 1, O3 = q̄q, O4 = GaµνG
aµν , O5 = q̄σµν

λa

2
Gaµνq, O6 = (q̄Γrq)((q̄Γrq), ... , (13)

where q = u, d, s, and Γr are certain combinations of Dirac matrices. The unit operator with
〈0|O0|0〉 = 1 and no fields is added for the sake of uniformity. Its coefficient represents the

perturbative part of the correlation function, Π
(pert)
5 (q2) = C0(q

2). This part of the correlation
function is obtained from the loop diagram and gluon radiative corrections and is conveniently
represented in the form of a dispersion integral:

Π
(pert)
5 (q2) − Π

(pert)
5 (0) − q2

d

dq2
Π

(pert)
5 (0) = (q2)2

∞∫

m2
b

ds
ρ
(pert)
5 (s)

s2(s− q2)
(14)

with the spectral density

ρ
(pert)
5 (s) =

1

π
ImΠ

(pert)
5 (s) =

3m2
b

8π2
s

(
1 − m2

b

s

)2

+O(αs) +O(α2
s) . (15)

The two subtractions are needed for the convergence of the integral. Note that for simplicity we
neglected the light-quark mass in Eq. (15). The O(αs) and O(αs)

2 corrections in this equation
are considerably more complicated and can be found in [11, 14] (see also e.g., [13]).

The dominant nonperturbative contribution to the OPE (12) stems from the quark conden-
sate:

Π
〈q̄q〉
5 (q2) = C3(q

2)〈q̄q〉, where C3(q
2) =

−m3
b

m2
b − q2

+O(αs) . (16)

The leading order result for the Wilson coefficient C3(q
2) is obtained from the diagram shown in

Fig. 4 (lower left) and a more complicated expression for the O(αs) gluon radiative correction
can be found in [13]. In the above expression, the separation of short and long distances is
visible: the short-distance part is given by a simple b-quark propagator with 4-momentum
q whereas the quark condensate density represents the long-distance effect. The complete
expression for the correlation function in a compact form is:

Π
(OPE)
5 (q2) = Π

(pert)
5 (q2) + Π

〈q̄q〉
5 (q2) + Π

〈d456〉
5 (q2) . (17)

where all d = 4, 5, 6 effects are collected in one term for brevity. The terms with d > 6 are
usually neglected, provided one keeps the d = 4, 5, 6 contribution sufficiently small, due to a
proper choice of the variable q2.

1.4 Correlation function in terms of hadrons

Having at hand the expression (17) for the correlation function Π5(q
2) valid at q2 ≪ m2

b , let us
now investigate its relation to hadrons. To visualize the discussion, I consider a hypothetical
neutrino-electron elastic scattering via a virtual W boson. One of the possible intermediate
states in this process is the bū pair emitted from and annihilated into W (in the longitudinal
state, to have JP = 0−) as depicted in Fig. 5. The bū fluctuation coincides with the correla-
tion function we are considering. The c.m. energy of this process is equal to the momentum
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Figure 5: Correlation function as a part of the ν̄ee scattering amplitude at different energies
√
s =

p

q2.

transfer flowing in the correlation function:
√
s =

√
q2. In the region q2 ≪ m2

b the interme-
diate bū state (Fig.5(a)) represents a highly virtual heavy-light quark-antiquark pair. We are
able to calculate this fluctuation in terms of OPE as already explained. On the other hand,
increasing the energy one reaches the domain where real on-shell hadronic states propagate in
the intermediate state. At

√
s = mB , the B-meson (Fig.5(b)) contributes. This is the lowest

possible intermediate hadronic state in this channel, it will show up as a sharp resonance in our
hypothetical scattering process. Increasing the energy, one encounters heavier resonances, the
radially excited B mesons, with growing total width (Fig.5(c)). These resonances are overlapped
with multiparticle hadronic states with a net B flavor (Fig.5(d)), starting with the two-particle
hadronic state B∗π with the lowest threshold s = q2 = (mB∗ + mπ)

2. Note that a Bπ state
is not allowed by spin-parity conservation. The multihadron state contributions build up the
hadronic continuum mixed with excited states. At very large energies, resonances are smeared
and multihadron states dominate. We come to conclusion that the correlation function Π5(q

2)
in the region q2 > m2

B describes a complicated overlap of interfering resonant and multiparticle
hadronic states with B meson quantum numbers.

This qualitative picture of emerging intermediate hadronic states reflects the formal spectral
representation of Π5(q

2) following from the basic unitarity relation. The imaginary part of the
correlation function is equal to the sum of contributions of all possible hadronic states allowed
by quantum numbers:

1

π
ImΠ5(q

2) = 〈0|j5|B〉〈B|j†5|0〉δ(m2
B − q2) + ρh5 (s)θ(s− (mB∗ +mπ)

2) , (18)

where we isolated the ground-state B meson contribution and introduce a shorthand notation
for the spectral density of excited (resonance and multiparticle) states, schematically:

ρh5 (s) =
∑

Bexc

〈0|j5|Bexc〉〈Bexc|j†5|0〉 (19)
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where the sum includes the integration over phase space and sum over polarizations. A detailed
derivation of the hadronic representation for two-point correlation function can be found e.g.,
in [5].

The next important step is to employ the analyticity of the function Π(q2) which, according
to the unitarity relation (18) has singularities – poles (cuts) related to resonances (multiparticle
thresholds) – on the real axis of the complex q2 plane. The Cauchy theorem leads to the
dispersion relation between Π5(q

2) and its imaginary part integrated over positive s ≥ m2
B :

Π5(q
2) =

1

π

∞∫

m2
B

ds
ImΠ5(s)

s− q2 − iǫ
, (20)

where the subtraction terms are hereafter neglected for simplicity. Importantly, this relation
is valid at any q2. We will apply it at q2 ≪ m2

b where the correlation function represents a
short-lived bū -fluctuation calculable in terms of OPE, so that l.h.s. in the above dispersion

relation can be approximated by Π
(OPE)
5 (q2) given by Eq. (17). Hence, we obtain a remarkable

opportunity to relate the correlation function calculated in QCD to a sum/integral containing
hadronic parameters, including the B-meson mass and decay constant.

1.5 Deriving the sum rule for f 2
B

Substituting Eq. (18) in the dispersion relation (20) and expressing the hadronic matrix element
via fB , we obtain at q2 ≪ m2

b :

Π5(q
2) =

f2
Bm

4
B

m2
B − q2

+

∞∫

sh

ds
ρh(s)

s− q2
≃ Π

(OPE)
5 (q2) . (21)

where sh = (mB∗ +mπ)
2 is the lowest threshold of the excited B states.

Let us now employ another important feature of the correlation function. In the deep
spacelike region q2 → −∞ the power suppressed condensate terms in Eq. (17) vanish and the
correlation function coincides with the perturbative part of OPE:

Π5(q
2 → −∞) = Π

(OPE)
5 (q2 → −∞) = Π

(pert)
5 (q2 → −∞) (22)

dominated by the simple loop diagram.
It is convenient to express the perturbative part of the OPE in a form of dispersion relation.

In this case the imaginary part starts at the bū-quark pair threshold and is equal to the spectral
density of the loop diagrams presented in Eq. (15):

Π(pert)(q2) =
1

π

∞∫

m2
b

ds
ImΠ

(pert)
5 (s)

s− q2
, (23)

where we again neglect the subtractions and put mu → 0.
To fulfill the asymptotic condition (22), the spectral functions entering the hadronic and

OPE (perturbative) dispersion relations should be equal at sufficiently large s:

ρh(s) ≃ 1

π
ImΠ

(pert)
5 (s), (24)
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This approximation is called local quark-hadron duality. It suffices to use a weaker condition,
approximately equating the integrals of the hadronic and perturbative spectral densities over
the large s region:

∞∫

sh

ds
ρh(s)

s− q2
≃ 1

π

∞∫

s0

ds
ImΠ

(pert)
5 (s)

s− q2
, (25)

where an effective threshold s0 is introduced. Returning to the hadronic dispersion relation
(21), we use Eq. (25) to replace the integral over excited B states and the OPE (17) in r.h.s.,
with the perturbative part replaced by its dispersion representation. The resulting relation:

f2
Bm

4
B

m2
B − q2

+
1

π

∞∫

s0

ds
ImΠ

(pert)
5 (s)

s− q2
=

1

π

∞∫

m2
b

ds
ImΠ

(pert)
5 (s)

s− q2
+ Π

〈q̄q〉
5 (q2) + Π

〈d456〉
5 (q2) , (26)

allows one to subtract the approximately equal integrals from both sides yielding an analytical
relation for the decay constant:

f2
Bm

4
B

m2
B − q2

=
1

π

s0∫

m2
b

ds
ImΠ

(pert)
5 (s)

s− q2
+ Π

〈q̄q〉
5 (q2) + Π

〈d456〉
5 (q2) . (27)

A substantial improvement of this relation is further achieved with the help of the Borel trans-
formation defined as:

Π5(M
2) ≡ BM2Π5(q

2) = lim
−q2,n→∞

−q2/n=M2

(−q2)(n+1)

n!

(
d

dq2

)n
Π5(q

2) , (28)

so that BM2( 1
m2−q2 ) = exp(−m2/M2).

The resulting QCD sum rule for f2
B obtained from Eq. (27) after this transformation reads:

f2
Bm

4
Be

−m2
B/M

2

=

s0∫

m2
b

dse−s/M
2

ImΠ
(pert)
5 (s,mb,mu, αs) + Π

〈q̄q〉
5 (M2) + Π

〈d456〉
5 (M2) . (29)

Note that the Borel transformation suppresses the higher-state contributions to the hadronic
sum above s0 so that the above sum rule is less sensitive to the accuracy of the quark-hadron
duality approximation (25). Everything is ready to calculate the decay constant of B meson
numerically.

1.6 Input parameters and results

In the sum rule (29) one has to choose an optimal interval of the Borel parameter. The lower
boundary for M2 is controlled by the OPE convergence, e.g., we demand that the d = 4, 5, 6
terms are sufficiently small with respect to the quark condensate term. The upper boundary for
M2 is adopted from the condition that the contribution of excited states subtracted from the
sum rules remains subdominant. Furthermore, a standard way to fix the effective parameter s0
is to fit the sum rule to the measured mass of B-meson by differentiating both parts of Eq. (29)

10

ALEXANDER KHODJAMIRIAN

118 HQ2013



in −(1/M2) and dividing the result by the initial sum rule, so that f2
B cancels, and one obtains

a relation for m2
B .

One of the advantages of the sum rule method is its flexibility: replacing quark flavours in
the correlation function, e.g., b→ c or ū→ s̄ provides the access to the decay constants of D or
Bs mesons.. Nonzero strange quark mass and a difference in condensate densities, 〈s̄s〉 6= 〈ūu〉,

Decay constant Lattice QCD [ref.] QCD sum rules [13]
196.9 ± 9.1 [20]

fB [MeV] 207+17
−9

186 ± 4 [21]
242.0 ± 10.0 [20]

fBs
[MeV] 242+17

−12
224 ± 5 [21]

1.229± 0.026 [20]
fBs

/fB 1.17+0.04
−0.03

1.205± 0.007 [21]

218.9 ± 11.3 [20]
fD[MeV] 201+12

−13
213 ± 4 [22]

260.1 ± 10.8 [20]
fDs

[MeV] 238+13
−23

248.0 ± 2.5 [22]
1.188± 0.025 [20]

fDs
/fD 1.15+0.04

−0.05
1.164± 0.018 [22]

Table 1: Decay constants of heavy-light mesons calculated with different methods.

generate the SU(3)flavour symmetry violation.

The universal input parameters needed for the numerical analysis of the sum rules include the
quark masses, quark-gluon coupling and the vacuum condensate densities. Since the calculation
is done at short distances the natural choice for quark masses is the MS scheme. The sum rule
is quite sensitive to the b-quark mass, hence to have a reliable estimate of fB one needs an inde-
pendent and accurate determination of mb. This task was fulfilled by considering quarkonium
sum rules, where the correlation function of two Q̄γµQ currents (Q = b, c) is calculated in QCD.
The accuracy of this calculation [15] has reached O(α3

s) in the perturbative part. The hadronic
representation of this correlation function is largely fixed from experiment [16] and consists of
JPC = 1−− heavy quarkonia levels, their decay constants measured in e+e− → Υ,Υ(2S), ....
or e+e− → J/ψ, ψ(2S), .... processes. Hence, the quarkonium sum rules can be used to extract
the heavy quark masses. The most recent results of these determinations, expressed in MS
scheme are: m̄b(m̄b) = (4.18 ± 0.03)GeV [15], m̄c(m̄c) = (1.275 ± 0.025)GeV[15, 17]. In the
same way, employing QCD sum rules for strange meson pseudoscalar and scalar channels [18]
one obtains ms(µ = 2GeV) = (98±16)MeV. Combined with ChPT relations [19] one finds the
quark condensate density 〈q̄q〉(2 GeV) = −(277+12

−10 MeV)3. Condensate densities with d > 3
entering the subleading power corrections in OPE are discussed in the review [9]. The sample
of recent determinations of the B and D decay constants in Table 1 is taken from [13] where
one can also find a detailed discussion of numerical procedure and formulae for OPE, as well
as references to other important papers on the subject of this lecture.
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2. Lecture: B → π form factors and light-cone sum rules

In this lecture more complicated hadronic matrix elements – the form factors of heavy-to-light
transitions are considered. The best studied among them are the B → π transition form factors
relevant for B → πℓνℓ semileptonic decay. I will explain how the QCD sum rule method was
modified to calculate these and other hadronic form factors.

2.1 B → πℓνℓ decay and form factors

b

d

�e

B
0

u

�
+

�

�e

W

Figure 6: Schematic view of B → πℓνℓ decay

The exclusive semileptonic decay B → πℓνℓ shown in Fig. 6 proceeds via weak b → u
transition with a squared momentum transfer q2 to the leptonic pair varying within the interval
0 < q2 < (mB −mπ)

2 ∼ 26 GeV2 (here we neglect the lepton mass).
The form factors f+

Bπ(q
2) and f0

Bπ(q
2) are invariant functions of q2 parameterizing the

hadronic matrix element of this decay:

〈π+(p)|ūγµb|B(p+ q)〉 = f+
Bπ(q

2)
[
2pµ +

(
1 − m2

B −m2
π

q2
)
qµ

]
+ f0

Bπ(q
2)
m2
B −m2

π

q2
qµ, (30)

where p + q and p are the four-momenta of B and π, respectively. Similar to the B decay
constant, the B → π form factors have to be calculated in QCD. This is a challenging problem
because not only the initial B meson but also the final pion is involved in the hadronic matrix
element. In what follows we consider the region of small q2, in which case the pion has a large
recoil in the B meson rest system, with the momentum pπ ≡ |~p | ∼ mB/2 at q2 = 0.

Analyzing the B → π form factors from the point of view of QCD, one expects a certain
perturbative contribution corresponding to an energetic virtual gluon exchange between the
quarks participating in the weak transition and the spectator quark. This “hard scattering”
mechanism boosts the spectator quark in B meson and provides a natural configuration for
the final pion with symmetric collinear quark and antiquark. On the other hand one has to
take into account also the “end-point” mechanism where the pion is formed from an asymmetric
quark-antiquark pair. This part of the form factor is dominated by soft nonperturbative gluons.
The proportion of the hard scattering and soft end-point contributions to the hadronic form
factors is a nontrivial problem. It can only be addressed within a calculational method that
allows one to take into account both contributions.
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An accurate determination of the B → π form factors is important for quark flavour physics
because the semileptonic decay B → πℓνℓ is an excellent source of the CKM parameter |Vub|.
In fact, one practically needs only the vector form factor f+

Bπ for this purpose, because in the
partial width the contribution of the form factor f0

Bπ is suppressed by the lepton mass:

1

τB

dBR(B̄0 → π+l−ν)

dq2
=
G2
F |Vub|2
24π3

p3
π|f+

Bπ(q
2)|2 +O(m2

l ) . (31)

Importantly, in lattice QCD the B → π form factors are currently accessible at comparatively
large q2 ≥ 15 GeV2. In this region the phase space in the decay width (31) is suppressed by
small pπ. The calculation of the form factors at small q2 (large recoil of the pion) discussed
below, complements the lattice QCD results in a kinematically dominant region.

2.2 Vacuum-to-pion correlation function

The method of light-cone sum rules (LCSR) developed in [23, 24] is used to calculate the
B → π form factors at large hadronic recoil. In this approach, the correlation function itself is
an amplitude of the vacuum-to-hadron transition 1:

Fλ(q, p) = i

∫
d4x eiqx〈π(p) | T{ū(x)γλb(x), j5(0)} | 0〉

= F (q2, (p+ q)2)pµ + F̃ (q2, (p+ q)2)qµ , (32)

containing the product of the weak b→ u and j5 = mb b̄iγ5u currents. The latter was also used
in the two-point correlation function for fB . In what follows, only the invariant amplitude F is
essential, depending on the two independent kinematical variables: q2 , the squared momentum
transfer in the weak b→ u transition, and (p+ q)2, the square of the 4-momentum flowing into
the current j5. The correlation function (32) allows for a systematic QCD calculation in the
specific region: q2, (p+ q)2 ≪ m2

b where the b quark is a highly-virtual object. In this region of
external momenta the x integral in the correlation function is dominated by small x2 ∼ 1/m2

b ,
near the light-cone x2 ∼ 0. The leading order diagram for the correlation function is shown in
Fig. 7(a). It consists of the free b-quark propagator convoluted with the matrix element of light
quark and antiquark operators sandwiched between the vacuum and on-shell pion state. The
perturbative gluon corrections to the leading order diagram are shown in Fig. 8. The diagram
in Fig. 7(b) takes into account the emission of a soft (low-virtuality) gluon emitted from the b
quark. The corresponding vacuum-to-pion matrix element involves light quark-antiquark and
gluon fields.

A schematic expression for the correlation function (32) decomposed near the light-cone can
be written as:

F (q, p) = i

∫
d4x eiqx

{
[
S0(x2,m2

b) + αsS
1(x2,m2

b)
]
〈π(p) | ū(x)Γd(0) |0〉

+

∫ 1

0

dv S̃(x2,m2
b , v)〈π(p) | ū(x)G(vx)Γ̃d(0)} | 0〉

}
+ ... (33)

1 Vacuum-to-vacuum correlation functions with the quark currents interpolating both B meson and pion
and with the OPE in terms of condensates are not applicable for heavy-to-light form factors; see a detailed
discussion in the review [6].
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Figure 7: Diagrams corresponding to the correlation function (32): leading order (a) and soft gluon
emission forming the 3-particle B meson DA (b).

where S0 , S1 and S̃ are the perturbative parts of the amplitudes, involving b-quark propagators.
They are convoluted with the vacuum-pion matrix elements, taken near x2 = 0, where Γ, Γ̃ are
generic Dirac-matrix structures and the Lorentz-indices are omitted for simplicity.

The vacuum-to-pion matrix elements in Eq. (33) are nonperturbative but universal objects.
They absorb all long-distance effects in the correlation function. The expansion in Eq.(33) goes
over αs and powers of x2, which in the momentum space translates into an expansion in αs(µ)
and the powers of 1/µ. Here µ ∼ √

χmb , with χ being an intermediate scale, ΛQCD ≪ χ < mb.
In particular, in (33) the quark-antiquark gluon part has a power suppression with respect to
the leading order part. Hence, the expansion (33) can safely be truncated. I skip a more formal
and systematic description of this expansion based on the twist t (dimension minus Lorentz-
spin) of the light quark-antiquark operators entering the vacuum-to-pion matrix elements (see,
e.g., [5] for an introductory explanation).

The main nonperturbative object determining the leading-order answer for the light-cone
expanded correlation function (33) is the vacuum-to-pion matrix element

〈π(q)|ū(x)[x, 0]γµγ5d(0)|0〉x2=0 = −iqµfπ
∫ 1

0

du eiuqxϕπ(u) +O(x2) , (34)

where [x, 0] = exp[igs
∫ 1

0
dtxµA

aµ(tx)λa/2] is the factor added to secure gauge invariance. The

Figure 8: Gluon radiative corrections to the correlation function (32).
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above matrix element is normalized to the pion decay constant, that is evident if one puts x→ 0
and takes into account that the function ϕπ(u) is normalized to unit. This and similar functions
parameterizing vacuum-to-pion matrix elements play central role in the LCSR approach and
replace the vacuum condensates. They are called light-cone distribution amplitudes (DA’s) of
the pion. Physically DA’s correspond to various Fock components of the fast pion and the
variable u denotes the share of the pion momentum carried by the quark or antiquark.

Inserting in Eq. (33) the vacuum-to pion matrix elements expressed in terms of DA’s and
integrating over x, one obtains the OPE result for the invariant amplitude defined in (32) in
the following generic form:

F (OPE)(q2, (p+q)2) =
∑

t=2,3,4,..

∫
du T (t)(q2, (p+q)2,m2

b , αs, u, µ)ϕ(t)
π (u, µ) , (35)

where the summation goes over the growing twist, and the twist-2 part contains the DA defined
in Eq. (34). The perturbative hard-scattering amplitudes T (t) stemming from the b-quark
propagators and perturbative loops are process-dependent whereas the pion DA’s are universal.
One can analyse DA’s using the light-cone OPE for other processes, not even involving heavy
quarks, like e.g., the pion electromagnetic form factor at spacelike momentum transfers or the
photon-pion transition form factor (see e.g. [5]). Within the currently achieved accuracy, the
light-cone OPE (35) includes the twist 2,3,4 quark-antiquark and quark-antiquark-gluon DA’s
[25], and the hard -scattering amplitudes for twist 2,3 parts are calculated up to NLO, in O(αs)
[26, 27, 28, 29]. Recently, the O(α2

s) correction to the twist-2 part was also calculated [30].

2.3 What do we know about the light-cone DA’s

Before applying them in LCSR’s, the pion DA’s were already introduced in the context of the
hard-scattering mechanism for the pion e.m. form factor at large momentum transfer [31, 32].
A convenient expansion in Gegenbauer polynomials was defined

ϕπ(u, µ) = 6u(1 − u)

[
1 +

∑

n=2,4,..

aπn(µ)C3/2
n (2u− 1)

]
, (36)

with logarithmic evolution of its coefficients (Gegenbauer moments):

aπ2n(µ) ∼ [ln(µ/ΛQCD)]−γ2n , (37)

vanishing at asymptotically large scale µ→ ∞. The input values of Gegenbauer moments at low
scale, aπ2,4,6,...(µ0 ∼ 1 GeV) are determined from different sources: matching experimentally
measured pion form factors to LCSR’s , calculating a2 from two-point QCD sum rules and in
lattice QCD. Recent determinations lie within the intervals: aπ2 = 0.25 ± 0.15, aπ2 + aπ4 =
0.1 ± 0.1, if one neglects the higher coefficients. The remaining parameters of twist 3,4 DA’s
are determined mainly from dedicated two-point sum rules [33].

2.4 LCSR for B → π form factors

After obtaining the OPE expression for the amplitude F ((p+ q)2, q2), the derivation of LCSR
follows the same strategy as in the case of two-point sum rule. The hadronic dispersion relation
for F ((p + q)2, q2) in the variable (p + q)2 (at fixed small q2) is used. The dispersion relation
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contains a pole term with intermediate B meson and a hadronic sum over excited and multi-
hadron states with B quantum numbers. Matching the OPE with this dispersion relation, we
obtain

F (OPE)((p+ q)2, q2) =
m2
BfBf

+
Bπ(q

2)

m2
B − (p+ q)2

+

∞∫

s0

ds
ImF (OPE)(s, q2)

s− (p+ q)2
, (38)

where the residue of the B meson pole term contains the product of matrix elements 〈π | ūγλb |
B〉 and 〈B | j5 | 0〉 yielding the product of the form factor f+

Bπ(q
2) and the decay constant fB.

For the latter, the result obtained from the two-point sum rule discussed in the previous lecture
can be used. Furthermore, on r.h.s. of (38) we also use the quark-hadron duality approximation,
replacing the integral over excited states by the integral over the spectral density of the OPE
result with an effective threshold s0. Subtracting the integrals from s0 to ∞ from both sides of
the above relation and performing the Borel transformation we finally obtain the desired LCSR
for the form factor:

fBf
+
Bπ(q

2) =

s0∫

m2
b

ds ImF (OPE)(s, q2)e(m
2
B−s)/M2

. (39)

The inputs include the b quark mass mb, αs, and the set of pion DA’s ϕ
(t)
π (u), t=2,3,4. The

resulting numerical interval for the form factor is formed by the uncertainties due to variation
of the input and of M2 within the interval where one can trust OPE and where simultaneously
the contribution of excited states remains subdominant. A very detailed numerical analysis
of this sum rule can be found in [29]. The effective threshold can be controlled by the m2

B

calculation from LCSR. The LCSR for the scalar B → π form factor f0
Bπ is obtained employing

the second invariant amplitude in the correlation function (32).

Let me emphasize that the method discussed here employs a finite b-quark mass. At the
same time LCSRs allow for a systematic transition to the infinite heavy-quark mass . This limit
described in detail, e.g., in the review [4], reproduces the heavy-mass scaling of the form factor
at large hadronic recoil

f+
Bπ(q

2 = 0) ∼ 1/m
3/2
b , (40)

first predicted in [24]. Another important feature of LCSRs is that they contain both soft
end-point and hard-scattering contributions to the form factor. The hard-scattering part is
contained in the O(αs) contributions to LCSR, described by the diagrams with perturbative
gluon exchanges. The soft end-point mechanism originates from the part of OPE that do not
contain gluon exchanges, and is dominated by the leading order diagram. It is therefore not
surprising that the hard scattering part is suppressed, supporting the dominance of the end-
point mechanism for the form factor. Note however that sum rules are not directly calculating
the form factor but rather its “dual counterpart” in the OPE.

In Fig. 9 the recent predictions [34] of LCSR for both B → π form factors are shown in
comparison with the lattice QCD results [20, 21]. The sum rules are used at q2 < q2max ≃
12 GeV2 and the results are then extrapolated to larger momentum transfers with a certain
analytical parametrization of the form factors [35] as explained in detail in [34]. Finally, the
LCSR results were used to evaluate an integral over the weighted form factor squared, which,
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Figure 9: LCSR results for B → π form factors, extrapolated to q2 > 12 GeV2 in comparison with
the lattice QCD predictions

as follows from (31), is related to the integral over the partial width:

G2
F

24π3

q2max∫

0

dq2p3
π|f+

Bπ(q
2)|2 =

1

|Vub|2τB0

q2max∫

0

dq2
dB(B → πℓνℓ)

dq2
, (41)

This relation together with the measurements of the integrated partial width of B → πℓνℓ was
used to extract |Vub| in [38].

Simple replacements b → c and the adjustment of light quark flavours in the underlying
correlation function (32) allows to obtain the LCSR’s for D → π,K form factors [36] employing
the same OPE diagrams. In this case, only a narrow region above q2 = 0 is accessible with
LCSR’s. The SU(3)flavour symmetry violation is encoded in the Gegenbauer moments of the
kaon aKn , in particular, the odd moments with n = 1, 3, ... have to be added in the expansion
(36). The results for the form factors were used in [36] to extract Vcs and Vcd from the data on
D → π(K)eνe decays.

2.5 Alternative sum rules with B -meson DA’s

The positions of the B-meson interpolating current and pion in the correlation function (32)
can be exchanged introducing a new, vacuum-to-B correlation function, in which the B meson
is represented by an on-shell state and the pion is replaced by an interpolating quark current,
as shown in Fig. 10. Here q is the momentum transfer in the weak b → u transition current
and p is the external momentum of the light-meson interpolating current, whereas pB = p+ q
with p2

B = m2
B is the B-meson momentum.

This approach was initiated in [37] (see also [39]). Its main advantage is an easy extension
to other light hadrons, also the non-stable ones. It is relatively easy to obtain LCSRs for the
B-meson transition form factors to light vector, scalar or axial mesons, by simply varying the
quantum numbers of the intepolating current and adjusting the quark-hadron duality ansatz.
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p

b

d
u

B

q

Figure 10: Correlation function
with B-meson DA’s

The description in terms of the light-cone OPE is done
in the framework of heavy-quark effective theory (HQET).
The 4-momentum of b -quark and B meson are represented
as a sum of the static component and residual momentum:
e.g, pB = p+ q = mbv + k where v is the velocity 4-vector.
After the transition to HQET the vacuum-to-B correlation
function is independent of the scale mb. In this effective
theory the following definition [41, 40] of the vacuum-to-B
meson matrix element is used

〈0|q̄2α(x)[x, 0]hvβ(0)|B̄v〉

= − ifBmB

4

∞∫

0

dωe−iωv·x
[
(1 + /v)

{
φB+(ω) − φB+(ω) − φB−(ω)

2v · x /x

}
γ5

]

βα

, (42)

where hvβ is the effective field, α, β are Dirac indices. The functions φB±(ω) are the B-meson
two-particle DA’s and ω is the light-quark momentum fraction which formally (in the infinite
heavy quark limit) varies up to ω = ∞, however, in all realistic models is limited by ω ∼ Λ̄
where Λ̄ is the mass difference introduced in Eq. (6). More details on B-meson DA’s can be
found in the review [42]. These DA’s were used earlier in the context of factorization approach
to the heavy-light form factors in HQET [40]. In addition, the diagram with soft gluon emitted
from u quark in the correlation function was taken into account, generating the three-particle
DA’s . Their detailed discussion can be found in the second paper in [37]

The rest of LCSR derivation follows the same way as in the case of pion DA’s. The OPE
in terms of B-meson DA’s is matched to the dispersion relation in the variable p2 which is the
invariant momentum squared of the light-meson interpolating current. The accuracy of resulting
LCSR’s for B → π,K, ρ,K∗ form factors obtained in [37] is still lower than for the conventional
sum rules. One reason is that the key nonperturbative input parameter, the inverse moment:

1
λB(µ) =

∫∞
0
dω

φB
+(ω,µ)

ω is not yet accurately determined. Two-point QCD sum rules in HQET

predict λB(1 GeV) = 460 ± 110 MeV [43]. This parameter is accessible in the photoleptonic’
B → γℓνℓ decay (for a recent analysis see [44] and [45]). Another reason is that the radiative
gluon corrections to the correlation function in Fig. 10 are still missing. Therefore, the LCSR’s
with B-meson DA’s have a room for improvement. Finally, let me quote another important
application of these sum rules [46] to B → D(∗) form factors. The sum rules were obtained for
the same correlation function as in Fig. 10 replacing the light quark in the correlation function
by a c quark - another manifestation of the flexibility and universality of the method.

2.6 Heavy baryon form factors and Λb → p ℓνℓ

The LCSR method for B-meson form factors was also extended to the heavy baryon form
factors. In particular, let me briefly outline the recent calculation [47] of the Λb → p form
factors employing the following vacuum-to-nucleon correlation function:

Πµ(5)(P, q) = i

∫
d4z eiq·z〈0|T

{
ηΛb

(0), b̄(z)γµ(γ5)u(z)
}
|N(P )〉 . (43)
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P � q q

Figure 11: Diagrammatic repre-
sentation of the correlation function
with nucleon DA’s used to derive
LCSR’s for heavy-to-light baryon
form factors

Here the three-quark heavy-light current operator ηΛb
with

quantum numbers of Λb has a nonvanishing matrix element
〈Λb | ηΛb

| 0〉 6= 0. It is traditionally called the Λb “decay
constant”, although literally an annihilation of Λb would
violate the baryon number conservation and is absent in SM.
Nevertheless, in QCD nothing prevents from introducing
the auxiliary operator ηΛb

as an external source of b-quark
baryonic states. As opposed to the meson case, one has a
multiple choice for constructing the three-quark currents.
In [47] two different operators were used:

η
(P)
Λb

= (uC γ5 d) b, η
(A)
Λb

= (uC γ5γλ d) γ
λ b , (44)

and the difference between the results for the form factors
was considered as a part of the “systematic” uncertainty.

The diagram for the correlation function in LO is shown in Fig. 11, with the on-shell nucleon,
carrying the 4-momentum P (P 2 = m2

N ) and with the horizontal line denoting the virtual b-
quark. The approximation of the free b-quark propagation is valid in the kinematical region
q2 ≪ m2

b , (P − q)2 ≪ m2
b , where the integral over z in Eq. (43) is dominated by small intervals

near the light-cone, z2 ∼ 0.
Contracting the virtual b-quark fields in Eq. (43), we recover new nonperturbative objects:

the nucleon DA’s. Their definitions and properties were worked out in [48], where also the
LCSR’s for nucleon electromagnetic form factors were obtained. The latter sum rules are
described by the same diagram of Fig. 11 with a light u, d quark in the horizontal line. The
definition of DA’s is schematically given by the following decomposition of the vacuum-to-
nucleon matrix element:

〈0|ǫijkuiα(0)ujβ(z)d
k
γ(0)|N(P )〉 =

∑

t

S(t)
αβγ ×

∫
dx1dx2dx3δ(1 −

3∑

i=1

xi)e
−ix2P ·zFt(xi) , (45)

where the expansion goes over twist t = 3, 4, 5, 6 of light-quark operators and contains 27 DA’s
Ft(xi) depending on the shares x1,2,3 of the nucleon momentum.

The hadronic dispersion relation for the correlation function (43) aimed at isolating the
ground-state Λb-pole contribution also has its peculiarities. The baryonic quark currents not
only interpolate ground states but also their counterparts with the opposite P parity. In our
case ,the Λ∗

b baryon with JP = 1/2− located at mΛ∗
b
≃ mΛb

+ (200÷ 300) MeV, should also be
counted as a ground state in the hadronic spectrum. Therefore we have to include this state in
the resulting dispersion relation separately from the excited states:

Πµ(5)(P, q) =
〈0|ηΛb

|Λb〉〈Λb|b̄γµ(γ5)u|N〉
m2

Λb
− (P − q)2

+
〈0|ηΛb

|Λ∗
b〉〈Λ∗

b |b̄γµ(γ5)u|N〉
m2

Λ∗
b
− (P − q)2

+

∞∫

sh
0

ds ρµ(5)(s, q
2)

s− (P − q)2
. (46)

In [47] a simple procedure was introduced to eliminate the Λ∗ baryon term in the dispersion
relation by forming linear combinations of kinematical structures in the correlation function.
The Λb term contains the product of decay constant and the transition form factors. There
are altogether six form factors of Λb → p transition, actually their definition is very similar to
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Figure 12: (a)- one of the Λp → N form factors predicted from LCSR [47], the spread between solid
lines (solid and dashed lines) indicates the difference due to the choice of Λb currents (the uncertainties
due to the input variation); (b) - normalized differential width of Λb → pℓνℓ.

familiar one in the nucleon β decay. The three form factors for the vector part of the weak
transition current are defined as:

〈Λb(P − q)|b̄ γµ u|N(P )〉 = ūΛb
(P − q)

{
f1(q

2) γµ + i
f2(q

2)

mΛb

σµνq
ν +

f3(q
2)

mΛb

qµ

}
uN (P ) , (47)

For the axial vector current one has to replace in the above: γµ → γµγ5 and fi(q
2) → gi(q

2).
The resulting sum rule for each form factor is obtained in a standard way. The result of

the diagram calculation in terms of nucleon DA’s is matched to the dispersion relation and
the quark-hadron duality approximation in the Λb channel is employed. The decay constant of
Λb is independently estimated from the QCD sum rules for the two-point vacuum correlation
functions of the ηΛb

current and its conjugate.
The kinematical region of the Λb → pℓνℓ semileptonic decay, 0 ≤ q2 ≤ (mΛb

− mN )2, is
only partly covered by the LCSR calculation. The OPE is not reliable at large q2, typically at
q2 > 12−14 GeV2 because the virtual three-quark bud-state approaches the hadronic threshold
in the q2 channel. The numerical results obtained in [47] include the form factors at q2 ≤ 11
GeV2 calculated with the universal inputs including the b-quark mass and a few parameters
determining the nucleon DA’s. To improve LCSRs one also has to calculate the radiative gluon
corrections to the correlation function which is however technically very challenging.

In Fig. 12 (left) one of the vector form factors is plotted, where the analytical parametrization
[35] fitted to the LCSR prediction at low q2 is used to extrapolate this form factor to the whole
region of momentun transfer. One observes a reasonable agreement between the sum rules with
different ηΛb

-currents. The Λb → pℓνℓ decay width measurements combined with the calculated
form factors provide an alternative source of |Vub| determination.
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3. Lecture: Hadronic effects in B → K(∗)ℓ+ℓ−

In this lecture I will discuss a more complex problem of calculating the hadronic input for
exclusive flavour-changing neutral current (FCNC) decays. As we shall see, the LCSRs provide
not only the form factors but also nonlocal hadronic matrix elements specific for these decays.

3.1 FCNC transitions and nonlocal hadronix matrix elements

The b→ s ℓ+ℓ− FCNC transitions observed in the form of exclusive decays such as B → K(∗)ℓℓ
are intensively studied at LHC and B factories. The main interest in these decays is their
sensitivity to the contributions of new heavy particles. In SM the b → sℓ+ℓ− transitions are
described by an effective Hamiltonian

Heff = −4GF√
2
VtbV

∗
ts

10∑

i=1

Ci(µ)Oi

∣∣∣
µ∼mb

, (48)

where the loop diagrams with heavy SM particle (t, Z,W ) are absorbed in the Wilson coefficients
Ci. The lighter fields, including b quark field, form effective local operators Oi. The B →
K(∗) ℓ+ℓ− decay amplitude

A(B → K(∗)ℓ+ℓ−) =
GF√

2
VtbV

∗
ts

10∑

i=1

Ci(µ) 〈K(∗)ℓ+ℓ− | Oi | B〉
∣∣∣
µ∼mb

(49)

is written formally as a sum of matrix elements of effective operators between the initial and
final states, weighted by their Wilson coefficients. The dependence on the scale µ indicates the
separation of gluon radiative corrections with momenta larger and smaller than µ between the
Wilson coefficients and hadronic matrix elements, respectively.

In the above, the dominant contributions to the amplitude (49) are given by the operators

O9(10) =
αem
4π

[s̄LγµbL]ℓγµ(γ5)ℓ, O7γ = −emb

8π2
[s̄σµν(1 + γ5)b]F

µν (50)

with large coefficients C9(mb) ≃ 4.4, C10(mb) ≃ −4.7 and C7(mb) ≃ −0.3. The corresponding
diagrams are shown in Fig. 13. The new physics effects can substantially modify the coefficients

b sb s

B K

�ll

b sb s

B K

�ll

(a) (b)

Figure 13: Hadronic matrix elements of FCNC operators O9,10 (a) and O7 (b) in the B → Kℓ+ℓ−

decays.
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C9,10,7,..., and/or add new operators with different spin-parity combinations. In the contribu-
tions of O9,10,7, the leptons are factorized out from the matrix elements in (49) and the only
hadronic input one needs are the B → K(∗) form factors. The latter can be calculated with
LCSR methods considered in the previous lecture.

However, at this stage the problem of determining the hadronic input in B → K(∗) ℓ+ℓ−

is not yet solved. Note that the effective Hamiltonian (48) also contains effective operators
without leptons or photon: the gluon-penguin O8g = − mb

8π2 s̄σµν(1 + γ5)bG
µν , 4-quark penguin

operatorsO3−6 with small Wilson coefficients and, most importantly, the current-current oper-

ators O
(c)
1 = [s̄LγρcL][c̄Lγ

ρbL] and O
(c)
2 = [c̄LγρcL][s̄Lγ

ρbL] of the “ordinary” weak interaction,
with large coefficients C1(mb) ≃ 1.1 and C2(mb) ≃ −0.25, respectively 2. These operators also
contribute to the b → sℓ+ℓ− transition. In a combination with weak interaction, the lepton
pair in the final state is electromagnetically emitted from one of the quark lines. The main
problem is that the average distances between the photon emission and the weak interaction
points are not necessarily short, hence these additional contributions to the decay amplitude
are essentially nonlocal, and cannot be simply reduced to the form factors.

The following decomposition of the decay amplitude in terms of hadronic matrix elements:

A(B → K(∗)ℓ+ℓ−) =
GF√

2
VtbV

∗
ts

αem
2π

[
(ℓ̄γργ5ℓ

)
C10 〈K(∗)|s̄γρ(1 − γ5)b|B〉

+(ℓ̄γρℓ
)(
C9 〈K(∗)|s̄γρb|B〉 + C7

2mb

q2
qν〈K(∗)|s̄iσνρ(1 + γ5)b|B〉

+
8π2

q2

∑

i=1,2,...,6,8

Ci Hρ
i

)]
(51)

includes “direct” FCNC contrbutions proportional to C9,10,7 multiplied by the B → K(∗) form
factors and the nonlocal hadronic matrix elements

Hρ
i (q, p) = 〈K(∗)(p)|i

∫
d4x eiqx T{jρem(x), Oi(0)}|B(p+ q)〉 (52)

where jρem =
∑

q=u,d,s,c,b

Qq q̄γ
ρq is the quark electromagnetic current. The factor 1/q2 multiplying

the nonlocal part of the amplitude is due to the photon propagator connecting the quarks with
the lepton e.m. current.

Hereafter, for simplicity we consider the decay B → Kℓ+ℓ− with the kaon final state.
The QCD LCSRs similar to the ones used to calculate B → π form factors (see the previous
lecture), provide also B → K form factors. One has to replace the pion DA’s by kaon DA’s in
the correlation function. Apart from the vector form factor f+

BK , the tensor form factor fTBK
enters due to the O7 operator. The LCSR results for all B → K form factors at q2 ≤ 12 − 15
GeV2 were updated in [49] and the numerical results can be found there. One obtains values up
to 30% larger than for the corresponding B → π form factors, revealing a noticeable violation
of SU(3)flavour symmetry. Our analysis of the B → Kℓ+ℓ− amplitude will be constrained by
the large hadronic recoil region (q2 < 6− 8GeV2) which is fully covered by LCSR form factors.
Note that the alternative LCSR’s with B DA’s also provide the B → K form factors [37], albeit
with larger uncertainties.

2The same operators with u quarks are strongly suppressed by the CKM factor and therefore usually neglected
in b → s transitions
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The B → Kℓ+ℓ− amplitude, after inserting the form factors, reads:

A(B → Kℓ+ℓ−) =
GF√

2

αem
π

VtbV
∗
ts

[
ℓ̄γµℓ p

µ

(
C9f

+
BK(q2)

+
2(mb +ms)

mB +mK
Ceff7 fTBK(q2) +

∑

i=1,2,...,6,8

Ci H(BK)
i (q2)

)
+ ℓ̄γµγ5ℓ p

µC10f
+
BK(q2)

]
, (53)

where H(BK)
i (q2) are the invariant amplitudes in the Lorentz-decomposition of (52).

3.2 Anatomy of the nonlocal hadronic matrix elements

The nonlocal contributions to the decay amplitude (53) can be cast in a form of corrections to
the short-distance Wilson coefficient:

C9 → C9 + ∆C
(BK)
9 (q2), where ∆C

(BK)
9 (q2) =

∑

i=1,2,...,6,8

Ci
H(BK)
i (q2)

f+
BK(q2)

. (54)

These corrections are q2- and process-dependent and have to be estimated one by one for
separate operators. The main question we address here is: are the nonlocal matrix elements

H(BK)
i (q2) calculable in QCD?

First of all one has to sort out various contributions diagrammatically. The most important
diagram in LO (without additional gluons) is in Fig. 14: a virtual photon emission via inter-
mediate quark loop originating from the current-current operators O1,2 or from quark-penguin
operators O3−6. In Fig. 15 the same mechanism is accompanied by gluon exchanges including
also the gluon penguin contribution. The remaining mechanism of the weak annihilation with
virtual photon emission has a small impact.

Calculation of these effects in B → K(∗)ℓ+ℓ− was done in the framework of HQET and
QCD factorization approach [51] valid at EK(∗) ∼ mb/2 and mb → ∞.

b s

q

b s

B K

Figure 14: The quark-loop diagram
of the nonlocal contribution to B →
Kℓ+ℓ−. The cross denotes the vir-
tual photon emission point.

The results are obtained in the region of large hadronic
recoil (small and intermediate q2). The nonlocal amplitudes
are expressed in terms of B → K form factors or factorized
as a convolution of B- and light-meson DA’s with hard-
scattering kernels. There are however two problems to clar-
ify. First, at timelike q2 ∼ a few GeV2, the virtual photon
is emitted via intermediate on-shell vector mesons with the
masses mV =

√
q2 (V = ρ, ω, φ, J/ψ, ...) rather than off

quarks, hence the accuracy of the perturbative treatment
has to be assessed.

The second related problem is the role of soft virtual
gluons in the nonlocal amplitudes. The diagrams shown
schematically in Fig. 16 are “fully nonfactorizable”, i.e.,
with no possibility to separate a hard scattering amplitude
from the long-distance one . The whole hadronic matix el-
ement has to be considered as a nonperturbative object.
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b s

(a) (b)

(c) (d)

Figure 15: Factorizable diagrams with hard gluon exchanges

3.3 Charm-loop effect and light-cone OPE

Let me briefly outline the approach to nonlocal hadronic matrix elements applied in [49] where
the two problems formulated above were addressed, concentrating on the most important (due
to large Wilson coefficients) part of the nonlocal amplitude generated by the operators O1,2.
This is a combination of the (s̄c)(c̄b) weak interaction and the (c̄c)(ℓ̄ℓ) e.m.interaction, which
effectively leads to b → sℓ+ℓ− transition due to the fact that the charmed quark pair appears
in the intermediate state only.

The leading order diagram shown in Fig. 17(a) contains the simple c-quark loop similar
to the heavy-light loop in the two-point correlation function considered in the first lecture.
Also here the physics depends on the region of the q2 variable. At q2 → m2

J/ψ, ... the charm

loop turns into an on-shell hadronic J/ψ state, and the semileptonic decay we are considering
becomes a combination of nonleptonic weak transition B → J/ψK, followed by the e.m. decay
J/ψ → ℓ+ℓ−. At larger q2, the ψ(2S) and other charmonia with JP = 1−, as well as the open-
charm intermediate states contribute, with increasing masses up to the kinematical threshold√
q2 = mB−mK . To avoid a “direct” charmonium background, the q2 intervals around J/ψ and

ψ(2S) are subtracted from the measured lepton-pair mass distributions in B → K(∗)ℓ+ℓ−. This
subtraction does not however exclude the contribution of intermediate virtual c̄c state below

B K

b s

q

�B

(a) (b)

Figure 16: Soft-gluon nonfactorizable diagrams
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Figure 17: c̄c-quark loop effect at quark level

the charmonium levels. Can one use the “loop plus corrections” ansatz for this contribution
and at which q2?

To investigate this question, let us isolate the charm-loop effect in the decay amplitude:

A(B → K(∗)ℓ+ℓ−)(O1,2) = −(4παemQc)
4GF√

2
VtbV

∗
ts

ℓ̄γµℓ

q2
H(B→K(∗))
µ , (55)

where the hadronic matrix element:

H(B→K)
µ (p, q) = i

∫
d4xeiq·x〈K(p)|T

{
c̄(x)γµc(x) ,

[
C1O1(0) + C2O2(0)

]}
|B(p+ q)〉 , (56)

contains the T -product of two c̄c operators

Caµ(q) =

∫
d4xeiq·xT

{
c̄(x)γµc(x), c̄L(0)ΓacL(0)

}
. (57)

As shown in [49], only at momentum transfers, much lower than the charm-anticharm threshold,
q2 ≪ 4m2

c one is allowed to use the operator-product expansion (OPE), and, importantly the
expansion is near the light-cone. The dominant region in this T -product is 〈x2〉 ∼ 1/(2mc −√
q2)2. In this region the T - product of c̄c-operators can be expanded near x2 ∼ 0, schematically,

T{c̄(x)γµc(x), c̄L(0)γρcL(0)} = Cµρ0 (x2,m2
c) + two-gluon term + ... (58)

T{c̄(x)γµc(x), c̄L(0)γρ
λa

2
cL(0)} =

1∫

0

duCµραβ1 (x2,m2
c , u)G

a
αβ(ux) + ... (59)

The leading-order term of this expansion Cµρ0 (x2,m2
c) is reduced to the simple c̄c loop. Substi-

tuting this term back in the decay amplitude (56), after the x-integration one obtains

Oµ(q) = (qµqρ − q2gµρ)
9

32π2
g(m2

c , q
2)s̄Lγ

ρbL , (60)

the simple loop function denoted as g(m2
c , q

2) times the b→ s transition current (see Fig. 17a).
After taking the hadronic matrix element we recover the factorizable part of the amplitude:

[
H(B→K)
µ (p, q)

]
fact

=

(
C1

3
+ C2

)
〈K(p)|Oµ(q)|B(p+ q)〉 , (61)
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factorized in the loop function and B → K form factor (Fig. 14(a)). Note that at this level
of OPE there is no difference between light-cone (x2 ∼ 0) and local (x ∼ 0) expansion. I
skip perturbative gluon corrections to this operator, one of them shown in Fig. 17(b). They
are factorizable too after taking the hadronic matrix elements. For them one can use the
results of [51], with the only difference that now we consistently avoid the region q2 ∼ 4m2

c .

�B



�

b

s

d

c

Figure 18: Correlation function
used to calculate the nonfactorizable
hadronic matrix element (63).

The genuine nonfactorizable effect is related to the one-
gluon term (59) in the light-cone OPE. It is obtained using
the c-quark propagator in the external gluon field and yields
a new nonlocal operator depicted in Fig. 17(c):

Õµ(q) =

∫
dω Iµραβ(q,mc, ω)s̄Lγ

ρδ[ω − (in+D)

2
]G̃αβbL , (62)

where the coefficient Iµραβ(q,mc, ω) represents a loop func-
tion with gluon insertion and n+ is the light-like vector de-
fined in B rest frame, so that q ∼ (mb/2)n+. More details
can be found in [49]. The gluon emission term yields a new
nonfactorizable hadronic matrix element:

[
H(B→K)
µ (p, q)

]
nonfact

= 2C1〈K(p)|Õµ(q)|B(p+ q)〉 . (63)

which is not reduced to simple B → K form factors and corresponds to the diagram in Fig. 16a.
To calculate the soft-gluon hadronic matrix element (63), the method of LCSRs with B

meson DA’s outlined in the previous lecture was used in [49], introducing a correlation function:

F (B→K)
νµ (p, q) = i

∫
d4yeip·y〈0|T{jKν (y)Õµ(q)}|B(p+ q)〉 . (64)

The diagram of the correlation function is shown in Fig. 18 and the OPE contains the 3-particle
DAs of B meson.

Summarizing, the charm-loop effect in B → Kℓ+ℓ− is the sum of two hadronic matrix
elements calculated in QCD, but this calculation is only valid at q2 ≪ 4m2

c . In [49] the
perturbative corrections were not yet included. Still, to have some idea on the importance of

the charm loop effect let me quote the value ∆C
(c̄c)
9 (0) = 0.17+0.09

−0.18 obtained for the charm-loop
correction to the effective coefficient C9.

3.4 Hadronic input for B → Kℓ+ℓ− decay

Following the method suggested in [49], in [50] a complete “bookkeeping” of nonlocal contribu-
tions to B → Kℓ+ℓ− decay amplitude was done. The soft-gluon effects originating from quark
loops with various flavours were calculated from LCSRs, including also the soft-gluon contri-
bution due to the gluon-penguin operator shown in Fig. 16b. In addition also the perturbative
gluon exchanges (Fig. 15) were taken into account employing the results of [51]. Note that the

latter contributions generate an imaginary part in ∆C
(BK)
9 (q2) as explained in details in [50].

Furthermore, after including the photon emission from the light quarks, the q2 region accessible
to OPE was shifted towards large negative values of q2, to stay sufficiently far from all hadronic
thresholds.
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Figure 19: [50] The contribution of nonlocal hadronic effects in a form of correction ∆C9(q
2) to the

Wilson coefficient C9 in the physical region of B → Kℓ+ℓ− decay obtained from the hadronic dispersion
relation, fitted to the QCD calculation at q2 < 0. The shaded areas indicate the uncertainty of the
predictions. The dashed lines are the predictions of QCD factorization [51].

This calculation was then used for a phenomenological analysis of the B → Kℓ+ℓ− decay.
To access the timelike q2 region where OPE is not applicable a hadronic dispersion relation
in the variable q2 was employed [49, 50] for the nonlocal hadronic amplitude. To illustrate
the idea, let us return to the previous subsection where only the charm-loop effect was taken
into account. In this case the dispersion relation contains only hadronic states with c̄c flavour
content: [49]:

H(B→K)(q2) = H(B→K)(0) + q2
[ ∑

ψ=J/ψ,ψ(2S)

fψABψK
m2
ψ(m2

ψ − q2 − imψΓtotψ )

+

∫ ∞

4m2
D

ds
ρ(s)

s(s− q2 − iǫ)

]
. (65)

The QCD calculation at small q2 is used to fit the parameters of this relation and then it is
used in the timelike region. In addition, the absolute values of the residues |fψABψK | are fixed
from experimental data on nonleptonic decays B → J/ψK, B → ψ(2S)K and leptonic decays
of charmonium [16].

For a full phenomenological analysis of nonlocal amplitude H(B→K)(q2) in the semilep-
tonic region below charmonium resonances a more complete dispersion relation was used in[50],
adding vector mesons with light flavours to the r.h.s. of Eq. (65). The main outcome of this
analysis is displayed in Fig. 19 where the resulting correction to C9 due to all nonlocal effects is
plotted, obtained from the dispersion relation fitted to the OPE results at negative q2 . Adding
these correction to the short-distance coefficients and employing the B → K form factors from
LCSRs the partial width of B → Kℓ+ℓ− was predicted in [50]. It is displayed in Fig. 20. The
influence of nonlocal effects on the decay observables is very moderate and the form factor
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Figure 20: [50] Differential partial branching fraction of B → Kℓ+ℓ−. The darker (brighter) shaded
area indicates the uncertainties including(excluding) the one from the B → K form factors. The
long-dashed line corresponds to the width calculated without nonlocal hadronic effects.

uncertainty still dominates. For B → K∗ℓ+ℓ− decay the full analysis still has to be done. Hints
that the nonlocal hadronic effects in this process are more pronounced than in the kaon mode
come from the results for the charm-loop contribution done in [49].

Let me emphasize that in future studies of FCNC semileptonic decays of B mesons based
on more accurate data the effects studied in this lecture are indispensable, without them the
predictions for SM observables are incomplete. The methods based on OPE, LCSRs and disper-
sion relations combined with QCD factorization for perturbative contributions provide a useful
tool to tackle this problem.
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Top Quark Production

Nikolaos Kidonakis

Kennesaw State University, Physics #1202, 1000 Chastain Rd., Kennesaw, GA 30144, USA

I discuss top quark production in hadronic collisions. I present the soft-gluon resummation
formalism and its derivation from factorization and renormalization-group evolution, and
two-loop calculations of soft anomalous dimensions in the eikonal approximation. I discuss
the contributions of next-to-next-to-leading order (NNLO) soft-gluon corrections to the
total cross sections and top-quark transverse momentum and rapidity distributions for
top-antitop pair production, and for single-top production in the t and s channels and in
association with a W boson or a charged Higgs boson.

1 Introduction

The top quark is the heaviest elementary particle known to date. It was discovered in proton-
antiproton collisions at the Fermilab Tevatron in 1995 in top-antitop pair production events by
the CDF and D0 Collaborations [1, 2]. The uniqueness of the top quark is not only due to its
heavy mass, which makes it important for Higgs physics, but also due to the fact that it is the
only quark that decays before it can hadronize. Top-antitop pair and single-top production have
by now been fully established at both the Tevatron and the LHC and are in good agreement
with theoretical expectations, as we will see later in detail.

In these lectures I discuss top quark production in hadron colliders, paying particular at-
tention to higher-order corrections from soft-gluon resummation. I begin with a discussion
of higher-order soft-gluon corrections, factorization, renormalization-group evolution (RGE),
resummation, and next-to-next-to-leading order (NNLO) expansions.

I continue with one- and two-loop eikonal diagrams, calculations of the massive cusp anoma-
lous dimension, and presentation of the the two-loop soft anomalous dimension matrices for
top-pair production.

I then provide results for tt̄ production, including the total tt̄ cross sections at the LHC
and the Tevatron, the top-quark transverse momentum, pT , distributions, and the top-quark
rapidity distributions. Finally, I discuss single-top production, in particular t-channel and
s-channel production, and tW− and tH− production, and present total cross sections and
top-quark pT distributions.

2 Higher-order soft-gluon corrections

QCD corrections are significant for hard-scattering cross-sections, and in particular for top-
pair and single-top production. The complete next-to-leading order (NLO) corrections were
calculated for tt̄ production in [3, 4] and for single-top production in [5].

Soft-gluon corrections, i.e. perturbative corrections from the emission of soft (low-energy)
gluons, originate from incomplete cancellations of infrared divergences between virtual diagrams
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and real diagrams with soft gluons.

The soft-gluon terms are of the form
[

lnk(s4/m
2
t )

s4

]
+

where k ≤ 2n− 1 for the nth-order per-

turbative corrections, and s4 is the kinematical distance from partonic threshold. The leading
logarithms (LL) are those with the highest power, 2n−1; the next-to-leading logarithms (NLL)
have a power of one less; the next-to-next-to-leading logarithms (NNLL) have a power of two
less, etc. The importance of soft-gluon corrections is because they are dominant near thresh-
old. It is possible to resum (i.e. exponentiate) these corrections to all orders in perturbative
QCD. This resummation follows from factorization of the cross section and RGE of its factors.
The resummation of the leading logarithms requires universal terms describing the emission of
collinear and soft gluons that only depend on the identity of the incoming and outgoing partons,
i.e. the details of the hard process are irrelevant. However, at NLL accuracy [6] and beyond
it is necessary to involve the process-dependent color exchange in the hard-scattering process
and to perform the corresponding loop calculations in the eikonal approximation.

In addition to these soft-gluon logarithmic terms there also arise terms of purely collinear
origin, of the form 1

m2
t

lnk(s4/m
2
t ), but we will not dicuss these kind of terms in this paper.

Complete results are now available at NNLL accuracy, which requires the calculation of
two-loop soft anomalous dimensions. For a review of resummation for top quark production see
Ref. [7]. Approximate next-to-next-to-leading order (NNLO) double-differential cross sections
and even next-to-next-to-next-to-leading order (NNNLO) corrections have been derived from
the expansion of the resummed results [8].

2.1 Factorization, RGE, and Resummation

We consider hadronic processes of the form

h1(ph1
) + h2(ph2

) → t(p) +X

where h1, h2, are colliding hadrons (protons at the LHC; protons and antiprotons at the Teva-
tron) and t denotes the observed top quark with X all additional final-state particles. The
underlying partonic processes are of the form

f1(p1) + f2 (p2) → t(p) + X

where f1 and f2 represent partons (quarks or gluons). We define s = (p1 + p2)
2, t = (p1 − p)2,

u = (p2 − p)2. Also s4 = s + t + u −∑m2, where the sum is over the squared masses of all
particles in the process. Thus, s4 measures distance from partonic threshold, where there is
no energy for additional radiation, but the top quark may have arbitrary momentum and is
not restricted to be produced at rest (thus partonic threshold is more general than absolute, or
production, threshold where the top quark is produced at rest). At partonic threshold s4 = 0.

The factorization for the (in general differential) cross section is expressed by the formula

dσh1h2→tX =
∑

f1,f2

∫
dx1 dx2 φf1/h1

(x1, µF )φf2/h2
(x2, µF ) σ̂f1f2→tX(s4, s, t, u, µF , µR)

where φ are parton distribution functions with x1 and x2 the momentum fractions of par-
tons f1 and f2 in hadrons h1 and h2 respectively, µF is the factorization scale and µR is the
renormalization scale. We factorize the initial-state collinear divergences into the parton distri-
bution functions, φ. Soft-gluon corrections appear in the partonic hard-scattering cross section,
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σ̂f1f2→tX , as plus distributions of logarithmic terms, defined through their integral with parton
distribution functions

∫ s4 max

0

ds4 φ(s4)

[
lnk(s4/m

2
t )

s4

]

+

≡
∫ s4 max

0

ds4
lnk(s4/m

2
t )

s4
[φ(s4) − φ(0)]

+
1

k + 1
lnk+1

(
s4max
m2
t

)
φ(0) .

Resummation follows from the factorization properties of the cross section, performed in mo-
ment space. We define moments of the partonic cross section by σ̂(N) =

∫
(ds4/s) e

−Ns4/sσ̂(s4).
The logarithms of s4 give rise to logarithms of N in moment space, and we will show that the
logarithms of N appearing in σ̂(N) exponentiate.

We then write a factorized expression for the infrared-regularized (with ǫ = 4 − n) parton-
parton scattering cross section, σf1f2→tX(N, ǫ), in moment space

σf1f2→tX(N, ǫ) = φf1/f1(N,µF , ǫ) φf2/f2(N,µF , ǫ) σ̂f1f2→tX(N,µF , µR)

which factorizes similarly to the hadronic cross section, with φ(N) =
∫ 1

0
dx xN−1φ(x).

hI hL
*

f

f

ψf/f

ψf/f

(a)

SLI

cI cL
*

SLI

(b)

Figure 1: Factorization of the partonic cross section for tt̄ production: (a) The functions involved
in the partonic process; (b) the soft-gluon function S.

The partonic function σ̂f1f2→tX still has sensitivity to soft-gluon dynamics via its N depen-
dence. We then refactorize the cross section [6] in terms of modified parton distributions ψ,
defined in the partonic center-of-mass frame at fixed energy, as

σf1f2→tX(N, ǫ) = ψf1/f1 (N,µF , ǫ) ψf2/f2 (N,µF , ǫ)

× Hf1f2→tX
IL (αs(µR)) Sf1f2→tX

LI

(
mt

NµF
, αs(µR)

) ∏

j

Jj (N,µF , ǫ) .

This factorization is shown for the case of top-antitop pair production in Fig. 1(a).

The Hf1f2→tX
IL are N -independent hard-scattering terms which involve contributions from

the amplitude of the process and the complex conjugate of the amplitude, in the form HIL =
h∗L hI . Also, Sf1f2→tX

LI is the soft gluon function for non-collinear soft-gluon emission; it rep-
resents the coupling of soft gluons to the partons in the scattering with color tensors cI , cL
(see Fig. 1(b)). Both HIL and SLI are process dependent and they are matrices in the space
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of color exchanges in the partonic scattering. J are jet functions describing universal soft and
collinear emission from any outgoing massless partons.

Comparing the two previous equations, we find

σ̂f1f2→tX(N,µF , µR) =
ψf1/f1(N,µF , ǫ)ψf2/f2(N,µF , ǫ)

φf1/f1(N,µF , ǫ)φf2/f2(N,µF , ǫ)

× Hf1f2→tX
IL (αs(µR)) Sf1f2→tX

LI

(
mt

NµF
, αs(µR)

)∏

j

Jj (N,µF , ǫ) .

All the factors in the above equation are gauge and factorization scale dependent. The
requirement that the product of these factors be independent of the gauge and the factor-
ization scale results in the exponentiation of logarithms of N in the ratios ψf1/f1/φf1/f1 and
ψf2/f2/φf2/f2 , in the soft-gluon matrix SLI , and in the functions Jj .

The soft matrix SLI requires renormalization as a composite operator; its N -dependence can
then be resummed via RGE [6]. The product HILSLI however needs no overall renormalization,
because the UV divergences of HIL balance those of SLI . We have

Hb
IL =


 ∏

i=1,2

Z−1
i


 (

Z−1
S

)
IA
HAB

[(
Z†
S

)−1
]

BL

SbLI = (Z†
S)LCSCDZS,DI

where Hb and Sb are the unrenormalized quantities, Zi are the renormalization constants of
the incoming partonic fields, and ZS is a matrix of renormalization constants, which describe
the renormalization of the soft function, including the wave functions for outgoing heavy-quark
eikonal lines.

Thus SLI satisfies the renormalization group equation

(
µ
∂

∂µ
+ β(gs)

∂

∂gs

)
SLI = −(Γ†

S)LCSCI − SLD(ΓS)DI

where g2
s = 4παs and β is the QCD beta function

β(αs) ≡
1

2αs

dαs
d lnµ

= µd ln gs/dµ = −β0αs/(4π) − β1α
2
s/(4π)2 + · · · ,

with β0 = (11CA − 2nf )/3 and β1 = 34C2
A/3 − 2nf (CF + 5CA/3). Here CF = (N2

c − 1)/(2Nc)
and CA = Nc, with Nc = 3 the number of colors, and nf is the number of light quark flavors
(nf = 5 for top production).

ΓS is the soft anomalous dimension matrix that controls the evolution of the soft function
S. In dimensional regularization ZS has 1/ǫ poles, and ΓS is given at one loop in terms of the
residue of ZS by

Γ
(1−loop)
S (gs) = −gs

2

∂

∂gs
Resǫ→0ZS(gs, ǫ) .

The soft anomalous dimension ΓS is a matrix in color space and a function of the kinematical
invariants s, t, u. The process-dependent matrices ΓS have been calculated at one loop for all
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2 → 2 partonic processes. For the qq̄ → tt̄ process, ΓS is a 2 × 2 matrix [6]. For the gg → tt̄
process, ΓS is a 3 × 3 matrix [6]. Explicit expressions at one and two loops will be provided in
Section 4.

The resummed cross section in moment space, denoted as σ̂resf1f2→tX(N) below, follows from
the RGE of all the functions in the factorized cross section, and can be written in the form:

σ̂resf1f2→tX(N) = exp


∑

i=1,2

Ei(Ni)


 exp


∑

j

E′
j(N

′)


 exp


∑

i=1,2

2

∫ √
s

µF

dµ

µ
γi/i

(
Ñi, αs(µ)

)



× tr

{
Hf1f2→tX

(
αs(

√
s)
)
exp

[∫ √
s/Ñ ′

√
s

dµ

µ
Γ† f1f2→tX
S (αs(µ))

]

×Sf1f2→tX

(
αs

(√
s

Ñ ′

))
exp

[∫ √
s/Ñ ′

√
s

dµ

µ
Γf1f2→tX
S (αs(µ))

]}

where the trace is taken of the product of the color-space matrices H, S, and exponents of ΓS
and its Hermitian conjugate, Γ†

S .
The collinear and soft radiation from incoming partons is resummed via the first exponential

with

Ei(Ni) =

∫ 1

0

dz
zNi−1 − 1

1 − z

{∫ (1−z)2

1

dλ

λ
Ai (αs(λs)) +Di

[
αs((1 − z)2s)

]
}

(for purely collinear corrections, replace zN−1−1
1−z by −zN−1 in the above expression). Here

N1 = N(m2
t − u)/m2

t and N2 = N(m2
t − t)/m2

t . The term Ai has the perturbative expansion

Ai = αs

π A
(1)
i +

(
αs

π

)2
A

(2)
i + · · · where A

(1)
i = Ci [9] with Ci = CF for a quark or antiquark

and Ci = CA for a gluon, while A
(2)
i = CiK/2 [10] with K = CA (67/18 − ζ2) − 5nf/9

[11]. Here and below we use ζ2 = π2/6, ζ3 = 1.2020569 · · · , and ζ4 = π4/90. Also Di =

(αs/π)D
(1)
i + (αs/π)2D

(2)
i + · · · with D

(1)
i = 0 in Feynman gauge (D

(1)
i = −Ci in axial gauge).

In Feynman gauge the two-loop result is [12]

D
(2)
i = CiCA

(
−101

54
+

11

6
ζ2 +

7

4
ζ3

)
+ Cinf

(
7

27
− ζ2

3

)
.

The collinear and soft radiation from outgoing massless quarks and gluons is resummed via
the second exponential

E′
j(N

′) =

∫ 1

0

dz
zN

′−1 − 1

1 − z

{∫ 1−z

(1−z)2

dλ

λ
Aj (αs (λs)) +Bj [αs((1 − z)s)]

+Dj

[
αs((1 − z)2s)

]}

where N ′ = N s/m2
t . Note that this exponent is not needed in tt̄ production but it is used

in single-top production. The term Bj has the perturbative expansion Bj = (αs/π)B
(1)
j +

(αs/π)2B
(2)
j + · · · with B

(1)
q = −3CF /4 for a quark or antiquark, and B

(1)
g = −β0/4 for a gluon

[9, 10]. Also (c.f. [12, 13])

B(2)
q = C2

F

(
− 3

32
+

3

4
ζ2 −

3

2
ζ3

)
+ CFCA

(
−57

32
− 11

12
ζ2 +

3

4
ζ3

)
+ nfCF

(
5

16
+
ζ2
6

)
,
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B(2)
g = C2

A

(
−1025

432
− 3

4
ζ3

)
+

79

108
CA nf + CF

nf
8

− 5

108
n2
f .

The factorization scale dependence in the third exponential is controlled by the moment-
space anomalous dimension of the MS density φi/i, which is γi/i = −Ai ln Ñi + γi [14, 15],

where Ñi = Nie
γE with γE the Euler constant. The parton anomalous dimensions γi have the

perturbative expansion

γi = (αs/π)γ
(1)
i + (αs/π)2γ

(2)
i + · · ·

with γ
(1)
q = 3CF /4, γ

(1)
g = β0/4,

γ(2)
q = C2

F

(
3

32
− 3

4
ζ2 +

3

2
ζ3

)
+ CFCA

(
17

96
+

11

12
ζ2 −

3

4
ζ3

)
+ nfCF

(
− 1

48
− ζ2

6

)

and

γ(2)
g = C2

A

(
2

3
+

3

4
ζ3

)
− nf

(
CF
8

+
CA
6

)
.

The relation between αs at two different scales, µ and µR, is

αs(µ) = αs(µR)

[
1 − β0

4π
αs(µR) ln

(
µ2

µ2
R

)
+

β2
0

16π2
α2
s(µR) ln2

(
µ2

µ2
R

)
− β1

16π2
α2
s(µR) ln

(
µ2

µ2
R

)

+ · · · ] .

We write the perturbative expansions for the hard-scattering function H and the soft-gluon
function S as

H = α
dαs
s H(0) +

α
dαs+1
s

π
H(1) +

α
dαs+2
s

π2
H(2) + · · ·

and

S = S(0) +
αs
π
S(1) +

α2
s

π2
S(2) + · · ·

respectively, where dαs
denotes the power of αs in the Born cross section. At lowest order, the

trace of the product of the hard matrices H and soft matrices S gives the Born cross section

for each partonic process, σB = α
dαs
s tr[H(0)S(0)].

Noncollinear soft gluon emission is controlled by the soft anomalous dimension ΓS , which
has the perturbative expansion

ΓS =
αs
π

Γ
(1)
S +

α2
s

π2
Γ

(2)
S + · · ·

We determine ΓS from the coefficients of ultraviolet poles in dimensionally regularized

eikonal diagrams. The determination of Γ
(1)
S is needed for NLL resummation and it requires

one-loop calculations in the eikonal approximation; Γ
(2)
S is needed for NNLL resummation and

requires two-loop calculations.
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Complete two-loop results are now known for the soft anomalous dimensions for many
processes, and in these lectures I will review results for:

• the soft (cusp) anomalous dimension for e+e− → tt̄
• tt̄ hadroproduction
• t-channel single top production
• s-channel single top production
• bg → tW− and bg → tH−

2.2 NLO and NNLO expansions

The resummed cross section suffers from infrared divergences that need a prescription to be
dealt with. However, the numerical results depend on the prescription, and differences between
prescriptions are typically larger than corrections beyond NNLO. Thus, an alternative and
preferred procedure is to expand the resummed cross section to a fixed order in the perturbative
expansion, thus avoiding arbitrary prescription dependences. Thus the resummed cross section
is used as a generator of higher-order soft-gluon corrections, and here we present expansions to
NNLO (for NNNLO see the second paper in [8]).

In the moment-space resummed cross section we are resumming lnkN ; we then expand to
fixed order and invert back to momentum space to get the usual lnk(s4/m

2
t )/s4 terms.

We will use the following notation for the logarithmic plus distributions,

Dk(s4) ≡
[

lnk(s4/m
2
t )

s4

]

+

.

The NLO soft-gluon corrections from the expansion of the resummed cross section can be
written as

σ̂(1) = σB
αs(µR)

π
{c3 D1(s4) + c2 D0(s4) + c1 δ(s4)} +

α
dαs+1
s (µR)

π
[AcD0(s4) + T c1 δ(s4)]

where we have separated contributions into a part proportional to the Born term, i.e. the
leading-order (LO) term, σB, and a part that is not (in general) proportional to it. The leading
logarithmic coefficient is

c3 =
∑

i

2A
(1)
i −

∑

j

A
(1)
j ,

and is always multiplied by σB. The next-to-leading logarithmic terms are in general not all
proportional to σB and are separated into two parts. The first part has coefficient c2 which is

defined by c2 = cµ2 +T2, with cµ2 = −∑iA
(1)
i ln(µ2

F /m
2
t ) denoting the terms involving logarithms

of the scale, and

T2 =
∑

i

[
−2A

(1)
i ln

(−ti
m2
t

)
+D

(1)
i −A

(1)
i ln

(
m2
t

s

)]
+
∑

j

[
B

(1)
j +D

(1)
j −A

(1)
j ln

(
m2
t

s

)]
.

The part not in general proportional to σB is defined by

Ac = tr
(
H(0)Γ

(1) †
S S(0) +H(0)S(0)Γ

(1)
S

)
.
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The terms proportional to δ(s4) include virtual corrections which cannot be determined from
resummation as well as some terms that involve logarithms of the scales µF and µR and which
can be calculated from the expansion of the resummed cross section. We write c1 = cµ1 + T1

with cµ1 denoting the terms involving logarithms of the scale

cµ1 =
∑

i

[
A

(1)
i ln

(−ti
m2
t

)
− γ

(1)
i

]
ln

(
µ2
F

m2
t

)
+ dαs

β0

4
ln

(
µ2
R

m2
t

)
.

However T1 as well as T c1 can only be found from a complete NLO calculation.
The NNLO soft-gluon corrections from the expansion of the resummed cross section are

then

σ̂(2) = σB
α2
s(µR)

π2





1

2
c23 D3(s4) +


3

2
c3c2 −

β0

4
c3 +

∑

j

β0

8
A

(1)
j


D2(s4)

+


c3c1 + c22 − ζ2c

2
3 −

β0

2
T2 +

β0

4
c3 ln

(
µ2
R

m2
t

)
+
∑

i

2A
(2)
i −

∑

j

A
(2)
j +

∑

j

β0

4
B

(1)
j


D1(s4)

+

[
c2c1 − ζ2c3c2 + ζ3c

2
3 +

β0

4
c2 ln

(
µ2
R

s

)
−
∑

i

β0

2
A

(1)
i ln2

(−ti
m2
t

)

+
∑

i

[

(
−2A

(2)
i +

β0

2
D

(1)
i

)
ln

(−ti
m2
t

)
+D

(2)
i +

β0

8
A

(1)
i ln2

(
µ2
F

s

)
−A

(2)
i ln

(
µ2
F

s

)
]

+
∑

j

[B
(2)
j +D

(2)
j −

(
A

(2)
j +

β0

4
(B

(1)
j + 2D

(1)
j )

)
ln

(
m2
t

s

)

+
3β0

8
A

(1)
j ln2

(
m2
t

s

)
]

]
D0(s4)

}

+
α
dαs+2
s (µR)

π2

{
3

2
c3A

cD2(s4) +

[(
2c2 −

β0

2

)
Ac + c3T

c
1 + F c

]
D1(s4)

+

[(
c1 − ζ2c3 +

β0

4
ln

(
µ2
R

s

))
Ac + c2T

c
1 + F c ln

(
m2
t

s

)
+Gc

]
D0(s4)

}

where

F c = tr

[
H(0)

(
Γ

(1) †
S

)2

S(0) +H(0)S(0)
(
Γ

(1)
S

)2

+ 2H(0)Γ
(1) †
S S(0)Γ

(1)
S

]

Gc = tr
[
H(1)Γ

(1) †
S S(0) +H(1)S(0)Γ

(1)
S +H(0)Γ

(1) †
S S(1) +H(0)S(1)Γ

(1)
S

+H(0)Γ
(2) †
S S(0) +H(0)S(0)Γ

(2)
S

]

and c3, c2, c1, etc are from the NLO expansion. The two-loop universal quantities A(2), B(2),

D(2) were given previously. The two-loop process-dependent Γ
(2)
S have been recently calculated

for several processes, including top quark production in various channels.
In addition to the plus distributions, the factorization and renormalization scale dependent

terms proportional to δ(s4) at NNLO have also been calculated [8].
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p+ k p

k → 0

Figure 2: Elementary eikonal diagram for soft-gluon emission from an outgoing quark.

(a) (b)

Figure 3: One-loop eikonal diagrams for the cusp anomalous dimension.

3 Two-loop calculations for the massive cusp anomalous
dimension

The Feynman rules for diagrams with soft gluon emission, see Fig. 2, simplify as

ū(p) (−igsT cF ) γµ
i(p/+ k/+m)

(p+ k)2 −m2 + iǫ
→ ū(p) gsT

c
F γ

µ p/+m

2p · k + iǫ
= ū(p) gsT

c
F

vµ

v · k + iǫ

with ū a Dirac spinor, T cF the generators of SU(3), and p ∝ v, for example we may take
pµ =

√
s
2v
µ, though other choices are possible. This is the eikonal approximation.

We perform the calculations here in momentum space and Feynman gauge. The first soft
anomalous dimension that we consider is the massive cusp anomalous dimension, which is also
the soft anomalous dimension for the process e+e− → tt̄ [16, 17].

3.1 One-loop cusp anomalous dimension

The one-loop eikonal diagrams for the cusp anomalous dimension are shown in Fig. 3. The
eikonal lines represent the top and the antitop quarks. The one-loop vertex correction is graph
(a) and the one-loop top and antitop self-energy diagrams are the two graphs (b).

The one-loop soft anomalous dimension, Γ
(1)
S , can be read off the coefficient of the ultraviolet

(UV) pole of the one-loop diagrams. The calculation gives [16, 17]

Γ
(1)
S = CF

[
− (1 + β2)

2β
ln

(
1 − β

1 + β

)
− 1

]

with β =

√
1 − 4m2

t

s .
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As an example of the calculation we provide some details for the vertex correction graph,
i.e. diagram (a) of Fig. 3. This one-loop vertex correction is shown in more detail, and with
momenta assignments, in Fig. 4. The integral corresponding to this diagram is

I1a = g2
s

∫
dnk

(2π)n
(−i)gµν
k2

vµi
vi · k

(−vνj )
(−vj · k)

which has three factors. The first factor is the gluon propagator and the last two are the eikonal
rules for the two lines. Using Feynman parameterization, this can be rewritten as

I1a = −2ig2
s

vi · vj
(2π)n

∫ 1

0

dx

∫ 1−x

0

dy

∫
dnk

[xk2 + yvi · k + (1 − x− y)vj · k]3

which, after the integration over k, gives

I1a = g2
s vi · vj 26−2n π−n/2 Γ

(
3 − n

2

) ∫ 1

0

dxx3−n

×
∫ 1−x

0

dy
[
−y2v2

i − (1 − x− y)2v2
j − 2y vi · vj(1 − x− y)

]n/2−3
.

After several manipulations, and with n = 4 − ǫ, we find

I1a =
αs
π

(−1)−1−ǫ/2 25ǫ/2 πǫ/2 Γ
(
1 +

ǫ

2

)
(1 + β2)

∫ 1

0

dxx−1+ǫ(1 − x)−1−ǫ

×
{∫ 1

0

dz
[
4zβ2(1 − z) + 1 − β2

]−1 − ǫ

2

∫ 1

0

dz
ln
[
4zβ2(1 − z) + 1 − β2

]

4zβ2(1 − z) + 1 − β2
+ O

(
ǫ2
)
}
.

The integral over x contains both ultraviolet (UV) and infrared (IR) singularities. We isolate
the UV singularities via

∫ 1

0

dxx−1+ǫ (1 − x)−1−ǫ =
1

ǫ
+ IR .

Then the UV pole of the integral is

IUV1a =
αs
π

(1 + β2)

2β

1

ǫ
ln

(
1 − β

1 + β

)
.

Together with the contributions of the top self-energy diagrams, and including color factors,
this gives the one-loop result for the cusp anomalous dimension that we presented above.

pi + k

pi

k

pj − k

pj

Figure 4: One-loop vertex-correction diagram.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Two-loop vertex-correction diagrams for the cusp anomalous dimension.

(a) (b) (c)

Figure 6: Two-loop top-quark self-energy graphs.

3.2 Two-loop cusp anomalous dimension

The two-loop vertex-correction graphs for the massive cusp anomalous dimension are shown
in Fig. 5. Additional two-loop top-quark self-energy graphs that also need to be included are
shown in Fig. 6. The grey blobs indicate quark, gluon, and ghost loops.

As an example of the calculation, consider the two-loop crossed diagram in Fig. 5(b) with
details of momenta assignments in Fig. 7. The corresponding integral is

I2b = g4
s

∫
dnk1

(2π)n
dnk2

(2π)n
(−i)gµν
k2
1

(−i)gρσ
k2
2

vµi
vi · k1

vρi
vi · (k1 + k2)

(−vνj )
(−vj · (k1 + k2))

(−vσj )

(−vj · k2)
.

We perform the k2 integral first, using Feynman parameterization similarly to the one-loop
example, and find

I2b = −iα
2
s

π2
2−4+ǫπ−2+3ǫ/2Γ

(
1 − ǫ

2

)
Γ(1 + ǫ)(1 + β2)2

∫ 1

0

dz

×
∫ 1

0

dy (1 − y)−ǫ
[
2β2(1 − y)2z2 − 2β2(1 − y)z − (1−β2)

2

]1−ǫ/2
∫

dnk1

k2
1 vi · k1 [((vi − vj)z + vj) · k1]1+ǫ

.

We then proceed with the k1 integral, and isolate the UV and IR poles. After many steps we
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Figure 7: Two-loop crossed diagram.

find

IUV2b =
α2
s

π2

(1 + β2)2

8β2

1

ǫ

{
−1

3
ln3

(
1 − β

1 + β

)
− ln

(
1 − β

1 + β

)[
Li2

(
(1 − β)2

(1 + β)2

)
+ ζ2

]

+ Li3

(
(1 − β)2

(1 + β)2

)
− ζ3

}
.

We similarly calculate all other two-loop graphs, and we include the counterterms for all
graphs and multiply with the corresponding color factors. We determine the two-loop cusp
anomalous dimension from the UV poles of the sum of the graphs [16, 17]:

Γ
(2)
S =

K

2
Γ

(1)
S + CFCAMβ

=
K

2
Γ

(1)
S + CFCA

{
1

2
+
ζ2
2

+
1

2
ln2

(
1 − β

1 + β

)

− (1 + β2)2

8β2

[
ζ3 + ζ2 ln

(
1 − β

1 + β

)
+

1

3
ln3

(
1 − β

1 + β

)
+ ln

(
1 − β

1 + β

)
Li2

(
(1 − β)2

(1 + β)2

)

− Li3

(
(1 − β)2

(1 + β)2

)]

− (1 + β2)

4β

[
ζ2 − ζ2 ln

(
1 − β

1 + β

)
+ ln2

(
1 − β

1 + β

)
− 1

3
ln3

(
1 − β

1 + β

)

+ 2 ln

(
1 − β

1 + β

)
ln

(
(1 + β)2

4β

)
− Li2

(
(1 − β)2

(1 + β)2

)]}

where, as before, K = CA(67/18− ζ2)− 5nf/9, and where for shorthand notation and for later
use we have introduced Mβ to denote all the terms in curly brackets in the above equation.

As can be seen from the above expression, the color structure of Γ
(2)
S involves only the factors

CFCA and CFnf .

In terms of the cusp angle [18] γ = cosh−1(vi · vj/
√
v2
i v

2
j ) = ln[(1 + β)/(1 − β)] we can

rewrite the one-loop expression as

Γ
(1)
S = CF (γ coth γ − 1)
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Figure 8: The two-loop cusp anomalous dimension, Γ
(2)
S , as a function of β in a linear (left)

and logarithmic (right) plot.

and the two-loop expression [16, 17] as

Γ
(2)
S =

K

2
Γ

(1)
S + CFCA

{
1

2
+
ζ2
2

+
γ2

2

− 1

2
coth2 γ

[
ζ3 − ζ2γ − γ3

3
− γ Li2

(
e−2γ

)
− Li3

(
e−2γ

)]

− 1

2
coth γ

[
ζ2 + ζ2γ + γ2 +

γ3

3
+ 2 γ ln

(
1 − e−2γ

)
− Li2

(
e−2γ

)]}
.

The cusp anomalous dimension is an essential component of other calculations for QCD
processes, where the color structure gets more complicated with more than two colored partons
in the process.

Linear and logarithmic plots of Γ
(2)
S are shown in Fig. 8. Γ

(2)
S vanishes at β = 0, the

threshold limit, and diverges at β = 1, the massless limit.

We next determine analytically the small and large β behavior of Γ
(2)
S . For the small β

behavior we expand around β = 0 and find

Γ
(2)
S exp = − 2

27
β2 [CFCA(18ζ2 − 47) + 5CFnf ] + O(β4) .

We note that Γ
(2)
S is an even function of β. For the large β behavior, as β → 1, we find

Γ
(2)
S → K

2 Γ
(1)
S .

We next construct an approximation valid for all β [16]:

Γ
(2)
S approx = Γ

(2)
S exp +

K

2
Γ

(1)
S − K

2
Γ

(1)
S exp

=
K

2
Γ

(1)
S + CFCA

(
1 − 2

3
ζ2

)
β2 + O

(
β4
)
.

The expansions and approximations to Γ
(2)
S are shown in Fig. 9. Γ

(2)
S approx is a remarkably

good approximation to the complete Γ
(2)
S .
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Figure 9: Expansions and approximations for Γ
(2)
S .
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Figure 10: Lowest-order diagrams for the qq̄ → tt̄ channel (left diagram) and the gg → tt̄
channel (right three diagrams).

4 Soft anomalous dimension matrices for tt̄ production

The top-antitop pair production partonic processes at LO are

q(p1) + q̄(p2) → t(p3) + t̄(p4)

and

g(p1) + g(p2) → t(p3) + t̄(p4)

The LO diagrams for these processes are shown in Fig. 10. We define s = (p1 + p2)
2,

t1 = (p1 −p3)
2 −m2

t , u1 = (p2 −p3)
2 −m2

t , and β =
√

1 − 4m2
t/s. Note that β is the top-quark

speed in the LO kinematics. At the Tevatron and the LHC the tt̄ cross section receives most
contributions in the region around 0.3 < β < 0.8 which peak roughly around β ∼ 0.6.

We next present the results at one and two loops for the soft anomalous matrices for these
partonic processes. The soft anomalous dimension matrix for q(p1) + q̄(p2) → t(p3) + t̄(p4) in
a color tensor basis consisting of singlet and octet exchange in the s channel,

c1 = δ12δ34 , c2 = T cF 21 T
c
F 34 ,

has elements

Γqq̄→tt̄
S =

[
Γqq̄ 11 Γqq̄ 12

Γqq̄ 21 Γqq̄ 22

]
.
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At one loop we find [6, 19]

Γ
(1)
qq̄ 11 = −CF [Lβ + 1]

Γ
(1)
qq̄ 12 =

CF
CA

ln

(
t1
u1

)

Γ
(1)
qq̄ 21 = 2 ln

(
t1
u1

)

Γ
(1)
qq̄ 22 = CF

[
4 ln

(
t1
u1

)
− Lβ − 1

]
+
CA
2

[
−3 ln

(
t1
u1

)
+ ln

(
t1u1

sm2
t

)
+ Lβ

]

where Lβ = 1+β2

2β ln
(

1−β
1+β

)
. We note that the first element of this matrix is identical to the

one-loop massive cusp anomalous dimension.

Then the elements of the soft anomalous dimension matrix for the process qq̄ → tt̄ at two
loops are [19]

Γ
(2)
qq̄ 11 =

K

2
Γ

(1)
qq̄ 11 + CFCAMβ

Γ
(2)
qq̄ 12 =

K

2
Γ

(1)
qq̄ 12 −

CF
2
Nβ ln

(
t1
u1

)

Γ
(2)
qq̄ 21 =

K

2
Γ

(1)
qq̄ 21 + CANβ ln

(
t1
u1

)

Γ
(2)
qq̄ 22 =

K

2
Γ

(1)
qq̄ 22 + CA

(
CF − CA

2

)
Mβ

We note that the first element of this matrix is identical to the two-loop massive cusp anomalous
dimension, and Mβ was defined in the previous section. Here Nβ is a subset of the terms of
Mβ ,

Nβ = − (1 + β2)

4β

[
ln2

(
1 − β

1 + β

)
+ 2 ln

(
1 − β

1 + β

)
ln

(
(1 + β)2

4β

)
− Li2

(
(1 − β)2

(1 + β)2

)]

+
1

2
ln2

(
1 − β

1 + β

)
.

The soft anomalous dimension matrix for g(p1) + g(p2) → t(p3) + t̄(p4) in a color tensor
basis

c1 = δ12 δ34, c2 = d12c T c34, c3 = if12c T c34

where d and f are the totally symmetric and antisymmetric SU(3) invariant tensors, is

Γgg→tt̄
S =




Γgg 11 0 Γgg 13

0 Γgg 22 Γgg 23

Γgg 31 Γgg 32 Γgg 22


 .
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At one loop we have [6, 19]

Γ
(1)
gg 11 = −CF [Lβ + 1]

Γ
(1)
gg 13 = ln

(
t1
u1

)

Γ
(1)
gg 31 = 2 ln

(
t1
u1

)

Γ
(1)
gg 22 = −CF [Lβ + 1] +

CA
2

[
ln

(
t1u1

m2s

)
+ Lβ

]

Γ
(1)
gg 23 =

CA
2

ln

(
t1
u1

)

Γ
(1)
gg 32 =

N2
c − 4

2Nc
ln

(
t1
u1

)

At two loops we find [19]

Γ
(2)
gg 11 =

K

2
Γ

(1)
gg 11 + CFCAMβ

Γ
(2)
gg 13 =

K

2
Γ

(1)
gg 13 −

CA
2
Nβ ln

(
t1
u1

)

Γ
(2)
gg 31 =

K

2
Γ

(1)
gg 31 + CANβ ln

(
t1
u1

)

Γ
(2)
gg 22 =

K

2
Γ

(1)
gg 22 + CA

(
CF − CA

2

)
Mβ

Γ
(2)
gg 23 =

K

2
Γ

(1)
gg 23

Γ
(2)
gg 32 =

K

2
Γ

(1)
gg 32

5 Double-differential kinematics

We consider a generic hadronic process with momenta ph1
+ ph2

→ p3 + p4 with underlying
partonic process p1 + p2 → p3 + p4. We write general kinematics formulas that can be used for
both top-antitop pair and single-top production.

5.1 Kinematics with S, T , U

The hadronic variables are S = (ph1 + ph2)
2, T = (ph1 − p3)

2, U = (ph2 − p3)
2. The partonic

variables are s = (p1+p2)
2, t = (p1−p3)

2, u = (p2−p3)
2; we also define s4 = s+t+u−m2

3−m2
4

which describes the excess energy for additional radiation in the process, and thus measures
kinematical distance from partonic threshold. Note that p1 = x1ph1, p2 = x2ph2, s = x1x2S,
t − m2

3 = x1(T − m2
3), u − m2

3 = x2(U − m2
3), with x1 and x2 the momentum fractions of

the colliding partons in the corresponding hadrons. The total hadronic cross section is found
by integrating over the double-differential partonic cross section convoluted with the parton
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distribution functions φ:

σph1ph2→p3p4(S) =

∫ Tmax

Tmin

dT

∫ Umax

Umin

dU

∫ 1

x2min

dx2

∫ s4max

0

ds4

× x1x2

x2S + T −m2
3

φ(x1)φ(x2)
d2σ̂p1p2→p3p4

dt du

where

x1 =
s4 −m2

3 +m2
4 − x2(U −m2

3)

x2S + T −m2
3

Tmax
min

= −1

2
(S −m2

3 −m2
4) ±

1

2

√
(S −m2

3 −m2
4)

2 − 4m2
3m

2
4

Umax = m2
3 +

S m2
3

T −m2
3

Umin = −S−T+m2
3+m2

4, x2min = (m2
4−T )/(S+U−m2

3) and s4max = x2(S+U−m2
3)+T−m2

4.

5.2 Kinematics with pT and rapidity

We next provide an alternative cross-section calculation in terms of the transverse momentum,
pT , and the rapidity, Y , of the outgoing particle with momentum p3. We further define T1 = T−
m2

3, U1 = U−m2
3, t1 = t−m2

3, and u1 = u−m2
3. Also, U1 = −

√
SmT e

Y and T1 = −
√
SmT e

−Y

with mT =
√
m2

3 + p2
T . We then calculate the total hadronic cross section via

σph1ph2→p3p4(S) =

∫ p2T max

0

dp2
T

∫ Y +

Y −

dY

∫ 1

x−

1

dx1

∫ s4max

0

ds4

× x1x2 S

x1S + U1
φ(x1)φ(x2)

d2σ̂p1p2→p3p4

dt1 du1

where

x2 =
s4 −m2

3 +m2
4 − x1T1

x1S + U1
,

p2
T max =

(S −m2
3 −m2

4)
2 − 4m2

3m
2
4

4S

Y ± = ±1

2
ln

1 +
√

1 − 4m2
T

S[1+(m2
3−m2

4)/S]2

1 −
√

1 − 4m2
T

S[1+(m2
3−m2

4)/S]2

x−1 =
−(U1 +m2

3 −m2
4)

S + T1

s4max = x1(S + T1) + U1 +m2
3 −m2

4 .
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top-quark transverse momentum distributions at 8 TeV.
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Figure 12: The top-pair total cross section at LHC (left) and Tevatron (right) energies.

6 Total cross section for tt̄ production

We begin our presentation of numerical results with the total cross section for top-antitop pair
production. We use the MSTW2008 NNLO [20] parton distribution functions (pdf) for all the
numerical results. We first show that the threshold approximation works very well both for
total cross sections and differential distributions.

We denote the NLO soft-gluon corrections from the expansion of the NNLL resummed cross
section as NLO approximate corrections. Similarly the NNLO soft-gluon corrections are denoted
as NNLO approximate corrections. Furthermore, the sum of the exact NLO cross section and
the NNLO approximate corrections is denoted as the NNLO approximate cross section (and
this applies to both total and differential cross sections).

Figure 11 shows that the NLO exact and approximate corrections to the total cross section as
well as the top-quark pT distribution are nearly identical. We have an excellent approximation:
there is less than 1% difference between NLO approximate and exact cross sections. For the
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Figure 13: Theoretical results for the tt̄ cross section at 7 and 8 TeV LHC energies.

best prediction we add the NNLO approximate corrections to the exact NLO cross section. We
find that that the scale dependence is greatly reduced when the NNLO approximate corrections
are included.

In Fig. 12 we display theoretical predictions at approximate NNLO for the total cross
section as a function of top-quark mass at the LHC (left plot) and the Tevatron (right plot)
and compare them with data from the LHC at 7 TeV [21, 22] and 8 TeV [23, 24] and from the
Tevatron at 1.96 TeV [25, 26]. We find very good agreement between the theoretical predictions
and the data. The approximate NNLO prediction [19] for mt = 173 GeV is 7.08+0.20

−0.24
+0.36
−0.27 pb

at the Tevatron at 1.96 TeV; 163+7
−5 ± 9 pb at the LHC at 7 TeV; 234+10

−7 ± 12 pb at 8 TeV

LHC; and 920+50
−39

+33
−35 pb at 14 TeV LHC. The central result is with µF = µR = mt, the first

uncertainty is from independent variation of µF and µR over the range mt/2 to 2mt, and the
second uncertainty is from the MSTW2008 NNLO pdf at 90% CL. Of course the numerical
results depend on the choice of pdf, αs, and choices of top quark mass and scales.

There are many differences between various resummation/NNLO approximate approaches
in the literature and these have been detailed previously in [7, 27]. The differences include
whether the resummation is for the total-only cross section versus for the double-differential
cross section, whether it uses moment-space perturbative QCD (pQCD) versus Soft-Collinear
Effective Theory (SCET), etc.

Resummations that only use the total cross section refer to production (or absolute) thresh-

old and resum logarithms of β =
√

1 − 4m2
t/s. The soft limit here is the production threshold

limit β → 0 (where the top quark velocities are zero), which is a special case of the more
general partonic threshold. The partonic threshold is where there is just enough energy to pro-
duce the top quarks but they can have arbitrary pT and are not restrained to be at rest. This
more general double-differential approach to resummation can be expressed in single-particle-
inclusive kinematics for the differential cross section dσ/dpT dy where the logarithms involve
s4 = s+ t1 + u1 and the soft limit is s4 → 0.

The double-differential approach, in addition to using a more general definition of threshold,
also allows the calculation of transverse momentum and rapidity distributions. For differential
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Figure 14: Theoretical results for the tt̄ cross section at the Tevatron (left) and at 14 TeV LHC
energy (right).

calculations, further differences between approaches arise from how the relation s+ t1 +u1 = 0
is used in the plus-distribution coefficients, how subleading terms are treated, if/how damping
factors are implemented to reduce the influence of contributions far from threshold, etc.

A comparison of various NNLO approximate approaches is shown in Fig. 13, all with the
same choice of parameters, at 7 and 8 TeV LHC energies. In addition, exact NLO [3, 4] and
NNLO [28] results for the total cross sections are also shown on the plot.

Ref. [19] uses our pQCD resummation formalism for the double-differential cross section.
Ref. [29] uses pQCD resummation for the total-only cross section. Ref. [30] uses the SCET
resummation formalism for the double-differential cross section. Ref. [31] uses the SCET re-
summation formalism for the total-only cross section. Lastly, Ref. [32] uses pQCD resummation
for the total-only cross section.

Figure 14 shows the corresponding comparison for the Tevatron (left) and for 14 TeV LHC
energy (right). One notes the varying degree of success of the various approaches in approxi-
mating the exact NNLO result.

The result in Ref. [19] from our formalism is very close to the exact NNLO [28] result:
both the central values and the scale uncertainty are nearly the same and this holds true for all
collider energies and top quark masses. This was expected from the comparison of exact and
approximate corrections at NLO for both total and differential cross sections, and also from
the comparison of approximate NNLO results in different kinematics in 2003 [33] (see also the
discussions in [19] and [27]). There is less than 1% difference between approximate and exact
cross sections at both NLO and NNLO.

The stability of the theoretical prediction over the past decade and the reliability of the
NNLO approximate result and near-identical value to exact NNLO is very important for several
reasons:

• it provides confidence for applications to other processes (notably single-top production,
W production, and other processes);

• it has been used extensively as a background for many analyses (Higgs searches, etc);

• it means that we have reliable and near-exact NNLO pT and rapidity distributions, which
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Figure 16: (Left) The top quark pT distribution at the LHC at 7 and 8 TeV energies. (Right)
The normalized top quark pT distribution at 7 TeV LHC energy compared with ATLAS data
in the dileptons channel.

is important since at present there do not exist any exact NNLO results for differential distri-
butions;

• it suggests that NNNLO soft-gluon corrections may be good approximations to exact
results at that order if/when they ever become available.

7 Top-quark pT and rapidity distributions in tt̄ production

We continue with top quark differential distributions in tt̄ production. We present theoretical
results for the top-quark transverse momentum and rapidity distributions at Tevatron and LHC
energies.

7.1 Top-quark pT distribution

Figure 15 displays the theoretical top quark pT distribution at the Tevatron. A reduction
in scale dependence relative to NLO is observed when the NNLO soft-gluon corrections are
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Figure 17: The normalized top quark pT distribution at 7 TeV LHC energy compared with
CMS data in the ℓ+jets channel (left) and the dileptons channel (right).
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Figure 18: The top quark rapidity distribution at the Tevatron (left) and the LHC (right).

included. Excellent agreement of the NNLO approximate results with D0 data [34] can be
seen over all the pT range from the plot on the right. The theoretical results are also in good
agreement with newer D0 data [35].

The top quark pT distribution at LHC energies is shown on the left plot of Fig. 16 with
two different choices of scale: mt and mT =

√
p2
T +m2

t . The right plot shows a comparison of
the theoretical approximate NNLO normalized pT distribution, (1/σ)dσ/dpT , to recent ATLAS
data [36] at 7 TeV energy up to pT of 800 GeV.

Figure 17 shows the same theoretical normalized top quark pT distribution at the LHC
compared to CMS data [37] at 7 TeV energy in the ℓ+jets channel (left plot) and the dileptons
channel (right plot). There is excellent agreement with CMS data, and the NNLO approximate
result describes the data better than event generators (see the discussion in [37]); a similar
conclusion is drawn in the comparison with CMS data at 8 TeV energy [38].

7.2 Top-quark rapidity distribution

The top-quark rapidity distribution has been calculated [39] for Tevatron energy (left plot in
Fig. 18) and is in good agreement with recent data from D0 [35].
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The top-quark forward-backward asymmetry is defined by

AFB =
σ(Y > 0) − σ(Y < 0)

σ(Y > 0) + σ(Y < 0)
.

The asymmetry is significant at the Tevatron. The theoretical result [39] for Tevatron energy
is AFB = 0.052+0.000

−0.006 which is significantly smaller than observed values.
The theoretical top quark rapidity distribution at LHC energies [39] is shown in the right

plot of Fig. 18 at NLO and approximate NNLO.
The normalized top quark rapidity distribution at the LHC at 7 TeV energy is shown in

Fig. 19. Excellent agreement is found with CMS data at 7 TeV [37] and also at 8 TeV [38].

8 Single-top production

Single-top-quark production was first observed at the Tevatron in 2009 [40, 41]. The single-top
partonic processes at LO are shown in Fig. 20.

The t-channel processes are of the form qb→ q′t and q̄b→ q̄′t and are numerically dominant
at Tevatron and LHC energies. The s-channel processes are of the form qq̄′ → b̄t and are small
at both the Tevatron and the LHC. The associated tW production proceeds via bg → tW−

and is negligible at the Tevatron but significant (second largest) at the LHC. A related process
to tW production is the associated production of a charged Higgs boson with a top quark,
bg → tH−.
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Figure 21: The t-channel total cross section (left); the top-quark pT distribution in t-channel
production (right).

LHC t t̄ Total (pb)

7 TeV 43.0+1.6
−0.2 ± 0.8 22.9 ± 0.5+0.7

−0.9 65.9+2.1
−0.7

+1.5
−1.7

8 TeV 56.4+2.1
−0.3 ± 1.1 30.7 ± 0.7+0.9

−1.1 87.2+2.8
−1.0

+2.0
−2.2

14 TeV 154+4
−1 ± 3 94+2

−1
+2
−3 248+6

−2
+5
−6

Table 1: NNLO approximate t-channel single-top and single-antitop cross sections with mt =
173 GeV. The first uncertainty is from scale variation between mt/2 and 2mt and the second
uncertainty is from the MSTW2008 NNLO pdf [20] at 90% CL.

8.1 t-channel production

We begin with single top quark production in the t-channel. This is the dominant single-top
production channel at both Tevatron and LHC energies. The complete NLO corrections were
calculated in [5].

The soft anomalous dimension matrix for t-channel single top production at one and two
loops has been calculated [42, 43]. The first element of this 2 × 2 matrix is given at one-loop
by [42, 43]

Γ
(1)
S t−11 = CF

[
ln

(−t
s

)
+ ln

(
m2
t − t

mt
√
s

)
− 1

2

]

and at two loops by [43]

Γ
(2)
S t−11 =

K

2
Γ

(1)
S t−11 + CFCA

(1 − ζ3)

4
.

The left plot of Fig. 21 shows the total t-channel cross section as a function of collider energy.
Excellent agreement is found with D0 [44], CDF [45], CMS [46, 47], and ATLAS [48, 49] results.

Table 1 lists the t-channel single-top and single-antitop cross sections, and their sum, at 7,
8, and 14 TeV LHC energies, for a top quark mass mt = 173 GeV. The central results are with
µF = µR = mt and the first uncertainty is due to scale variation over the interval mt/2 to 2mt,
while the second uncertainty denotes the pdf errors using MSTW2008 NNLO pdf at 90% CL.

24

NIKOLAOS KIDONAKIS

162 HQ2013



165 170 175 180

m
t
 (GeV)

1.5

2

2.5

3

3.5

4

4.5

5

σ
  (

p
b
)

NNLO approx

+- scale and pdf

D0
CDF

t+s channels total     Tevatron     S
1/2

= 1.96 TeV

2 3 4 5 6 7 8 9 10 11 12 13 14

S
1/2

 (TeV)

1

10

σ
 (

p
b

)

NNLO approx +-scale&pdf

ATLAS 95% CL limit

s-channel total cross section       m
t
=172.5 GeV

Figure 22: (Left) t and s channel combined cross sections compared with Tevatron data. (Right)
s-channel cross section at LHC energies.

LHC t t̄ Total (pb)

7 TeV 3.14 ± 0.06+0.12
−0.10 1.42 ± 0.01+0.06

−0.07 4.56 ± 0.07+0.18
−0.17

8 TeV 3.79 ± 0.07 ± 0.13 1.76 ± 0.01 ± 0.08 5.55 ± 0.08 ± 0.21
14 TeV 7.87 ± 0.14+0.31

−0.28 3.99 ± 0.05+0.14
−0.21 11.86 ± 0.19+0.45

−0.49

Table 2: NNLO approximate s-channel single-top and single-antitop cross sections with mt =
173 GeV. The first uncertainty is from scale variation between mt/2 and 2mt and the second
uncertainty is from the MSTW2008 NNLO pdf [20] at 90% CL.

The theoretical ratio σ(t)/σ(t̄) = 1.88+0.11
−0.09 at 7 TeV compares well with the ATLAS result of

1.81+0.23
−0.22 [50].
In addition to the total cross section, the top-quark pT distribution in t-channel production

is of interest and has been calculated at NLO in [5, 51, 52, 53, 54]. More recently, approximate
NNLO results based on NNLL resummation appeared in [55] (for another approach based on
SCET, see [56]). The right plot of Fig. 21 shows the theoretical results for t-channel top-quark
pT distributions at LHC energies [55].

8.2 s-channel production

We continue with single top quark production in the s-channel. The NLO corrections were
calculated in [5].

The soft anomalous dimension matrix for this process has been calculated at one and two
loops [42, 57]. The first element of this 2× 2 matrix for s-channel single top production at one
loop is [42, 57]

Γ
(1)
S s−11 = CF

[
ln

(
s−m2

t

mt
√
s

)
− 1

2

]

and at two loops it is [57]

Γ
(2)
S s−11 =

K

2
Γ

(1)
S s−11 + CFCA

(1 − ζ3)

4
.
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Tevatron Total (pb) at 1.96 TeV

t-channel 2.08+0.00
−0.04 ± 0.12

s-channel 1.05+0.00
−0.01 ± 0.06

t+ s sum 3.13+0.00
−0.05 ± 0.18

Table 3: NNLO approximate t and s channel total cross sections at the Tevatron with mt = 173
GeV.
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Figure 23: Two-loop eikonal diagrams for tW production.

Table 2 shows the single top and antitop s-channel cross sections at the LHC for mt = 173
GeV. The NNLO approximate corrections provide an enhancement over NLO (with the same
pdf) of ∼ 10%.

In the left plot of Fig. 22 the sum of the t and s-channel cross sections at the Tevatron
are displayed and compared with D0 [44] and CDF [45] data; the agreement is very good. The
right plot of Fig. 22 shows the s-channel cross section as a function of LHC energy together
with the current limit from ATLAS [58].

Table 3 shows the single top and antitop t-channel and s-channel NNLO approximate cross
sections at the Tevatron for mt = 173 GeV.

8.3 tW− production

We continue with the associated production of a top quark with a W−. The NLO corrections
for this process were calculated in [59]. The two-loop eikonal diagrams that contribute to the
soft anomalous dimension are shown in Fig. 23 (additional top-quark self-energy graphs also
contribute).

The soft anomalous dimension for bg → tW− is given at one loop by [42, 60]

Γ
(1)
S tW− = CF

[
ln

(
m2
t − t

mt
√
s

)
− 1

2

]
+
CA
2

ln

(
m2
t − u

m2
t − t

)

and at two loops by [60]

Γ
(2)
S tW− =

K

2
Γ

(1)
S tW− + CFCA

(1 − ζ3)

4
.
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Figure 24: Total cross section for tW production (left); top-quark pT distribution in tW−

production (right).

LHC tW− (pb)

7 TeV 7.8 ± 0.2+0.5
−0.6

8 TeV 11.1 ± 0.3 ± 0.7
14 TeV 41.8 ± 1.0+1.5

−2.4

Table 4: NNLO approximate tW− production cross sections with mt = 173 GeV.

The left plot in Fig. 24 shows the total tW cross section as a function of LHC energy together
with LHC data at 7 TeV [61, 62] and 8 TeV [63, 64] energy. The agreement of data with theory
is very good. The right plot displays the top-quark pT distribution in tW− production at LHC
energies.

Table 4 shows the cross sections for tW− production at LHC energies for a top quark mass
mt = 173 GeV. The NNLO approximate corrections increase the NLO cross section by ∼ 8%.
The cross section for t̄W+ production is identical to that for tW−.

8.4 Associated production of a top quark with a charged Higgs

Finally, we consider the production of a top quark in association with a charged Higgs boson
[60]. Charged Higgs bosons appear in the Minimal Supersymmetric Standard Model (MSSM)
and other two-Higgs doublet models. The soft anomalous dimension for this process is the same
as for tW production.

Figure 25 shows the cross section for tH− production in the MSSM at LHC energies as a
function of charged Higgs mass. The NNLO approximate corrections increase the NLO cross
section by ∼ 15 to ∼ 20%, depending on the charged Higgs mass.

9 Summary

In these lectures I have presented higher-order calculations for top-quark production in hadronic
collisions. I have discussed the resummation of soft-gluon corrections for top quark production
via different partonic channels. NNLL resummation is achieved via two-loop eikonal calculations
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Figure 25: Total cross sections for charged Higgs production in association with a top quark.

of soft anomalous dimension matrices. NNLO approximate results for the tt̄ production cross
section and the top quark pT and rapidity distributions are in excellent agreement with data
from the LHC and the Tevatron. Single top cross sections and pT distributions have been
presented in all partonic channels and are also in excellent agreement with collider data. The
NNLO approximate corrections are very significant and they reduce the theoretical errors.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant
No. PHY 1212472.

References
[1] CDF Collaboration, Phys. Rev. Lett. 74, 2626 (1995) [hep-ex/9503002].

[2] D0 Collaboration, Phys. Rev. Lett. 74, 2632 (1995) [hep-ex/9503003].

[3] P. Nason, S. Dawson, and R.K. Ellis, Nucl. Phys. B 303, 607 (1988).

[4] W. Beenakker, H. Kuijf, W.L. van Neerven, and J. Smith, Phys. Rev. D 40, 54 (1989); W. Beenakker,
W.L. van Neerven, R. Meng, G.A. Schuler, and J. Smith, Nucl. Phys. B 351, 507 (1991).

[5] B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan, and S. Weinzierl, Phys. Rev. D 66, 054024 (2002) [hep-
ph/0207055].

[6] N. Kidonakis and G. Sterman, Phys. Lett. B 387, 867 (1996); Nucl. Phys. B 505, 321 (1997) [hep-
ph/9705234].

[7] N. Kidonakis and B.D. Pecjak, Eur. Phys. J. C 72, 2084 (2012) [arXiv:1108.6063 [hep-ph]].

[8] N. Kidonakis, Mod. Phys. Lett. A 19, 405 (2004) [hep-ph/0401147]; Phys. Rev. D 73, 034001 (2006)
[hep-ph/0509079].

[9] G. Sterman, Nucl. Phys. B 281, 310 (1987).

[10] S. Catani and L. Trentadue, Nucl. Phys. B 327, 323 (1989).

[11] J. Kodaira and L. Trentadue, Phys. Lett. 112B, 66 (1982).

[12] H. Contopanagos, E. Laenen, and G. Sterman, Nucl. Phys. B 484, 303 (1997) [hep-ph/9604313].

28

NIKOLAOS KIDONAKIS

166 HQ2013



[13] S. Moch, J.A.M. Vermaseren, and A. Vogt, Nucl. Phys. B 646, 181 (2002) [hep-ph/0209100]; Nucl. Phys.
B 726, 317 (2005) [hep-ph/0506288].

[14] A. Gonzalez-Arroyo, C. Lopez, and F.J. Yndurain, Nucl. Phys. B 153, 161 (1979).

[15] G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys. B 175, 27 (1980).

[16] N. Kidonakis, Phys. Rev. Lett. 102, 232003 (2009) [arXiv:0903.2561 [hep-ph]].

[17] N. Kidonakis, arXiv:0910.0473 [hep-ph], in DPF 2009, eConf C090726.

[18] S.V. Ivanov, G.P. Korchemsky, and A.V. Radyushkin, Yad. Fiz. 44, 230 (1986) [Sov. J. Nucl. Phys. 44,
145 (1986)]; G.P. Korchemsky and A.V. Radyushkin, Phys. Lett. B 171, 459 (1986); Nucl. Phys. B 283,
342 (1987); Phys. Lett. B 279, 359 (1992) [hep-ph/9203222].

[19] N. Kidonakis, Phys. Rev. D 82, 114030 (2010) [arXiv:1009.4935 [hep-ph]].

[20] A.D. Martin, W.J. Stirling, R.S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009) [arXiv:0901.0002
[hep-ph]].

[21] ATLAS Collaboration, ATLAS-CONF-2012-131.

[22] CMS Collaboration, CMS-PAS-TOP-11-024.

[23] ATLAS Collaboration, ATLAS-CONF-2013-097.

[24] CMS Collaboration, CMS-PAS-TOP-12-007.

[25] CDF Collaboration, Phys. Rev. D 82, 052002 (2010) [arXiv:1002.2919 [hep-ex]]; Conf. Note 10163.

[26] D0 Collaboration, Phys. Lett. B 679, 177 (2009) [arXiv:0901.2137 [hep-ex]]; Phys. Rev. D 82, 032002
(2010) [arXiv:0911.4286 [hep-ex]]; Phys. Lett. B 704, 403 (2011) [arXiv:1105.5384 [hep-ex]].

[27] N. Kidonakis, arXiv:1210.7813 [hep-ph] (to appear in Particles and Nuclei); in Snowmass 2013 Proceedings,
SNOW13-00008 [arXiv:1304.7775 [hep-ph]]; PoS (EPS-HEP 2013) 432 [arXiv:1309.1442 [hep-ph]].

[28] M. Czakon, P. Fiedler, and A. Mitov, Phys. Rev. Lett. 110, 252004 (2013) [arXiv:1303.6254 [hep-ph]].

[29] M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, and M. Wiedemann, Comput. Phys. Commun. 182,
1034 (2011) [arXiv:1007.1327 [hep-ph]].

[30] V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, and L.L. Yang, Phys. Lett. B 703, 135 (2011)
[arXiv:1105.5824 [hep-ph]].

[31] M. Beneke, P. Falgari, S. Klein, and C. Schwinn, Nucl. Phys. B 855, 695 (2012) [arXiv:1109.1536 [hep-ph]].

[32] M. Cacciari, M. Czakon, M. Mangano, A. Mitov, and P. Nason, Phys. Lett. B 710, 612 (2012)
[arXiv:1111.5869 [hep-ph]].

[33] N. Kidonakis and R. Vogt, Phys. Rev. D 68, 114014 (2003) [hep-ph/0308222].

[34] D0 Collaboration, Phys. Lett. B 693, 515 (2010) [arXiv:1001.1900 [hep-ex]].

[35] D0 Collaboration, D0 Note 6379-CONF.

[36] ATLAS Collaboration, ATLAS-CONF-2013-099.

[37] CMS Collaboration, Eur. Phys. J. C 73, 2339 (2013) [arXiv:1211.2220 [hep-ex]].

[38] CMS Collaboration, CMS-PAS-TOP-12-028.

[39] N. Kidonakis, Phys. Rev. D 84, 011504 (2011) [arXiv:1105.5167 [hep-ph]].

[40] D0 Collaboration, Phys. Rev. Lett. 103, 092001 (2009) [arXiv:0903.0850 [hep-ex]].

[41] CDF Collaboration, Phys. Rev. Lett. 103, 092002 (2009) [arXiv:0903.0885 [hep-ex]].

[42] N. Kidonakis, Phys. Rev. D 74, 114012 (2006) [hep-ph/0609287].

[43] N. Kidonakis, Phys. Rev. D 83, 091503 (2011) [arXiv:1103.2792 [hep-ph]].

[44] D0 Collaboration, Phys. Rev. D 84, 112001 (2011) [arXiv:1108.3091 [hep-ex]].

[45] CDF Collaboration, CDF Note 10793.

[46] CMS Collaboration, JHEP 1212 (2012) 035 [arXiv:1209.4533 [hep-ex]].

[47] CMS Collaboration, CMS-PAS-TOP-12-011.

[48] ATLAS Collaboration, Phys. Lett. B 717, 330 (2012) [arXiv:1205.3130 [hep-ex]].

29

TOP QUARK PRODUCTION

HQ2013 167



[49] ATLAS Collaboration, ATLAS-CONF-2012-132.

[50] ATLAS Collaboration, ATLAS-CONF-2012-056.

[51] J.M. Campbell, R. Frederix, F. Maltoni, and F. Tramontano, Phys. Rev. Lett. 102, 182003 (2009)
[arXiv:0903.0005 [hep-ph]].

[52] R. Schwienhorst, C.-P. Yuan, C. Mueller, and Q.-H. Cao, Phys. Rev. D 83, 034019 (2011) [arXiv:1012.5132
[hep-ph]].

[53] P. Falgari, F. Giannuzzi, P. Mellor, and A. Signer, Phys. Rev. D 83, 094013 (2011) [arXiv:1102.5267
[hep-ph]].

[54] R. Frederix, E. Re, and P. Torrielli, JHEP 1209 (2012) 130 [arXiv:1207.5391 [hep-ph]].

[55] N. Kidonakis, Phys. Rev. D 88, 031504 (2013) [arXiv:1306.3592 [hep-ph]].

[56] J. Wang, C.S. Li, and H.X. Zhu, Phys. Rev. D 87, 034030 (2013) [arXiv:1210.7698 [hep-ph]].

[57] N. Kidonakis, Phys. Rev. D 81, 054028 (2010) [arXiv:1001.5034 [hep-ph]].

[58] ATLAS Collaboration, ATLAS-CONF-2011-118.

[59] S. Zhu, Phys. Lett. B 524, 283 (2002); (E) B 537, 351 (2002).

[60] N. Kidonakis, Phys. Rev. D 82, 054018 (2010) [arXiv:1005.4451 [hep-ph]].

[61] ATLAS Collaboration, Phys. Lett. B 716, 142 (2012) [arXiv:1205.5764 [hep-ex]].

[62] CMS Collaboration, Phys. Rev. Lett. 110, 022003 (2013) [arXiv:1209.3489 [hep-ex]].

[63] ATLAS Collaboration, ATLAS-CONF-2013-100.

[64] CMS Collaboration, CMS-PAS-TOP-12-040.

30

NIKOLAOS KIDONAKIS

168 HQ2013



Helicity Amplitudes and

Angular Decay Distributions

J.G. Körner1

1PRISMA Cluster of Excellence, Institut für Physik, Johannes-Gutenberg-Universität,

Staudinger Weg 7, 55099 Mainz, Germany

I discuss how to obtain angular decay distributions for sequential cascade decays using
helicity methods. The angular decay distributions follow from a reasonably simple master
formula involving bilinear forms of helicity amplitudes and Wigner’s d functions. I discuss
in some detail the issue of gauge invariance for off-shell gauge bosons. As a technical
exercise I calculate the linear relation between the helicity amplitudes and the invariant
amplitudes of semileptonic and rare baryon decays. I discuss two explicit examples of
angular decay distributions for (i) the decay t → b + W+(→ ℓ+νℓ) (which leads to the
notion of the helicity fractions of the W+), and (ii) the sequential decay Λb → Λ(→
pπ−) + J/ψ(→ ℓ+ℓ−).

1 Introductory remarks

In these lectures I want to discuss some examples of sequential cascade decays and their corre-
sponding angular decay distributions. The angular decay distributions follow from a reasonably
simple master formula involving bilinear forms of helicity amplitudes and Wigner’s d functions.
Some sample cascade decay processes are

• Polarized top quark decay [1, 2] t(↑) → b+W+(→ ℓ+νℓ)

• Rare Λb(↑) decays [3] Λb(↑) → Λs(→ pπ−) + jeff(→ ℓ+ℓ−)

• Higgs decay to gauge bosons [4] H →W+(→ ℓ+νℓ) +W−∗(→ ℓ−ν̄ℓ)
H → Z(→ ℓ+ℓ−) + Z∗(→ ℓ+ℓ−)

• Rare B decays [5] B → D + jeff(→ ℓ+ℓ−)
B → D∗(→ Dπ) + jeff(→ ℓ+ℓ−)

• Semileptonic Λb decays [6] Λb → Λc(→ Λπ+) +W−∗(→ ℓ−ν̄ℓ)

• Semileptonic B decays [7, 8, 9] B → D +W ∗(→ ℓν)
B → D∗(→ Dπ) +W ∗(→ ℓν)

• Nonleptonic Λb decays [10] Λb → Λ(→ pπ−) + J/ψ(→ ℓ+ℓ−)

• Semileptonic hyperon decays (ℓ− = e−, µ−) [11] Ξ0(↑) → Σ+(→ p+π0)+W−∗(→ ℓ−ν̄ℓ)
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In our treatment of these decay processes we have accounted for lepton mass effects whenever
this is warranted for by the decay kinematics.

The generic form of most of the above cascade decays is H1 → H2(→ H3 +H4) +W,W ∗,
jeff(→ ℓ+ ℓ̄) where the Hi can be mesons, baryons or quarks, and the W and W ∗ denote either
on-shell or off-shell charged W ’s. For neutral current transitions, jeff denotes an effective four-
vector and/or four-axial vector current relevant for the desription of rare decays. The interest
in deriving angular decay distributions via helicity methods is two-fold. First it facilitates the
theoretical analysis of a decay distribution in terms of parity or CP violating contributions.
Second it allows one to generate experimental decay distributions via a suitable Monte Carlo
program (see e.g. Ref. [11]).

Take as an example the semileptonic hyperon decay Ξ0(↑) → Σ+(→ p + π0) + ℓ− + ν̄ℓ
(ℓ− = e−, µ−). The decay process is described by three polar angles θ, θB and θP (as e.g. in
Fig. 2) and two azimuthal angles φB and φℓ which describe the relative azimuthal orientation
of the two planes that characterize the cascade decay process.

As we shall learn in this lecture, the angular decay distribution can be derived from the
master formula [11]

W (θ, θP , θB , φB , φℓ) ∝
∑

λℓ,λW ,λ′
W ,J,J ′,λ2,λ′

2,λ3

(−1)J+J ′ |hV−A
λlλν=±1/2

|2ei(λW −λ′
W )φℓ (1)

× ρλ2−λW ,λ′
2−λ′

W
(θP )dJλW ,λℓ−λν

(θ)dJ
′

λ′
W ,λℓ−λν

(θ)Hλ2λW
H∗
λ′

2λ
′
W

× ei(λ2−λ′
2)φBd

1/2
λ2λ3

(θB)d
1/2
λ′

2λ3
(θB)|hBλ30|2

where

hV−A
λℓλν=±1/2

: helicity amplitudes for the transition W ∗ → ℓ+ νℓ :

λν̄ = 1/2 for (ℓ−ν̄ℓ); λν = −1/2 for (ℓ+νℓ)

ρλ1λ′
1

: density matrix for the polarized parent baryon B1

Hλ2λW
: helicity amplitudes for the transition B1 → B2 +W ∗

hBλ30 : helicity amplitudes for the transition B2 → B3 + π

dJmm′ : Wigner’s d functions

The λℓ, λW , . . . are helicity labels of the baryons, leptons and the W ∗ that participate in
the process. They take the values

λℓ, λ1, λ2, λ3 = ±1/2

λW = 1, 0,−1 (J = 1); t (J = 0)

λν̄ = +1/2; λν = −1/2

We shall see in these lectures that the off-shell gauge boson W has a spin-1 and a spin-0
component. Thus we have to sum over J = 0, 1. The phase factor (−1)J+J ′

= ±1 is associated
with the Minkowski metric of our world. The angular decay distribution (1) covers both final
lepton states (ℓ−ν̄ℓ) and (ℓ+νℓ) which are distinguished through the labelling λν = ±1/2 (λν̄ =
+1/2, λν = −1/2). This covers the charge conjugated process or also the semileptonic decay
Σ+ → Λ + e+νe.

2
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The master formula (1) is quite general. After appropiate angular integrations over θB and
φB the master formula also applies to the three-fold angular decay distribution of polarized
top decay t(↑) → b + ℓ+νℓ, etc., etc.. The summation over helicities can be quite elaborate if
done by hand. However, the summation can be done by computer. A FORM package doing
the summation automatically is available from M.A. Ivanov.

1.1 Polarization of the lepton

In the master formula (1) I have summed over the helicities of the lepton. To obtain the
polarization of the lepton leave the lepton helicity unsummed, i.e.

∑

λℓ, ...

→
∑

...

For example, the longitudinal polarization of the charged lepton is then given by

P z(ℓ) =
Wλℓ=+1/2 −Wλℓ=−1/2

Wλℓ=+1/2 +Wλℓ=−1/2
(2)

In the same vein the transverse polarization components P x(ℓ) and P y(ℓ) can be obtained from
the nondiagonal elements of the W ∗ density matrix. Note that the longitudinal polarization of
the lepton in Eq. (2) refers to the lepton-neutrino cm system, and not to the Ξ0 rest system.

2 Gauge boson off-shell effects

2.1 Off-shell effects and scalar degrees of freedom

When the gauge boson is off its mass shell q2 6= m2
W,Z one has to take into account the scalar

degree of freedom of the gauge boson. Take the unitary gauge and write out the numerator of
the W gauge boson propagator as

HµνL
µν = Hµν g

µµ′

gνν
′

Lµ′ν′ −→ Hµν

(
gµµ

′ − qµqµ
′

m2
W

)(
gνν

′ − qνqν
′

m2
W

)
Lµ′ν′ .

The term qµqµ
′

/m2
W is usually dropped in low energy applications such as µ-decay and also in

the charm and bottom sector. Split the propagator numerator into a spin-1 and a spin-0 piece

(
−gµµ′

+
qµqµ

′

q2︸ ︷︷ ︸
spin 1

− qµqµ
′

q2
(1 − q2

m2
W

)

︸ ︷︷ ︸
spin 0

)(
−gνν′

+
qνqν

′

q2︸ ︷︷ ︸
spin 1

− qνqν
′

q2
(1 − q2

m2
W

)

︸ ︷︷ ︸
spin 0

)
.

There are three contributions i) spin 1 ⊗ spin 1, ii) − ( spin 1 ⊗ spin 0 + spin 0 ⊗ spin 1 ) and
iii) spin 0 ⊗ spin 0.

Note the minus sign in case ii) which results from the Minkowski metric. This extra minus
sign can be readily incorporated into the master formulas for angular decay distributions by
introducing the factor (−1)J+J′

and summing over J, J ′ = 0, 1. The scalar contributions are
O(m2

ℓ) since qµLµν ∼ O(mℓ). Note, however, that q2 can be small since the range of off-shellness
is

(mℓ 1 +mℓ 2)
2 ≤ q2 ≤ (M1 −M2)

2

for the decay H1(M1) → H2(M2) + ℓ1(mℓ1) + ℓ̄2(mℓ2).

3
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2.2 The issue of gauge invariance

Consider the gauge boson propagator in the general Rξ gauge and rewrite it into a convenient
form. For definiteness we consider the decay t → b + W+ where we shall also consider gauge
boson off-shell effects which allows one to calculate finite width effects as will be done in Sec. 2.3.

Dµν =
i

q2 −m2
W

(
−gµν +

qµqν(1 − ξW )

q2 − ξWm2
W

)
(3)

=
i

q2 −m2
W

(
−gµν +

qµqν

m2
W

− qµqν

m2
W

+
qµqν(1 − ξW )

q2 − ξWm2
W

)

resulting in

Dµν =
i

q2 −m2
W

(
−gµν +

qµqν

m2
W

)
− i

qµqν

m2
W

1

q2 − ξWm2
W

. (4)

The first term in Eq. (4) is referred to as the unitary propagator. The second gauge-dependent
term in Eq. (4) can be seen to exactly cancel the contribution of the charged Goldstone φ+

exchange if fermion lines are attached to the gauge boson and the charged Goldstone boson
contribution. One uses the Dirac equation to convert the qµ and qν contributions in the second
term of Eq. (4) to fermion masses. In our case one would have

qν ūfγν(1 − γ5)vf̄ = mf ūf (1 − γ5)vf̄ +mf̄ ūf (1 + γ5)vf̄ ,

qµūbγµ(1 − γ5)ut = mtūb(1 + γ5)ut −mbūb(1 − γ5)ut.

One can then see that the second term in Eq. (4) is exactly cancelled by the corresponding
φ+-exchange contribution (with the same fermion pair attached). This exercise shows that it
does not make sense to talk of an external off-shell gauge boson in isolation. One must include
the coupling to a final state fermion pair if one wants to obtain a gauge invariant result.

2.3 Off-shell effects in the decay t→ b+W+

In the zero width approximation and using the unitary gauge the differential rate for t→ b+W+

is given by
dΓ

dq2
∼ Hµν

(
gµµ

′ − qµqµ
′

m2
W

)(
gνν

′ − qνqν
′

m2
W

)
Lµ′ν′ δ(q2 −m2

W ).

On shell one has q2 = m2
W , and it makes no difference whether one uses the Landau gauge

(ξ = 0) with (gµν − qµqν/q2) or the unitary gauge (ξ = ∞) with (gµν − qµqν/m2
W ). Since we

want to account for off-shell effects the use of the unitary gauge is mandatory as explained in
Sec. 2.2. Finite width effects can be accounted for by smearing the zero-width formula with the
replacement

δ(q2 −m2
W ) −→ mWΓW

π

1

(q2 −m2
W )2 +m2

WΓ2
W

.

One then integrates in the limits

m2
ℓ ≤ q2 ≤ (mt −mb)

2.

Numerically the finite width corrections amount to −1.55% in Γt→b+W+ [12, 13]. Curiously,
the negative finite width corrections are almost completely cancelled by the positive first order
electroweak corrections [13].
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2.4 Scalar contributions in some sample decay processes

Scalar contributions are of O(m2
ℓ). They are therefore important for decay processes where the

lepton mass is comparable to the scale of the decay process. For semileptonic and rare processes
the characteristic scale would be given by the mass difference M1 −M2. A more symmetric
scale is used in the PDG tables, namely the largest momentum of any of the decay products in
the rest frame of the decaying particle. Sample decay processes are

• Decays involving the τ

B → D + τντ : ΓS/Γ ≈ 58% [8, 9]

B → D∗ + τντ : ΓS/Γ ≈ 7% [8, 9]

B → π + τντ : ΓS/Γ ≈ (30 ÷ 50)% [14]

H →W+W−∗(→ τ−ντ ) : ΓS/Γ = 0.73% [4]

H → ZZ∗(→ τ+τ−) : ΓS/Γ = 1.19% [4]

The decays B → D(∗) +τντ and B → π+τντ have been widely discussed in the literature
because the scalar contribution can be augmented by charged Higgs exchange [15, 16].

• Hadronic semi-inclusive decays H → ZZ∗(→ bb̄)

H → ZZ∗(→ bb̄) : ΓS/Γ = 7.9% [17]

Since the ratio me/(mn−mp) = 0.395 is not small it comes of no surprise that there is a sizeable
scalar contribution to the neutron β decay n→ p+ e−ν̄e. In fact one finds ΓS/Γ = 19%.

2.5 Scalar contribution to the FB asymmetry AFB of the lepton pair

An interesting observation concerns the scalar contribution to the Forward-Backward (FB)
asymmetry of the lepton pair in the cm frame of the lepton pair or, put differently, in the W ∗

rest frame where its momentum is (
√
q2,~0 ). The notation ~0 is rather symbolic and stands

for the boost direction which brings the W ∗ to rest. The observation is that there are parity-
conserving contributions to the FB asymmetry arising from scalar-vector interference effects.

Consider the FB asymmetry

AFB =
ΓF − ΓB
ΓF + ΓB

(5)

ν̄µ

µ−

W−
off−shell

θ

If AFB 6= 0 one speaks of a parity-odd effect. Consider the JP content of the currents coupling
to the W ∗: V µ(1−, 0+) and Aµ(1+, 0−). There are two sources of parity-odd effects leading
to AFB 6= 0 given by

5
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1. parity-violating interaction from V (1−)A(1+), V (0+)A(0−) interference

2. parity-conserving interaction from V (0+)V (1−), A(0−)A(1+) interference

Take, for example, the semileptonic decay Λb → Λc + ℓ−ν̄ℓ. The numerator of Eq. (5) is given
by (see Ref. [11])

dΓF
dq2

− dΓB
dq2

=
G2

(2π)3
|Vus|2

(q2 −m2
ℓ)

2p

8M2
1 q

2

[
−HV

1
2 1H

A
1
2 1 − 2

m2
ℓ

2q2
(HV

1
2 t
HV

1
2 0 +HA

1
2 t
HA

1
20)

]
. (6)

The amplitudes HλΛcλW
in Eq. (6) denote the helicity amplitudes in the transitions Λb(λΛb

) →
Λc(λΛc

)+W−∗(λW ). The first term in Eq. (6) arises from a truly parity-violating contribution
while the remaining two contributions are parity-odd contributions arising from parity con-
serving interactions. The second contribution is negligible for the e− and µ− modes due to
the helicity flip factor m2

ℓ/q
2, but can be sizeable for the τ− mode. In fact, for the τ mode

Λb → Λc + τ−ν̄τ the FB asymmetry is dominated by the helicity flip contribution in Eq. (6)
leading to a sign change in AFB when going from the e−, µ− modes to the τ− mode (see the
corresponding quark-level calculation in Ref. [9]).

3 Helicity amplitudes and invariant amplitudes

The results of a dynamical calculation are usually obtained in terms of invariant amplitudes.
The helicity amplitudes can be expressed as a linear superposition of the invariant amplitudes.
In this section we show how to calculate the coefficient of this linear expansion for the process
B1 → B2 + jeff . In order to calculate the coefficients of the linear expansion one has to choose
a definite frame.

3.1 System 1: Parent baryon B1 at rest

Consider the decay B1(M1) → B2(M2) + jeff in the rest system of B1. The effective current
jeff with momentum qµ moves in the positive z direction while B2 moves in the negative z
direction.

B1

B2
jeff

z

p1 = (M1; 0, 0, 0) qµ = (q0; 0, 0, |~q |) pµ2 = (E2; 0, 0,−|~q |)
We do not explicitly annote the helicity of the parent baryon B1 in the helicity amplitudes
since, in system 1, λ1 is fixed by the relation λ1 = −λ2 + λj .

Possible helicity configurations are

λ1 λ2 λj

1/2 -1/2 0 (t)
-1/2 1/2 0 (t)
1/2 1/2 1
-1/2 -1/2 -1

6
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Convenient relations in system 1 are (Q± = (M1 ±M2)
2 − q2)

2M1(E2 +M2) = Q+, 2M1|~q | =
√
Q+Q−. (7)

The helicity spinors are given by

ū2(±
1

2
, p2) =

√
E2 +M2

(
χ†
∓,

∓|~q |
E2 +M2

χ†
∓

)
, u1(±

1

2
, p1) =

√
2M1

(
χ±
0

)
, (8)

where χ+ =

(
1
0

)
and χ− =

(
0
1

)
are the usual Pauli two-spinors.

The helicity spinors satisfy the relations

1

2
(1 + γ5s/±)u(±1

2
, p) = u(±1

2
, p), (9)

1

2
(1 + γ5s/∓)u(±1

2
, p) = 0,

where sµ± = ±(|~p |/M ; 0, 0, E/M) is the spin four-vector of the fermion with helicity ±1/2.
For the four polarization four-vectors of the effective current we have

εµ(t) =
1√
q2

(q0; 0, 0, |~q |) , εµ(±1) =
1√
2

(0;∓1,−i, 0) , εµ(0) =
1√
q2

(|~q |; 0, 0, q0) . (10)

They can be obtained by boosting the corresponding rest frame polarization vectors εµ(t; q =
0) = (1; 0, 0, 0) and εµ(0; q = 0) = (0; 0, 0, 1) by a boost with the boost matrix given by

Mtt = M00 = q0/
√
q2 and Mt0 = M0t = |~q |/

√
q2 (the transverse polarization vectors are boost

invariant).
One defines helicity amplitudes through

HV,A
λ2λW

= MV,A
µ (λ2)ǫ

∗µ(λj). (11)

The current matrix elements can be expanded in terms of a complete set of invariants

MV
µ = 〈B2|JVµ |B1〉 = ū2(p2)

[
FV1 (q2)γµ − FV2 (q2)

M1
iσµνq

ν +
FV3 (q2)

M1
qµ

]
u1(p1), (12)

MA
µ = 〈B2|JAµ |B1〉 = ū2(p2)

[
FA1 (q2)γµ − FA2 (q2)

M1
iσµνq

ν +
FA3 (q2)

M1
qµ

]
γ5u1(p1)

(we define σµν = i
2 (γµγν − γνγµ)). Using the definitions (11, 12), the helicity spinors (8) and

polarization vectors (10), the helicity amplitudes can be calculated to be

H
V/A

− 1
2 t

=

√
Q±√
q2

(
(M1 ∓M2)F

V/A
1 ± q2/M1F

V/A
3

)
, (13)

H
V/A
1
2 1

=
√

2Q∓

(
F
V/A
1 ± (M1 ±M2)/M1F

V/A
2

)
,

H
V/A
1
2 0

=

√
Q∓√
q2

(
(M1 ±M2)F

V/A
1 ± q2/M1F

V/A
2

)
.

7
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From parity or from an explicit calculation one has

HV
−λ2,−λj

= HV
λ2,λj

,

HA
−λ2,−λj

= −HA
λ2,λj

.

For a general linear combination Hλ2,λj
= aHV

λ2,λj
+ bHA

λ2,λj
it is advantageous to make use

of the linear superpositions Hλ2,λj
± H−λ2,−λj

which have definite transformation properties
under parity.

3.2 System 2: The effective current is at rest

The effective current jeff is at rest, or put differently, in system 2 we work in the cm frame of
the lepton pair in the decay jeff → ℓℓ̄. Both B1 and B2 move in the negative z direction. One
now has λ1 = λ2 − λj .

B2

B1

jeff z

pµ1 = (E′
1; 0, 0,−|~p ′|) qµ = (

√
q2; 0, 0, 0) pµ2 = (E′

2; 0, 0,−|~p ′|)

Convenient relations in system 2 are

|~p ′| =

√
Q+Q−

2
√
q2

, (E′
1 +M1)(E

′
2 +M2) =

Q+

4q2
(M1 −M2 +

√
q2)2. (14)

The relevant spinors can be obtained from the rest frame spinor in Eq. (8) by a boost according
to 2M1u(p1) = (p/1 +M1)u(p1 = 0) and 2M1ū(p1) = ū(p1 = 0)(p/1 +M1). The spinors in system
2 are thus given by

ū2(±
1

2
, p2) =

√
E′

2 +M2

(
χ†
∓,

∓|~p ′|
E′

2 +M2
χ†
∓

)
, u1(±

1

2
, p1) =

√
E′

1 +M1

(
χ∓

±|~p ′|
E′

1+M1
χ∓

)

For the four polarization four-vectors of the effective current we now have εµ(t) = (1; 0, 0, 0) and
εµ(0) = (0; 0, 0, 1) while the transverse polarization vectors εµ(±1) = 1√

2
(0;∓1,−i, 0) remain

unchanged.
With a little bit of work one can show that

HV,A
λ2,λj

(system 2) (FV,Ai ) = HV,A
λ2,λj

(system 1) (FV,Ai ),

i.e. Eq. (13) holds for both systems 1 and 2. One has recovered a general property of the
linear coefficients relating the helicity amplitudes to invariant amplitudes: the coefficients of
this linear relation are boost invariant. In this sense the helicity amplitudes are boost invariant.
I have gone through this exercise in some detail to convince the reader that e.g. the expression∑
λ2

|Hλ2,λj
|2 is nothing but the (unnormalized) density matrix of the off-shell gauge boson

in its own rest frame regardless of the system in which the helicity amplitudes are evaluated
(as long as the systems are connected by a boost). We mention that corresponding relations
between helicity amplitudes and invariant amplitudes for the cases (1/2+; 3/2+) → (1/2+; 3/2+)
have been given in Ref. [18].
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3.3 Helicity amplitudes and (LS) amplitudes

Looking at Eq. (13) one notes that at threshold q2 = (M1 −M2)
2 there are only two inde-

pendent nonvanishing helicity amplitudes, namely HV
1/2,t and HA

1/2,1 =
√

2HA
1/2,0. This is no

accident and can be understood by performing an (LS) amplitude analysis in terms of the

(LS) amplitudes AV,ALS . For the vector component with JP content (1−; 0+) one has the (LS)
amplitudes (AV1,1/2, A

V
1,3/2;A

V
0,1/2), and for the axial component with JP content (1+; 0−) one

has the (LS) amplitudes (AA0,1/2, A
A
2,3/2;A

A
1,1/2). At threshold only the two S-wave amplitudes

survive, namely AV0,1/2 and AA0,1/2. In fact, there is a linear relation between the set of helicity

and (LS) amplitudes which reads (J = 0, 1)

Hλ1λ2
(J) =

∑

LS

(
2L+ 1

2J + 1

)1/2

〈LS0µ|Jλ〉〈s1s2 − λ2λ1|Sµ〉ALS , (15)

where λ = λ1 − λ2. Eq. (15) can be inverted, and upon setting AA2,3/2 = 0 at threshold one

recovers the above threshold relation HA
1/2,1 =

√
2HA

1/2,0. We emphasize that the set of (LS)
amplitudes is completely equivalent to the set of helicity amplitudes and the definition of both
sets of amplitudes is based on fully relativistic concepts. Some examples of threshold and near
threshold relations have recently been discussed in Refs. [19, 20, 21].

4 Rotation of density matrices

For concreteness we discus the decay of an on-shell W+ into a fermion pair, i.e. W+ → f̄3f4 (as
e.g. W+ → µ+νµ) described by the helicity amplitudes hλ3λ4

(λ3, λ4 = ±1/2). First consider a
frame where W+ is at rest and where the antifermion f̄3 moves in the positive z′ direction.

• Consider first the decay of an unpolarized W+ into a fermion pair. The decay rate in the
z′ frame is given by

Γ ∼
∑

helicities

|hλ3λ4
|2.

• Consider next the decay of a polarized W+ into a fermion pair. The polarization of the
W+ is given in terms of the spin density matrix ρ′mm with m = λ3 − λ4. One then has

Γ ∼
∑

helicities

ρ′mm|hλ3λ4
|2.

f4

f̄3

W+

θ z

z′

{ρmm}

{ρ′mm}
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• Now assume that the W+ was polarized in a production process characterized by a z axis
as e.g. in the decay t→ b+W+ discussed before. In this case the z axis is defined by the
momentum direction of the W+ in the top quark rest system. The spin density matrix
of the W+ is given in terms of the helicity amplitudes for the decay t → b+W+, i.e. by∑
λ2
Hλ2λW

. In the present case (no azimuthal correlations) one only needs the diagonal
terms of the density matrix of the W+. For the unnormalized density matrix elements of
the W+ one has

ρm=λW ,m=λW
=
∑

λ2

|Hλ2λW
|2.

Then “rotate” the density matrix. Rotation is from (x, y, z) to (x′, y, z′) by the angle θ
around the y axis. The differential cos θ rate reads

dΓ(θ)

d cos θ
∼

∑

helicities

|hλ3λ4
|2 d1

λW ,λ3−λ4
(θ)ρλW ,λW

d1
λW ,λ3−λ4

(θ)
︸ ︷︷ ︸

rotated density matrix ρ′

4.1 General polarized two-body decay

• Take the two particle decay a → b + c of a spin-Ja particle where the polarization of
particle a in the frame (x, y, z) is given by ρλaλ′

a
. Since we are also considering possible

effects from azimuthal correlations one has to take into account the nondiagonal density
matrix elements ρλaλ′

a
with λa 6= λ′a.

• Consider a second frame (x′, y′, z′) obtained from (x, y, z) by the rotation R(θ, φ, 0) and
whose z axis is defined by particle b. The polarization density matrix ρ′ in the frame
(x′, y′, z′) is obtained by a “rotation” of the density matrix ρ from the frame (x, y, z) to
the frame (x′, y′, z′).

• The rate for a→ b+ c is then given by the sum of the decay probabilities |hλbλc
|2 (with

λa = λb−λc) weighted by the diagonal terms of the density matrix ρ′ of particle a in the
frame (x′, y′, z′). One has

dΓa→b+c

d cos θ dφ
∼

∑

λa,λ′
a,λb,λc

|hλbλc
|2DJ∗

λa,λb−λc
(θ, φ) ρλa,λ′

a
DJ
λ′

a,λb−λc
(θ, φ)

︸ ︷︷ ︸
rotated density matrix ρ′

(16)

where
DJ
m,m′(θ, φ) = e−imφdJmm′(θ).

• All master formulas discussed in this lecture can be obtained by a repeated application
of the basic two-body formula.

5 T-odd contributions

Take again the cascade decay Ξ0 → Σ+(→ pπ0) + W−∗(→ ℓ−νℓ) as an example. Using the
master formula Eq. (1) one obtains, among others, contributions from the two helicity config-
urations [11]

(λΣ = 1/2, λW = 1;λ′Σ = −1/2, λ′W = 0) and (λΣ = −1/2, λW = 0;λ′Σ = 1/2, λ′W = 1).
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Figure 1: Definition of the polar angles θ and θB, and the azimuthal angle χ in the joint angular
decay distribution of an unpolarized Ξ0 in the cascade decay Ξ0 → Σ+(→ p + π0) + ℓ− + ν̄lℓ.
The coordinate system (xℓ, yℓ, zℓ) is obtained from the coordinate system (x, y, z) by a 180◦

rotation around the y axis.

These will lead to the bilinear combinations

H 1
21H

∗
− 1

20 e
i(π−χ) +H− 1

2 0H
∗
1
2 1 e

−i(π−χ)

= −2 cosχReH 1
21H

∗
− 1

20 − 2 sinχ ImH 1
2 1H

∗
− 1

20 .

Take the imaginary part contributions and put in the remaining θ- and θB-dependent trigono-
metric factors. One has two terms proportional to sinχ,

sin θ sinχ sin θB ImH 1
21H

∗
− 1

20 and cos θ sin θ sinχ sin θB ImH 1
21H

∗
− 1

20. (17)

Rewrite the product of angular factors in terms of scalar and pseudoscalar products using
the momentum representations in the (x, y, z) system. The normalized three-momenta are given
by (see Fig. 1)

p̂ℓ− = (sin θ cosχ, sin θ sinχ,− cos θ), p̂W = (0, 0,−1),

p̂Σ+ = (0, 0, 1), p̂p = (sin θB , 0, cos θB),

where the three-momenta have unit length indicated by the hat notation.
The two angular factors (17) can be rewritten as

sin θ sinχ sin θB = p̂W · (p̂ℓ− × p̂p) , (18)

cos θ sin θ sinχ sin θB = (p̂ℓ− · p̂W ) [ p̂W · ( p̂ℓ−× p̂p)] (19)

Under time reversal (t → −t) one has (p → −p). The above two invariants (18) and (19)
involve an odd number of momenta, i.e. they change sign under time reversal. This has led
to the notion of the so-called T -odd observables: Observables that multiply T -odd momentum
invariants are called T -odd observables.

In the same vein we rewrite the angular factors multiplying cosχ. One finds

sin θ cosχ sin θB = p̂W · p̂p + (p̂W · p̂p) (p̂W · p̂ℓ−) ,

cos θ sin θ cosχ sin θB = (p̂ℓ− · p̂W ) (p̂W · p̂p + (p̂W · p̂p) (p̂W · p̂ℓ−)) .

There is an even number of momentum factors in the angular correlations involving cosχ, i.e.
the momentum invariants correspond to T -even angular correlations.
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The T -odd contributions can arise from two different sources. They can be contributed
to by true CP -violating effects or by final state interaction effects (imaginary parts of loop
contributions). One can distinguish between the two sources of T -odd effects by comparing
with the corresponding antihyperon decays. Phases from CP -violating effects change sign
whereas phases from final state interaction effects do not change sign when going from hyperon
to antihyperon decays.

6 Two examples of polar angle decay distributions

6.1 The top quark decay t→ b+W+(→ ℓ+ + νℓ)

We are finally ready to derive the polar angle distribution W (θ) ∼ LµνH
µν in the decay

t → b +W+(→ ℓ+ + νℓ) using helicity methods. We take the W+ to be on-shell, i.e. the W+

has three spin degrees of freedom with corresponding helicities λW = ±1, 0. Heeding Eq. (16)
one has

LµνH
µν =

1

8

∑

λb,λW ,λℓ

|HV−A
λb λW

|2 d1
λW ,λℓ+

1
2
(θ) d1

λW ,λℓ+
1
2
(θ) |hV−A

λℓ,− 1
2

|2. (20)

At the scale of the process one can put the lepton-side helicity flip amplitude to zero, i.e.
|hV−A

− 1
2 ,− 1

2

|2 = 0. The helicity nonflip amplitude is given by |hV−A
1
2 ,− 1

2

|2 = 8m2
W . One obtains

LµνH
µν =

m2
W

4

(
|HV−A

1
2 1

|2(1 + cos θ)2 + 2(|HV−A
1
20

|2 + |HV−A
− 1

20
|2) sin2 θ + |HV−A

− 1
2 1

|2(1 − cos θ)2
)
.

The corresponding three-fold angular decay distribution of polarized top decay t(↑) → b +
W+(→ ℓ+ + νℓ) [1, 2] can be derived with similar ease.

As emphasized in Sec. 3.2 the bilinear forms
∑
λb

|HV−A
λb λW

|2 (λj = 1, 0,−1) are the (unnor-

malized) density matrix elements of the on-shell W+ in the W+ rest frame. In their normalized

form the density matrix elements
∑
λb

|ĤV−A
λb λj

|2 are usually referred to as the helicity fractions

of the W+ labelled by H+, H0 and H−. At the Born term level and for mb = 0 one has
(y2 = m2

W /m
2
t )

H+ : H0 : H− = 0 :
1

1 + 2y2
:

2y2

1 + 2y2
= 0 : 0.70 : 0.30, (21)

where we have used mt = 173.5 GeV. NLO and NNLO QCD corrections to the helicity fractions
have been calculated in Refs. [1, 2] and in Ref. [22], respectively. Results on the NLO elctroweak
corrections to the helicity fractions have been given in Ref. [13].

6.2 The decay Λb(↑) → Λ + J/ψ(→ ℓ+ℓ−)

There has been a longstanding interest to measure the polarization of hadronically produced
hyperons, and charm and bottom baryons [24, 25]. Recently the LHCb Collaboration has
measured the polarization of hadronically produced Λb’s [26]. At the same time they measured
ratios of squared helicity amplitudes in the decay Λb(↑) → Λ+J/ψ through an analysis of polar
correlations in the cascade decay process. Consider the three polar angles θ, θ1 and θ2 that
characterize the cascade decay Λb(↑) → Λ(→ p+ π−) + J/ψ(→ ℓ+ℓ−) (see Fig. 2)

By now we know how to write down the master formula for this three-fold polar angle
distribution which could also be obtained by azimuthal integration of Eq. (1). Since I also want
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l−

l+

~PΛb

ΛbΛ

π−

p

J/ψ

θ1
Θθ2

Figure 2: Definition of three polar angles in the decay Λb(↑) → Λ(→ p+ π−) + J/ψ(→ ℓ+ℓ−)

to discuss the decay Λb(↑) → Λ(→ p+ π−) + ψ(2S)(→ ℓ+ℓ−) I use the generic notation V for
the JPC = 1−− vector resonances J/ψ and ψ(2S). In the ψ(2S) mode one also has access to
the decay ψ(2S) → τ+τ− which necessitates the incorporation of lepton mass effects in the
decay distribution. One has

W (θ, θ1, θ2) ∝ 1

2

∑

helicities

|hVλ1λ2
|2
[
d1
λV ,λ1−λ2

(θ2)
]2
ρλb,λb

(θ)

× δλb,λV −λΛ
|HλΛλV

|2
[
d
1/2
λΛλp

(θ1)
]2

|hBλp,0|2,

where λV is the helicity of the J/ψ or ψ(2S). The lepton non-flip (n.f.) and flip (h.f.) helicity
amplitudes for the parity conserving decays V → ℓ+ℓ− are given by

n.f. : hV− 1
2 ,− 1

2
= hV+ 1

2 ,+
1
2

= 2ml, h.f. : hV− 1
2 ,+

1
2

= hV+ 1
2 ,− 1

2
=

√
2mV .

We also know how to rotate the density matrix of the Λb from its production direction
(perpendicular to the production plane)

ρλbλ′
b
(θP) =

1

2

(
1 + Pb cos θP Pb sin θP

Pb sin θP 1 − Pb cos θP

)

Since I am not considering azimuthal correlations in this application only the diagonal density
matrix elements ρλbλb

are needed.

Next introduce the linear combinations of normalized helicity bispinors |ĤλΛλV
|2 (where

|ĤλΛλV
|2 = |HλΛλV

|2/∑λΛ,λV
|HλΛλV

|2)

αb = |Ĥ+ 1
2 0|2 − |Ĥ− 1

20|2 + |Ĥ− 1
2−1|2 − |Ĥ+ 1

2+1|2 ,
r0 = |Ĥ+ 1

2 0|2 + |Ĥ− 1
20|2 ,

r1 = |Ĥ+ 1
2 0|2 − |Ĥ− 1

20|2 .

We define ε = m2
ℓ/m

2
V such that the velocity of the lepton is given by v = (1 − 4ε)1/2.

The polar angle distribution can be written as

W̃ (θ, θ1, θ2) =
7∑

i=0

fi(αb, r0, r1) gi(Pb, αΛ) hi(cos θ, cos θ1, cos θ2) ℓi(ε). (22)
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The functions fi, gi, hi and ℓi are listed in the following table.

i fi(αb, r0, r1) gi(Pb, αΛ) hi(cos θ, cos θ1, cos θ2) ℓi(ε)

0 1 1 1 v · (1 + 2ε)

1 αb Pb cos θ v · (1 + 2ε)

2 2r1 − αb αΛ cos θ1 v · (1 + 2ε)

3 2r0 − 1 PbαΛ cos θ cos θ1 v · (1 + 2ε)

4 1
2 (1 − 3r0) 1 1

2 (3 cos2 θ2 − 1) v · v2

5 1
2 (αb − 3r1) Pb

1
2 (3 cos2 θ2 − 1) cos θ v · v2

6 − 1
2 (αb + r1) αΛ

1
2 (3 cos2 θ2 − 1) cos θ1 v · v2

7 − 1
2 (1 + r0) PbαΛ

1
2 (3 cos2 θ2 − 1) cos θ cos θ1 v · v2

The symbols in the table are

Pb : polarization of Λb

αb : asymmetry parameter in the decay Λ → p+ π−

The overall factor v in the fifth column is the phase space factor for V → ℓ+ℓ−. The factors
(1 + 2ǫ) (S-wave dominance) and v2 ((S −D)-wave interference) were calculated by us for the
first time. The LHCb Collaboration finds a very small polarization of the Λb [26]

Pb = 0.05 ± 0.07 ± 0.02.

Our results on helicity amplitudes for the transitions Λb → Λ [10] agree with the experimental
results [26]. Our calculation is based on the confined covariant quark model developed by us
(see e.g. Refs. [3, 10, 27, 28, 29]).

6.3 The confined covariant quark model in a nutshell

The confined covariant quark model provides a field theoretic frame work for the constituent
quark model (see e.g. Refs. [3, 10, 27, 28, 29]). Its main features can be summarized as follows.

Particle transitions are calculated from Feynman diagrams involving quark loops. For ex-
ample, the Λb → Λ transition is described by a two-loop diagram requiring a genuine two-loop
calculation. The high energy behaviour of quark loops is tempered by nonlocal Gaussian-type
vertex functions with a Gaussian-type fall-off behaviour. The particle-quark vertices have in-
terpolating current structure. Use free local quark propagators (m− 6 p)−1 in the Feynman
diagrams. The normalization of the particle-quark vertices is provided by the compositeness
condition which embodies the correct charge normalization of the respective hadron. The com-
positeness condition can be viewed as the field theoretic equivalent of the normalization of
the wave function of a quantum mechanical state. A universal infrared cut-off provides for a
effective confinement of quarks. There are no free quark poles in the Feynman diagrams.

HQET relations are recovered by using a static propagator for the heavy quark (k1 is a loop
momentum)

1

mb−6k1 −6p1
→ 1+ 6v1

−2k1v1 − 2Λ̄
.

14

J. G. KÖRNER
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7 Summary

The helicity method provides an easy and simple access to angular decay distributions in sequen-
tial cascade decays. Polarization and mass effects are readily incorporated. The corresponding
techniques should belong to the basic tool kit of every experimentalist and theorist working in
particle physics phenomenology.
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[12] M. Jeżabek and J.H. Kühn, Phys. Rev. D48 (1993) 1910 [Erratum-ibid. D 49 (1994) 4970]

[13] H.S. Do, S. Groote, J.G. Körner and M.C. Mauser, Phys. Rev. D67 (2003) 091501

[14] C.A. Dominguez, J.G. Körner and K. Schilcher, Phys. Lett. B248 (1990) 399

[15] U. Nierste, S. Trine and S. Westhoff, Phys. Rev. D78 (2008) 015006

[16] S. Fajfer, J.F. Kamenik and I. Nǐsandžić, Phys. Rev. D85 (2012) 094025
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Small-x behavior of deep-inelastic

structure functions F2 and Fcc
2

Anatoly Kotikov

Bogolubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia

It is shown that in the leading twist approximation of the Wilson operator product expan-
sion with “frozen” and analytic strong coupling constants, Bessel-inspired behavior of the
structure functions F2 and F cc

2 at small x values, obtained for a flat initial condition in the
DGLAP evolution equations, leads to good agreement with the deep inelastic scattering
experimental data from HERA.

1 Introduction

The experimental data from HERA on the deep-inelastic scattering (DIS) structure function
(SF) F2 [1, 2], its derivative ∂ lnF2/∂ ln(1/x) [3, 4] and the heavy quark parts F cc2 and F bb2 [5,
6, 7] enable us to enter into a very interesting kinematical range for testing the theoretical ideas
on the behavior of quarks and gluons carrying a very low fraction of momentum of the proton,
the so-called small-x region. In this limit one expects that the conventional treatment based
on the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations [8] does not account
for contributions to the cross section which are leading in αs ln(1/x) and, moreover, the parton
distribution function (PDFs), in particular the gluon one, are becoming large and need to
develop a high density formulation of QCD.

However, the reasonable agreement between HERA data and the next-to-leading-order
(NLO) approximation of perturbative QCD has been observed for Q2 ≥ 2 GeV2 (see reviews
in [9] and references therein) and, thus, perturbative QCD could describe the evolution of F2

and its derivatives up to very low Q2 values, traditionally explained by soft processes.
The standard program to study the x behaviour of quarks and gluons is carried out compar-

ing the experimental data with the numerical solution of the DGLAP equations [8] by fitting
the QCD energy scale Λ and the parameters of the x-profile of partons at some initial Q2

0

[10, 11]. However, to investigate exclusively the small-x region, there is the alternative of doing
the simpler analysis by using some of the existing analytical solutions of DGLAP in the small-x
limit [12]-[15]. It was pointed out in [12] that the HERA small-x data can be well interpreted in
terms of the so-called doubled asymptotic scaling (DAS) phenomenon related to the asymptotic
behaviour of the DGLAP evolution discovered many years ago [16].

The study of [12] was extended in [13]-[15] to include the finite parts of anomalous dimensions
(ADs) of Wilson operators and Wilson coefficients1. This has led to predictions [14, 15] of the
small-x asymptotic PDF form in the framework of the DGLAP dynamics, which were obtained
starting at some Q2

0 with the flat function

fa(Q
2
0) = Aa (hereafter a = q, g), (1)

1In the standard DAS approximation [16] only the AD singular parts were used.
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where fa are PDFs multiplied by x and Aa are unknown parameters to be determined from the
data.

We refer to the approach of [13]-[15] as generalized DAS approximation. In this approach
the flat initial conditions, Eq. (1), determine the basic role of the AD singular parts as in the
standard DAS case, while the contribution from AD finite parts and from Wilson coefficients
can be considered as corrections which are, however, important for better agreement with
experimental data.

The use of the flat initial condition, given in Eq. (1), is supported by the actual experimental
situation: low-Q2 data [17, 18, 4] are well described for Q2 ≤ 0.4 GeV2 by Regge theory with
Pomeron intercept αP (0) ≡ λP + 1 = 1.08, closed to the adopted (αP (0) = 1) one. The small
rise of HERA data [1, 2, 18, 19] at low Q2 can be explained, for example, by contributions of
higher twist operators (see [15]).

The purpose of this paper is to demostrate a good agreement [20, 21, 22] between the
predictions of the generalized DAS approach [14] and the HERA experimental data [1, 2] (see
Figs. 1 and 2 below) and [5, 7] (see Fig. 4 below) for the structure functions F2 and F cc2 ,
respectively. We also compare the result of the slope ∂ lnF2/∂ ln(1/x) calculation with the H1
and ZEUS data [3, 4]. Looking at the H1 data [3] points shown in Fig. 3 one can conclude
that λ(Q2) is independent on x within the experimental uncertainties for fixed Q2 in the range
x < 0.01. The rise of λ(Q2) linearly with lnQ2 could be tracted in strong nonperturbative
way, i.e., λ(Q2) ∼ 1/αs(Q

2). The analysis [23], however, demonstrated that this rise can be
explained naturally in the framework of perturbative QCD.

The ZEUS and H1 Collaborations have also presented [4] the preliminary data for λ(Q2)
at quite low values of Q2. The ZEUS value for λ(Q2) is consistent with a constant ∼ 0.1 at
Q2 < 0.6 GeV2, as it is expected under the assumption of single soft Pomeron exchange within
the framework of Regge phenomenology. It was important to extend the analysis of [23] to low
Q2 range with a help of well-known infrared modifications of the strong coupling constant. We
used the “frozen” and analytic versions (see, [20]).

2 Generalized DAS approach

The flat initial condition (1) corresponds to the case when PDFs tend to some constant
value at x→ 0 and at some initial value Q2

0. The main ingredients of the results [14, 15], are:

• Both, the gluon and quark singlet densities 2 are presented in terms of two components
(” + ” and ” − ”) which are obtained from the analytic Q2-dependent expressions of the
corresponding (” + ” and ” − ”) PDF moments.

• The twist-two part of the ” − ” component is constant at small x at any values of Q2,
whereas the one of the ” + ” component grows at Q2 ≥ Q2

0 as

∼ eσ, σ = 2

√[
d̂+s−

(
D̂+ + d̂+

β1

β0

)
p

]
ln

(
1

x

)
, ρ =

σ

2 ln(1/x)
, (2)

where σ and ρ are the generalized Ball–Forte variables,

s = ln

(
as(Q

2
0)

as(Q2)

)
, p = as(Q

2
0) − as(Q

2), d̂+ =
12

β0
, D̂+ =

412

27β0
. (3)

2The contribution of valence quarks is negligible at low x.
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Hereafter we use the notation as = αs/(4π). The first two coefficients of the QCD β-function
in the MS-scheme are β0 = 11 − (2/3)f and β1 = 102 − (114/9)f with f is being the number
of active quark flavors.

Note here that the perturbative coupling constant as(Q
2) is different at the leading-order

(LO) and NLO approximations. Hereafter we consider for simplicity only the LO approxima-
tion3, where the variables σ and ρ are given by Eq. (2) when p = 0.

2.1 Parton distributions and the structure function F2

The SF F2 and PDFs have the following form

F2(x,Q
2) = e fq(x,Q

2), fa(x,Q
2) = f+

a (x,Q2) + f−a (x,Q2), (a = q, g) (4)

where e = (
∑f

1 e
2
i )/f is the average charge square.

The small-x asymptotic results for PDFs f±a are

f+
g (x,Q2) =

(
Ag +

4

9
Aq

)
I0(σ) e−d+(1)s +O(ρ), f+

q (x,Q2) =
f

9

ρI1(σ)

I0(σ)
+O(ρ),

f−g (x,Q2) = −4

9
Aqe

−d−(1)s + O(x), f−q (x,Q2) = Aqe
−d−(1)s + O(x), (5)

where Iν (ν = 0, 1) are the modified Bessel functions, d−(1) = 16f/(27β0) and d+(1) =
1 + 20f/(27β0) is the regular part of AD d+(n) in the limit n → 1. Here n is the variable in
Mellin space.

2.2 Effective slopes

As it has been shown in [14], the behaviour of PDFs and F2 given in the Bessel-like form by
generalized DAS approach can mimic a power law shape over a limited region of x and Q2

fa(x,Q
2) ∼ x−λ

eff
a (x,Q2) and F2(x,Q

2) ∼ x−λ
eff
F2

(x,Q2).

The effective slopes λeff
a (x,Q2) and λeff

F2
(x,Q2) have the form:

λeff
F2

(x,Q2) = λeff
g (x,Q2) =

f+
g (x,Q2)

fg(x,Q2)
ρ
Ĩ1(σ)

Ĩ0(σ)
≈ ρ− 1

4 ln (1/x)
,

λeff
q (x,Q2) =

f+
q (x,Q2)

fq(x,Q2)
ρ
Ĩ2(σ)

Ĩ1(σ)
≈ ρ− 3

4 ln (1/x)
, (6)

where the symbol ≈ marks the approximation obtained in the expansion of the modified Bessel
functions, when the “−” component is negligible. These approximations are accurate only at
very large σ values (i.e. at very large Q2 and/or very small x).

3The NLO results may be found in [14, 15].
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2.3 Structure functions F cc
2 and F bb

2

In the framework of the photon-gluon fusion (PGF) process, the SFs F cc2 and F bb2 have the
following form [24]

F ii2 (x,Q2) ≈M i
2,g(1, Q

2, µ2)fg(x, µ
2), (i = c, b) (7)

where M i
2,g(1, Q

2, µ2) is the first Mellin moment of the so-called gluon coefficient function

Ci2,g(x,Q
2, µ2). AT LO, it has the form [24]

M i
2,g(1, c) =

2

3
[1 + 2(1 − ci)J(ci)] (8)

with

J(ci) = −
√
bi ln ti, ti =

1 −
√
bi

1 +
√
bi
, bi =

1

1 + 4ci
, ci =

m2
i

Q2
. (9)

3 Comparison with experimental data

Using the results of previous section we have analyzed HERA data for F2 [1, 2] and F cc2 [5, 7]
and also the slope ∂ lnF2/∂ ln(1/x) [3, 4] at small x from the H1 and ZEUS Collaborations.
In order to keep the analysis as simple as possible, we fix f = 4 and αs(M

2
Z) = 0.1166 (i.e.,

Λ(4) = 284 MeV) in agreement with the recent ZEUS results in [1].

3.1 Structure function F2

As it is possible to see in Figs. 1, 2 and 3, the twist-two approximation is reasonable atQ2 ≥ 2÷4
GeV2. At smaller Q2, some modification of the approximation should be considered.

In Refs. [20, 21], to improve the agreement at small Q2 values, we modifed the QCD
coupling constant. We have found a good agreement with experimental data at essentially
lower Q2 values: Q2 ≥ 0.5 GeV2 (see Figs. 1 and 2).

We considered two modifications.

In one case, which is more phenomenological, we introduce freezing of the coupling constant
by changing its argument Q2 → Q2+M2

ρ , where Mρ is the ρ-meson mass (see [20] and references
therein). Thus, in the formulae of the Section 2 we should do the following replacement:

as(Q
2) → afr(Q

2) ≡ as(Q
2 +M2

ρ ) (10)

The second possibility incorporates the Shirkov–Solovtsov idea [25] about analyticity of the
coupling constant that leads to the additional its power dependence. Then, in the formulae of
the previous section the coupling constant as(Q

2) should be replaced as follows: (k = 1 and 2
at LO and NLO)

aan(Q2) = as(Q
2) − 1

kβ0

Λ2

Q2 − Λ2
+ . . . , (11)

where the symbol . . . stands for terms which are zero and negligible at Q ≥ 1 GeV [25] at LO
and NLO, respectively.
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Figure 1: x dependence of F2(x,Q
2) in bins ofQ2. The experimental data from H1 (open points)

and ZEUS (solid points) [1] are compared with the NLO fits for Q2 ≥ 0.5 GeV2 implemented
with the canonical (solid lines), frozen (dot-dashed lines), and analytic (dashed lines) versions
of the strong-coupling constant.

3.2 Effective slopes

Figure 3 shows the experimental data for λeff
F2

(x,Q2) at x ∼ 10−3, which represents an average
of the x-values of HERA experimental data. The top dashed line represents the aforementioned
linear rise of λ(Q2) with ln(Q2). The Figs. 1, 2 and 3 demonstrate that the theoretical
description of the small-Q2 ZEUS data for λeff

F2
(x,Q2) by NLO QCD is significantly improved by

implementing the “frozen” and analytic coupling constants αfr(Q
2) and αan(Q2), respectively,

which in turn lead to very close results (see also [26]).
Indeed, the fits for F2(x,Q

2) in [15] yielded Q2
0 ≈ 0.5–0.8 GeV2. So, initially we had

λeff
F2

(x,Q2
0) = 0, as suggested by Eq. (1). The replacements of Eqs. (10) and (11) modify the

value of λeff
F2

(x,Q2
0). For the “frozen” and analytic coupling constants αfr(Q

2) and αan(Q2),

the value of λeff
F2

(x,Q2
0) is nonzero and the slopes are quite close to the experimental data at

Q2 ≈ 0.5 GeV2. Nevertheless, for Q2 ≤ 0.5 GeV2, Fig. 3 shows that there is still some
disagreement with the data, which needs additional investigation.
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Figure 2: As in Fig.1 but for the combined H1&ZEUS exerimental data [2].

For comparison, we display in Fig. 3 also the results obtained by Kaidalov et al. [27] and
by Donnachie and Landshoff [28] adopting phenomenological models based on Regge theory.
While they yield an improved description of the experimental data for Q2 ≤ 0.4 GeV2, the
agreement generally worsens in the range 2 GeV2 ≤ Q2 ≤ 8 GeV2.

The results of fits in [15, 20, 21] have an important property: they are very similar in LO
and NLO approximations of perturbation theory. The similarity is related to the fact that the
small-x asymptotics of the NLO corrections are usually large and negative (see, for example,
αs-corrections [29] to BFKL approach [30] 4). Then, the LO form ∼ αs(Q

2) for some observable
and the NLO one ∼ αs(Q

2)(1−Kαs(Q2)) with a large value ofK, are similar because Λ ≫ ΛLO
5

and, thus, αs(Q
2) at LO is considerably smaller then αs(Q

2) at NLO for HERA Q2 values.

In other words, performing some resummation procedure (such as Grunberg’s effective-
charge method [31]), one can see that the NLO form may be represented as ∼ αs(Q

2
eff), where

Q2
eff ≫ Q2. Indeed, from different studies [32, 26], it is well known that at small-x values the

effective argument of the coupling constant is higher then Q2.

4It seems that it is a property of any processes in which gluons, but not quarks play a basic role.
5The equality of αs(M2

Z) at LO and NLO approximations, where MZ is the Z-boson mass, relates Λ and

ΛLO: Λ(4) = 284 MeV (as in ZEUS paper on [1]) corresponds to ΛLO = 112 MeV (see [15]).
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Figure 3: As in Fig,1 but for the Q2 dependence of λeff
F2

(x,Q2) for an average small-x value

of x = 10−3. The linear rise of λeff
F2

(x,Q2) with lnQ2 [3] is indicated by the straight dashed
line. For comparison, also the results obtained in the phenomenological models by Kaidalov et
al. [27] (dash-dash-dotted line) and by Donnachie and Landshoff [28] (dot-dot-dashed line) are
shown.

3.3 Structure function F cc
2

We are now in a position to explore the phenomenological implications of our results for SF
F cc2 . As for our input parameters, we choose mc = 1.25 GeV in agreement with Particle Data
Group [34]. In order to fix the unphysical mass scale µ, we put µ2 = Q2 + 4m2

c , which is the
standart scale in heavy quark production.

The PDF parameters µ2
0, Aq and Ag shown in (1), have been fixed in the fits of F2 experi-

mental data (see the subsection 3.1). Their values depend on conditions chosen in the fits: the
order of perturbation theory and the number f of active quarks.

Below b-quark threshold, the scheme with f = 4 has been used [15, 20] in the fits of F2

data. Note, that the F2 structure function contains F cc2 as a part. In the fits, the NLO gluon
density and the LO and NLO quark ones contribute to F c2 , as the part of to F2. Then, now
in PGF scattering the LO coefficient function (9) corresponds in m → 0 limit to the standart
NLO Wilson coefficient (together with the product of the LO anomalous dimension γqg and
ln(m2

c/Q
2). It is a general situation, i.e. the coefficient funstion of PGF scattering at some

order of perturbation theory corresponds to the standart DIS Wilson coefficient with the one
step higher order. The reason is following: the standart DIS analysis starts with handbag
diagram of photon-quark scattering and photon-gluon interaction begins at one-loop level.

Thus, in our F cc2 analysis in the LO approximation of PGF process we should take fa(x,Q
2)

extracted from fits of F2 data at f = 4 and NLO approximation. In practice, in [22] we have
applied our f = 4 NLO twist-two fit [15] of H1 data for F2 with Q2 cut: Q2 > 1.5 GeV2, which
produces Q2

0 = 0.523 GeV2, Ag = 0.060 and Aq = 0.844.
The results for F cc2 are prsented in Fig.4. We can see a good agreement between our compact

formulas (7) and (9) and the modern experimental data [5, 6, 7] for F cc2 . To keep place on Fig.4,
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Figure 4: F cc2 (x,Q2) evaluated as functions of x with the LO matrix elements (dashed lines)
and with the NLO ones and with the factorization/renormalization scale µ2 = Q2 + 4m2

c (solid
lines). The black points and red squares correspond to the the combine H1ZEUS preliminary
data [7] and H1 data [5], respectively.

we show only the H1 [5] data and the combine H1&ZEUS [7] one.

The good agreement between generalized double-asymptotic scaling DAS approach used here
and F2 and F cc2 data demonstrates an equal importance of the both parton densities (gluon
one and sea quark one) at low x. It is due to the fact that F2 relates mostly to the sea quark
distribution, while the F cc2 relates mostly to the gluon one. Dropping sea quarks in analyse
leads to the different gluon densities extracted from F2 of from F cc2 (see, for example, [33]).

4 Conclusions

We have shown the Q2-dependence of the structure functions F2 and F cc2 and of the slope
λeff
F2

= ∂ lnF2/∂ ln(1/x) at small-x values in the framework of perturbative QCD. Our twist-
two results are in very good agreement with precise HERA data at Q2 ≥ 2 GeV2, where
perturbative theory can be applicable. The application of the “frozen” and analytic coupling
constants αfr(Q

2) and αan(Q2) improves the agreement at small Q2 values, Q2 ≥ 0.5 GeV2.

For the slope λeff
F2

and for the structure function F cc2 , our results agree with the corresponding
experimental data [3, 4] and [5, 6, 7] well within errors without a free additional parameters.
In the Q2 range probed by the HERA data, our NLO predictions agree very well with the
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LO ones. Since we worked in the fixed-flavour-number scheme, our results for F cc2 are bound
to break down for Q2 ≫ 4m2

c , which manifests itself by appreciable QCD correction factors
and scale dependences. As is well known, this problem is conveniently solved by adopting the
variable-flavour-number scheme, which not considered here.

As a next step of investigations, we plan to add the BFKL corrections to our approach [14]
(see appendix A in [35]) and to use our approach to analyse the cross sections of processes stud-
ied at LHC by analogy with our investigations [36] of the total cross section of ultrahigh-energy
deep-inelastic neutrino-nucleon scattering.

A.V.K. thanks the Organizing Committee of the Helmholtz International Summer School
”Physics of Heavy Quarks and Hadrons - 2013” for invitation and support. This work was
supported in part by RFBR grant 13-02-01005-a.
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1 Introduction

The static quark anti-quark potential in strong interaction is often expressed using the ansatz

V (r) = −4

3

αs
r

+ kr

+
32παs
9m2

c

δ(r) ~Sc ~Sc

+
1

m2
c

(
2αs
r3

− k

2r

)
~L~S

+
1

m2
c

4αs
r3

(
3 ~Sc~r · ~Sc~r

r2
− ~Sc ~Sc

)
. (1)

For historic reasons, this potential is refered to as a Cornell-type potential [1] [2] [3]. The
first term is a Coulomb-like term describing one-gluon exchange, which is very similar to the
Coulomb term in QED potentials for e.g. positronium or the hydrogen atom, except that here
the coupling constant is given by αS instead of αem. The second term is a linear term which
phenomenologically describes QCD confinement, and which is completely absent in QED. The
linear shape is e.g. supported by Lattice QCD calculations, and the parameter k is the string
constant of QCD string between the quark and the anti-quark. The other terms represent
spin-orbit, spin-spin and tensor potentials, leading to mass splittings in the spectrum.

Heavy quark combinations such as the charm anti-charm (called charmonium) and the
beauty anti-beauty (called bottomonium) are in particular interesting, as they can be treated (a)
as non-relativistic systems and (b) perturbatively due tomQ ≫ ΛQCD, where ΛQCD ≃ 200 MeV
is the QCD scale.

Charmonium- and bottomonium spectroscopy has been a flourishing field recently, as many
new states have been observed. Masses of expected states (such as the hb, h

′
b, ηb, η

′
b, de-

scribed below) have been measured accurately and enable precision tests of Eq. 1 to a level of
∆m/m≤10−4.

On the other hand, several non-expected states were found, which do not fit into the
Cornell-type potential model prediction. While for many priorly observed charmonium and
bottomonium states the difference between predicted and measured mass is impressively small
in the order of ∆m≃2-3 MeV, for some of the new states the closest predicted state is off by
∆m≥50 MeV or more. Such states are often refered to as XYZ states. The Z states (as will

1HQ2013 195



be described below) are in particular interesting, as they are charged states, and thus can not
represent charmonium or bottomonium at all.

Many of the XY Z states were observed at the Belle [4] and BaBar [5] experiments in
e+e− collisions at beam energies 10.5-11.0 GeV (i.e. in the Υ(nS) region). In this draft, at
first charmonium-like states will be discussed, which are e.g. produced in B meson decays.
Belle and BaBar are often called B meson factories, as the number of produced B mesons
per time unit is very high. Often the size of a data sample is given as integrated lumnosity.
With a typical instantenous luminosity of 1×1034 s1 cm2 and using 1 b(”barn”)=1024 cm2,
we get ≃1×10−15 b−1 or ≃1 fb−1 per 1 day. The center-of-mass energy of Belle and BaBar
is

√
s=10.58 GeV, corresponding to the mass of the Υ(4S) resonance. The cross section is

σ(e+e−→Υ(4S))≃1 nb, and thus we get about 1×106 produced B meson pairs per day.

Further below in this draft, examples for bottomonium-like states will be given, which are
e.g. produced in radiative decays of Υ(nS) resonances. As an example of applications of the
measurements, a few precision tests of the Cornell-type potential (Eq. 1) will be discussed. At
the end, an outlook to a future experiment will be given, which will be able to measure the
width of a state in the sub-MeV regime.

2 Charmonium(-like) states

2.1 The X(3872) state

The X(3872) state has been discovered in B meson decay in the decay X(3872) →J/ψπ+π− by
Belle [6] and confirmed by other experiments [7] [8] [9] [10] [11]. Among the XYZ states, the
X(3872) is the only one observed in several decay channels: X(3872)→J/ψπ+π−, X(3872)→J/ψγ,

X(3872)→J/ψπ+π−π0, X(3872)→D0D
0
π0, and X(3872)→D0D

0
γ.

Figure 1: Beam constrained mass Mbc=
√

(Ecmsbeam/2)2 − (pcmsB )2 (left) invariant
mass m(J/ψπ+π−) and the energy difference ∆E=EcmsB −Ecmsbeam for the decay
B+→K+X(3872)(→J/ψπ+π−). A 3-dimensional fit is performed. The blue line rep-
resents the fit result, which is used to extract the mass and the width of the X(3872).

The mass of the X(3872) can be determined with high precision. A recent mass measurement
of the X(3872) at Belle was based upon the complete Belle data set of 711 fb−1 collected at
the Υ(4S) resonance. Fig. 1 shows the beam constrained mass Mbc=

√
(Ecmsbeam/2)2 − (pcmsB )2

(left, with the energy in the center-of-mass system Ecmsbeam and the momentum of the B meson
in the center-of-mass system pcmsB ), the invariant mass m(J/ψπ+π−) (center) and the energy
difference ∆E=EcmsB −Ecmsbeam (right, with the energy of the B meson in the center-of-mass
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system EcmsB ). Data and fit (as a result of a 3-dimensional fit to the observables shown)
for the decay B+→K+X(3872)(→J/ψπ+π−) are shown (blue line: signal, dashed green line:
background). The fitted yield is 151±15 events. For details of the analysis procedure see
[12]. The fitted mass is listed in Tab. 1 in comparison with mass measurements from other
experiments.

The mass measurement reveals the surprising fact that the X(3872) is very close to the

D∗0D
0

threshold. Therefore it was discussed, if the X(3872) possibly represents an S-wave

D∗0D
0

molecular state [13]. In this case, the binding energy Eb would be given by the mass
difference m(X)−m(D∗0)−m(D0). Including the new Belle result, the new world average mass
of the X(3872) is m=3871.68±0.17 MeV [14]. The present value for the sum of the masses is
m(D0)+m(D∗0)=3871.84±0.28 MeV [14], Thus, a binding energy of Eb=−0.16±0.33 MeV can
be calculated, which is enormously small. In addition, Eb is inverse proportional to the squared
scattering length a [15]:

Eb =
~

2

2µa2
(2)

using the reduced mass µ. The radius can in first order be approximated by <r>=a/
√

2.
This would surprisingly mean a very large radius <r>≥10+∞

−5 fm of the molecular state.

Experiment Mass of X(3872)

CDF2 3871.61±0.16±0.19 MeV [8]
BaBar (B+) 3871.4±0.6±0.1 MeV [7]
BaBar (B0) 3868.7±1.5±0.4 MeV [7]
D0 3871.8±3.1±3.0 MeV [9]
Belle 3871.84±0.27±0.19 MeV [12]
LHCb 3871.95±0.48±0.12 MeV [10]

New World Average 3871.68±0.17 MeV [14]

Table 1: Mass measurements of the X(3872).

An important decay of the X(3872) is the radiative decay X(3872)→J/ψγ. The obser-
vation of this decay was reported by Belle with a data set of 256 fb−1, a yield of 13.6±4.4
events and a statistical significance of 4.0σ [16]. The combined branching ratio was mea-
sured to BR(B±→XK±, X→γJ/ψ)= (1.8±0.6±0.1)×10−6), i.e. the branching fraction of
X(3872)→J/ψγ is a factor ≃6 smaller than the one for X(3872)→J/ψπ+π−, and thus this de-
cay represents a rare decay. However, the decay is very important, as it represents a decay into
two neutral particles, which are identical to their anti-particles. Therefore observation of the
decay implies, that the charge conjugation of the X(3872) must be C=+1. BaBar was able to
confirm the observation with a data set of 260 fb−1, a yield of 19.4±5.7 events and a statistical
significance of 3.4σ [17]. Charmonium states with C=+1 are interesting objects. While decay
widths (which can be measured by branching fractions in the experiment) for C=−1 states scale
with the squared modulus of the wave function (Γ∼|Ψ(r=0)|2), decay widths of C=+1 states
scale with the squared modules of the derivative of the wave function (Γ∼|∂Ψ/∂r(r=0)|2).

An additional surprising property of the X(3872) is isospin violation. It was found, that
in the decay X(3872)→J/ψπ+π− the invariant mass peaks at the mass of the ρ0 meson. The
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ρ0 carries isospin I=0, but the initial state (if assumed to be a pure cc state) has I=0 (as it
would not contain any u or d valence quarks). There are only two additional isospin violating
transitions known in the charmonium system [14], namely ψ′→J/ψπ0 (B=1.3±0.1·10−3) and
ψ′→hcπ

0 (B=8.4±1.6·10−4). These branching fractions are very small. One of the mechanisms
to induce isospin violation is the u/d quark mass difference in strong interaction. However, as
the mass difference is small, the effect should be very small, consistent with the the measured
branching fractions. Another possible mechanism to induce isospin violation is the u/d quark
charge difference in electromagnetic interactions (EM). Isospin should only be conserved in
strong interaction, but not in EM interaction. Thus one of the possible explanations might
be, that the decay X(3872)→J/ψρ(→π+π−) is proceeding via EM interaction, i.e. the ρ might
not be created be two gluons, but by a virtual photon. However, then the decay should be
suppressed by an additional factor αem/αS≃10. The observation for the X(3872) is different:
the branching fraction of isospin violating transistion is (among the known decays) order of
O(10%) and thus seems to be largely enhanced.

2.2 The Y(4260) family

BaBar [18] CLEO-c [19] Belle [20] Belle [21] BaBar [22] BaBar [23]
L 211 fb−1 13.3 fb−1 553 fb−1 548 fb−1 454 fb−1 454 fb−1

N 125±23 14.1+5.2
−4.2 165±24 324±21 344±39 −

Significance ≃8σ ≃4.9σ ≥7σ ≥15σ − −
m / MeV 4259±8+2

−6 4283+17
−16±4 4295±10+10

−3 4247±12+17
−32 4252±6+2

−3 4244±5±4

Γ / MeV 88±23+6
−4 70+40

−25 133±26+13
−6 108±19±10 105±18+4

−6 114+16
−15±7

Table 2: Summary of the mass and width measurements of the Y(4260).

Another new charmonium-like state was observed by BaBar and confirmed by several exper-
iments (see Tab. 2 for a list of the measured masses and widths) at a high mass of m≃4260 MeV,
far above the DD threshold. The width is ≤100 MeV, which is quite narrow for such a high
state. The observed decay is again a π+π− transition to the J/ψ, similar to the above men-
tioned decay of the X(3872). However, the production mechanism is not B meson decay but
instead ISR (initial state radiation), i.e. e+e−→γISRY(4260), i.e. a photon is radiated by either
the e+ or the e− in the initial state, lowering the

√
s and producing the Y(4260) by a virtual

photon. In fact, not only one state, but four states have been observed and are shown in Fig. 2,
i.e. the Y(4008), the Y(4260), the Y(4250) and the Y(4660). In a search by Belle no additional
state up to m≤7 GeV was found. All the Y states must have the quantum numbers JPC=1−−,
due to the observation in an initial state radiation process. As an intriguing fact, there are
known and assigned JP=1−− charmonium states: J/ψ, ψ(2S), ψ(4040), ψ(4160) and ψ(4415).
Thus, there is a clear over-population of 1−− states in the m≥4 GeV region. Despite partial
overlap, apparently there seems to be no mixing: (a) no mixing among them, i.e. the Y(4008)
and the Y(4260) decay to J/ψπ+π−, and the Y(4350) and the Y(4660) decay to ψ′π+π−, and
neither of one has been observed in the other channel, and (b) no mixing with ψ states with
the Y states was observed so far. The pattern of the Y states appears non-trivial (see Fig. 3):
two non-mixing doublets without parity flip and without charge flip. It remains completely
unclear what the underlying symmetry is. In addition, there is no obvious pattern so far, how
the masses of the ψ states and the masses of the Y states might be related.
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Figure 2: Observations of the Y states. Invariant mass m(J/ψπ+π−) at Belle [21] (top left)
and at BaBar [22] (bottom left). Invariant mass m(ψ′π+π−) at Belle [24] (top right) and at
BaBar [25] (bottom right). Different curves indicate different fits with or without interference.

Due to their high masses, the Y states have been discussed as possible hybrid states [26].
In fact, the lowest lying [cgc] JP=1−− state was predicted by lattice QCD to have a mass
m≃4.3 GeV [27]. The interpretation as a hybrid is supported by the fact, that the decay
Y(4260)→e+e− has not been observed yet. However, it should be allowed, as JPC=1−− allows
coupling to a virtual photon and subsequent γ∗→e+e−. BaBar determined a very small partial
decay width Γ(Y(4260)→J/ψπ+π−)×Γ(e+e−)/Γtotal = (7.5±0.9±0.8) eV [22]. This should be
compared to e.g. Γ(ψ′→J/ψπ+π−)×Γ(e+e−)/Γtotal = (789±15) eV [14], which is a factor ≃102

higher. A possible reason in the hybrid interpretation is, that the decay may be blocked by the
valence gluon.

2.3 The X(4630) state

A state which is probably identical to the Y(4660) has also been observed at Belle [28] in the
ISR production process with a data set of 670 fb−1, but in the different decay channel, i.e.
the signal was observed in e+e−→γISRΛ+

c Λ−
c . The state is usually refered to as X(4630). The

Λ+
c is reconstructed in the final states pK0

s (→π+π−) pK−π+ and Λ(→pπ−)π+. For the Λ−
c

only partial reconstruction is used: The recoil mass to [Λ+
c γ] is investigated while requiring an

anti-proton (from the Λ−
c decay) as a tag and then a cut around the Λ−

c mass is applied. The
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Figure 3: Level scheme for JPC=1−− states: states decaying into J/ψπ+π− (left column),
states decaying into ψ′π+π− (center column), and known ψ states (radial quantum number
n=1,...,6).

measured mass is m=4634+8
−7

+5
−8 Mev and the measured width Γ=92+40

−24
+10
−21 MeV. Fig. 4 shows

the invariant mass m(Λ+
c Λ−

c ). A signal with a statistical significance of 8.2σ is observed. The
observation of this state is remarkable because of two reasons:

• It is the highest charmonium state observed so far (together with the Y(4660) of almost
same mass, but decaying into J/ψπ+π−), and

• the only new state so far observed to decay into baryons.

The potential model has an important boundary condition for the radial wave function,
which is called the turning point Rtp and can be calculated as

Rtp =
E − 2m

2σ
+

√
4m2 − 4mE + E2

4σ2
+

4αS
3σ

(3)

using σ=~ck with the string constant k. This is the radius, at which (a) the Wronski deter-
minant must be zero and (b) the radial wave function changes into an asymtotic, exponential
tail. For a box potential, the turning point would be identical to rbox, and the exponential
tail of the wave function would be outside the box. Fig. 5 shows the turning point radius as
a function of the mass. For the X(4630), if it is a charmonium state, the turning point is at
rturningpoint>2.1 fm. However, a radius of r≃1.25 fm marks the QCD string breaking regime.
Thus, if the Y(4660) or the X(4630) are charmonium states, it is unclear, how such a large part
of the wave function of a bound state can be in the string breaking regime. In any case, if it is
a charmonium state, the radial quantum number must be n≥4.
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Figure 4: Invariant mass m(Λ+
c Λ−

c ) for the process e+e−→γISRΛ+
c Λ−

c at Belle [28] showing the
signal for the X(4630).

2.4 The Zc(3900) state

A new state, tentatively called the Z+
c (3900), was observed by BESIII [29] in the decay of the

Y(4260)→Z+
c (3900)π± in a data set of 525 pb−1. BESIII is operating with center-of-mass ener-

gies in the charmonium mass region, and producing the Y(4260) directly via e+e−→Y(4260) at√
s=4.26 GeV. Importantly the Z+

c (3900) is a charged state, and thus can not be a charmonium
state. A charged combination could be formed by a state composed of four quarks. This may

be tetraquark state (such as [cucd]) or a molecular state (such as D±D
0∗

). The Z+
c (3900) was

reconstructed in the decay to J/ψπ∓. Fig. 6 (left) shows the observed signal, which has a sta-
tistical significance of >8σ. From the two charged pions, the one is used, which gives the higher
invariant mass for J/ψπ±, in order to remove combinatorical background from the charged pion
of the Y(4260) transition to the new state. The measured mass is m=3899.0±3.6±4.9 MeV
and the measured width Γ=46±10±20 MeV. The observation of this new state is remarkable
because this state seems to provide for the first time a connection between the Z states and the
Y states, possibly pointing to the same interpretation of their nature. Only a few days later, the
state was confirmed by Belle [30] in the same decay channel J/ψπ∓ and also in Y(4260) decays,
while in the Belle case the Y(4260) was produced in the ISR process Υ(nS)→γISRY(4260).
The measure mass of m=3894.5±6.6±4.5 MeV and width Γ=63±24±26 MeV are both con-
sistent with the BESIII measurement. Fig. 6 (right) shows the observed signal, which has a
statistical significance of >8σ in a data set of 967 fb−1. Again, as the Z+

c (4430), the state
was observed as Z+

c (3900) and Z−
c (3900) with about the same yield [29], indicating a doublet.

Concerning the quantum numbers, remarkably the isospin must be I=1, (as the isospin of the
pion is I=1), if we assume I=0 for the Y(4260). If the heavy meson pair is assumed to be in
the S-wave, the spin-parity of the state is uniquely determined as JP=1+. C-parity (−1)L+S is
only defined for neutral particles, thus there can only be a G-parity assignment to the Z+

c (3900).
The G-parity (−1)L+S+I with L=0, S=1 and I=1 thus gives G=+. As G-parity should be
preserved in strong decays, this assignment, due to the G-parity G=− for the pion, has the
interesting implication that the Y(4260) would have G=−. This would be compatible with an
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Figure 5: Radius of the turning point of a cc wave function in the Cornell potential vs. the
charmonium mass.

I=0 isosinglet assignment for the Y(4260), which has the important implication, that there is
no charged partner of the Y(4260) existing.

2.5 A D-wave state

Belle investigated the decay B+→K+χc1γ with χc1→J/ψγ using a data set of 711 fb−1 [31]. A
search for charmonium(-like) states decaying to χc1γ was performed. Fig. 7 shows the invariant
mass m(χc1γ). In other words, the search was based upon a sequence of two radiative decays
with both ∆L=1. The radiative transition also flips the parity due to the quantum numbers
of the photon JP=1−, and therefore the requirement of the intermediate χc1 with positive
parity. A new state at a mass of 3823.1±1.8±0.7 MeV was observed with a 3.8σ significance.
The product branching fraction was measured as B(B+→K+X(3820))× B(X(3820)→χc1γ)=
(9.7+2.8

2.5
+1.1
1.0 )×104, which is a factor ≃10 larger than e.g. the sum of all measured product branch-

ing fractions of the X(3872). The observed state might be one of the charmoniumD-wave (L=2)
states, as such states should primarily decay radiatively to χcJ states by L=2→L=1 transitions
and according branching fractions should be high ≥50% [32] [33]. There are four expected n=1
D-wave states: the ηc2 (1D2) with JPC=2−+ and ψ1,2,3 (3D1,2,3) with JPC=1,2,3−−. The
prediction [3] for the ψ1 (3D1) of 3.7699 GeV is much lower than the observed X(3820). The
ψ3 (3D3) can not decay radiatively by an E1 transition and should thus be suppressed. The
ηc2 (1D2) would require a spin-flip in the transition, and should be suppressed as well. The
only candidate, which fulfills all the required properties, is the ψ2 (3D2) state with JPC=2−−

and a predicted mass 3.838 MeV [3], which is close to the observed mass. In addition, the ψ2

is predicted to be narrow Γ≃300-400 keV [32], consistent with a preliminary measured width

Γ=4±6 MeV. As the observed state is above the open charm thresholds (3730 MeV for D0D
0

and 3739 MeV for D+D−, respectively), decays into final states with charm should be ex-
pected. However, for the ψ2 the decay 2−−→0−+0−+ with ∆L=2 (i.e. (−1)L=+1) is forbidden
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Figure 6: J/ψπ∓ invariant mass in Y(4260) decays, indicating the Z+
c (3900) signal for BESIII

(left) [29] and Belle (right) [30]. For details see text.

by parity conservation, and thus other decays (such as the observed one) should be enhanced.
This mechanism could explain the high observed branching fraction into J/ψγγ. Note that

the decays to DD
∗

or D∗D
∗

are forbidden by energy conservation. The observed product
branching fraction is consistent with a calculation with color-octet amplitudes [34] predicting
B(B→K3D2)× B(3D2→χc1γ)= (3.7−7.5)×10−4.

3 Bottomonium(-like) states

3.1 The hb(1P) and the hb(2P)

In a recent analysis by Belle, a particular technique was used, namely the study of missing
mass to a π+π− pairs in Υ(5S) decays [35]. Fig. 8 shows the background-subtracted missing
mass for a Υ(5S) data set of 121.4 fb−1. Among several known states such as the Υ(1S), Υ(2S),
Υ(3S) and Υ(1D), there are addititional peaks arising from the transistions Υ(3S)→Υ(1S)π+π−

Υ(2S)→Υ(1S)π+π−, with the Υ(3S) and Υ(2S) being produced in the decay of the primary
Υ(5S). In addition to the expected signals, first observations of the bottomonium singlet P -
wave states hb(1P) and hb(2P) were made. Their measured masses are m=9898.3±1.1+1.0

−1.1 MeV

and m=10259.8±0.6+1.4
−1.0 MeV, respectively. The red, dashed lines in Fig. 8 indicate regions

of different paramtrisations of the background. For the hb, this measurement is consistent
with the first evidence (3.1σ stat. significance) by BaBar in Υ(3S) decays with a mass of
9902±4(stat.)±2(syst.) MeV [36]. The masses can be compared to predictions from potential
model calculations [37] with 9901 MeV and 10261 MeV, respectively, i.e. the deviations are only
2.7 MeV and 1.2 MeV.

3.2 The ηb(1S) and the ηb(2S)

The ηb(1S) is the bottomonium ground state 11S0 with JPC=0−+. It was discovered by BaBar
in the radiative decay Υ(3S)→γηb. The measured mass was 9388.9+3.1

−2.3(stat)±2.7(syst) MeV,
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Figure 7: Invariant mass m(χc1γ) in B meson decays at Belle [31] showing the signal of the 3D2

charmonium candidate X(3820). The dashed, dotted and dash-dotted line represent different
backgrounds (combinatorial, peaking and non-peaking background from ψ′ and X(3872) decays
other than χcJγ, respectively, where the term peaking refers to peaking in mBC).

The observation was confirmed by CLEO III using 6 million Upsilon(3S) decays with a mea-
sured mass m=9391.8±6.6±2.0 MeV. The observation of the hb (see above) by Belle also
enabled a search for the radiative decay hb(1P )→ηb(1S)γ, which was observed with a very
high significance >13σ in a dataset of 133.4 fb−1 at the Υ(5S) and in the nearby contin-
uum [38]. In addition, even the ηb(2S) was observed in hb(2P )→ηb(2S)γ. Fig. 9 shows the
π+π−γ missing mass for the case of the ηb(1S) (left) and ηb(2S) (right), where the charged
pion pair originates from the transition Υ(5S)→hb(1P ,2P )π+π−. The measured masses are
m(ηb(1S))=9402.4±1.5±1.8 MeV and m(ηb(2S))=9999.0 ±3.5+2.8

−1.9 MeV. Due to the high reso-

lution, this measurement also enabled the measurement of the width of the ηb as Γ=10.8+4.0
−3.7

+4.5
−2.0,

which is consistent with the expectation from potential models to 5≤Γ≤20 MeV. The measure-
ments of the ηb(1S) and ηb(2S) allow precision determination of the hyperfine mass splittings
Υ(1S)-ηb(1S) and Υ(2S)-ηb(2S), using the masses of the Υ(1S) and Υ(2S) from [14]. The
mass splittings are listed in Tab. 3. The splittings are in good agreement with the expectation
from a potential model with relativistic corrections [37] or lattice QCD calculations with kinetic
terms up to O(v6) [39]. However, lattice QCD calculations to O(v4) with charm sea quarks
predict higher splittings which are ≃10 MeV larger. Note that perturbative non-relativistic
QCD calculations up to order (mbαS)5 predict significant smaller splittings e.g. 39±11+9

−8 MeV
[40].

4 Test of the tensor term in the potential

The measured masses of the hb and h′b can be used for a precision test of the hyperfine splitting
in the Cornell-type potential (Eq. 1), i.e. a test of the relation
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Figure 8: Observation of the hb(1S) and hb(2S) at Belle. For details see text.

Belle [38] Potential [37] LQCD [41]) LQCD [39]
Υ(1S)−ηb 57.9±2.3 MeV 60.0 70±9 MeV 60.3±5.5±5.0±2.1 MeV

Υ(2S)−η′b 24.3+4.0
−4.5 MeV 30.0 35±3 MeV 23.5±4.1±2.1±0.8 MeV

Table 3: Bottomonium hyperfine splittings: measurement, calculated by potential model and
calculated by Lattice QCD (LQCD).

m(hb)
?
=
m(χb0) + 3 ·m(χb1) + 5 ·m(χb2)

9
(4)

using the world average masses of the χb0,1,2 and χ′
b0,1,2 from [14]. The hyperfine split-

ting ∆mHF=<m(n3PJ)−m(n1P1) was measured as ∆mHF=(+1.6±1.5) MeV for n=1 and
∆mHF=(+0.5+1.6

−1.2) MeV for n=2. This can be used as a test for the tensor term in the poten-
tial

Vtensor =
1

m2

4αS
r3

(
3 ~S1~r · ~S2~r

r2
− ~S1

~S2) (5)

with the spins of the heavy quarks ~S1 and ~S2, the heavy quark mass m and the quark
antiquark distance r, which is usually treated as a perturbation in the potential. It vanishes
for S=0 (e.g. ηb, Υ(nS), hb, ...) and L=0 (e.g. 1D2 state, ...). In a simplified view, a non-zero
∆mHF would mean, that the wavefunction of the hb at r=0 is non-vanishing. The sign of the
potential term is positive, thus masses should be shifted up. Although the above mentioned
measurements of ∆mHF are consistent with zero, however positive values seem to be preferred
for the bb case, mildly suggesting to indicate an effect of the tensor term. This can be compared
to measurements of ∆mHF=0.02±0.19±0.13 MeV [42] and ∆mHF=0.10±0.13±0.18 MeV [43]
charmonium system, (i.e. the hc).
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Figure 9: Observations of the ηb(1P ) (left) and ηb(2P ) (right) at Belle. For details see text.

4.1 Test of flavor independence of the potential

The new mass measurements in the bottomonium region enable for the first time a precision
test of the flavour independance of the cc and bb systems. The important question is, if the
level spacing is independant from the quark mass. According to [44], for a potential of the form
V (r)=λrν the level spacing is ∆E∝(2µ/~

2)−ν/(2+ν)|λ|2/(2+ν). where µ is the (reduced) quark
mass. For a pure Coulomb potential (ν=−1), which should be dominating for the low lying
states, this leads to ∆E∝µ, This would imply that the level spacing would increase linearly
with mass, i.e. ∆E(bb)≃3∆E(cc). For a pure linear potential it would be ∆E∝µ−1/3, thus
the level spacing would decrease for higher quark masses, i.e. ∆E(bb)≃0.5∆E(cc). As can be
seen in Fig. 10, for the mass splittings involving the hb (S=0, L=1) the agreement between
cc and bb is excellent, i.e. 10.2 vs. 10.1 MeV and 43.9 vs. 43.8 MeV. There are two possible
explanations of this remarkable symmetry. (1) For a pure logarithmic potential V(r)=λlnr (i.e.
the limit ν→0) the level spacing is ∆E∝λµ0. This means, the flavour independance would be
strictly fulfilled. (2) The other way to reach the flavour independance is, that the Coulomb
potential with ∆E(bb)≃3∆E(cc) (see above) and the linear potential with ∆E(bb)≃0.5∆E(cc)
(see above) cancel each other quantitatively in an exact way. It also implies that the size of
the according λ pre-factors (λ=−4/3αS for the Coulomb-like potential and λ=k for the linear
potential) just seem to have the exactly correct size assigned by nature in a fundamental way.
For the ground states (S=0, L=0) the agreement of the mass splittings between cc and bb is
not as good, i.e. 65.7 vs. 59.7 MeV, and may point to the fact, that there is an additional effect
which lowers the ηc mass. This might be mixing of the ηc with the light quark states of the
same quantum number 0−+ (i.e. η or η′).

4.2 The Yb(10889) state

While investigating Υ(5S) decays, Belle discovered a highly anomalous behavior. For the Υ(5S),
the beam energies of the KEK-B accelerator were changed in a way, to keep the center-of-mass
boost the same as on the Υ(4S) resonance. Thus, all analysis techniques could be applied. In
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Figure 10: Mass splittings (in MeV) based upon the new measurements [38] of the hb, ηb and
η′b, using masses from [14] for the other states, for charmonium (left) and bottomonium (right).
The dotted lines indicate levels for the theoretical case of exact flavour independance.

a data set of 21.7 fb−1, the processes e+e−→Υ(nS)π+π− with n=1,2,3 were investigated.

First of all, the cross section of decays to the Y(1S) was found to be anomalously large.
While in a data set of 477 fb−1 on the Υ(4S), N=44±8 events of Υ(1S)π+π− were observed
[45], in the data set of 21.7 fb−1 on the Υ(5S) N=325±20 events of Υ(1S)π+π− were observed
[46]. This means, that in a data set corresponding to ≃1/20 the size of the data set and ≃1/10
of the production cross section, still a factor 7.4 more events are observed. This corresponds
in total to a signal, which is more than a factor 103 higher than the expectation. In addition,
not only the Υ(5S)→Υ(1S)π+π− but also the Υ(5S)→Υ(2S)π+π− was found to be larger
than expected by more than a factor 5×102. Note that Υ(5S)→Υ(4S)π+π− is kinematically
suppressed.

One of the possible explanation for the observed anomalously high yield was a new resonance
nearby the Υ(5S), decaying into the same final state [47]. Therefore a beam energy scan was
performed [48]. Typical step sizes in the variation of the

√
s were 6-10 MeV. On each scan point

more than 30 pb−1 were performed. For each energy point, the yield of Υ(1S,2S,3S)π+π− was
determined by an unbinned maximum likelihood fit.

Fig. 11 (bottom) shows the fitted signal yield as a function of
√
s. These excitation curves

are fitted with a Breit-Wigner shape with floating mean and width, but constraint to be iden-
tical parameters for all three curves. The normalizations for the three curves are floating
independently. The fitted mean is at ≃20 MeV higher mass and the width is about a factor
≃2 narrower than the Υ(5S). This indicates that the observed resonance is not the Υ(5S), but
instead a new state which was given the name Yb(10889).

For comparison, Fig. 11 (top) shows the ratio Rb vs.
√
s, where Rb is defined as the ra-

tio of the inclusive hadronic cross section σ(e+e−→hadrons) to σ(e+e−→µ+µ−). The final
measurement for the new state yields a mass of m=10888.4+2.7

2.6 ±1.2 MeV and a width of
Γ=30.78.3

7.0±3.1 MeV. The final results for the widths, as measured in the resonance scan, are
summarized in Tab. 4

As the Yb(10889) does not coincide with a threshold, it cannot be interpreted as a molecule,
neither as a threshold effect. there must be another explanation for its nature. The lowest
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lying tetraquark state with JPC=1−− is predicted at a mass m=10.890 MeV [49], well con-
sistent with the experimental observation. It would be a [bqbq] tetraquark, where q denotes
a light u or d quark, which are assumed to have the identical consituent mass of 305 MeV.
In addition, the tetraquark model could explain the observed anomalous yield [49], . If the
Yb(10889) is a pure bb state, there are no light quarks in the initial state. The π+π− pair in the
Υ(5S)→Υ(1S,2S,3S)π+π− transition must be created by two gluons and subsequent g→uu,
g→dd, and rearrangement to ud and du. Thus, the transition would be Zweig forbidden. If the
Yb(10889) is a [bq][bq] tetraquark, then there is a uu or dd already present in the initial state,
and only one additional pair must be formed from the QCD vacuum. Thus, the transition is
Zweig allowed and the transition rate would be increased. An effect, which could explain the
observed properties of the Yb(10889), however without assuming an exotic nature, is rescatter-
ing. In the rescattering model, the decay Υ(5S)→Υ(1S,2S,3S)π+π− would not proceed in a

direct way, but by Υ(5S)→B(∗)B
(∗)

and subsequent B(∗)B
(∗)→Υ(1S,2S,3S)π+π−. On the one

hand, the peak position could be shifted upwards by the rescattering by +(7−20) MeV [50],
compatible with the observed higher peak position of the Yb(10889) compared to the Υ(5S).
On the other hand, the amplitude of the rescattering is proportional to |~p1|3, where ~p1 denotes

the 3-momentum of the B(∗) or B
(∗)

, and would lead to an anhancement of the observed cross
section by a factor 200−600 [50]. This way this mechanism could also provide an explanation
for the observed anomalous yield (see above). Quantitative predictions are however difficult,
because unknown form factors [51] [50] must be assumed.

Process Γ Γe+e− ΓΥ(1S)π+π−

Υ(2S)→Υ(1S)π+π− 0.032 MeV 0.612 keV 0.0060 MeV
Υ(3S)→Υ(1S)π+π− 0.020 MeV 0.443 keV 0.0009 MeV
Υ(4S)→Υ(1S)π+π− 20.5 MeV 0.272 keV 0.0019 MeV
Υ(10860)→Υ(1S)π+π− 110 MeV 0.31 keV 0.59 MeV

Table 4: Total widths, partial width for decay into e+e− and partial width for decay into
Υ(1S)π+π− for the Υ(2S), Υ(3S) and Υ(5S). The Υ(5S) is denoted as Υ(10860), as it might
be an admixture of several closeby states. As can be seen, ΓΥ(1S)π+π− is anomolously large by
a factor >102 for the Υ(10860).

5 A future Project: measurement of the width of the
X(3872)

One of the important steps would be to measure not only the masses of newly observed states,
but also the widths. As many states have natural widths in the sub-MeV regime, future exper-
iments must be able to reach according precision. The PANDA experiment at FAIR (Facility
for Antiproton and Ion research) at GSI Darmstadt, Germany, will be using a stored, cooled
anti-proton beam. The measurement of the width of a state can be performed by a resonance
scan technique. Both stochastic cooling and e−-cooling techniques will be used, providing a
momentum resolution of the antiproton beam of down to ∆p/p≥2×10−5. The anti-protons
will collide with protons in e.g. a frozen pellet target. With a maximum beam momentum of
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Figure 11: Rb as a function of
√
s (top) and the energy-dependent cross sections for

e+e−→Υ(nS)π+π− (n = 1, 2, 3) processes (bottom). The results of the fits are shown as
smooth curves. The vertical dashed line indicates the mass of the Υ(5S), as determined from
the fit in the upper plot (i.e. the measured location of the maximum hadronic cross section).

p≤15 GeV/c, in this fixed target setup a maximum center-of-mass energy of
√
s≤5.5 GeV can

be achieved, corresponding to a very high mass of an accessible charmonium(-like) state, which
would kinematically not be accessible in B meson decays or in radiative decays of ψ resonances.
For momentum reconstruction, a high magnetic solenoid field of B=2 T will be employed. One
of the difficulties will be, that signal events (e.g. charmonium production, with subsequent de-
cays into light mesons) and background events (hadronic production of light mesons) have very
similar topologies. Thus, a hardware trigger using simple criteria, such as number of charged
tracks or number of photons in the calorimeter, is not possible. Therefore PANDA will per-
form complete online reconstruction of all events with a high interaction rate of ≤2×107/s. The
planned luminosity of L=2·1032 cm−2 s−1 is high and would translate into a number of 2·109

J/ψ per year, if theoretically running on the J/ψ resonance only.

Cross sections in pp formation (as an example σ(pp→X(3872)) can be estimated from mea-
sured branching fractions (i.e. B(X(3872)→pp) using the principle of detailed balance, which is
shown in Eq. 6.

15

XYZ STATES - RESULTS FROM EXPERIMENTS

HQ2013 209



σ[pp→ X(3872)] = σBW [pp→ X(3872) → all](mX(3872))

=
(2J + 1) · 4π

m2
X(3872) − 4m2

p

·
B(X(3872) → pp) ·

=1︷ ︸︸ ︷
B(X(3872) → f) ·Γ2

X(3872)

4(mX(3872) −mX(3872))
2

︸ ︷︷ ︸
=0

+Γ2
X(3872)

(J=1)
=

3 · 4π
m2
X(3872) − 4m2

p

· B(X(3872) → pp) . (6)

R J m [MeV] Γ [keV] B(R→pp) σ(pp→R)
J/ψ 1 3096.916±0.011 92.9±2.8 (2.17±0.07)×10−3 5.25±0.17 µb
ψ′ 1 3686.109+012

−014 304±9 (2.76±0.12)×10−4 402±18 nb
ηc 0 2981.0±1.1 (29.7±1.0)×103 (1.41±0.17)×10−3 1.29±0.16 µb
η′c 0 3638.9±1.3 (10±4)×103 (1.85±1.26)×10−4 93±63 nb
χc0 0 3414.75±0.31 (10.4±0.6)×103 (2.23±0.13)×10−4 134.1±7.8 nb
hc 1 3525.41±0.16 ≤1×103 (8.95±5.21)×10−4 1.47±0.86 µb
X(3872) 1 3871.68±0.17 ≤1.2×103 ≤5.31×10−4 ≤68.0 nb

Table 5: Total spin J , mass m, width Γ, branching fraction for the decay into pp and cross
sections for production at PANDA, as derived by the principle of detailed balance for selected
resonances R.

Tab. 5 summarizes cross sections for production at PANDA as derived by the principle of
detailed balance for selected resonances R. For the J/ψ, the ψ′, the η′c and the χc0 the branching
fraction B(R→pp) was taken from [14]. For the η′c, B(b→K+R→K+pp) was taken from [52] and
B(B+→K+R) was taken from [14]. For the hc and the X(3872) B(b→K+R→K+pp) was taken
from [52] and the upper limit for B(B+→K+R) was taken from [14]. Typical cross sections
for charmonium formation at PANDA are thus in the order of 10-100 nb. In the following, we
assume σ(pp→X(3872))=50 nb.

Detailed Monte-Carlo simulation studies of a resonance scan for pp→X(3872) at PANDA were
performed. The advantage is, that in pp collisions the X(3872) with JPC=1++ can be formed
directly, while in e+e− only JPC=1−− is possible. The Breit-Wigner cross section for the
formation and subsequent decay of a cc resonance R of spin J , mass MR and total width ΓR
formed in the reaction pp→R is

σBW (Ecm) =
(2J + 1)

(2S + 1)(2S + 1)

4π(~c)2

(E2
cm − 4(mpc2)2)

× Γ2
RBR(pp→ R) ×BR(R→ f)

(Ecm −MRc2)2 + Γ2
R/4

(7)

where S is the spin of the (anti-)proton.

σ(Ecm) =

∫ ∞

0

σBW (E′)G(E′ − Ecm)dE′ (8)
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Figure 12: Final result for the simulated resonance scan of X(3872) at PANDA with 20 scan
points. For details see [55].

is a convolution of a Breit-Wigner term for the resonance and the function G for the beam
resolution. If G is given by a single Gaussian distribution, then the convolution is a Voigtian
distribution. The area under the resonance peak is given by

A =

∫ ∞

0

σ(Ecm)dEcm =
π

2
σpeakΓR (9)

which importantly is independent of the form of G(E). σpeak is the cross section at
Ecm=MRc

2 given by

σpeak =
(2J + 1)

(2S + 1)(2S + 1)

16π~
2BR(pp→ R) ×BR(R→ f)

(MR − 4m2
p)c

2 .
(10)

By measuring A using a fit to the excitation function and inserting σpeak into Eq. 9, the
resonance width ΓR can be determined. For a complete simulation of the resonance scan, 20 sim-
ulations for pp→X(3872)→J/ψπ+π− with background were performed for 20 beam momenta
in the resonance region. The beam momenta were chosen equidistant in center-of-mass energy.
For each scan point, the yield of the X(3872) was fitted by a single Gaussian. Fig. 12 shows the
fitted yield as a function of

√
s. The fit was performed using a Voigtian distribution. Direct

background from pp→J/ψπ+π− was taken into account as a zeroth order polynomial, although
estimates [53] indicate that it is small with a cross section of 1.2 nb (i.e. a factor ≃40 smaller
than the signal). The known momentum resolution in the HESR high resolution mode was
fixed as the width of the Gaussian in the convoluted Voigtian. The width of the X(3872) was
reconstructed as ΓX(3872=86.9±16.8 keV, which is consistent with the input width of 100 keV.

This simulation is a proof for the concept, and the ability of PANDA to measure the width of
a resonance in the sub-MeV regime. For additional details see [54] [55].
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6 Summary

Recent results from e+e− collisions (and in particular the B meson factories) enable unique
precision tests of the qq potential in the charmonium and bottomonium region. The static
potential model fails for many newly observed states (called XYZ states), indicating non-qq
phenomena such as possibly tetraquark states, charmed meson molecular states or hybrid states.
Future experiments such as PANDA will provide precision tests not only of masses, but also
widths in the sub-MeV regime.
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Recent Belle results

Dmitri Liventsev1

1KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305-0801 Japan

We review the recent results from the Belle experiment: search for new physics in B → τν
and related decays, study of charged bottomonium-like states Zb and measurement of the
parameters of the Cabibbo-Kobayashi-Maskawa matrix in B0 → π+π− and B0 → ρ0ρ0

decays.

1 B → τν and related results

1.1 Introduction

The purely leptonic decay B → τν is of high interest since it provides a unique opportunity to
test the Standard Model (SM) and search for new physics beyond the SM. In the absence of
new physics, this measurement provides a direct experimental determination of the product of
the B meson decay constant and the CKM matrix element fB |Vub|. Physics beyond the SM,
however, could significantly suppress or enhance B(B → τν) via exchange of a new charged
particle, e.g. a charged Higgs boson from two-Higgs doublet models (2HDM) [1, 2]. Leptonic
B → ℓν, ℓ = e, µ and semileptonic B → D(∗)τν decays are also sensitive to such exchange [3].
Here recent results obtained at the B-factories are reviewed. The comparison between the
experimental results and the SM predictions is shown. The constraints on the Type II 2HDM
are reported.

1.2 B → τν

It is challenging to identify the B → τν decay experimentally, since it includes multiple neutri-
nos in the final state. At the e+e− B-factories a B meson pair is generated from the process
e+e− → Υ(4S) → BB̄ and we can reconstruct one of the B mesons (“Btag”) to identify the
decay of the other B meson (“Bsig”). Two independent types of the B meson decays may be
used for reconstruction of Btag: hadronic decays such as B− → D0π− (“hadronic tag”) and
semileptonic decays such as B− → D0ℓ−ν, ℓ = e, µ (“semileptonic tag”). The efficiency for
reconstructing Btag is higher for the semileptonic tag, while the purity is higher for the hadronic
tag.

The first evidence for B → τν was reported by the Belle collaboration using hadronic tag and
a data sample corresponding to 449×106 BB̄ events [4]. This was followed by a measurement us-
ing semileptonic tag and a data sample corresponding to 657×106 BB̄ events [5]. The branching
ratio obtained by the semileptonic tag analysis is B(B → τν) = [1.54+0.38

−0.37(stat)
+0.29
−0.31(syst)] ×

10−4, with a significance of 3.6σ. The hadronic tag result has been updated using Belle final
data sample corresponding to 772 × 106 BB̄ events [6]. By employing a neural network-based
method for the hadronic tag [7] and a two-dimensional fit for the signal extraction, along with
a larger data sample, both statistical and systematic precision is significantly improved. The
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branching ratio is obtained to be B(B → τν) = [0.72+0.27
−0.25(stat) ± 0.11(syst)] × 10−4, with sig-

nificance of 3.0σ. Results of the fit are shown in Fig. 1. Combining the semileptonic tag and
hadronic tag results and taking into account all the correlated systematic uncertainties, the
branching ratio is found to be B(B → τν) = (0.96± 0.26)× 10−4 with a significance of 4.0σ [6].
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Figure 1: Signal extraction for B → τν in the latest Belle analysis [6]. Two-dimensional fit to
residual energy EECL (left) and missing mass squared Mmiss (right) is used. Mmiss distribution
is shown for a signal region of EECL < 0.2GeV. Solid circles with error bars represent data.
Solid histograms show projections of the fits, dashed and dotted histograms show signal and
background components, respectively.

The BaBar collaboration also reported the results of B → τν using hadronic and semilep-
tonic tags. Using semileptonic tag and a data sample corresponding to 459 × 106 BB̄ events,
the branching ratio is obtained to be B(B → τν) = [1.7 ± 0.8(stat) ± 0.2(syst)] × 10−4 [8].
An evidence for B → τν is obtained with a significance of 3.8σ using hadronic tag and a data
sample corresponding to 468 × 106 BB̄ events [9]. The branching ratio is obtained to be
B(B → τν) = [1.83+0.53

−0.49(stat) ± 0.24(syst)] × 10−4. Combining the two results, the branching
ratio is found to be B(B → τν) = (1.79 ± 0.48) × 10−4, where both statistical and systematic
errors are combined in quadrature [9].

A world average for B → τν branching ratio is calculated to be B(B → τν)WA = (1.15 ±
0.23) × 10−4. For this calculation, the correlation in the systematic errors between the Belle
and BaBar results was neglected since the statistical errors are dominant and the correlated
parts in the systematic errors are relatively small. In the SM an estimate of B(B → τν)SM =
(0.73+0.12

−0.07)×10−4 is obtained by using fB and |Vub| provided by a global fit to the CKM matrix
elements [10]. The deviation is found to be 1.6σ.

In the Type II 2HDM [1], the branching ratio of B → τν is described by B(B → τν) =
B(B → τν)SM × rH , where B(B → τν)SM is the SM value of the branching ratio, rH is a
modification factor rH = (1 − tan2 β m2

B±/mH±
2)2, mB± is the charged B meson mass, mH±

is the charged Higgs mass and tanβ is the ratio of the two Higgs bosons vacuum expectation
values. Conservatively using fB = (191 ± 9)MeV from the lattice calculation provided by the
HPQCD collaboration [11] and |Vub| = (4.15±0.49)×10−3 from the b→ u transitions provided
by the PDG group [12], we evaluate excluded regions in the tanβ −mH± plane as shown in
Fig. 4 (left). Stringent constraint is obtained for relatively higher tanβ region.

1.3 B → ℓν

In Type 2 II 2HDM branching ratios of all leptonic B decays are modified by the same fac-
tor rH and it is interesting to measure B → ℓν decays in addition to B → τν decay. The
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highly suppressed B → ℓν, ℓ = e, µ final states are predicted to have SM branching fractions
of O(10−11) and O(10−7) for ℓ = e and ℓ = µ, respectively. As these decays are two-body
decays, the charged lepton momentum in the rest frame of the decaying Bsig is pBℓ ≃ mB/2.
This gives a unique signature which can be exploited in this analysis because the Bsig rest
frame is known from the hadronic tagging. Most backgrounds are not expected to produce high
momentum leptons that can reach the signal region, defined as 2.6GeV/c < pBℓ < 2.7GeV/c.
In the analysis using full Belle data sample of 772 × 106 BB̄ events no events are observed in
the signal region, as shown in Fig. 2, and 90% C.L. upper limits on the branching fractions
are determined: B(B → eν) < 3.5 × 10−6 and B(B → µν) < 2.5 × 10−6 [13]. These are the
most stringent limits on B → ℓν decays using a hadronic tag method. Previous results from
Belle and BaBar using a loose tagging method (i.e. tracks and photons excluding the signal
lepton have to be compatible with the recoiling B meson) are B(B → eν) < 0.98 × 10−6 [14]
and B(B → µν) < 1.0 × 10−6 [15], respectively.

Figure 2: Results of the fit to the pBℓ spectrum for B → eν (left) and B → µν (right) decays.
Data is shown as points with error bars. The solid histogram shows the expected signal shape
with arbitrary normalization. The sum of PDFs is shown as a dashed line in the sideband
region (2.0GeV < pBℓ < 2.5GeV), where the normalization was obtained. In the signal region
(2.6GeV < pBℓ < 2.7GeV) the sum of PDFs is shown as a dotted line.

1.4 B → D(∗)τν

The semileptonic B → D(∗)τν decays also include multiple neutrinos in the final states consid-
ering the following τ decays. The results shown up to now are based on the tags using hadronic
B decays. The ratios R(D(∗)) = B(B → D(∗)τν)/B(B → D(∗)ℓν), which are independent of
the CKM element |Vcb| and of the parameterization of the strong interaction to a large extent,
are measured. With larger statistics, the q2 distributions and the angular distributions of the τ
and D(∗) decays could also provide useful information for testing the SM and constraining new
physics models.

The B0 → D∗+τ−ντ decay was first observed by the Belle collaboration using the 535×106

BB̄ data sample [16]. The Belle collaboration also obtained the results for the charged B
meson decays to D(∗)τν using the 657 × 106 BB̄ data sample [17]. These measurements are
done by inclusively reconstructing the Btag candidates using all the remaining particles after
selecting the Bsig decay products. The Belle collaboration also obtained a preliminary result by
exclusively reconstructing the Btag candidates and the Bsig decay products using the 657× 106

BB̄ data sample [18]. Figure 3 shows the distributions of the kinematic variables used for
the signal extraction. The naive averages of R(D(∗)) for the above results are obtained to be
R(D) = 0.430 ± 0.091 and R(D∗) = 0.405 ± 0.047 [19]. For the calculation, the correlations in
the statistical errors between the different tagging analyses are neglected since the event overlap
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is very limited. The correlations in the systematic errors between the different tagging analyses
are assumed to be 60%.

Figure 3: Signal extraction for B → D(∗)τν in Belle analysis [18] is shown for B+ → D̄0τ+ν
(two left plots) and B+ → D̄∗0τ+ν (two right plots). The missing mass squared M2

miss and
residual energy EECLextra are used.

The BaBar collaboration showed the latest results for the B → D(∗)τν decays using hadronic
tag and the full 471×106 BB̄ data sample [20]. This analysis includes a signal efficiency increase
by more than a factor of three compared to the previous analysis [21]. This improvement is
provided by adding more Btag decay chains and using a looser charged lepton selection. The
background events are subtracted by employing the boosted decision tree multivariate method.
Combining the results for the neutral and charged B decays to D(∗)τν, the R(D(∗)) ratios are
obtained to be R(D) = 0.440 ± 0.058(stat) ± 0.042(syst) and R(D∗) = 0.332 ± 0.024(stat) ±
0.018(syst). A negative correlation of −0.27 between R(D) and R(D∗) is obtained including
systematic uncertainties.

The results of R(D(∗)) are consistent between the Belle and BaBar experiments. The Belle
results exceed the SM predictions R(D)SM = 0.297 ± 0.017 and R(D∗)SM = 0.252 ± 0.003 [22]
by 1.4σ and 3.0σ, respectively [19]. The BaBar results exceed these SM predictions by 2.0σ
and 2.7σ, respectively [20]. The combined disagreement of the discrepancy is at 4σ level [19].

In the Type II 2HDM, there is a substantial impact on the ratios R(D(∗)) due to the
charged Higgs contribution [23]. The result for Belle, shown in Fig. 4 (right) has been obtained
privately by ignoring the correlation between the experimental R(D) and R(D(∗)) results and
the dependency of the experimental R(D(∗)) results on mH± and tanβ. The BaBar result
includes both of them [20]. Both results disfavor the Type II 2HDM by a level of more than 3σ
for all tanβ/mH± region.

1.5 Summary

Exploiting the large number of events and the clean environment at the B-factories, the leptonic
B → τν and the semileptonic B → D(∗)τν decays were measured with a good precision in spite
of the existence of multiple neutrinos in the final states. Upper limits were set for the highly
suppressed leptonic B → ℓν, ℓ = e, µ decays. Stringent constraints on the charged Higgs mass
mH± and the vacuum-expectation-value ratio tanβ were evaluated for the Type II 2HDM.
Further investigation at the next-generation B-factories is important for testing the SM and
for constraining new physics models.
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Figure 4: Constraint on tanβ and mH± in the Type II 2HDM obtained from Belle results, from
measured B(B → τν) (left) and R(D(∗)) values (right).

2 Bottomonium study

2.1 Observation of Zb states in the Υ(nS)π+
π

− and hb(mP )π+
π

−

channels

Recently Belle observed the hb(1P ) and hb(2P ) states in the transitions Υ(5S) → hb(mP )π+π− [24].
The rates of these transitions appeared to be unsuppressed relative to the Υ(5S) → Υ(nS)π+π−

(n = 1, 2, 3). The hb(mP ) production involves spin-flip of b-quark and is suppressed as
(ΛQCD/mb)

2 in the multipole expansion; this unexpected result motivated further studies of
the hb(mP ) and Υ(nS) production mechanisms.

Belle studied the resonant structure of the Υ(5S) → Υ(nS)π+π− and hb(mP )π+π− decays
(n = 1, 2, 3; m = 1, 2) [25]. The Υ(nS) [hb(mP )] states are reconstructed in the µ+µ− channel
[inclusively using missing mass of the π+π− pairs]. Invariant mass spectra of the Υ(nS)π± and
hb(mP )π± combinations are shown in Fig. 5. Each distribution shows two peaks. For the chan-
nels Υ(nS)π+π− [hb(mP )π+π−] the Dalitz plot analysis [fit to one-dimensional distributions]
is performed. The non-resonant contributions in the hb(mP )π+π− channels are negligible, jus-
tifying the one-dimensional analysis. Preliminary results of the angular analysis indicate that
both states have the same spin-parity JP = 1+ [26], therefore coherent sum of Breit-Wigner
amplitudes is used to describe the signals. The Dalitz plot model for the Υ(5S) → Υ(nS)π+π−

channels includes also the π+π− resonances f0(980) and f2(1270), and non-resonant contribu-
tion, parameterized as a + bM2

π+π− , where a and b are complex numbers floating in the fit.
The masses and widths of the two peaks are found to be in good agreement among different
channels.Averaged over the five decay channels parameters are M1 = (10607.4 ± 2.0)MeV/c2,
Γ1 = (18.4 ± 2.4)MeV, M2 = (10652.2 ± 1.5)MeV/c2, Γ2 = (11.5 ± 2.2)MeV. The peaks are
identified as signals of two new states, named Zb(10610) and Zb(10650).

Another result of the amplitude analyses is that the phase between the Zb(10610) and
Zb(10650) amplitudes is zero for the Υ(nS)π+π− channels, and 180◦ for the hb(mP ) channels.

The masses of the Zb(10610) and Zb(10650) states are close to the BB̄∗ and B∗B̄∗ thresh-
olds, respectively. All the properties of the Zb(10610) and Zb(10650) find natural explanation
once molecular structure for these states is assumed without even the need of dynamic model.
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Figure 5: Invariant mass spectra of the (a) Υ(1S)π±, (b) Υ(2S)π±, (c) Υ(3S)π±, (d) hb(1P )π±

and (e) hb(2P )π± combinations.

Considering the heavy-quark spin structure of the B(∗)B̄∗ molecule with IG(JP ) = 1+(1+), one
concludes that Zb contain both ortho- and para-bottomonium components [27]. The weight of
these components is equal, therefore the decay to the hb(mP )π± is not suppressed relative
to the Υ(nS)π±. The Zb(10610) and Zb(10650) differ by the sign between ortho- and para-
bottomonium components, this explains why the Zb(10610) and Zb(10650) amplitudes appear
with the sign plus for the Υ(nS)π+π− channels and with the sign minus for the hb(mP )π+π−

channels. In the limit of infinitely heavy b quark the B and B∗ mesons have equal mass, thus
the Zb(10610) and Zb(10650) are also degenerate. Given minus sign between the Zb ampli-
tudes in the hb(mP )π+π− channel the contribution of this channel vanishes if the heavy quark
symmetry is exact.

2.2 Observation of the Zb(10610) → BB̄∗ and Zb(10650) → B∗B̄∗ decays

Given proximity to the thresholds and finite widths, it is natural to expect that the rates of the
“fall-apart” decays Zb(10610) → BB̄∗ and Zb(10650) → B∗B̄∗ are substantial in the molecular
picture. To search for these transitions Belle studied the Υ(5S) → [B(∗)B̄∗]±π∓ decays [28].
One B meson is reconstructed fully using theD(∗)π+ and J/ψK(∗) channels. The distribution of
the missing mass of the Bπ± pairs shows clear signals of the Υ(5S) → [BB̄∗]±π∓ and Υ(5S) →
[B∗B̄∗]±π∓ decays [see Fig. 6 (a)]; corresponding branching fractions of (2.83 ± 0.29 ± 0.46)%
and (1.41±0.19±0.24)%, respectively, are in agreement with previous Belle measurement [29].
No signal of the Υ(5S) → [BB̄]±π∓ decay is found, with upper limit on its fraction of < 0.4%
at 90% confidence level.

The distributions in the BB̄∗ and B∗B̄∗ invariant mass for the Υ(5S) → [BB̄∗]±π∓ and
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Figure 6: Missing mass of the pairs formed from the reconstructed B candidate and charged
pion (a) and missing mass of the charged pions for the Bπ combinations for (b) Υ(5S) → BB̄∗π
and (c) Υ(5S) → B∗B̄∗π candidate events.

Υ(5S) → [B∗B̄∗]±π∓ signal regions, respectively, indicate clear excess of events over back-
ground, peaking at the thresholds [see Fig. 6 (b) and (c)]. These threshold peaks are interpreted
as the signals of the Zb(10610) → BB̄∗ and Zb(10650) → B∗B̄∗ decays, with significances
of 8σ and 6.8σ, respectively. Despite much larger phase-space, no significant signal of the
Zb(10650) → BB̄∗ decay is found.

Assuming that the Zb decays are saturated by the channels so far observed, Belle calculated
relative branching fractions of the Zb(10610) and Zb(10650) (see Table 1). The B(∗)B̄∗ channel

Table 1: Branching fractions (B) of Zb(10610) and Zb(10650) assuming that the observed so
far channels saturate their decays.

Channel B of Zb(10610), % B of Zb(10650), %
Υ(1S)π+ 0.32 ± 0.09 0.24 ± 0.07
Υ(2S)π+ 4.38 ± 1.21 2.40 ± 0.63
Υ(3S)π+ 2.15 ± 0.56 1.64 ± 0.40
hb(1P )π+ 2.81 ± 1.10 7.43 ± 2.70
hb(2P )π+ 2.15 ± 0.56 14.8 ± 6.22
B+B̄∗0 + B̄0B∗+ 86.0 ± 3.6 –
B∗+B̄∗0 – 73.4 ± 7.0

is dominant and accounts for about 80% of the Zb decays. The Zb(10650) → BB̄∗ channel is not
included in the table because its significance is marginal. If considered, the Zb(10650) → BB̄∗

branching fraction would be (25.4 ± 10.2)%. All other fractions would be reduced by a factor
of 1.33.

2.3 Evidence for neutral isotriplet member Zb(10610)0

Both Zb(10610) and Zb(10650) are isotriplets with only charged components observed origi-
nally. Belle searched for their neutral components using the Υ(5S) → Υ(nS)π0π0 (n = 1, 2)
decays [30]. These decays are observed for the first time and the measured branching frac-
tions B[Υ(5S) → Υ(1S)π0π0] = (2.25 ± 0.11 ± 0.22) × 10−3 and B[Υ(5S) → Υ(2S)π0π0] =
(3.66 ± 0.22 ± 0.48) × 10−3, are in agreement with isospin relations.
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Belle performed the Dalitz plot analyses of the Υ(5S) → Υ(1S, 2S)π0π0 transitions using
the same model as for the charged pion channels (see Fig. 7). The Zb(10610)0 signal is found
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Figure 7: The projections of the Dalitz plot fit for the Υ(1S)π0π0p (top row) and Υ(2S)π0π0

(bottom row) channels on the Υ(nS)π0 (left column) and π0π0 invariant mass.

in the Υ(2S)π0 channel with the significance of 4.9σ including systematics. The Zb(10610)0

mass of (10609+8
−6 ± 6)MeV/c2 is consistent with the charged Zb(10610)± mass. The signal of

the Zb(10610)0 in the Υ(1S)π0 channel and the Zb(10650)0 signal are insignificant. The Belle
data do not contradict the existence of the Zb(10610)0 → Υ(1S)π0 and the Zb(10650)0, but the
available statistics are insufficient to establish these signals.

2.4 Interpretations

As discussed at the end of Section 2.2, the assumption of molecular B(∗)B̄∗ structure naturally
explains all observed so far properties of the Zb states. Their dynamical model, however, is
an open question. Proposed interpretations include presence of the compact tetraquark [31],
non-resonant rescattering [32], multiple rescatterings that result in the amplitude pole known
as coupled channel resonance [33] and deutron-like molecule bound by meson exchanges [34].
All these mechanisms (except for the tetraquark) are intimately related and correspond rather
to quantitative than to qualitative differences. Further experimental and theoretical studies are
needed to clarify the nature of the Zb states.

As discussed in Ref. [27], based on heavy quark symmetry one can expect more states with
similar nature but with differing quantum numbers. Such states should be accessible in radiative
and hadronic transitions in data samples with high statistics at and above the Υ(5S), that will
be available at the SuperKEKB.
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2.5 Summary

Despite observed only recently, the Zb states provide a very rich phenomenological object with a
lot of experimental information available. They could be very useful for understanding dynamics
of the hadronic systems near and above the open flavor thresholds.

3 CKM measurements

Violation of the combined charge-parity symmetry (CP violation) in the SM arises from a single
irreducible complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [35,
36]. Decays that proceed dominantly through the b̄ → ūud̄ transition are sensitive to the
interior angle of the unitarity triangle φ2 (α) ≡ arg(−VtdV ∗

tb)/(VudV
∗
ub). A feature common to

these measurements is that possible loop contributions, in addition to the leading order tree
amplitude, can shift the measured angle to φeff

2 ≡ φ2 + ∆φ2. Fortunately, this inconvenience
can be overcome with bounds on ∆φ2 determined using either an isospin analysis [37] or SU(3)
flavor symmetry [38].

Recently Belle published two papers concerning study of B0 → π+π− [39] and B0 →
ρ0ρ0 [40] decays. Both analyses used the final Belle data sample containing 772×106 BB̄ pairs
collected at the Υ(4S) resonance.

In B0 → π+π− decay analysis an improved measurement of the CP violation parameters
was performed, which yielded ACP (B0 → π+π−) = +0.33 ± 0.06 (stat) ± 0.03 (syst) and
SCP (B0 → π+π−) = −0.64±0.08 (stat)±0.03 (syst), confirming CP violation in these channels
reported in previous measurements and other experiments. These results from the full Belle
data sample after reprocessing with a new tracking algorithm and with an optimized analysis
performed with a single simultaneous fit, supersede those of the previous Belle analysis [41].
They are now the world’s most precise measurement of time-dependent CP violation parameters
in B0 → π+π−, ruling out the range 23.8◦ < φ2 < 66.8◦, at the 1σ level.

Since the dominant tree process in B0 → ρ0ρ0 is color-suppressed, it is expected to be rarer
than its isospin partners, making the isospin analysis less ambiguous. The vector state ρ0ρ0

is not a pure CP eigenstate, but rather a superposition of CP -even and -odd states, or three
helicity amplitudes, with only the longitudinal one being a pure CP eigenstate. In general,
the different helicity amplitudes can be separated through an angular analysis. This analysis
is concerned with the branching fraction of B0 → ρ0ρ0 decays, the fraction of longitudinal
polarization in these decays and decays into four charged pion final states as the ρ0 decays
dominantly into two charged pions.

Branching fraction was measured to be B(B0 → ρ0ρ0) = (1.02± 0.30 (stat)± 0.22 (syst))×
10−6 with a longitudinally polarization fraction fL = 0.21+0.18

−0.22 (stat)±0.11 (syst). The branch-
ing fraction’s upper limit is B(B0 → ρ0ρ0) < 1.5×10−6 at 90% confidence level. The longitudi-
nal polarization fraction was used to determine the CKM matrix angle φ2 = (91.0±7.2)◦ through
an isospin analysis in the B → ρρ system. Furthermore for possible decays with the same fi-
nal state the following branching fractions were obtained: B(B0 → f0ρ

0) × B(f0 → π+π−) =
(0.86±0.27 (stat)±0.15 (syst))×10−6, with a significance of 3.0 standard deviations, and upper
limits at 90% confidence level on the (product) branching fractions, B(B0 → π+π−π+π−) <
11.7×10−6, B(B0 → ρ0π+π−) < 12.2×10−6, B(B0 → f0π

+π−)×B(f0 → π+π−) < 3.1×10−6

and B(B0 → f0f0) × B(f0 → π+π−)2 < 0.2 × 10−6. For B0 → f0ρ
0 decay this is the first

evidence with such a significance.
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Light and Heavy Hadrons in AdS/QCD
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We discuss light and heavy hadrons in a holographic soft-wall AdS/QCD model. This ap-
proach is based on an action which describes hadron structure with broken conformal and
chiral invariance and incorporates confinement through the presence of a background dila-
ton field. According to the gauge/gravity duality the five-dimensional boson and fermion
fields propagating in AdS space are dual to four-dimensional fields leaving on the surface
of AdS sphere, which correspond to hadrons. In this picture hadronic wave functions —
basics blocks of hadronic properties — are dual to the profiles of AdS fields in the fifth
(holographic) dimension, which is identified with scale variable. As applications we con-
sider properties of light and heavy hadrons from unified point of view: mass spectrum,
form factors, decay rates and parton distributions.

Based on the gauge/gravity duality [1], a class of AdS/QCD approaches which model QCD
by using methods of extra-dimensional field theories formulated in anti-de Sitter (AdS) space,
was recently successfully developed for describing the phenomenology of hadronic properties
(for a recent review see e.g. [2]). One of the popular formalisms of this kind is the “soft-wall”
model [3]-[6] which uses a soft infrared (IR) cutoff in the fifth dimension. This procedure can be
introduced in the following ways: i) as a background field (dilaton) in the overall exponential
of the action (“dilaton” soft-wall model), ii) in the warping factor of the AdS metric (“metric”
soft-wall model), iii) in the effective potential of the action. In Ref. [5] we showed that these
three ways of proceeding are equivalent to each other via a redefinition of the bulk fields and
by inclusion of extra effective potentials in the action. In our opinion, the ”dilaton” form of
the soft-wall model is more convenient in performing the calculations.

In this paper we consider such type of soft-wall AdS/QCD approach. We report the appli-
cations of our approach to the properties of light and heavy hadrons. In particular, we present
results for hadronic mass spectra, coupling constants and form factors [4]-[6].

∗On leave of absence from Department of Physics, Tomsk State University, 634050 Tomsk, Russia

1HQ2013 225



1 Approach

Here we briefly review our approach. First, we specify the five-dimensional AdS metric:

ds2 = gMNdx
MdxN = ηab e

2A(z) dxadxb = e2A(z) (ηµνdx
µdxν − dz2) ,

ηµν = diag(1,−1,−1,−1,−1) , (1)

where M and N = 0, 1, · · · , 4 are the space-time (base manifold) indices, a = (µ, z) and
b = (ν, z) are the local Lorentz (tangent) indices, and gMN and ηab are curved and flat metric
tensors, respectively, which are related by the vielbein ǫaM (z) = eA(z) δaM as gMN = ǫaM ǫ

b
Nηab.

Here z is the holographic coordinate, R is the AdS radius, and g = |detgMN |. In the following
we restrict ourselves to a conformal-invariant metric with A(z) = log(R/z).

The relevant AdS/QCD actions for the boson and fermion field of spin J are [4]-[6]

SB =

∫
d4xdz

√
g e−ϕ(z)

[
DMΦM1···MJ

(x, z)DMΦM1···MJ (x, z)

−
(
(µBJ )2 + UBJ (z)

)
ΦM1···MJ

(x, z)ΦM1···MJ (x, z)

]
, (2)

SF = S+
F + S−

F , S±
F =

∫
d4xdz

√
g e−ϕ(z)

∑

i=+,−

[
Ψ̄±
M1···MJ

(x, z)iD±
MΨ±M1···MJ (x, z)

∓ Ψ̄±
M1···MJ

(x, z)
(
(µFJ )2 + UFJ (z)

)
Ψ±M1···MJ (x, z) (3)

where DM and D±
M are the covariant derivative (including external vector and axial fields)

acting on boson ΦM1···MJ
and fermion Ψ±

M1···MJ
fields, respectively. Ψ±

M1···MJ
is the pair of

bulk fermion fields, which are the holographic analogues of the left- and right-chirality fermion
operators in the 4D theory. ϕ(z) = κ2z2 is the dilaton field with κ being a free scale parameter.
The quantities µBJ and µFJ are the bulk boson and fermion masses related to the conformal
dimensions (∆B

J , ∆F
J ) of the spin-J AdS boson and fermion fields, respectively

(µBJ R)2 = ∆B
J (∆B

J − 4) , µFJR = ∆F
J − 2 (4)

As was shown in Refs. [7] and [5] the field dimensions ∆B
J and ∆F

J are related to twist-dimension
τB/F of hadronic operators as

∆B
J = τB = 2 + L , ∆F

J = τF +
1

2
=

7

2
+ L . (5)

where L = max |Lz| is the maximal value of the z component of the quark orbital angular mo-
mentum in hadron [7]: UBJ (z) = 4ϕ(z)(J−1)/R2 and UFJ (z) = ϕ(z)/R are the effective dilaton
potentials. Note the choice of quadratic dilaton profile and potentials UBJ (z) and UFJ (z) is nec-
essary in order to guarantee correct Regge behavior of hadronic mass spectra and asymptotic
power scaling of hadronic factors at large momenta transfer in agreement with quark counting
rules [4]-[6].

Notice that the fermion masses and the effective potentials corresponding to the fields Ψ+

and Ψ− have opposite signs according to the P -parity transformation. The absolute sign of the
fermion mass is related to the chirality of the boundary operator. According to our conventions
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the QCD operators OR and OL have positive and negative chirality, and therefore the mass
terms of the bulk fields Ψ+ and Ψ− have absolute signs “plus” and “minus”, respectively.

One of the main advantages of the soft-wall AdS/QCD model is that the most of the
calculations can be done analytically. In a first step, we show how in this approach the hadron
wave functions and spectrum are generated. We follow the procedure pursued in Refs. [4]-[6].
We drop the external vector and axial fields in covariant derivatives, turn to the tangent space
with Lorentz signature, where the AdS fields are rescaled as

Φµ1···µJ
= eϕ(z)/2+A(z)Jφµ1···µJ

, Ψ±
µ1···µJ

= eϕ(z)/2+A(z)(J−1/2)ψ±
µ1···µJ

. (6)

Next we split the fermion field into left- and right-chirality components

ψ±
µ1···µJ

(x, z) = ψ±L
µ1···µJ

(x, z) + ψ±R
µ1···µJ

(x, z) (7)

and perform Kaluza-Klein (KK) expansion for φµ1···µJ
(x, z) and ψ

±L/R
µ1···µJ (x, z)

φµ1···µJ
(x, z) =

∑

n

φnµ1···µJ
(x)Fnτ (z) ,

ψ
±L/R
µ1···µJ (x, z) =

1√
2

∑

n

ψ
L/R
nµ1···µJ (x)G±L/R

nτ (z) , (8)

where the tower of the KK fields φnµ1···µJ
(x) is dual to four-dimensional fields describing mesons

with spin J , while KK fields ψ
L/R
nµ1···µJ (x) are dual left/right-chirality fermion fields describing

baryons with spin J . The number n corresponds to the radial quantum number. The set of
functions Fnτ (z) are the profiles of boson AdS fields in holographic direction, which are dual to
the mesonic wave functions with twist τ and radial quantum number n. In case of baryon we
have four sets of such profiles dual to baryonic wave functions, which satisfy to the following
relation (due P - and C-invariance)

G±R
nτ (z) = ∓G∓L

nτ (z) . (9)

Then it is convenient to rescale the boson and fermion profiles as

Fnτ (z) = e−3/2A(z) fnτ (z) , G±R/L
nτ (z) = e−2A(z) g±R/L

nτ (z) (10)

in order derive the Schrödinger-type equation of motions (EOMs) for the wave functions fnτ
and g

±L/R
nτ (z)

[
− ∂2

z +
4L2 − 1

4z2
+ κ4z2 + 2κ2(J − 1)

]
fnτ (z) = M2

B,nτJ fnτ (z) (11)

and
[
−∂2

z + κ4z2 + 2κ2
(
m∓ 1

2

)
+
m(m± 1)

z2

]
gL/Rnτ (z) = M2

F,nτ g
L/R
nτ (z) , (12)

where m = τ − 3/2; MB,nτJ and MF,nτ are the masses of bosons and fermions dual to corre-
sponding hadrons (mesons and baryons) with specific values of quantum numbers.
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Above EOMs have analytical solutions for both wave functions

fnτ (z) =

√
2Γ(n+ 1)

Γ(n+ τ − 1)
κτ−1 zτ−3/2 e−κ

2z2/2 Lτ−2
n (κ2z2) ,

gLnτ (z) =

√
2Γ(n+ 1)

Γ(n+ τ)
κτ zτ−1/2 e−κ

2z2/2 Lτ−1
n (κ2z2) , (13)

gRnτ (z) =

√
2Γ(n+ 1)

Γ(n+ τ − 1)
κτ−1 zτ−3/2 e−κ

2z2/2 Lτ−2
n (κ2z2)

and mass spectrum

M2
B,nτJ = 4κ2

(
n+

τ + J

2
− 1
)
, M2

F,nτ = 4κ2
(
n+ τ − 1

)
. (14)

Therefore, our main idea is to find the solutions for the bulk profiles of the AdS field in the
z–direction, and then calculate the physical properties of hadrons in terms of the bulk profiles
of AdS fields dual to hadronic wave functions. In this way both mass spectrum and dynamical
hadronic properties like form factors and parton distributions will be calculated from a unified
point of view based on the solutions of the Schrödinger-type EOMs (13). One can see that the
bulk profiles of AdS fields have the correct scaling behavior for small z, which leads to correct
power behavior of calculated hadronic form factors at large Q2. Another important property
of the bulk profiles is that they vanish at large z (confinement). Up to now we discussed the
solutions of EOMs for the bulk profiles on its mass shell p2 = M2. In case when we go beyond
mass shell, we can calculate so-called bulk-to-boundary propagators describing the behavior of
bulk profiles at arbitrary p2, which are necessary for calculation of momentum dependence of
matrix elements in our approach. In particular, the bulk-to-boundary propagator for the vector
AdS field dual to electromagnetic field is given in analytical form in terms of the Gamma Γ(n)
and Tricomi U(a, b, z) functions:

V (Q, z) = Γ

(
1 +

Q2

4κ2

)
U

(
Q2

4κ2
, 0, κ2z2

)
. (15)

The bulk-to-boundary propagator V (Q, z) obeys the normalization condition V (0, z) = 1 consis-
tent with gauge invariance and fulfils the following ultraviolet (UV) and infrared (IR) boundary
conditions: V (Q, 0) = 1 , V (Q,∞) = 0. The UV boundary condition corresponds to the local
(structureless) coupling of the electromagnetic field to matter fields, while the IR boundary
condition implies that the vector field vanishes at z = ∞. E.g. a generic expression for the
meson form factor is given in the form integral over z variable of the product of V (Q, z) and
bulk profiles corresponding to the wave functions of initial (in) and final (fin) meson

FM (Q2) =

∞∫

0

dzV (Q, z)fin(z)ffin(z) . (16)

Another advantage of our approach is a possibility to constraint the form of light-front wave
functions (see detailed discussion in Refs. [4]-[6]) from matching of matrix elements of physical
processes in AdS/QCD and Light-Front QCD. The idea of such matching was proposed in
Ref. [7]. Next step is inclusion of effects of quark masses in agreement with constraints imposed
by chiral symmetry and heavy quark effective theory.
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2 Applications

2.1 Meson mass spectrum and leptonic decay constants

We consider applications of our approach to mass spectrum, decay constants, form factors and
parton distributions. First we present the results for the mass spectrum and decay constants
of mesons: light, heavy-light and heavy quarkonia (see Tables I-V).

Table I. Masses of light mesons.

Meson n L S Mass [MeV]
π 0,1,2,3 0 0 140 1010 1421 1738
K 0 0,1,2,3 0 495 1116 1498 1801
η 0,1,2,3 0 0 566 11494 1523 1822
f0[n̄n] 0,1,2,3 1 1 721 1233 1587 1876
f0[s̄s] 0,1,2,3 1 1 985 1404 1723 1993
ρ(770) 0,1,2,3 0 1 721 1233 1587 1876
ω(782) 0,1,2,3 0 1 721 1233 1587 1876
φ(1020) 0,1,2,3 0 1 985 1404 1723 1993
a1(1260) 0,1,2,3 1 1 1010 1421 1738 2005

Table II. Masses of heavy-light mesons.

Meson JP n L S Mass [MeV]
D(1870) 0− 0 0,1,2,3 0 1870 2000 2121 2235
D∗(2010) 1− 0 0,1,2,3 1 2000 2121 2235 2345
Ds(1969) 0− 0 0,1,2,3 0 1970 2093 2209 2320
D∗
s(2107) 1− 0 0,1,2,3 1 2093 2209 2320 2425

B(5279) 0− 0 0,1,2,3 0 5280 5327 5374 5420
B∗(5325) 1− 0 0,1,2,3 1 5336 5374 5420 5466
Bs(5366) 0− 0 0,1,2,3 0 5370 5416 5462 5508
B∗
s (5413) 1− 0 0,1,2,3 1 5416 5462 5508 5553

Table III. Masses of heavy quarkonia.

Meson JP n L S Mass [MeV]
ηc(2980) 0− 0,1,2,3 0 0 2975 3477 3729 3938
ψ(3097) 1− 0,1,2,3 0 1 3097 3583 3828 4032
χc0(3415) 0+ 0,1,2,3 1 1 3369 3628 3843 4038
χc1(3510) 1+ 0,1,2,3 1 1 3477 3729 3938 4129
χc2(3555) 2+ 0,1,2,3 1 1 3583 3828 4032 4219
ηb(9390) 0− 0,1,2,3 0 0 9337 9931 10224 10471
Υ(9460) 1− 0,1,2,3 0 1 9460 10048 10338 10581
χb0(9860) 0+ 0,1,2,3 1 1 9813 10110 10359 10591
χb1(9893) 1+ 0,1,2,3 1 1 9931 10224 10471 10700
χb2(9912) 2+ 0,1,2,3 1 1 10048 10338 10581 10808
Bc(6277) 0− 0,1,2,3 0 0 6277 6719 6892 7025
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Table IV. Decay constants fP (MeV) of pseudoscalar mesons.
Meson Data Our
π− 130.4 ± 0.03 ± 0.2 153
K− 156.1 ± 0.2 ± 0.8 153
D+ 206.7 ± 8.9 207
D+
s 257.5 ± 6.1 224

B− 193 ± 11 163
B0
s 253 ± 8 ± 7 170

Bc 489 ± 5 ± 3 489

Table V. Decay constants fV (MeV) of vector mesons.

Meson Data Our Meson Data Our
ρ+ 210.5 ± 0.6 216 ρ0 154.7 ± 0.7 153

D∗ 245 ± 20+3
−2 207 ω 45.8 ± 0.8 51

D∗
s 272 ± 16+3

−20 224 φ 76 ± 1.2 72

B∗ 196 ± 24+39
−2 170 J/ψ 277.6 ± 4 223

B∗
s 229 ± 20+41

−16 170 Υ(1s) 238.5 ± 5.5 170

One should stress that our analytical results for the masses of light pseudoscalar mesons are
consistent with chiral symmetry: M2

π ,M
2
K ,M

2
η → 0 at mu,d,ms → 0. The masses and leptonic

decay constant of heavy-light mesons are consistent with constraints imposed by heavy quark
mass limit. In particular, the heavy quark mass expansion of heavy-light mesons masses reads
MQq = mQ + Λ̄ + O(1/mQ) and their leptonic decay constants scale as fQq ∼ 1/

√
mQ.

2.2 Electromagnetic structure of nucleon

Here from unified point of view we describe nucleon form factors and the electroproduction of
the N(1440) Roper resonance. The Roper resonance is identified as the first radially excited
state of the nucleon. The obtained results for helicity amplitudes of the Roper electroproduction
are in good agreement with the recent results of the CLAS Collaboration at JLab. In Table
VI we present our results for the nucleon properties: mass, magnetic moments, electromagnetic
and axial charge radii. In Figs. 1-2 we present selected results for the electromagnetic form
factors of nucleon.

Table VI. Mass and electromagnetic properties of nucleons.

Quantity Our results Data [9]
mp (GeV) 0.93827 0.93827
µp (in n.m.) 2.793 2.793
µn (in n.m.) -1.913 -1.913

gA 1.270 1.2701
rpE (fm) 0.840 0.8768 ± 0.0069

〈r2E〉n (fm2) -0.117 -0.1161 ± 0.0022
rpM (fm) 0.785 0.777 ± 0.013 ± 0.010

rnM (fm) 0.792 0.862+0.009
−0.008

rA (fm) 0.667 0.67±0.01
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Figure 1: The ratiosGpE(Q2)/GD(Q2), GpE(Q2)/GpM (Q2), GnE(Q2)/GnM (Q2) and charge neutron
form factor GnE(Q2).
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Figure 2: Proton and neutron Dirac form factor multiplied with Q4, ratios Q2F p2 (Q2)/F p1 (Q2)
(the dashed line is the approximation of data suggested in Ref. [8]) and GA(Q2)/GDA (Q2).

8

VALERY E. LYUBOVITSKIJ, THOMAS GUTSCHE, IVAN SCHMIDT, ALFREDO VEGA

232 HQ2013



Table VII. Helicity amplitudes AN1/2(0) and SN1/2(0), N = p, n.

Quantity Our results Data [9]

Ap1/2(0) (GeV−1/2) -0.065 (-0.065) -0.065 ± 0.004

An1/2(0) (GeV−1/2) 0.040 (0.040) 0.040 ± 0.010

Sp1/2(0) (GeV−1/2) 0.047 (0.048)

Sn1/2(0) (GeV−1/2) -0.044 (-0.045)
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Figure 3: Helicity amplitudes Ap1/2(Q
2) and Sp1/2(Q

2) up to Q2 = 4 GeV2.
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Figure 4: Transition charge densities for unpolarized and transversely polarized nucleon and
Roper.

In Table VII we present our results for the helicity amplitudes AN1/2(0) and SN1/2(0), N = p, n

at Q2 = 0. In Fig. 3 we present our predictions for the Q2 dependence of helicity amplitudes.
Results for the transition charge densities for unpolarized and transversely polarized nucleon
and Roper in the transverse impact parameter plane b⊥ = (bx, by) are shown in Fig. 4.

From Fig.3 it should be evident that our results for the helicity amplitudes in the proton
case have qualitative agreement with the present data of the CLAS Collaboration [10]. Within
the current approach it is difficult to reproduce the maximum of data for Ap1/2 at about 2 GeV2.

Further data for the helicity amplitudes in the region from 1.6 to 4 GeV2 could be accumulated
at the upgraded facilities of JLab and certainly help to clarify the theoretical understanding.
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Renormdynamics, Valence Quarks and

Multiparticle Production

Nugzar Makhaldiani

JINR, Dubna, Russia

Concise introduction in QCD renormdynamics with prediction of the pion-nucleon and low
energy QCD fine structure constants and valence quark mechanism of the multiparticle
production given.

1 Renormdynamics

Quantum field theory (QFT) and Fractal calculus (FC) provide Universal language of funda-
mental physics (see e.g. [13]). In QFT existence of a given theory means, that we can control its
behavior at some scales (short or large distances) by renormalization theory [3]. If the theory
exists, than we want to solve it, which means to determine what happens on other (large or
short) scales. This is the problem (and content) of Renormdynamics. The result of the Renor-
mdynamics, the solution of its discrete or continual motion equations, is the effective QFT on
a given scale (different from the initial one).

1.1 p-adic convergence of perturbation theory series

Perturbation theory series (PTS) have the following qualitative form

f(g) = f0 + f1g + ...+ fng
n + ..., fn = n!P (n)

f(x) =
∑

n≥0

P (n)n!xn = P (δ)Γ(1 + δ)
1

1 − x
, δ = x

d

dx
(1)

So, we reduce previous series to the standard geometric progression series. This series is conver-
gent for |x| < 1 or for |x|p < 1, x = pka/b, k ≥ 1. With proper nomalization of the expansion
parametre, the coefficients of the series are rational numbers and if experimental data indicates
for some prime value for g, e.g. in QED

g =
e2

4π
=

1

137.0...
(2)

then we can take corresponding prime number and consider p-adic convergence of the series.
In the case of QED, we have

f(g) =
∑

fnp
−n, fn = n!P (n), p = 137, |f |p ≤

∑
|fn|ppn (3)
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In the Yukawa theory of strong interactions (see e.g. [1]), we take g = 13,

f(g) =
∑

fnp
n, fn = n!P (n), p = 13, |f |p ≤

∑
|fn|pp−n <

1

1 − p−1
(4)

So, the series is convergent. If the limit is rational number, we consider it as an observable
value of the corresponding physical quantity.

In MSSM (see [10]) coupling constants unifies at α−1
u = 26.3 ± 1.9 ± 1. So,

23.4 < α−1
u < 29.2 (5)

Question: how many primes are in this interval?

24, 25, 26, 27, 28, 29 (6)

Only one!
Proposal: take the value α−1

u = 29.0... which will be two orders of magnitude more precise
prediction and find the consequences for the SM scale observables.

Let us make more explicit the formal representation of (1)

f(x) =
∑

n≥0

P (n)n!xn = P (δ)Γ(1 + δ)
1

1 − x
,

= P (δ)

∫ ∞

0

dte−ttδ
1

1 − x
= P (δ)

∫ ∞

0

dt
e−t

1 + (−x)t , δ = x
d

dx
(7)

This integral is well defined for negative values of x. The Mathematica answer for the corre-
sponding integral is

I(x) =

∫ ∞

0

dt
e−t

1 + xt
= e1/xΓ(0, 1/x)/x, Im(x) 6= 0, Re(x) ≥ 0, I(0) = 1 (8)

where Γ(a, z) is the incomplete gamma function

Γ(a, z) =

∫ ∞

z

dtta−1e−t (9)

For x = 0.001, I(x) = 0.999

1.2 The Goldberger-Treiman relation and the pion-nucleon coupling
constant

The Goldberger-Treiman relation (GTR) [5] plays an important role in theoretical hadronic
and nuclear physics. GTR relates the Meson-Nucleon coupling constants to the axial-vector
coupling constant in β-decay:

gπNfπ = gAmN (10)

where mN is the nucleon mass, gA is the axial-vector coupling constant in nucleon β-decay
at vanishing momentum transfer, fπ is the π decay constant and gπN is the π − N coupling
constant.
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Since the days when the Goldberger-Treiman relation was discovered, the value of gA has
increased considerably. Also, fπ decreased a little, on account of radiative corrections. The
main source of uncertainty is gπN .

If we take

απN =
g2
πN

4π
= 13 ⇒ gπN = 12.78 (11)

experimental value for fπ from pion decay and neutron mass

fπ =
130√

2
= 91.9MeV, mN = 940MeV, (12)

from (10), we find

gA =
fπgπN
mN

=
91.9 ×

√
52π

940
= 1.2496 ≃ 1.25 =

5

4
(13)

In an old version of the unified theory [7], for the απN the following value were found

απN = 4π(1 − m2
π

3m2
p

) = 12.5 (14)

Determination of gπN from NN,NN̄ and πN data by the Nijmegen group [16] gave the
following value

gπN = 13.05 ± .08, ∆ = 1 − gAmN

gπNfπ
= .014 ± .009, 13.39 < απN < 13.72 (15)

This value is consistent with assumption gπN = 13 ⇒ απN = 13.45
Due to the smallness of the u and d quark masses, ∆ is necessarily very small, and its

determination requires a very precise knowledge of the gπN coupling (gA and fπ are already
known to enough precision, leaving most of the uncertainty in the determination of ∆ to the
uncertainty in gπN ).

2 Renormdynamics of QCD

QCD is the theory of the strong interactions with, as only inputs, one mass parameter for each
quark species and the value of the QCD coupling constant at some energy or momentum scale in
some renormalization scheme. This last free parameter of the theory can be fixed by ΛQCD, the
energy scale used as the typical boundary condition for the integration of the Renormdynamic
(RD) equation for the strong coupling constant. This is the parameter which expresses the scale
of strong interactions, the only parameter in the limit of massless quarks. While the evolution
of the coupling with the momentum scale is determined by the quantum corrections induced
by the renormalization of the bare coupling and can be computed in perturbation theory, the
strength itself of the interaction, given at any scale by the value of the renormalized coupling
at this scale, or equivalently by ΛQCD, is one of the above mentioned parameters of the theory
and has to be taken from experiment.

The RD equations play an important role in our understanding of Quantum Chromodynam-
ics and the strong interactions. The beta function and the quarks mass anomalous dimension
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are among the most prominent objects for QCD RD equations. The calculation of the one-loop
β-function in QCD has lead to the discovery of asymptotic freedom in this model and to the
establishment of QCD as the theory of strong interactions [8, 6, 15].

The MS-scheme [9] belongs to the class of massless schemes where the β-function does not
depend on masses of the theory and the first two coefficients of the β-function are scheme-
independent.

The Lagrangian of QCD with massive quarks in the covariant gauge is

L = −1

4
F aµνF

aµν + q̄n(iγD −mn)qn − 1

2ξ
(∂A)2 + ∂µc̄a(∂µc

a + gfabcAbµc
c)

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (Dµ)kl = δkl∂µ − igtaklA

a
µ, (16)

Aaµ, a = 1, ..., N2
c − 1 are gluon; qn, n = 1, ..., nf are quark; ca are ghost fields; ξ is gauge

parameter; ta are generators of fundamental representation and fabc are structure constants of
the Lie algebra

[ta, tb] = ifabctc, (17)

we consider an arbitrary compact semi-simple Lie group G. For QCD, G = SU(Nc), Nc = 3.
The RD equation for the coupling constant is

ȧ = β(a) = −β2a
2 − β3a

3 − β4a
4 − β5a

5 +O(a6),

a =
αs
4π

= (
g

4π
)2,

∫ a

a0

da

β(a)
= t− t0 = ln

µ2

µ2
0

, (18)

µ is the ’t Hooft unit of mass, the renormalization point in the MS-scheme.
To calculate the β-function we need to calculate the renormalization constant Z of the

coupling constant, ab = Za, where ab is the bare (unrenormalized) charge.
The expression of the β-function can be obtained in the following way

0 = d(abµ
2ε)/dt = µ2ε(εZa+

∂(Za)

∂a

da

dt
)

⇒ da

dt
= β(a, ε) =

−εZa
∂(Za)
∂a

= −εa+ β(a), β(a) = a
d

da
(aZ1) (19)

where

β(a, ε) =
D − 4

2
a+ β(a) (20)

is D−dimensional β−function and Z1 is the residue of the first pole in ε expansion

Z(a, ε) = 1 + Z1ε
−1 + ...+ Znε

−n + ... (21)

Since Z does not depend explicitly on µ, the β-function is the same in all MS-like schemes, i.e.
within the class of renormalization schemes which differ by the shift of the parameter µ.

For quark anomalous dimension, RD equation is

ḃ = γ(a) = −γ1a− γ2a
2 − γ3a

3 − γ4a
4 +O(a5),

b(t) = b0 +

∫ t

t0

dtγ(a(t)) = b0 +

∫ a

a0

daγ(a)/β(a). (22)
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To calculate the quark mass anomalous dimension γ(g) we need to calculate the renormalization
constant Zm of the quark mass mb = Zmm, mb is the bare (unrenormalized) quark mass. Than
we find the function γ(g) in the following way

0 = ṁb = Żmm+ Zmṁ = Zmm((lnZm)· + (lnm)·)

⇒ γ(a) = −d lnZm
dt

= ḃ = −d lnZm
da

da

dt
= −d lnZm

da
(−εa+ β(a))

= a
dZm1

da
, b = − lnZm = ln

m

mb
, (23)

where RD equation in D−dimension is

ȧ = −εa+ β(a) = β1a+ β2a
2 + ... (24)

and Zm1 is the coefficient of the first pole in the ε−expantion of the Zm in MS-scheme

Zm(ε, g) = 1 + Zm1(g)ε
−1 + Zm2(g)ε

−2 + ... (25)

Since Zm does not depend explicitly on µ and m, the γm-function is the same in all MS-like
schemes.

2.1 Reparametrization and general method of solution of the RD
equation

RD equation,

ȧ = β1a+ β2a
2 + ... (26)

can be reparametrized,

a(t) = f(A(t)) = A+ f2A
2 + ...+ fnA

n + ... =
∑

n≥1

fnA
n, (27)

Ȧ = b1A+ b2A
2 + ... =

∑

n≥1

bnA
n,

ȧ = Ȧf ′(A) = (b1A+ b2A
2 + ...)(1 + 2f2A+ ...+ nfnA

n−1 + ...)
= β1(A+ f2A

2 + ...+ fnA
n + ...) + β2(A

2 + 2f2A
3 + ...) + ...

+βn(A
n + nf2A

n+1 + ...) + ...
= β1A+ (β2 + β1f2)A

2 + (β3 + 2β2f2 + β1f3)A
3+

...+ (βn + (n− 1)βn−1f2 + ...+ β1fn)A
n + ...

=
∑

n,n1,n2≥1

Anbn1
n2fn2

δn,n1+n2−1

=
∑

n,m≥1;m1,...,mk≥0

Anβmf
m1
1 ...fmk

k f(n,m,m1, ...,mk),

f(n,m,m1, ...,mk) =
m!

m1!...mk!
δn,m1+2m2+...+kmk

δm,m1+m2+...+mk
, (28)

b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,
b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f2

2 − f3)β1,
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b4 = β4 + 3f2β3 + f2
2β2 + 2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, ...

bn = βn + ...+ β1fn − 2f2bn−1 − ...− nfnb1, ... (29)

so, by reparametrization, beyond the critical dimension (β1 6= 0) we can change any coefficient
but β1.

We can fix any higher coefficient with zero value, if we take

f2 =
β2

β1
, f3 =

β3

2β1
+ f2

2 , ... , fn =
βn + ...

(n− 1)β1
, ... (30)

In the critical dimension of space-time, β1 = 0, and we can change by reparametrization
any coefficient but β2 and β3.

From the relations (29), in the critical dimenshion (β1 = 0), we find that, we can define the
minimal form of the RD equation

Ȧ = β2A
2 + β3A

3, (31)

We can solve (31) as implicit function,

uβ3/β2e−u = ceβ2t, u =
1

A
+
β3

β2
(32)

then, as in the noncritical case, explicit solution will be given by reparametrization representa-
tion (27) [14].

If we know somehow the coefficients βn, e.g. for first several exact and for others asymp-
totic values (see e.g. [11]) than we can construct reparametrization function (27) and find the
dynamics of the running coupling constant. This is similar to the action-angular canonical
transformation of the analytic mechanics (see e.g. [4]).

Statement: The reparametrization series for a is p-adically convergent, when βn and A are
rational numbers.

2.2 Reparametrization of the anomalous dimensions

Let us take the the anomalous dimension of some quantity

γ(a) = γ1a+ γ2a
2 + γ3a

3 + ... (33)

and make reparametrization

a = f(A) = A+ f2A
2 + f3A

3 + ... (34)

γ(a) = γ1(A+ f2A
2 + f3A

3 + ...) + γ2(A
2 + 2f2A

3 + ...) + γ3(A
3 + ...) + ...

= Γ1A+ Γ2A
2 + Γ3A

3 + ...
Γ1 = γ1, Γ2 = γ2 + γ1f2, Γ3 = γ3 + 2γ2f2 + γ1f3, ... (35)

When γ1 6= 0, we can take Γn = 0, n ≥ 2, if we define fn as

f2 = −γ2

γ1
, f3 = −γ3 + 2γ2f2

γ1
= −γ3 − 2γ2

2/γ1

γ1
, ... (36)

So, we get the exact value for the anomalous dimension

γ(A) = γ1A = γ1f
−1(a) = γ1(a+ γ2/γ1a

2 + γ3/γ1a
3 + ... :) (37)
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2.3 QCD, parton model, valence quarks and αs = 2

While it has been well established in the perturbative regime at high energies, QCD still lacks
a comprehensive solution at low and intermediate energies, even 40 years after its invention. In
order to deal with the wealth of non-perturbative phenomena, various approaches are followed
with limited validity and applicability. This is especially also true for lattice QCD, various
functional methods, or chiral perturbation theory, to name only a few. In neither one of these
approaches the full dynamical content of QCD can yet be included. Basically, the difficulties
are associated with a relativistically covariant treatment of confinement and the spontaneous
breaking of chiral symmetry, the latter being a well-established property of QCD at low and
intermediate energies. As a result, most hadron reactions, like resonance excitations, strong
and electroweak decays etc., are nowadays only amenable to models of QCD. Most famous is
the constituent-quark model (CQM), which essentially relies on a limited number of effective
degrees of freedom with the aim of encoding the essential features of low- and intermediate-
energy QCD.

The CQM has a long history, and it has made important contributions to the understanding
of many hadron properties, think only of the fact that the systematization of hadrons in the
standard particle-data base follows the valence-quark picture. Namely the Q dependence of the
nucleon form factor corresponds to three-constituent picture of the nucleon and is well described
by the simple equation [2], [12]

F (Q2) ∼ (Q2)−2 (38)

It was noted [17] that parton densities given by the following solution

M2(Q
2) =

3

25
+

2

3
ω32/81 +

16

75
ω50/81,

M̄2(Q
2) = Ms

2 (Q2) =
3

25
− 1

3
ω32/81 +

16

75
ω50/81,

MG
2 (Q2) =

16

25
(1 − ω50/81),

ω =
αs(Q

2)

αs(m2)
, Q2 ∈ (5, 20)GeV 2, b = 9, αs(Q

2) ≃ 0.2 (39)

of the Altarelli-Parisi equation

Ṁ = AM,
MT = (M2, M̄2,M

s
2 ,M

G
2 ),

M2 =

∫ 1

0

dxx(u(x) + d(x)), M̄2 =

∫ 1

0

dxx(ū(x) + d̄(x)),

Ms
2 =

∫ 1

0

dxx(s(x) + s̄(x)), MG
2 =

∫ 1

0

dxxG(x),

A = −a(Q2)




32/9 0 0 −2/3
0 32/9 0 −2/3
0 0 32/9 −2/3

−32/9 −32/9 −32/9 2


 , a = (

g

4π
)2, Ṁ = Q2 dM

dQ2
(40)

with the following ”valence quark” initial condition at a scale m

M2(m
2) = 1, M̄2(m

2) = Ms
2 (m2) = MG

2 (m2) = 0, (41)
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and

αs(m
2) = 2, (42)

gives the experimental values

M2 = 0.44, M̄2 = Ms
2 = 0.04, MG

2 = 0.48 (43)

So, for valence quark model (VQCD), αs(m
2) = 2. We have seen, that for πρN model

απρN = 3, and for πN model απN = 13. It is nice that α2
s +α2

πρN = απN . This relation can be
seen, e.g., by considering pion propagator in the low energy πN model and in superposition of
higher energy VQCD and πρN models.

Note that g = 5 corresponds to the

αs =
g2

4π
= 1.989 ≃ 2 (44)
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Prompt photon and associated b,c-tagged jet pro-

duction within the kT -factorization approach
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We present the results of the numerical calculations of prompt photon and associated b-
or c-quark tagged jet production at Tevatron in the framework of the kT -factorization
approach. Our predictions are compared with the D∅ and CDF experimental data.

Prompt photon and associated jet production has been intensively investigated both theo-
retically and experimentally up to now since it is highly sensitive to parton distribution in the
hadron (so it provides a test of hard subprocess dynamics) and contributes significantly to the
background for the physics beyound the Standard Model processes.

Recently an attempt of the description of the newest ZEUS data on the prompt photon and
associated non-tagged jet photoproduction at HERA has been made in the framework of the
kT -factorization approach [1]. The consideration was based on 2 → 3 matrix elements with the
addition of box-diagrams contribution. However, the difficulties in the description of the data
still remain. For instance, there is qualitative disagreement in jet rapidities distributions.

In this light it is interesting to look at the results, obtained with the tagged jets. Such
investigation was made by the D∅ and CDF collaborations for the prompt photon and associated
heavy quark production at the Tevatron [2, 3, 4, 5, 6, 7, 8].

The kT -factorization approach was used to describe the production of prompt photons as-
sociated with the charm or beauty quark in paper [9]. The consideration was based on the
O(αα2

s) amplitude for the gluon fusion subprocess g∗g∗ → γQQ̄. Reasonably good agreement
between the numerical predictions and the Tevatron data [5, 6] was obtained in the region
of relatively low pγT where the off-shell gluon fusion dominates. However, the quark-induced
subprocesses become more important at moderate and large pγ and therefore should be taken
into account. In work [10] the analysis was extended by including into the consideration two
additional O(αα2

s) subprocesses: qq̄ → γQQ̄ and qQ→ γqQ. The presented proceedings paper
is based on this study.

According to the kT -factorization theorem, the cross section of the prompt photon and as-
sociated heavy quark production is obtained by convoluting the off-shell partonic cross sections
with the relevant unintegrated quark and/or gluon distributions in a proton:

σ =
∑

a,b=q, g

∫
σ̂∗
ab(x1, x2,k

2
1T ,k

2
2T ) fa(x1,k

2
1T , µ

2)fb(x2,k
2
2T , µ

2) dx1dx2 dk
2
1T dk

2
2T

dφ1

2π

dφ2

2π
,

where σ̂∗
ab(x1, x2,k

2
1T ,k

2
2T ) is the relevant partonic cross section. The initial off-shell partons

have fractions x1 and x2 of initial protons longitudinal momenta, non-zero transverse momenta
k1T and k2T and azimuthal angles φ1 and φ2.
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Figure 1: The associated γ + b-jet cross section as a function of photon transverse momentum
pγT in the kinematical region of |yjet| < 1.5, pjetT > 15 GeV at

√
s = 1960 GeV. Left panels: the

solid curve corresponds to the KMR predictions at the default scale µ = ET ; the upper and
lower dashed curves correspond to scale variations described in the text. The dotted histogram
represents the NLO pQCD predictions [16] listed in [3]. Right panels: the different contributions
to the γ + b-jet cross section. The dashed, dotted and dash-dotted curves correspond to the
contributions from the g∗g∗ → γQQ̄, q∗q̄∗ → γQQ̄ and q∗Q→ γqQ subprocesses, respectively.
The solid curve represents their sum. The experimental data are from D∅ [3].
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Figure 2: The associated γ + c-jet cross section as a function of photon transverse momentum
pγT in the kinematical region of |yγ | < 1.0, |yjet| < 1.5 and pjetT > 20 GeV at

√
s = 1960 GeV.

The notations are the same as for Fig. 1. The experimental data are from CDF [8].

In this work we use the KMR uPDFs [11, 12]. The KMR approach is the formalism to
construct the unintegrated parton distributions from the known conventional parton distribu-
tions1.

The calcuation of the matrix elements generally follows the standard Feynman rules. The
only difference comes from the modification of the polarization sum rules. In the kT -factorization
approach the gluon polarization density matrix takes so called BFKL form:

∑
ǫµǫ∗ν = kµT k

ν
T /k

2
T .

The spin density matrix for the off-shell quark with the momentum k = xP + kT in massless
limit is [14]

∑
s u

s(k)ūs(k) = xP̂ , where P is the momentum of the incoming proton (or an-
tiproton). Since the expression was obtained in the massless approximation, we neglected the
light quarks masses.

In our numerical calculations we took the renormalization and factorization scales µ2
R =

µ2
F = ξ2p2

T . In order to evaluate theoretical uncertainties, we varied ξ between 1/2 and 2 about
the default value ξ = 1. We used the LO formula for the strong coupling constant αs(µ

2) with
nf = 4 active quark flavours at ΛQCD = 200 MeV, so that αS(MZ) = 0.1232. We set the charm
and beauty quark masses to mc = 1.5 GeV and mb = 4.75 GeV.

In order to reduce the huge background from the secondary photons produced by the decays
of π0 and η mesons the isolation criterion is introduced in the experimental analyses. The isola-
tion not only reduces the background but also significantly reduces the so called fragmentation
components, connected with collinear photon radiation (10%)2. The same isolation cuts were
introduced into our calculations.

Some selected results of our calculation [10] for the production of the prompt photon with
the associated heavy quark are shown in Figs. 1, 2. The results are compared with the data
taken by the D∅ and CDF collaborations at

√
s = 1960 GeV [3, 8]. For comparison we also plot

the NLO QCD predictions [16]. We find that the full set of experimental data is reasonably well
described by the kT -factorization approach: the shape and absolute normalization of measured
cross sections are adequately reproduced (for more details see [10]).

1Numerically, as the input we used the MSTW2008 collinear parton distributions [13].
2For details see [15]
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Figure 3: The associated γ + µ cross section as a function of the azimuthal angle difference
between the photon and muon in the kinematical region of |ηγ | < 0.9, |ηµ| < 1.0 and pµT > 4
GeV at

√
s = 1800 GeV. Panel (a): the solid and dashed lines correspond to the kT -factorization

and collinear QCD factorization calculations, respectively. The notations on the panel (b) are
the same as for Fig. 1. The experimental data are from CDF [5].

Figure 4: The associated γ+b-jet cross section
as a function of photon transverse momentum
pγT in the kinematical region of |yγ | < 1.04,

|yjet| < 1.5 and pjetT > 20 GeV at
√
s = 1960

GeV. The graph is taken from [8].

The results of the calculation for associ-
ated production of the prompt photon and
the muon originated from the semileptonic de-
cays of charm or beauty quarks are presented
in Fig. 3. The experimental data are from
CDF [5]. To produce muons from charmed
and beauty quarks, we first convert them into
D or B hadrons using the Peterson fragmen-
tation function [17] and then simulate their
semileptonic decay according to the standard
electroweak theory. Additionally, the cascade
decays b → c → µ have been taken into ac-
count. We set the fragmentation parameters
ǫc = 0.06 and ǫb = 0.006 and corresponding
branching fractions to f(c → µ) = 0.0969,
f(b → µ) = 0.1071 and f(b → c → µ) =
0.0802 [18]. We find that the kT -factorization
predictions describe the data very well. One
can see that the CDF data clearly favor the
kT -factorization results.

Finally, on the Fig. 4 for an illustration we
show the comparison of the γ + b CDF data
with different numerical calculations (including
the kT -factorization results), which was taken

from the experimental paper [8]. In that paper the good description of the data by our simu-
lation was specially pointed by the collaboration.
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In summary, we have studied the process of the prompt photon production with the as-
sociated heavy (b, c) quark in the kT -factorization QCD approach at Tevatron energies. A
reasonably good description of D∅ and CDF data for the associated prompt photon and heavy
quark production has been obtained. Also the associated prompt photon and µ-meson produc-
tion has been studied. A theoretical uncertainties investigation has been made and a predictive
power of the used approach has been shown. Compared to the associated prompt photon and
non-tagged jet production at HERA [1], the obtained good agreement is notable. It shows, that
the reliability of the predictions may be significantly improved if in the analyses the produced
jets are tagged as in the case of the prompt photon and associated heavy quark production at
Tevatron.
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Heavy quarkonium production at the LHC in the

framework of NRQCD and parton Reggeization

approach

Maxim Nefedov1, Vladimir Saleev1

1 Samara State University, Academic Pavlov st. 1, 443111 Samara, Russia

Heavy quarkonium production in the framework of the nonrelativistic quantum chromody-
namics and leading order of the parton Reggeization approach at the Tevatron and LHC
Colliders is discussed. The new results, which are reviewed in this report, include the
comparison with recent data on χc1,2 production from ATLAS Collaboration and special
discussion of heavy quarkonium polarization issues in the considered framework.

Introduction and basic formalism.

Production of heavy quarkonia at hadron colliders is the unique laboratory for the studies of
the interplay between theory of perturbative hard subprocess and models of nonperturbative
hadronization in the hadronic collision. The hope to understand the hadronization stage is as-
sociated with the nonrelativistic nature of the problem, which allows one to organize theoretical
predictions in a form of double expansion in powers of strong coupling constant αs and relative
heavy quark velocity v.

In the nonrelativistic Quantum Chromodynamics (NRQCD) one can factorize the effects of
short and long distances in the cross section of heavy quarkonium production as follows [1, 2]:

dσ̂(I → H) =
∑

n

dσ̂(I → QQ̄[n])〈OH[n]〉, (1)

where the sum is over the possible intermediate states of heavy quark-antiquark (QQ̄) pair

[n] =2S+1 L
(1,8)
J , with definite spin S, orbital momentum L, total angular momentum J and

color-singlet (CS) (1) or color-octet (CO) (8) quantum numbers. Factor dσ̂ is the partonic cross
section of production of the state QQ̄[n] from the partonic initial state I, and 〈OH[n]〉 are the
nonperturbative matrix elements (NMEs), describing the transition of the intermediate state
QQ̄[n] to the heavy quarkonia H. In our calculations, the normalization of NMEs and cross
section is chosen the same as in the Ref. [2].

According to the NRQCD velocity scaling rules [3], the following CS NMEs give the lead-
ing contribution to the production of quarkonia with the same spin-orbital quantum numbers:〈
OH

[
3S

(1)
1

]〉
,
〈
OH

[
3P

(1)
J

]〉
. The CO NMEs –

〈
OH

[
1S

(8)
0

]〉
,
〈
OH

[
3S

(8)
1

]〉
,
〈
OH

[
3P

(8)
J

]〉
,

give the next to leading contributions in v. CS NMEs could be expressed through the quarko-
nia wave function, and then calculated in the potential quark model. CO NMEs describe the
transition of CO QQ̄ pair into quarkonia by radiation of the soft gluons, and hence could not

1248 HQ2013



be computed neither in perturbative QCD, nor in the potential quark models. The only option,
available so far, is to fit this NMEs to reproduce experimental data.

The latter means, that the hard part of the cross-section should be calculated as precisely
as possible, to get physically meaningful results. Nowadays the complete next-to-leading-order
(NLO) results for inclusive heavy quarkonia production are available [4, 5]. However, fixed
order calculations are applicable only in the region of pT ≫ 2mQ. In the region of small pT , the
resummation of the large logarithms log(mQ/pT ) is needed to obtain reliable predictions. The
existing calculations, based on the small-pT resummation procedure, see e. g. [6], are restricted
to the region pT ≪ 2mQ, and require matching with the fixed order calculations at higher pT .
So, the approach, which takes into account both small and high pT regions on the same grounds
is needed to obtain the values of CO NMEs.

Such approach could be designed, using the kT−factorization [7], which naturally regularizes
the small-pT divergences, present in the fixed-order calculations in the collinear PM.

The dominating contribution to the inclusive heavy quarkonium production at hadron collid-
ers, comes from the gluon fusion subprocess. The cross section for this process in the framework
of kT−factorization is represented as a convolution of unintegrated parton (gluon) distribution
functions (PDFs) in a proton Φpg

(
x, t, µ2

)
with the partonic cross section. Unintegrated PDF

depends on the longitudinal momentum fraction x, the virtuality of the parton t = −q2T = q2
T ,

and the factorization scale µ.
Virtuality of the partons in the initial state of the hard subprocess, usually breaks the

gauge invariance of the amplitude. However, it was shown [8], that in QCD at high energies,
the so-called quasi-multi Regge kinematics dominates, when produced particles are arranged in
clusters, strongly separated in rapidity. In this high-energy (Regge) limit, the gauge invariance
condition holds for each of this clusters independently from the others, so the fields, carrying
four-momentum between this clusters, are new gauge invariant degrees of freedom, accompa-
nying the ordinary gluons and quarks in the effective field theory for the Regge limit of QCD
[9]. They are Reggeized gluons and Reggeized quarks [9, 10].

In our calculations, we rely on the assumption, that particles produced in the hard sub-
process are well separated in rapidity from ones, produced at the evolution stage. Therefore,
partons incoming to the hard subprocess are Reggeized, and we use the Feynman rules of
Ref. [10, 11] to compute the hard scattering matrix elements. Matrix elements for the relevant
2 → 1 and 2 → 2 subprocesses have been obtained in Refs. [12, 13, 14].

Although, unintegrated PDFs are not so constrained as usual collinear PDFs, there exists
the method to obtain unintegrated PDFs from the collinear ones, which showed stable and con-
sistent results in many phenomenological applications, it is the Kimber-Martin-Ryskin (KMR)
method [15]. Together with the parton Reggeization approach (PRA), this method was recently
applied to describe of dijet [16] and bottom-flavored jet [17] production, Drell-Yan lepton pair
production [18], single jet and prompt photon production [19] at the Tevatron and LHC.

1 Charmonium and Bottomonium production.

Now we start the discussion of recent results in the phenomenology of heavy quarkonium pro-
duction, obtained in the leading order of the NRQCD and PRA. In the Ref. [20], it was shown,
that it is possible to describe the latest LHC experimental data on the prompt charmonium
production at the

√
S = 7 TeV in a wide kinematical range (2 < pT < 20 GeV and |y| < 3.5)

with a good accuracy, using the CO NMEs extracted from Tevatron data at the
√
S = 1.8
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TeV and 1.96 TeV [12, 20]. The fitted CO NMEs are also shown to be compatible with NLO
collinear parton model (PM) results of Ref. [4].

Very recently, ATLAS collaboration has presented the measurement of the prompt and non-
prompt χc1 and χc2 production in pp-collisions at

√
S = 7 TeV [22]. Comparison of the leading

order (LO) PRA predictions with this new data is presented in the Fig. 1.
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Figure 1: Transverse momentum spectra of prompt χc1,2 production at
√
S = 7 TeV, measured

through their radiative decay to J/ψ mesons. Experimental data by ATLAS collaboration [22].
In the left panel, the reconstructed spectrum over pTχc

. In the right panel, the spectrum over
pTJ/ψ. Product of branching fractions B = B(χc1,2 → J/ψγ)B(J/ψ → µ+µ−) is included.

Dashed line is the 3P
(1)
J contribution, dotted line is the 3S

(8)
1 contribution, solid line is their

sum.

To produce the predictions in the Fig. 1, we used the CO NMEs of Ref. [20], which where
fitted to the Tevatron data at

√
S = 1.8 TeV. In our calculations, mc = MJ/ψ/2, and momentum

squared of produced QQ̄ pair is equal to M2
J/ψ for all states. The proper treatment of the mass

difference between the QQ̄ pair and produced quarkonium, requires taking into account higher
order relativistic corrections in v.

To estimate dσ/dpTχc
, we rescaled the transverse momentum by the mass ratio MJ/ψ/MχcJ

,
which corresponds to the approximation of collinear radiation of the decay photon in the limit
MχcJ

−MJ/ψ ≪MJ/ψ, as it was used in Ref. [5].
The Υ(nS) production in the LO PRA and NRQCD was studied in the first time in Ref. [13],

the detailed discussion of the recent LHC data is presented in the Ref. [21]. It is pointed out,
that the inclusion of the region of small pT , greatly constrains the fit, and suppresses possible
negative values of CO NMEs. Also, negative values of NMEs could not be advocated in our
formally LO calculation.

2 Heavy quarkonium polarization puzzle.

Study polarization of S−wave heavy quarkonia is very important for testing of the NRQCD
factorization, since the soft gluon exchange at the hadronisation stage is belived to be not able
to sufficiently change the polarization of the QQ̄ pair, produced in the hard scattering.
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The polarisation variables are defined through the angular distribution of the products of
the decay H → µ+µ− in the rest frame of heavy quarkonium H:

dσ

dΩ
∼ 1 + λθ cos2(θ) + λϕ sin2(θ) cos(2ϕ) + λθϕ sin(2θ) cos(ϕ) , (2)

where θ and ϕ are polar and azimuthal angles of lepton (µ+) momentum in the some coordinate
system, chosen in the rest frame of H, and λθ, λϕ, λθϕ are polarization parameters. The issue
of the choice of the coordinate system is important and widely discussed in the literature, see
e. g. [23], here we use only the s-channel helicity frame.

In the Fig. 2 we present the comparison of the LO PRA predictions on polarization parameter
λθ for ψ(2S) and Υ(3S) states with the recent experimental data by CMS [24] and CDF [25]
Collaborations. We choose these states, because in our model they are produced directly, and
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Figure 2: Left panel – the polarization parameter λθ as function of pT for the ψ(2S) production
at

√
S = 7 TeV. Experimental data are from CMS Collaboration [24]. Right panel – the

polarization parameter for the Υ(3S) production at
√
S = 7 TeV (CMS data [24]) and

√
S = 1.8

TeV (CDF data [25]).

give the most clear test of the production mechanism. From Fig. 2 we can conclude, that
our prediction for Υ(3S) polarization is in a good agreement with experimental data. The
situation here is very similar to the results of Ref. [5], obtained in the NLO of collinear PM.
In contrast, the polarization of ψ(2S) is not described. Because of the domination of the CO
contributions at high pT ≫MJ/ψ, theory predicts the strong transversal polarization of ψ(2S),
while experimental data are compatible with zero polarization. The same disagreement is
observed in the NLO PM calculations [5]. Together with the observed inconsistency of the CO
NMEs, obtained as a result of the global fit on cross section data, with the data on prompt J/ψ
polarization [26], this result leads to the famous charmonium polarization puzzle. Attempts to
resolve this puzzle require careful study of feeddown contributions and higher-order processes,
such as p + p → J/ψ + c + c̄ + X, which can sufficiently contribute at high pT . In case
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of bottomonium production, NRQCD agrees with experimental data as for pT−spectra as for
polarization parameters. It means that b−quark mass is sufficiently large to suppress relativistic
corrections and nonperturbative effects during the hadronization.
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Light-Cone Distribution Amplitudes of Bottom

Baryons

Alexander Parkhomenko

P. G. Demidov Yaroslavl State University, Yaroslavl, Russia

A discussion of the three-quark light-cone distribution amplitudes (LCDAs) for the ground
state heavy baryons with the spin-parities JP = 1/2+ and JP = 3/2+ in QCD in the heavy-
quark limit is presented. Simple models for the bottom-baryon distribution amplitudes are
analyzed with account of their scale dependence.

1 Introduction

The B-meson factories at SLAC and KEK, after approximately a decade of their operation, have
made a great impact on a clarification of CP -violation origin in the quark sector of the Standard
Model (SM). Study of heavy-light hadrons, in particular mesons and baryons containing the
b-quark, at the LHC can serve as an additional test of the Kobayashi-Maskawa mechanism.
Specific processes with bottom baryons, such as rare decays involving flavor-changing neutral
currents (FCNC) transitions, are potential sources of new physics beyond the SM. In a difference
to B-mesons, a non-zero spin of baryons allows also an experimental study of spin correlations.
The spectrum of heavy bottom baryons have been enlarged substantially thanks to the effort
done by the CDF and D0 Collaborations at the Tevatron collider and is presented in Table 1.
During the LHC Run I, the majority of the bottom-baryon states has been confirmed and
several new ones were observed. Unlike these progress, study of the FCNC motivated decays
of bottom baryons remains to be statistically limited. A grater effort is expected during the
next LHC run where heavy baryons will be copiously produced, and their weak decays may be
measured precisely enough to provide important clues on physics beyond the Standard Model.

The theory of bottom baryon decays into light hadrons is more complicated compared to
the B-meson decays and, hence, was receiving less attention. Calculations of heavy-baryon
decays into light particles based on the heavy quark expansion, see e. g. [1], or using sum
rules of the type proposed in [2, 3, 4] require the primary non-perturbative objects — the
distribution amplitudes of heavy baryons. For a long period, the only existed models of heavy-
baryon distribution amplitudes [5, 6] have been motivated by quark models and not consistent
with QCD constraints. In the paper [7], the complete classification of three-quark light-cone
distribution amplitudes (LCDAs) of the Λb-baryon in QCD in the heavy quark limit was given
and the scale-dependence of the leading-twist LCDA is discussed. In addition, simple models
of the LCDAs were suggested and their parameters were fixed based on estimates of the first
few moments by the QCD sum rules method. The analysis of [7] has been extended on all
the ground state b-baryons with the spin-parity both JP = 1/2+ and JP = 3/2+. The basic
steps and main results of such an analysis are summarized in this lecture and all the details are
presented in our papers [8, 9].
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Baryon I(JP ) jp Experiment HQET Lattice QCD

Λb 0(1/2+) 0+ 5619.4 ± 0.7 5637+68
−56 5641 ± 21+15

−33

Σ+
b 1(1/2+) 1+ 5811.3 ± 1.9 5809+82

−76 5795 ± 16+17
−26

Σ−
b 1(1/2+) 1+ 5815.5 ± 1.8 5809+82

−76 5795 ± 16+17
−26

Σ∗+
b 1(3/2+) 1+ 5832.1 ± 1.9 5835+82

−77 5842 ± 26+20
−18

Σ∗−
b 1(3/2+) 1+ 5835.1 ± 1.9 5835+82

−77 5842 ± 26+20
−18

Ξ−
b 1/2(1/2+) 0+ 5791.1 ± 2.2 5780+73

−68 5781 ± 17+17
−16

Ξ0
b 1/2(1/2+) 0+ 5788 ± 5 5903+81

−79 5903 ± 12+18
−19

Ξ′
b 1/2(1/2+) 1+ 5903+81

−79 5903 ± 12+18
−19

Ξ′∗0
b 1/2(3/2+) 1+ 5945.0 ± 2.8 5903+81

−79 5950 ± 21+19
−21

Ω−
b 0(1/2+) 1+ 6071 ± 40 6036 ± 81 6006 ± 10+20

−19

Ω∗
b 0(3/2+) 1+ 6063+83

−82 6044 ± 18+20
−21

Table 1: Experimental measurements [10] and theoretical predictions based on HQET [11]
and Lattice QCD [12] for masses of ground-state bottom baryons (in units of MeV). The
mass of the Ξ′∗0

b -baryon was measured by the CMS Collaboration recently [13]. The LHCb
Collaboration [14] have measured the masses of the Λb-, Ξ−

b -, and Ω−
b -baryons in agreement

with the SM expectations.

2 Light-Cone Distribution Amplitudes

Light-cone distribution amplitudes (LCDAs) of heavy baryons are the transition matrix ele-
ments from the baryonic state to vacuum of non-local light-ray operators built off an effective
heavy quark and two light quarks. The content of such operators supports a similarity in the
construction of the heavy-baryon LCDAs to both the B-meson (within the HQET) [15, 16] and
the nucleon (within QCD) [17, 18] LCDAs descriptions. An important simplifying feature of the
operators containing one or more heavy quarks is an existence of the Heavy Quark Symmetry
(HQS) which results into the decoupling of the heavy-quark spin from the system dynamics in
the limit mQ → ∞, where mQ is the heavy-quark mass. So, to understand the properties of
heavy baryons in this limit, it is enough to switch off the heavy-quark spin and to introduce a
total set of two-particle LCDAs corresponding to the light-quark system, called diquark, which
quantum numbers completely determine a number of LCDAs and their asymptotic behavior.

In this simplified picture, there are the SU(3)F antitriplet of “scalar baryons” with the
JP = 0+ spin-parity determined by the diquark spin-parity jp = 0+ and the SU(3)F sextet
of “axial-vector baryons” with the JP = 1+ spin-parity which follows from the diquark spin-
parity jp = 1+. It is reasonable to start with the description of the “scalar baryons” and
then to generalize the procedure on the “axial-vector baryons”. The changes originated by an
account of the heavy-quark spin can be done after the total sets of the non-local operators
and corresponding LCDAs are introduced in the decoupling limit. All these steps are discussed
briefly in this section.
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2.1 “Scalar Baryons”

The “scalar baryons” are combined into the SU(3)F antitriplet with JP = 0+ in which the
light diquark states are also the scalar states with jp = 0+.

The set of the LCDAs is determined by the matrix elements between the baryonic state and
vacuum of the four independent non-local light-ray operators [7, 8, 9]:

ǫabc〈0|
(
qa1 (t1n)Cγ5/nq

b
2(t2n)

)
hcv(0)|H(v)〉 = f

(2)
H Ψ2(t1, t2) (1)

ǫabc〈0|
(
qa1 (t1n)Cγ5q

b
2(t2n)

)
hcv(0)|H(v)〉 = f

(1)
H Ψs

3(t1, t2)

ǫabc〈0|
(
qa1 (t1n)Cγ5iσn̄nq

b
2(t2n)

)
hcv(0)|H(v)〉 = 2f

(1)
H Ψσ

3 (t1, t2)

ǫabc〈0|
(
qa1 (t1n)Cγ5/̄nq

b
2(t2n)

)
hcv(0)|H(v)〉 = f

(2)
H Ψ4(t1, t2)

where qi(x) = u(x), d(x), s(x) are the light-quark fields, hv(0) is the static heavy-quark field
situated at the origin of the position-space frame, C is the charge conjugation matrix, nµ

and n̄µ are two light-like vectors normalized by the condition (nn̄) = 2. In addition, the
frame is adopted where the heavy-meson velocity is related to the light-like vectors as follows:
vµ = (nµ + n̄µ) /2. The light-quark fields on the light cone are assumed to be multiplied by the
Wilson lines:

q(tn) = [0, tn] q(tn) = P exp

{
−igstt

∫ 1

0

dαnµAµ(αtn)

}
q(tn) =

∞∑

N=0

tN

N !
(nµDµ)

N
q(0),

where the following definition of the covariant derivative Dµ = ∂µ − igstAµ is accepted. The
similar definition can be used for the gluonic field: Gµν(tn) = [0, tn]Gµν(tn), where the Wilson
line is determined in the adjoint representation of the color SU(3)-group.

The static heavy-quark field living on the light cone also includes the Wilson line but of the
other type with the time-like link [19]:

hv(0) = P exp

{
igst

∫ 0

−∞
dαvµAµ(αv)

}
φ(−∞),

with which it is connected with the sterile field φ(−∞).

The couplings f
(i)
H introduced in Eqs. (1) to make the LCDAs dimensionless are defined by

local operators [20, 21, 22, 23]:

ǫabc〈0|
(
qa1 (0)Cγ5q

b
2(0)

)
hcv(0)|H(v)〉 = f

(1)
H

ǫabc〈0|
(
qa1 (0)Cγ5/vq

b
2(0)

)
hcv(0)|H(v)〉 = f

(2)
H

The scale dependences of these couplings are governed by the anomalous dimensions γ(i) of
local operators as follows:

d ln f
(i)
H (µ)

d lnµ
≡ −γ(i) = −

∑

k

γ
(i)
k ak(µ), a(µ) ≡ αMS

s (µ)

4π
,

where the strong coupling is determined in the MS-scheme. This equation can be solved order
by order in the a(µ)-power expansion and in the NLO order, one can use the following relations:

f
(i)
H (µ) = f

(i)
H (µ0)

(
αs(µ)

αs(µ0)

)γ(i)
1 /β0

[
1 − αs(µ0) − αs(µ)

4π

γ
(i)
1

β0

(
γ

(i)
2

γ
(i)
1

− β1

β0

)]
,
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Figure 1: The complete set of the one-gluon-exchange diagrams necessary for the scale-
dependence calculation of the heavy-baryon LCDAs. The normal and thick solid lines cor-
responds to the light and heavy quarks while dotted and wavy lines denote the Wilson lines
and virtual gluons, respectively.

where β0,1 are the first two coefficient in the perturbative expansion of the β-function. As the
evolution to the required scale can be easily done now, one needs to know numerical values of the

couplings f
(i)
H (µ) at some representative scale µ0, say µ0 = 1 GeV. As this scale is rather low

to use the perturbation theory, non-perturbative techniques are necessary to calculate these
quantities. In particular, the QCD sum rules method in NLO for the Λb-baryon results the
values [23]:

f
(1)
Λb

(µ0 = 1 GeV) ≃ f
(2)
Λb

(µ0 = 1 GeV) ≃ 0.030 ± 0.005 GeV3.

Non-relativistic constituent-quark picture of heavy baryons H suggests that f
(2)
H ≃ f

(1)
H at

low scales of order 1 GeV, and this expectation is supported by numerous QCD sum rule

calculations [21, 20, 22, 23]. These couplings f
(i)
H (µ) cannot coincide at all scales because of

different anomalous dimensions γ(i) of local operators.

Similar to the couplings f
(i)
H (µ), the LCDAs Ψi(t1, t2) introduced in Eq. (1) are also scale-

dependent functions. To find their scale evolution, it is convenient to make their Fourier
transform to the momentum space:

Ψ(t1, t2) =

∫ ∞

0

dω1

∫ ∞

0

dω2 e
−it1ω1−it2ω2ψ(ω1, ω2) =

∫ ∞

0

ω dω

∫ 1

0

du e−iω(t1u+t2ū) ψ̃(ω, u)

where ū = 1 − u. In the first representation ω1 = uω and ω2 = (1 − u)ω = ūω are the
energies of the light quarks q1 and q2. The leading-order evolution equation for the ψ2(ω1, ω2;µ)
can be derived by identifying the ultra-violet singularities of the one-gluon-exchange diagrams
presented in Fig. 1.

The evolution equation in the leading order is expressed in terms of two-particle kernels:

µ
d

dµ
ψ2(ω1, ω2;µ) = −αs(µ)

2π

4

3

{∫ ∞

0

dω′
1 γ

LN(ω′
1, ω1;µ)ψ2(ω

′
1, ω2;µ)

+

∫ ∞

0

dω′
2 γ

LN(ω′
2, ω2;µ)ψ2(ω1, ω

′
2;µ) −

∫ 1

0

dv V (u, v)ψ2(vω, v̄ω;µ) +
3

2
ψ2(ω1, ω2;µ)

}
,
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where the kernel γLN(ω′, ω;µ) controls the evolution of the B-meson LCDA [24] and V (u, v) is
the Efremov-Radyushkin-Brodsky-Lepage (ER-BL) kernel [25, 26]. The term 3ψ2(ω1, ω2;µ)/2

results from the one-loop f
(2)
H renormalization subtraction. The evolution equation above can

be solved either numerically or semi-analytically [7, 9]

2.2 “Axial-Vector Baryons”

The “axial-vector baryons” are components of the SU(3)F sextet with JP = 1+ in which the
light diquark states are the axial-vector states with jp = 1+. In a difference to the “scalar
baryons” case, one needs to consider the baryons with the longitudinal and transverse polar-
izations separately.

The set of the longitudinal LCDAs is determined by the matrix elements between the bary-
onic state with the appropriate polarization and vacuum of the four independent non-local
light-ray operators [8, 9]:

ǫabc〈0|
(
qa1 (t1)C /nq

b
2(t2)

)
hcv(0)|H(v, ε)〉 = (v̄ε) f

(2)
H Ψ

‖
2(t1, t2)

ǫabc〈0|
(
qa1 (t1)C q

b
2(t2)

)
hcv(0)|H(v, ε)〉 = (v̄ε) f

(1)
H Ψ

‖s
3 (t1, t2)

ǫabc〈0|
(
qa1 (t1)C iσn̄nq

b
2(t2)

)
hcv(0)|H(v, ε)〉 = 2 (v̄ε) f

(1)
H Ψ

‖a
3 (t1, t2)

ǫabc〈0|
(
qa1 (t1)C /̄nq

b
2(t2)

)
hcv(0)|H(v, ε)〉 = − (v̄ε) f

(2)
H Ψ

‖
4(t1, t2)

where σn̄n = i (/̄n/n− /n/̄n) /2, v̄µ = (n̄µ − nµ) /2 is the four-vector orthogonal to the four-velocity
(vv̄) = 0 and normalized by (v̄v̄) = −1. In the LCDA definitions above, the baryonic state is
assumed to have a pure longitudinal polarization εµ‖ = v̄µ and the prefactor on the r.h.s. is

simply (v̄ε) = −1.
The similar set of the transverse LCDAs is determined as follows [8, 9]:

ǫabc〈0|
(
qa1 (t1)C γ

µ
⊥/nq

b
2(t2)

)
hcv(0)|H(v, ε)〉 = f

(2)
H Ψ⊥

2 (t1, t2) ε
µ
⊥

ǫabc〈0|
(
qa1 (t1)C γ

µ
⊥q

b
2(t2)

)
hcv(0)|H(v, ε)〉 = f

(1)
H Ψ⊥s

3 (t1, t2) ε
µ
⊥

ǫabc〈0|
(
qa1 (t1)C γ

µ
⊥iσn̄nq

b
2(t2)

)
hcv(0)|H(v, ε)〉 = 2f

(1)
H Ψ⊥a

3 (t1, t2) ε
µ
⊥

ǫabc〈0|
(
qa1 (t1)C γ

µ
⊥/̄nq

b
2(t2)

)
hcv(0)|H(v, ε)〉 = f

(2)
H Ψ⊥

4 (t1, t2) ε
µ
⊥

where γµ⊥ = γµ − (/̄n/n+ /n/̄n) /2 and εµ⊥ = εµ − εµ‖ is the transverse polarization of the baryon.

2.3 Real Baryons

As far as all the sets of the LCDAs are determined, it necessary to generalize their definitions to
real baryons which simply means that the spin of the heavy quark should be included into the
baryon wave function. In other words, the r. h. s. of matrix elements of all non-local operators
must be multiplied on the Dirac spinor U(v) of the heavy quark hv, satisfying the conditions:
/v U(v) = U(v) and U(v)U(v) = 1. After these modifications, the “scalar baryons” transform to
the baryons with the spin-parity JP = 1/2+ and the heavy-quark Dirac spinor U(v) is nothing
else but the heavy-baryon spinor H(v), i. e. the spin of the heavy quark completely determines
the spin structure of the heavy-baryon wave function. The case of “axial-vector baryons” is a
little bit more complicated. It is well-known from quantum mechanics that the direct product
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Figure 2: The two-point correlator of the local and light-ray operators in the QCD background.

of two angular momenta j1 = 1/2 and j2 = 1 is decomposed into two irreducible representation
with the momenta J1 = 1/2 and J2 = 3/2. That is exactly the situation after the heavy-quark
spin is switched on in the heavy baryon with the diquark in the axial-vector state jp = 1+:

εµ U(v) =

[
εµ U(v) − 1

3
(γµ + vµ) /εU(v)

]
+

1

3
(γµ + vµ) /εU(v) ≡ R3/2

µ (v) +
1

3
(γµ + vµ)H(v).

As the result, there are two states with the spin-parities JP = 1/2+ and JP = 3/2+. The former
one is described by the Dirac spinor H(v) and for the JP = 3/2+ state the Rarita-Schwinger

vector-spinor R
3/2
µ (v), which satisfies the relations /v R

3/2
µ (v) = R

3/2
µ (v), vµR

3/2
µ (v) = 0, and

γµR
3/2
µ (v) = 0, can be used.

3 QCD Sum Rules

In applications to a calculation of amplitudes with heavy baryons, one needs to know realistic
models for LCDAs. Such models can be obtained by matching several few moments of LCDA
models and the corresponding ones calculated by some non-perturbative methods, say by the
QCD sum rules. The later method requires a calculation of a two-point correlator which involve
the non-local light-ray operator and a suitable local current JΓ′

(x), as it is shown in Fig. 2.
The general structure of the heavy-baryon local currents can be chosen as follows:

J̄Γ′

(x) = ǫabc
(
q̄a2 (x) [A+B /v] Γ′CT q̄b1(x)

)
h̄cv(x),

where A and B are two constants with the constraint A + B = 1 which accounts for an
arbitrariness in the choice of local currents. The variation in A ∈ [0, 1] is adopted as a systematic
error of numerical estimations. Note that the central value A = B = 1/2 corresponds to the a
constituent quark model picture [7]. The Dirac matrix Γ′ is a suitable structure determined by
the spin-parity of the baryon, in particular, Γ′ = γ5 for baryons from the SU(3)F antitriplet
(jp = 0+) and Γ′ = γ‖, γ⊥ for the SU(3)F -sextet baryons with jp = 1+.

In calculations of the correlation functions, one tacitly assumes that baryons are bound
states of quarks which are not free particles inside but couple by virtue of the gluonic field. So,
light quark propagators S̃q(x), being very sensitive to the influence of the background gluonic
field, should be modified accordingly while for the heavy quark this effect is sub-dominant and
to leading order in the heavy-quark mass mQ expansion can be neglected. To take effects of the
QCD background inside baryons into account, the method of non-local condensates [28, 29, 30]
is used. In this approach the light-quark propagator can be decomposed into two parts: the
perturbative Sq(x) and non-perturbative Cq(x) ones,
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and the later accumulates an information about the background inside the baryon in terms of

non-local quark condensate 〈q̄(x)q(0)〉:

Sq(x) =
i/x

2π2x4
− m

4π2x2
Cq(x) =

1

12
〈q̄(x)q(0)〉

where color and spin indices are omitted. In both expressions the color structure is given by
the identity. The factor 1/12 in Cq(x) is chosen in a way that the expression is normalized by
taking the trace of color and spin, i. e. Tr[1spin] = 4 and Tr[1color] = 3.

The general parametrization of the non-local condensates was suggested in Refs. [28, 29]:

Cq(x) = 〈q̄q〉
∫ ∞

0

dν eνx
2/4 f(ν),

where 〈q̄q〉 is local quark condensate and the shape of the distribution is determined by the
function f(ν). Among the shape models suggested, the choice have been done in favor of the
following one [31, 16]:

f(ν) =
λa−2

Γ(a− 2)
ν1−a e−λ/ν , a = 3 +

4λ

m2
0

, (2)

where λ = 〈q̄D2q〉 is the correlation length and m2
0 = 〈q̄gsGµνσµνq〉/〈q̄q〉 is the ratio of the local

mixed quark-gluon and quark condensates. If one assumes that virtualities of quarks inside
the baryon are small and quarks are on the mass shell, the mixed quark-gluon condensate
and the correlation length can be related (this is the usual procedure) but the smallness of
such virtualities is not proven and, in general, the correlation length and the ration m2

0 are
independent.

To obtain the QCD sum rules, it is convenient to make the double Fourier transform of the
correlation function:

ΠΓΓ′(ω1, ω2;E) = i

∫ ∞

−∞

dt1 dt2
(2π)2

ei(ω1t1+ω2t2)

∫
d4x e−iE(vx) 〈0|OΓ(t1, t2) J̄

Γ′

(x)|0〉

In the momentum space, the correlation function reads diagrammatically as follows:

Π(ω, u;E) = .

As it is well-known from the QCD-SR analysis within the HQET, the heavy-quark condensate
term is suppressed by 1/mQ and absent in the Heavy-Quark Symmetry limit. So, the QCD Sum
Rules can be read off after the phenomenological and perturbatively calculated considerations
of the correlation function are equated based on the idea of the quark-hadron duality [27]:

|fH |2 ψΓ(ω, u) e−Λ̄H/τ = B[Π](ω, u; τ, s0),
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where symbol B means the Borel-transform, Λ̄H = mH −mQ is the effective baryon mass in
the HQET, and s0 is the momentum cutoff resulting from applying the quark-hadron duality.
The explicit QCD-SRs for all the baryonic non-local operators can be found in Ref. [9] and we
illustrate them here by the one written for the leading-twist (twist-2) transverse LCDA:

f
(2)
H

[
Af

(1)
H +B f

(2)
H

]
ψ̃SR2 (ω, u) e−Λ̄/τ =

3τ4

2π4

[
Bω̂2 uū+A ω̂ (m̂2u+ m̂1ū)

]
E1(2ŝω)e−ω̂

−〈q̄1q1〉τ3

π2
[Aω̂ū+Bm̂2] f(2τωu)E2−a(2ŝκ) e−ω̂

−〈q̄2q2〉τ3

π2
[Aω̂u+Bm̂1] f(2τωū)E2−a(2ŝκ̄) e−ω̂.

To simplify the presentation, the following auxiliary function was introduced:

Ea(x) =
1

Γ(a+ 1)

∫ x

0

dt tae−t = 1 − Γ(a+ 1, x)

Γ(a+ 1)

where Γ(a+1, x) =
∫∞
x
dt tae−t is the incomplete Γ-function. The other quantities are Λ̄ = mH−

mb, sω = s0−ω/2, κ = λ/(2uωτ), κ̄ = λ/(2ūωτ), ω̂ = ω/(2τ), ŝω = sω/(2τ), m̂1,2 = m1,2/(2τ),
ŝκ = ŝω − κ/2, ŝκ̄ = ŝω − κ̄/2. The normalizations of the symmetric LCDAs (t = 2, 3s, 4) can
be fixed by the relation: ∫ 2s0

0

ωdω

∫ 1

0

du ψ̃SR
t (ω, u) ≡ 1,

while the normalization of the antisymmetric LCDAs with t = 3σ is different and can be fixed
by the condition: ∫ 2s0

0

ωdω

∫ 1

0

duC
1/2
1 (2u− 1) ψ̃SR

t (ω, u) ≡ 1,

where Cmn (x) are the Gegenbauer polynomials [32].
These QCD sum rules are not directly applicable for getting the LCDA shapes but can be

used to constrain certain moments which are calculated based on the following definition:

〈f(ω, u)〉k ≡
∫ 2s0

0

ωdω

∫ 1

0

du f(ω, u) ψ̃SR
t (ω, u)

where t = 2, 3s, 3σ, 4.

4 Numerical analysis

Numerical values of first several moments of the bottom-baryon LCDAs estimated by the QCD-
SRs can be found in Ref. [9]. These moments should be matched to the corresponding moments
of the model functions for the LCDAs. The general presentation of the model functions for the
b-baryon LCDAs is governed by their scale evolution and can be composed of the exponential
part corresponding to the heavy-light interaction and the Gegenbauer polynomials to the light-
light interaction. The order of the polynomials is determined by the twist of the diquark system.
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Figure 3: The general representation of the model functions for the heavy-baryon LCDAs
with the ω-dependence specific for the B-meson LCDAs and the u-dependence in terms of an
expansion in the Gegenbauer polynomials similar to the ones for the light mesons.

Motivated by the analysis done for the Λb-baryon [7], the following simple models for the LCDAs
have proposed [8, 9]:

ψ̃2(ω, u) = ω2u(1 − u)

2∑

n=0

a
(2)
n

ǫ
(2)
n

4 C
3/2
n (2u− 1) e−ω/ǫ

(2)
n ,

ψ̃3s(ω, u) =
ω

2

2∑

n=0

a
(3)
n

ǫ
(3)
n

3 C
1/2
n (2u− 1) e−ω/ǫ

(3)
n ,

ψ̃3σ(ω, u) =
ω

2

3∑

n=0

b
(3)
n

η
(3)
n

3 C
1/2
n (2u− 1) e−ω/η

(3)
n ,

ψ̃4(ω, u) =

2∑

n=0

a
(4)
n

ǫ
(4)
n

2 C
1/2
n (2u− 1) e−ω/ǫ

(4)
n .

The qualitative behavior of the twist-2 LCDAs is presented in Fig. 3. The estimates of the
parameters entering the theoretical models for the heavy-baryon LCDAs at the scale µ0 = 1 GeV
can be found in Refs. [8, 9]. The dependence of the twist-2 LCDAs on the scaled energy u of
the lightest quark and the diquark energy ω at the energy scales µ0 = 1 GeV are shown on the
left and right plots in Fig. 4, respectively. The SU(3)F -symmetry breaking in LCDAs based
on taking into account the s-quark difference from the u- and d-quarks is clearly seen on these
plots. The effect of the symmetry breaking is estimated to be approximately 15%.

5 Renormalization of higher twist operators

The renormalization of the heavy-light light-ray operators up to twist-three was performed in
Ref. [33]. Here. both the 2 → 2 and 2 → 3 kernels were considered and the problem of the
operator mixing under the renormalization has been discussed. To work out the evolution,
the spinor formalism applied to QCD appears to be the most convenient. In addition, one-
loop counterterms of the non-local operators were analyzed on an existence of the conformal
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ω = 0.5 GeV Σb

Ξb

Σb(2.5GeV)

Ωb

u = 0.5

Σb

Ξb

Σb(2.5GeV)

Ωb

Figure 4: Twist-2 LCDAs of Σ (blue), Ξ (red) and Ω (cyan) baryons in dependence on the
scaled energy u of the lightest quark (the left plot) and the diquark energy ω (the right plot)
at the scale µ0 = 1 GeV estimated within the range for the most conservative error A ∈ [0, 1].

symmetry and the main finding is that the ultra-violet renormalization of a cusp of two Wilson
lines results the break down of this symmetry. As a technical output of this analysis, evolution
equations for the twist-three operators were written explicitly.

The other step in working out solutions of the heavy-baryon evolution equations analytically
was undertaken recently in Ref. [34]. In particular, the eigenfunctions of the Lange-Neubert
evolution kernel were found and used for a systematic implementation of the renormalization-
group effects for both the B-meson and Λb-baryon wave-function evolutions. Based on these
foundations, the new strategy to construct the LCDA models in accordance with the Wandzura-
Wilczek-like relations was presented. As a possible extension of the above analysis in application
to baryons, the classification of the non-local baryonic operators constructed from four particles
(three quarks and a gluon) is required to work out equations involving explicitly the there-
particle LCDAs and the twist-four four-particle ones which should reduce to the Wandzura-
Wilczek relations after four-particle LCDAs are neglected.

6 Conclusions

The total set of the non-local light-ray operators for the ground-state heavy baryons with JP =
1/2+ and JP = 3/2+ is constructed in QCD in the heavy-quark limit. Matrix elements of these
operators sandwiched between the heavy-baryon state and vacuum determine the LCDAs of
different twist through the diquark current. The first several moments of LCDAs are calculated
within the method of QCD sum rules using the non-local light-quark condensates. Simple
theoretical models for the LCDAs have been proposed and their parameters are fitted based on
the QCD sum rules estimations. SU(3)F breaking effects result the correction of order 10%.
The possibility to work out the LCDA evolution analytically is discussed.
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We present a precise calculation of the dilepton invariant-mass spectrum and branching
fraction for B+ → π+ℓ+ℓ− (ℓ± = e±, µ±) in the Standard Model (SM) based on the effec-
tive Hamiltonian approach for the b → dℓ+ℓ− transitions. Theoretical estimates strongly
depend on the form factors f+(q2), f0(q

2) and fT (q2). Of these, f+(q2) is well measured in
the semileptonic decays B → πℓνℓ and we use the B-factory data to parametrize it. Using
an SU(3)F -breaking Ansatz and Lattice-QCD data, we calculate the B → π form factors.
The resulting total branching fraction B(B+ → π+µ+µ−) =

`

1.88+0.32
−0.21

´

× 10−8 is in good
agreement with the experimental value obtained by the LHCb collaboration.

1 Introduction

Recently, the LHCb collaboration has reported the first observation of the B+ → π+µ+µ−

decay with 5.2σ significance, using 1.0 fb−1 integrated luminosity in proton-proton collisions at
the Large Hadron Collider (LHC) at

√
s = 7 TeV [1]. The measured branching ratio B(B+ →

π+µ+µ−) = [2.3±0.6(stat)±0.1(syst)]×10−8 [1] is in good agreement with the SM expectated
rate [2], which, however, is based on model-dependent input for the B → π form factors. Hence,
it is very desirable to calculate the form factors from first principles, such as the Lattice-QCD,
which have their own range of validity restricted by the recoil energy. With improved lattice
technology, one can use the lattice form factors to predict the decay rates in the B → π
transitions in the low-recoil region, where the lattice results apply without any extrapolation,
in a model-independent manner. We describe such a framework, which makes use of the methods
based on the Heavy-Quark Symmetry (HQS) in the large-recoil region, data on the charged-
current processes B0 → π−ℓ+νℓ and B+ → π0ℓ+νℓ, to determine one of the form factors,
f+(q2), and the available lattice results for the form factors in the low-recoil region. The details
of the analysis are presented in our recent paper [3] and the main steps are summarized in this
contribution.

2 Theory of B
+

→ π
+
ℓ
+
ℓ

− Decay

The effective weak Hamiltonian encompassing the transitions b → d ℓ+ℓ− (ℓ = e, µ, or τ), in
the Standard Model (SM) can be written as follows [4]:

Hb→d
eff =

4GF√
2

[
VudV

∗
ub

(
C1 O(u)

1 + C2 O(u)
2

)
+ VcdV

∗
cb (C1 O1 + C2 O2) − VtdV

∗
tb

10∑

i=3

CiOi

]
, (1)

where GF is the Fermi constant, Vq1q2 are the CKM matrix elements which satisfy the unitary
condition VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (it can be used to eliminate one combination). In
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contrast to the b→ s transition, all three terms in the unitarity relation are of the same order
in λ (V ∗

ubVud ∼ V ∗
cbVcd ∼ V ∗

tbVtd ∼ λ3), with λ = sin θ12 ≃ 0.2232 [5]. The local operators
appearing in (1) are the dimension-six operators defined at an arbitrary scale µ as in [6]. The
Wilson coefficients Ci(µ) (i = 1, . . . , 10) depending on the renormalization scale µ are calculated
at the matching scale µW ∼MW , the W -boson mass, as a perturbative expansion in the strong
coupling constant αs(µW ) [6] and can be evolved to a lower scale µb ∼ mb using the anomalous
dimensions of the above operators to NNLL order [6].

The hadronic matrix elements of the operators Oi between the B- and π-meson states are
expressed in terms of three independent form factors [7]:

〈π(pπ)|b̄γµd|B(pB)〉 = f+(q2)

[
pµB + pµπ − m2

B −m2
π

q2
qµ
]

+ f0(q
2)
m2
B −m2

π

q2
qµ, (2)

〈π(pπ)|b̄σµνqνd|B(pB)〉 =
ifT (q2)

mB +mπ

[
q2 (pµB + pµπ) −

(
m2
B −m2

π

)
qµ
]
, (3)

where pµB and pµπ are the four-momenta of the B- and π-mesons, respectively, mB and mπ

are their masses, and qµ = pµB − pµπ is the momentum transferred to the lepton pair. The
B → π transition form factors f+(q2), f0(q

2) and fT (q2) are scalar functions whose shapes are
determined by using non-perturbative methods.

The differential branching fraction in the dilepton invariant mass q2 can be expressed as
follows:

dB (B+ → π+ℓ+ℓ−)

dq2
=

G2
Fα

2
emτB

1024π5m3
B

|VtbV ∗
td|2
√
λ(q2)

√
1 − 4m2

ℓ

q2
F (q2), (4)

where αem is the fine-structure constant, mℓ is the lepton mass, τB is the B-meson lifetime,

λ(q2) =
(
m2
B +m2

π − q2
)2 − 4m2

Bm
2
π is the kinematical function encountered in three-body

decays (triangle function), and F (q2) is a dynamical function encoding the Wilson coefficients
and the form factors:

F (q2) =
2

3
λ(q2)

(
1 +

2m2
ℓ

q2

) ∣∣∣∣C
eff
9 (q2) f+(q2) +

2mb

mB +mπ
Ceff

7 (q2) fT (q2)

∣∣∣∣
2

(5)

+
2

3
λ(q2)

(
1 − 4m2

ℓ

q2

) ∣∣Ceff
10 f+(q2)

∣∣2 +
4m2

ℓ

q2
(
m2
B −m2

π

)2 ∣∣Ceff
10 f0(q

2)
∣∣2 .

The dynamical function (5) contains the effective Wilson coefficients Ceff
7 (q2), Ceff

9 (q2) and Ceff
10

which are specific combinations of the Wilson coefficients entering the effective Hamiltonian (1).
To the NNLO approximation, the effective Wilson coefficients given in [6, 8, 9].

To perform a numerical analysis one needs to know the B → π transition form factors
f+(q2), f0(q

2) and fT (q2) in the entire kinematic range: 4m2
ℓ ≤ q2 ≤ (mB −mπ)

2
. Their

model-independent determination is the main aim of this paper, which is described in detail in
subsequent sections. Several parametrizations of the semileptonic form factors f+(q2), f0(q

2)
and fT (q2) have been proposed in the literature. We especially outline the Boyd-Grinstein-
Lebed (BGL) parametrization because namely this parametrization was used in our analysis.
In the framework of BGL parametrization the shape for the form factors fi(q

2) with i = +, 0, T
is presented as follows [10]:

fi(q
2) =

1

P (q2)φi(q2, q20)

kmax∑

k=0

ak(q
2
0)
[
z(q2, q20)

]k
, z(q2, q20) =

√
m2

+ − q2 −
√
m2

+ − q20√
m2

+ − q2 +
√
m2

+ − q20

, (6)
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Figure 1: (Color online) The vector, scalar and tensor B → π transition form factors fp(q2), f0(q
2)

and fT (q2), respectively, in the entire kinematical region using the BGL parametrization. The solid
green lines show the uncertainty in the form factors. The vertical bars in the left and middle plots are
the Lattice-QCD data [12]

with the pair-production threshold m2
+ = (mB +mπ)

2 and a free parameter q20 . In our analysis
we make the choice q20 = 0.65m2

−. The proposed shapes (6) for the form factors contains the
so-called Blaschke factor P (q2) which accounts for the hadronic resonances in the sub-threshold
region q2 < m2

+. For the semileptonic B → πℓνℓ decay, where ℓ is an electron or a muon, there
is only B∗-meson with the mass mB∗ = 5.325 GeV satisfying the sub-threshold condition and
producing the pole in the form factor at q2 = m2

B∗ . In this case, the Blaschke factor is simply
P (q2) = z(q2,m2

B∗) for f+,T (q2) and P (q2) = 1 for f0(q
2).

The coefficients ak (k = 0, 1, . . . , kmax) entering the Taylor series in Eq. (6) are the param-
eters, which are determined by fits of the data. The outer function φi(q

2, q20) is an arbitrary
analytic function, whose choice only affects particular values of the coefficients ak and are given
in [11]. Having relatively small values of z(q2, q20) in the physical region of q2, the shape of the
form factor can be well approximated by the truncated series at kmax = 2 or 3.

3 Shapes of Form Factors

Measurements of the B0 → π−ℓ+νℓ and B+ → π0ℓ+νℓ decays, where ℓ = e, µ, allow to extract
both the CKM matrix element Vub and the shape of the f+(q2) form factor. The differential
branching fractions of the above processes can be written in the form [5]:

dΓ(B → πℓ+νℓ)

dq2
= CP

G2
F |Vub|2

192π3m3
B

λ3/2(q2)f2
+(q2), (7)

where CP is the isospin factor with CP = 1 for the π+-meson and CP = 1/2 for the π0-meson,
q = pℓ + pν is the lepton-pair four-momentum bounded by m2

ℓ ≤ q2 ≤ (mB − mπ)
2, and pℓ

and pν are the four-momenta of the charged lepton and neutrino, respectively.
The partial branching fraction of B0 → π−ℓ+νℓ has been measured by the BaBar and Belle

collaborations and of B0 → π−ℓ+νℓ by the Belle collaboration [13, 14, 15, 16]. Using these
data we extracted the f+(q2) form factor shape using the standard minimization procedure of
the χ2-distribution function [5]. The resulting form factor f+(q2) from the combined analysis
of the BaBar and Belle datasets is shown in the left plot in Fig. 1. In this analysis we have
assumed that the experimental points are all uncorrelated.

The parameters of f0(q
2) can be obtained from the existing results of the B → π transition

form factor calculated by the HPQCD collaboration [12]. In addition one can use the exact
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Figure 2: The dilepton invariant-mass distributions in the B+ → π+ℓ+ℓ− decay in the range 0 ≤ q2 ≤
8 GeV2 (left plot) and in the entire range 0 ≤ q2 ≤ 26.4 GeV2 (right plot).

relation f+(0) = f0(0), where f+(q2) is extracted from the experimental data. The form-factor
parametrization we use for f0(q

2) follows our default choice from the analysis of f+(q2) — the
BGL expansion in z(q2, q20) truncated at kmax = 2. The resulting f0(q

2) form factor shape is
shown in Fig. 1 (middle plot), where we also present the Lattice-QCD data [12].

One should mention that there is only scant information about the fBπT (q2) form factor
at present. So, one needs to find a reliable method to extract it from the existing model-
independent data. We use an SU(3)F -symmetry-breaking Ansatz involving the B → K and
B → π form factors. We recall that all three B → K transition form factors fBK+ (q2), fBK0 (q2)
and fBKT (q2) have been calculated recently by the HPQCD collaboration [17, 18] and the two
B → π transition form factors fBπ+ (q2) and fBπ0 (q2) are also known [12]. With this knowledge,
we first estimate the SU(3)F -breaking corrections in the already known vector and scalar form
factors and use these corrections for estimating the B → π tensor form factor fBπT (q2) from
the corresponding B → K transition form factor fBKT (q2). The resulting fBπT (q2) form factor
obtained is shown in the right plot in Fig. 1.

As all the form factors in the B → π transition are now known, we can make predictions for
the dilepton invariant-mass spectrum and decay width in the semileptonic B → π ℓ+ℓ− decays
for ℓ± = e±, µ±.

4 Predictions for B
+

→ π
+
ℓ
+
ℓ

− Decay

The B+-meson is a bound state of the heavy b̄- and light u-quarks, hence one can apply the
so-called Heavy-Quark Symmetry (HQS), which is valid in the large-recoil limit (at small values
of q2). Using the HQS allows one to simplify significantly the description of the B+ → π+ℓ+ℓ−

decay at small q2 (q2 ≤ 8 GeV2), namely, applying the HQS results in reducing the number of
independent form factors of the B → π transition from three to one. The relations between
the three form-factors f+(q2), f0(q

2) and fT (q2) in the HQS limit with taking into account
symmetry-breaking corrections are worked out in Ref. [7]. With use of these relations the
dimuon invariant mass spectrum was obtained and is presented in the left plot in Fig. 2.

In the low hadronic-recoil region (large-q2) there is no heavy-quark symmetry relations
among form factors f+(q2), f0(q

2) and fT (q2) any more and they should be considered as three
independent quantities. All of them were extracted by us in the entire kinematic range and
used for further calculations.
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The invariant-mass spectrum in the entire range of q2 (4m2
ℓ < q2 < 26.4 GeV2) is presented

in the right plot in Fig. 2. We get the following prediction for the total branching fraction [3]:

B(B+ → π+ µ+µ−) =
(
1.88+0.32

−0.21

)
× 10−8, (8)

where the resulting average uncertainty about 15% and is coming from the scale dependence µb
of the Wilson coefficients, the CKM matrix element |Vtd| and form factors (FF).

5 Summary and Outlook

We have presented a theoretically improved calculation of the branching fraction for the B± →
π±µ+µ− decay, measured recently by the LHCb collaboration [1]. The combined accuracy
on the branching ratio is estimated as ±15%, and the resulting branching fraction B(B± →
π±µ+µ−) = (1.88+0.32

−0.21) × 10−8 [3] is in agreement with the LHCb data [1].

Acknowledgements

A. R. is very grateful to the organizers of the Helmholtz Summer School “Physics of Heavy
Quarks and Hadrons” for the invitation and warm hospitality. Also A. R. would like to thank
the Theory Group at DESY for the kind and generous hospitality during the visits’ periods. The
work of A. R. is supported by the German-Russian Interdisciplinary Science Center (G-RISC)
funded by the German Federal Foreign Office via the German Academic Exchange Service
(DAAD) under the project no. P-2013a-9.

References
[1] R. Aaij et al., JHEP 1212 125 (2012).

[2] J.-J. Wang et al., Phys. Rev. D77 014017 (2008).

[3] A. Ali, A.Ya. Parkhomenko, and A.V. Rusov, DESY report DESY-13-153 (2013).

[4] G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev. Mod. Phys. 68 1125 (1996).

[5] J. Beringer et al., Phys. Rev. D86 010001 (2012).

[6] C. Bobeth, M. Misiak, and J. Urban, Nucl. Phys. B574 291 (2000).

[7] M. Beneke and T. Feldmann, Nucl. Phys. B592 3 (2001).

[8] A. Ali et al., Phys. Rev. D66 034002 (2002).

[9] H.M. Asatrian et al., Phys. Rev. D69 074007 (2004).

[10] C.G. Boyd, B. Grinstein, and R.F. Lebed. Phys. Rev. Lett. 74 4603 (1995).

[11] M.C. Arnesen et al., Phys. Rev. Lett. 95 071802 (2005).

[12] E. Dalgic et al., Phys. Rev. D73 074502 (2006).

[13] P. del Amo Sanchez et al., Phys. Rev. D83 052011 (2011).

[14] J.P. Lees et al., Phys. Rev. D86 092004 (2012).

[15] H. Ha et al., Phys. Rev. D83 071101 (2011).

[16] A. Sibidanov et al., Phys. Rev. D88 032005 (2013).

[17] C. Bouchard et al., Phys. Rev. D88 054509 (2013).

[18] C. Bouchard et al., Phys. Rev. Lett. 111 162002 (2013).

5

AHMED ALI,ALEXANDER PARKHOMENKO,ALEKSEY RUSOV

268 HQ2013



Bimodality Phenomenon in Finite and Infinite

Systems Within an Exactly Solvable Statistical

Model
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Ukraine
2Frankfurt Institute for Advanced Studies (FIAS), Goethe-University, Ruth-Moufang Str. 1,
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We present a few explicit counterexamples to the widely spread belief about an exclusive
role of the bimodal nuclear fragment size distributions as the first order phase transition
signal. In thermodynamic limit the bimodality may appear at the supercritical tempera-
tures due to the negative values of the surface tension coefficient. Such a result is found
within a novel exactly solvable formulation of the simplified statistical multifragmentation
model based on the virial expansion for a system of the nuclear fragments of all sizes.
The developed statistical model corresponds to the compressible nuclear liquid with the
tricritical endpoint located at one third of the normal nuclear density. Its exact solution for
finite volumes demonstrates the bimodal fragment size distribution right inside the finite
volume analog of a gaseous phase. These counterexamples clearly demonstrate the pitfalls
of Hill approach to phase transitions in finite systems.

1 Introduction

Despite many efforts the phase transition (PT) thermodynamics of finite systems is far from
being completed. Its consistent formulation remains a real theoretical challenge for the re-
searchers working in statistical mechanics. On the other hand, nowadays it is of great practical
importance since at intermediate and high energies the modern nuclear physics is dealing with
the phase transformations of liquid-gas type occurring in finite or even small systems. The
central issue of this field is related to a rigorous definition of finite volume analogs of phases.

The first attempt [1] to rigorously define the gaseous and liquid phases in finite systems was
based on the properties of phases existing in infinite systems in which two phases coexist at
phase equilibrium and generate two local maxima, i.e. a bimodality, of some order parameter.
Each maximum is associated with a pure phase [1]. Since a few years ago such a concept of
nuclear liquid-gas PT [2, 3] completely dominates in nuclear physics of intermediate energies.
It considers the bimodal distributions as a robust signal of a PT in finite systems. However,
this concept does not seem to be correct since in a finite system an analog of mixed phase is
not just a simple mixture of two pure phases as it is explicitly shown within an exactly solvable
statistical model [4, 5, 6]. The aim of this work is to demonstrate that in finite and infinite
systems the bimodal distributions can appear without a PT and, hence, they cannot serve as
robust signal of a PT in finite systems.
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1.1 Constrained SMM with the compressible nuclear matter

The simplified statistical multifragmentation model (SMM) which has no Coulomb and no
asymmetry energy was exactly solved in thermodynamic limit in [7], while its generalization
constrained for finite systems, the CSMM, was solved in [4]. For a volume V the grand canonical
partition of the CSMM can be identically written as [4, 5, 6]

Z(V, T, µ) =
∑

{λn}
eλn V

[
1 − ∂F(V,λn)

∂λn

]−1

, (1)

where the set of λn (n = 0, 1, 2, 3, ..) are all the roots of the equation λn = F(V, λn).
The volume spectrum of our model F(V, λ) depends on the eigen volume b = 1/ρ0 of a

nucleon at the normal nuclear density ρ0 ≃ 0.17 fm3 taken at T = 0 and zero pressure, mass
m ≃ 940 MeV, degeneracy factor z1 = 4 of nucleons and it is defined as

F(V, λ) =

(
mT

2π

) 3
2

z1 exp

{
µ− λTb

T

}
+

K(V )∑

k=2

φk(T ) exp

{
(pL(T, µ) − λT )bk

T

}
. (2)

Here φk>1(T ) ≡
(
mT
2π

) 3
2 k−τ exp

[
−σ(T ) kς

T

]
is a reduced distribution function of the k-nucleon

fragment, τ is the Fisher topological exponent and σ(T ) is the T -dependent surface tension
coefficient. Usually, the constant, parameterizing the dimension of surface in terms of the
volume is ς = 2

3 . In the expression for F(V, λ) the maximal size of fragment is denoted as
K(V ). In the usual SMM [8] and in its simplified version SMM the nuclear liquid pressure

pSMM
L = µ+W (T )

b corresponds to an incompressible matter. Since this is in contradiction with
the experimental heavy ions collisions data [9], here we analyze the following equation of state
with non-zero compressibility

pL =
W (T ) + µ+ aν(µ− µ0)

ν

b
(3)

which contains an additional term to the usual SMM liquid pressure. Here an integer power is

ν = 2 or ν = 4, W (T ) = W0 + T 2

W0
denotes the usual temperature dependent binding energy per

nucleon with W0 = 16 MeV [7], while the constants µ0 = −W0, a2 ≃ 1.233 · 10−2 MeV−1 and
a4 ≃ 4.099·10−7 MeV−3 are fixed in order to reproduce the properties of normal nuclear matter,
i.e. at vanishing temperature T = 0 and normal nuclear density ρ = ρ0 the liquid pressure must
be zero. Under a new ansatz for pL the nuclear liquid of CSMM becomes compressible [6, 10].
A careful analysis of the proposed parameterization [10] shows that it is fully consistent with
the L. van Hove axioms of statistical mechanics [11].

In addition to a more general parameterization of the bulk free energy of nuclear fragments
we also consider a more general parameterization of the surface tension coefficient

σ(T ) = σ0

∣∣∣∣
Tcep − T

Tcep

∣∣∣∣
ζ

sign(Tcep − T ) , (4)

with ζ = const ≥ 1, Tcep = 18 MeV and σ0 = 18 MeV the SMM. In contrast to the Fisher
droplet model [12] and the usual SMM [8], the CSMM surface tension (4) is negative above the
critical temperature Tcep. An extended discussion on the validity of such a parameterization
can be found in Refs. [5, 6].
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1.2 Infinite system

In the thermodynamic limit, i.e. for V → ∞ and K(V ) → ∞, in the CSMM there is always
a single solution λ0 of the equation λn = F(V → ∞, λn), but it can be of two kinds [4]:
either the gaseous pole λ0(T, µ) = pg(T, µ)/T for F(V → ∞, λ0−0) <∞ or the liquid essential
singularity λ0(T, µ) = pL(T, µ)/T for F(V → ∞, λ0 − 0) → ∞.

This model has a PT which occurs when the gaseous pole is changed by the liquid essential
singularity or vice versa. The PT curve µ = µc(T ) is a solution of the equation pg(T, µ) =
pL(T, µ), which is just the Gibbs criterion of phase equilibrium. The properties of a PT are
defined only by the liquid phase pressure pL(T, µ) and by the temperature dependence of surface
tension σ(T ). The phase diagram of the present model in thermodynamic limit in the plane of
baryonic chemical potential µ and temperature T is shown in the left panel of Fig. 1.

1.3 Finite system

The treatment of the model for finite volumes is more complicated, since the roots λn of (1)
have not only the real part Rn, but an imaginary part In as well (λn = Rn + iIn). Therefore,
equation for λn can be cast as a system of coupled transcendental equations for Rn and In

Rn =

K(V )∑

k=1

φk(T ) exp

[
Re(νn) k

T

]
cos(Inbk) , (5)

In = −
K(V )∑

k=1

φk(T ) exp

[
Re(νn) k

T

]
sin(Inbk) , (6)

where for convenience we introduced the following set of the effective chemical potentials νn

νn ≡ ν(λn) = pl(T, µ)b− (Rn + iIn)b T , (7)

and the reduced distribution for nucleons φ1(T ) =
(
mT
2π

) 3
2 z1 exp((µ− pl(T, µ)b)/T ).

Consider the real root (R0 > 0, I0 = 0), first. The real root λ0 = R0 of the CSMM exists for
any T and µ. From (1) and (5) for Rn = R0 and I0 = 0 one can see that TR0 is a constrained
grand canonical pressure of the mixture of ideal gases with the chemical potential ν0. Hence,
a single real solution λ0 = R0 with I0 = 0 of the system (5, 6) corresponds to a gaseous phase
(for more details see [7]). If for some thermodynamic parameters we have a real solution λ0

and any finite number n = 1, 2, 3, ... of the complex conjugate pairs of roots λn≥1, then such
a system corresponds to a finite volume analog of mixed phase [7]. Note that, each pair of
complex conjugate roots λn≥1 represents a metastable state with a complex value of chemical
potential νn. Since νn1 6= νn2 6=n1 these metastable states are not in a true chemical equilibrium
with the gas and with each other. A finite system analog of a liquid phase corresponds to an
infinite number of the complex roots of the system (5, 6), but in finite system it exists at infinite
pressure only. Using these definitions, one can build up the finite system analog of the T − µ
phase diagram (see the right panel of Fig.1).

Therefore, in contrast to assumptions of Refs. [2, 3], in finite systems the pure liquid phase
cannot exist at finite pressures. Instead, in finite system and finite pressures we are dealing
with the finite volume analogs of gaseous or mixed phases [4].
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Figure 1: Left panel: Phase diagram in T −µ plane for the case ν = 2, τ = 1.9 with tricritical
point at temperature Tcep = 18 MeV in thermodynamic limit. The solid line corresponds to
the 1-st order PT, the dashed line shows the 2-nd order PT, while at the dotted line the surface
tension coefficient vanishes. Right panel: the finite volume analog of the phase diagram in
T −Re(ν1) plane for given values of K(V ) = 20 (dashed curve) and K(V ) = 100 (solid curve).
Below each of these phase boundaries there exists a gaseous phase only, but at and above each
curve there are three or more solutions of the system (5, 6).

1.4 Bimodality phenomenon in finite and infinite systems

In this section we discuss another typical mistake of the approaches [2, 3] based on the bimodal
properties of the first order PT in finite systems. The authors of [2, 3] implicitly assume that,
like in the infinite systems, in finite systems there exist exactly two ‘pure’ phases and they
exactly correspond to two peaks in the bimodal distribution of the order parameter. As two
counterexamples to these assumptions we present the bimodal fragment distributions obtained
for an infinite system at the supercritical temperature where the surface tension coefficient is
negative (the left panel of Fig.2) and the one obtained inside the finite volume analog of a
gaseous phase corresponding to positive values of the effective chemical potential ν0 (the right
panel of Fig.2). As one can see from Fig.2, in contrast to expectations of [2, 3], the bimodal
fragment distributions occur without a PT.

2 Conclusions

A novel version of the CSMM is presented here. Its detailed analysis is performed in order to
clarify an origin of the bimodality appearing both in finite and in infinite systems. An exact
analytical solution of the present model allows us to perform a robust analysis of the fragment
size distributions in the regions where there is and there is no PT. It is shown that the fragment
size distribution can be bimodal-like inside of the finite volume analog of gaseous phase. Also
we demonstrate that a bimodal fragment size distribution can be caused by negative values of
the surface tension and, hence, it is not a robust signal of PT existence in finite systems.
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Figure 2: Left panel: Fragment size distributions of the model are shown for a fixed temper-
ature T = 21 MeV and four values of the baryonic chemical potential µ for an infinite system.
This region of phase diagram is characterised by the negative surface tension coefficient which
prevents an existing of a PT. Right panel: Bimodal distributions existing inside the finite
system analog of gaseous phase for a fixed temperature T = 13 MeV and different values of
the effective chemical potential ν0. Even in the region of fragments gas we observe a bimodal
like shape of the fragment distribution. The maximal size of nuclear fragment is K(V )=k=100
nucleons.
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We discuss the direct CP violation in the singly Cabibbo suppressed two body decays of
the neutral D mesons. Ascribing the large SU(3) violations to the final state interactions
one gets large strong phase differences necessary for substantial direct CP violation. While
the absolute value of the CP violating asymmetries depend on the uncertain strength of
the penguin contribution, we predict an asymmetry for the decays into charged pions more
than twice as large and having opposite sign with respect to that for charged kaons.

1 Introduction

The experimental results on CP violation in singly Cabibbo suppressed (SCS) decays of the D0

and D̄0 mesons, larger of the common expectation beforehand, published in [1, 2] after the less
conclusive results of the beauty factories [3, 4] have recently been contradicted by new analyses
by the LHCb Collaboration that gave smaller results and moreover of different signs according
to the method used [5, 6]. In the following, we report the analysis made in [7].
Defining the CP violating asymmetries for decay into the final state f as

a(f) =
Γ(D0 → f) − Γ(D̄0 → f)

Γ(D0 → f) + Γ(D̄0 → f)

the difference of asymmetries, a(f), in the decays into charged kaons and charged pions, ∆CP =
a(K+K−) − a(π+π−), has been measured with the following results:

∆CP = (−0.62 ± 0.21 ± 0.10)% (CDF), (1)

= (−0.82 ± 0.21 ± 0.11)% (LHCb1), (2)

= (−0.87 ± 0.41 ± 0.06)% (Belle), (3)

= (+0.24 ± 0.62 ± 0.26)% (BaBaR), (4)

= (−0.34 ± 0.15 ± 0.10)% (LHCb2), (5)

= (+0.49 ± 0.30 ± 0.14)% (LHCb3). (6)

A naive weighted average [8] would give ∆CP = (−0.33 ± 0.12)%, also compatible with a null
result. Many authors think that it is a sign of new physics [9], while others think that such
results are compatible with the standard model [10, 11]. In [7] we support the second hypothesis.

In [12] we presented a model to evaluate the decay branching ratios of D and Ds mesons.
The model was based on factorization and include a way to take into account the rescattering
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effects through nearby resonances and gives CP violation asymmetries at least one order of
magnitude smaller than what was found in [1, 2]. The experimental data however did change
in the meantime, so in [7] we have done a new analysis, limiting our consideration to the SCS
decays.

In [12] we observed that the large flavor SU(3) violations in the data were mainly due to the
rescattering effects (because of the difference in mass of the relevant resonances). Therefore we
now assume SU(3) symmetry for the weak decay amplitudes prior to rescattering. Furthermore,
we approximate the hamiltonian for D weak decays with its ∆U = 1 part when estimating
branching ratios, introducing the ∆U = 0 terms only for the calculation of asymmetries. This
is justified by the smallness of the relevant CKM elements, |VubV

∗
cb| << |Vud(s)V

∗
cd(s)|.

2 Decay amplitudes and branching ratios

The weak effective hamiltonian for SCS charmed particles decays is:

Hw =
GF√

2
Vud V

∗
cd [C1Q

d
1 + C2Q

d
2] +

GF√
2
Vus V

∗
cs [C1Q

s
1 + C2Q

s
2]

− GF√
2
Vub V

∗
cb

6∑

i=3

CiQi + h.c. (7)

where the Ci are Wilson coefficients that multiply the four–fermion operators defined as [13]

Qd1 = ūα γµ(1 − γ5)dβ d̄
β γµ(1 − γ5) cα ,

Qd2 = ūα γµ(1 − γ5)dα d̄
β γµ(1 − γ5) cβ ,

Q3 = ūα γµ(1 − γ5) cα
∑

q

q̄βγµ(1 − γ5) qβ ,

Q4 = ūα γµ(1 − γ5) cβ
∑

q

q̄βγµ(1 − γ5) qα, (8)

Q5 = ūα γµ(1 − γ5) cα
∑

q

q̄βγµ(1 + γ5) qβ .

Q6 = ūα γµ(1 − γ5) cβ
∑

q

q̄βγµ(1 + γ5) qα.

The operators Qs1 and Qs2 are obtained by means of the substitution d→ s in Qd1 and Qd2.
Looking at the U spin transformation properties, the hamiltonian can be decomposed in

two parts. The dominant part has ∆U = 1 and it is

H∆U=1 =
GF

2
√

2
(Vus V

∗
cs − Vud V

∗
cd)[C1(Q

s
1 −Qd1) + C2(Q

s
2 −Qd2)] (9)

≃ GF√
2

sin θC cos θC [C1(Q
s
1 −Qd1) + C2(Q

s
2 −Qd2)].

The remaining part, that using the unitarity of the CKM matrix can be written in the form

H∆U=0 = − GF√
2
Vub V

∗
cb

{ 6∑

i=3

CiQi +
1

2
[C1(Q

s
1 +Qd1) + C2(Q

s
2 +Qd2)]

}
, (10)

2

CP VIOLATION IN D MESON DECAYS

HQ2013 275



may be neglected in the calculation of decay branching ratios (even if necessary for CP violation)
given that |VubV

∗
cb| << sin θC cos θC . In this approximation, the neutral charmed meson D0

being a U -spin singlet, only two independent amplitudes are needed for D0 SCS decays into
two pseudoscalars belonging to SU(3) octets. In fact, there are two independent combinations
of S-wave states having U=1:

1

2

{
|K+K− > +|K−K+ > −|π+ π− > −|π− π+ >

}
; (11)

√
3

2
√

2

{
|π0 π0 > −|η8 η8 > − 1√

3
(|π0 η8 > +|η8 π0 >)

}
,

that may be combined in two states with given trasformation properties under SU(3):

|8, U = 1 >=

√
3

2
√

5

{
|K+K− > +|K−K+ > −|π+π− > −|π−π+ > (12)

−
[
|π0π0 > −|η8η8 > − 1√

3
(|π0η8 > +|η8π0 >)

]}
,

|27, U = 1 >=
1√
10

{
|K+K− > +|K−K+ > −|π+π− > −|π−π+ > (13)

+
3

2

[
|π0π0 > −|η8η8 > − 1√

3
(|π0η8 > +|η8π0 >)

]}
.

Another independent amplitude would appear considering decays to states involving an SU(3)
singlet. In order to keep the number of parameters to a minimum we disregard decays to states
containing the singlet η1 meson.

The eqs.(12,13) imply no decay to neutral kaons (K0 K̄0) and the decays to charged pions
should be more frequent than to charged kaons because of the larger phase space, given the
equal and opposite amplitudes. Both predictions are in disagreement with experiment.

The large SU(3) violations have been much discussed in the literature, a general first order
analysis was done many years ago [14] and in recent works [9, 10] its relevance to CP violation
has been stressed. In our model the necessary SU(3) breaking is determined by the final
state interactions, described as the effect of resonances in the scattering of the final particles.
Assuming no exotic resonances belonging to the 27 representation, the possible resonances have
SU(3) and isospin quantum numbers (8, I = 1), (8, I = 0) and (1, I = 0). Moreover, the two
states with I = 0 can be mixed, yielding two resonances:

|f0 > = +sinφ |8, I = 0 > +cosφ |1, I = 0 >, (14)

|f ′0 > = − cosφ |8, I = 0 > +sinφ |1, I = 0 > . (15)

The mixing angle φ and the strong phases δ0, δ
′
0 and δ1 are our model parameters, together

with the two independent weak decay amplitudes. In principle, the strong phases should be
related to the mass Mi and total width Γi of the corresponding resonance through the relation

tan δi =
Γi

2(Mi −MD0)
,

however the experimental data on these scalar resonances are sparse and do not allow a clean
determination of the phases. One plausible hypothesis is that the phase δ1 ∼ π/2, since the
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isovector partner of the scalar resonance K∗
0 (1950) should have a mass close to the D0 mass,

as it follows deriving it from an equispacing formula [12]. Note also that we are putting to
zero the small phase δ27, so that the δi parameters actually correspond to the differences with
respect to the phase in the non resonant channel.

The two independent and unknown weak amplitudes can be related to the commonly used
diagrammatic amplitudes T and C (color connected and color suppressed respectively) [15] in
the following way:

A8(U = 1) = 〈8, U = 1|H∆U=1

∣∣D0
〉

∝ T − 2

3
C , (16)

A27(U = 1) = 〈27, U = 1|H∆U=1

∣∣D0
〉

∝ T + C. (17)

It is important to stress that in our approach, differently from other authors, both the ampli-
tudes T and C are real numbers, the strong phases being introduced as effects of rescattering.
As an example, it is interesting to look at the decay amplitudes in charged pions and kaons
including the effects of the final state interactions:

A(D0 → π+π−) =
(
T − 2

3
C
){

− 3

10

(
eıδ0 + eıδ

′
0

)
(18)

+

(
− 3

10
cos(2φ) +

3

4
√

10
sin(2φ)

)(
eıδ

′
0 − eıδ0

)}

−
(
T + C

) 2

5
,

A(D0 → K+K−) =
(
T − 2

3
C
){ 3

20

(
eıδ0 + eıδ

′
0

)
(19)

+

(
3

20
cos(2φ) +

3

4
√

10
sin(2φ)

)(
eıδ

′
0 − eıδ0

)
+

3

10
eıδ1
}

+
(
T + C

) 2

5
.

The limit of exact flavor SU(3) would correspond to sin(φ) = 1, δ0 = δ1. In this limit the
amplitudes do not depend on δ′0 (since in the approximation of keeping only the ∆U = 1
hamiltonian the D0 meson does not couple to the singlet state) they are of opposite sign and
equal respectively to:

A[D0 → π+π−(K+K−)] → ∓
[(
T − 2

3
C
) 3

5
eıδ0 +

(
T + C

) 2

5

]
. (20)

The expressions for the remaining amplitudes can be found in [7].
As it can be seen from the above equations, the SU(3) breaking corrections do not change

the part of the amplitudes belonging to the 27 representation, but only the octet part, that
also acquires a singlet component. Therefore, in our model the SU(3) breaking hamiltonian
transforms as a triplet under SU(3), completely analogous to the simplifying hypothesis put
forward in [14], first suggested in [16]. However, the number of parameters in our model is
six, three of which describe the SU(3) symmetry breaking, while in [14] the symmetry breaking
parameters are four.

We note that the experimental results for the decays of neutral and charged D mesons
in a pion pair when analyzed in terms of amplitudes of given isospin A2 and A0, defined by
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A(D0 → π+π−) = (
√

2 A0 −A2)/
√

6, give [11]:

|A2| = (3.08 ± 0.08) 10−7 GeV , (21)

|A0| = (7.6 ± 0.1) 10−7 GeV ,

arg(A2/A0) = ±(93 ± 3)◦ .

On the contrary, the presence of two independent amplitudes with isospin 1 in the KK̄ channels
does not allow a determination of the amplitudes from their decay branching ratios.

We found a good agreement with the experimental data for the rates with the following set
of parameters (the upper or lower signs should be taken simultaneously):

C / T = − 0.529 , (22)

sin(2φ) = 0.701 , cos(2φ) = 0.713 ,

sin δ0 = ± 0.529 , cos δ0 = − 0.848 ,

sin δ′0 = ± 0.794 , cos δ′0 = 0.608 ,

sin δ1 = ± 0.992 , cos δ1 = 0.126 .

In fact, using these values we obtain the following results for the ratios of decay rates:

Γ(D0 → KSKS)

Γ(D0 → K+K−)
= 0.0429 , (23)

Γ(D0 → π+π−)

Γ(D0 → K+K−)
= 0.354 ,

Γ(D0 → π0π0)

Γ(D0 → K+K−)
= 0.202 ,

to be compared to the experimental values [17]: 0.043±0.010, 0.354±0.010, 0.202±0.013, respec-
tively. Moreover, the ratio of the moduli of the two pion isospin amplitudes is |A2/A0| = 0.40
and its phase is ∓87.2◦, in fair agreement with the experimental results reported in eq.(21). The
result for the absolute values of the branching ratios, obtained using the experimental lifetime,
agree within 20% with the values obtained using naive factorization (that may be derived in
the π+ π− case from eq. (2.16) of [12]).

It may appear that describing four experimental data (the three ratios in eq.(23) and the
analogous ratio for the two pion decay of a D+, or equivalently the relative phase of the two
pionic amplitudes with given isospin) with five parameters is trivial. However, four of these
parameters are angles, and sines or cosines may only vary between −1 and 1, so that formulae
like those given in the Appendix are not capable of describing any number. The result presented
in eq.(22) has not been obtained with a least squares fit, and not every parameter has been taken
as really free. In fact, we required | sin(δ1)| ≃ 1 (as already said above) and C / T ∼ − 0.5,
similar to the results of our old fits [12].

Finally, we note that identifying the η meson with η8 the branching ratios to final states
would come out

Γ(D0 → π0η)

Γ(D0 → K+K−)
= 0.216 (24)

Γ(D0 → ηη)

Γ(D0 → K+K−)
= 0.250,
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to be compared to the experimental values (0.172±0.018, 0.422±0.051) respectively. Also in
this case, the final state rescattering is helpful in allowing a decay rate to ηη larger than to
π0π0, albeit to an insufficient level, in spite of the phase space difference.

3 CP asymmetries

A nonzero direct CP asymmetry is present only when the decay amplitude is a sum of two
amplitudes with different weak phases and having also two different strong phases. If the
amplitude for D decay is

A = A eıδA +B eıδB ,

the CP conjugate amplitude would be

Ā = A∗ eıδA +B∗ eıδB ,

and the CP asymmetry is:

aCP =
|A|2 − |Ā|2
|A|2 + |Ā|2 =

2 ℑ(A∗B) sin(δA − δB)

|A|2 + |B|2 + 2 ℜ(A∗B) cos(δA − δB)
. (25)

In our case the amplitude B is provided by the matrix elements of the ∆U = 0 hamilto-
nian, eq.(10), that contains both Q1(2) and ”penguin” operators. In this case, there are three
independent symmetric states of two pseudoscalar mesons:

1

2

{
|K+K− > +|K−K+ > +|π+ π− > +|π− π+ >

}
; (26)

1

4

{
3 |π0 π0 > +|η8 η8 > +

√
3 (|π0 η8 > +|η8 π0 >)

}
;

1√
3

{
1

4
|π0 π0 > +

3

4
|η8 η8 > −

√
3

4
(|π0 η8 > +|η8 π0 >) + |K0 K̄0 > +|K̄0K0 >

}
,

that give rise to three amplitudes transforming as 27, 8 and 1 under SU(3) (for the Q1(2) part)
and to two amplitudes transforming as 8 and 1 (for the penguin part). In the framework of
quark diagrams (and neglecting annihilation) the third state in eq.(26) decouples, both for
penguins and for the other terms. Moreover, the ∆I = 1/2 property of the penguin selects one
combination of the first two states. Taking into account that now also the singlet components of
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the resonances couple to the D0 meson state, after rescattering the relevant amplitudes become:

B(D0 → π+π−) =

(
P +

T ′

2

){
1

2

(
eıδ0 + eıδ

′
0

)
(27)

+

(
−1

6
cos(2φ) − 7

4
√

10
sin(2φ)

)(
eıδ

′
0 − eıδ0

)}

+ (T ′ + C ′)

{
3

20
− 3

40

(
eıδ0 + eıδ

′
0

)

+
[ 1

120
cos(2φ) +

1

4
√

10
sin(2φ)

] (
eıδ

′
0 − eıδ0

)}
,

B(D0 → K+K−) =

(
P +

T ′

2

){
1

4

(
eıδ0 + eıδ

′
0

)
(28)

+

(
− 5

12
cos(2φ) +

1

4
√

10
sin(2φ)

)(
eıδ

′
0 − eıδ0

)
+

1

2
eıδ1
}

+ (T ′ + C ′)

{
3

20
− 1

40

(
eıδ0 + eıδ

′
0

)
+

7

120
cos(2φ)

(
eıδ

′
0 − eıδ0

)
− 1

10
eıδ1
}
.

The parameter P represents, in eqs.(27,28), the “penguin” diagram, while with T ′ and C ′ we
indicate the color connected and color suppressed contributions (we are neglecting annihilations)
and them are related to T and C by

T ′ = − T
Vub V

∗
cb

sin θC cos θC
and C ′ = − C

Vub V
∗
cb

sin θC cos θC
. (29)

We note that if T ′ + C ′ = 0 the terms containing these amplitudes have the same structure
of the penguin term, and that therefore could be reabsorbed in the uncertainty of the penguin
contribution. In our phase convention the amplitudes T and C are real, while T ′, C ′ and P are
complex, having the phase π − γ = (111 ± 4)◦ [17, 18].

The numerical value of the ratios |T ′/T | and |C ′/C| being (6.6±0.9) ·10−4, they would
result in a CP asymmetry of this order. A large asymmetry may only be due to the penguin
contribution. We recall that the penguin diagrams were introduced as a possible explanation
of the “octet enhancement” by Shifman, Vainshtein and Zacharov [19] many years ago. A large
matrix element for these operators could successfully describe both the kaon and the hyperon
non–leptonic decays. There has not been a general consensus on this approach, and in particular
a recent lattice calculation [20] seems to indicate a different origin for the ∆I = 1/2 dominance
in kaon decays.

Using the expressions in equations (19,28) and neglecting the contribution of the terms
containing T ′ and C ′, the A(K+K−) can be approximated by the

A(K+K−) ≃ T fT (δi, φ, C/T ) + P fP (δi, φ) ,

and equation (25) gives

aCP (K+K−) ≃ 2 T ℑ(P ) ℑ(fT f
∗
P )

T 2 |fT |2 + ...
(30)

where we neglected terms of order |P |/T in the denominator, an approximation already made
in the calculation of the decay rates.
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Inserting in the relevant formulae the parameter values previously determined from the
branching ratios and choosing the lower signs in eq.(22), the CP asymmetries for decays in
charged mesons turn out to be

aCP (K+K−) =
ℑ(P )

T
· (+1.469) , (31)

aCP (π+π−) =
ℑ(P )

T
· (−3.362) .

The sign would be opposite if one chooses instead the upper signs in eq.(22). Our choice is
suggested by the fact that apparently the resonance f0(1710) - that has a lower mass - prefers
to decay in a pair of kaons [17] and should therefore be identified with f ′0.

We also report the prediction for CP asymmetries for decays in final states with neutral
mesons, although it will probably be difficult to test them by experiment:

aCP (K0K̄0) =
ℑ(P )

T
· (−1.217) , (32)

aCP (π0π0) =
ℑ(P )

T
· (−1.668) .

We note that our parameters predict an asymmetry in the decay to charged pions that is
of opposite sign with respect to the asymmetry for decays to charged kaons, and more than
twice as large. Assuming instead equal values for the phases δ0, δ

′
0 and δ1, the asymmetries

would be equal and opposite, but of considerable less magnitude (even for a maximal strong
phase). Therefore, the SU(3) breaking in rescattering favors, in a sense, a larger ∆CP . Taking
into account the CKM elements entering in the definition of T and P , one has

ℑ(P )

T
=

|Vub Vcb|
sin θC cos θC

sin γ
< K+K−| ∑6

i=3 CiQi + 1
2 [C1{Qs1 +Qd1} + C2{Qs2 +Qd2}] |D0 >

< K+K−|C1(Qs1 −Qd1) + C2(Qs2 −Qd2) |D0 >

= 6.3 10−4κ , (33)

where the notation < K+K−| {Qi} |D0 > indicates the matrix element evaluated with a
penguin contraction of the operator. One obtains therefore:

∆CP = 3.03 10−3κ . (34)

A value of κ around three gives asymmetries at the percent level. Concerning the sign of
∆CP, we note that if one uses factorization κ would be negative and ∆CP would therefore be
negative, in agreement with the majority of experimental results. We note however that if one
uses factorization a considerably smaller value for κ would be expected, due to the smallness
of the Wilson coefficients of QCD penguin operators.

Let us compare this result to what has been found in [11], where an analysis of the bounds
imposed by unitarity on the final state interactions of the isospin zero amplitudes was pursued,
both in a two–channel and in a three–channel situation. We note that the enhancement factor
κ required is similar to what was found there in the three channel case, and that, in our SU(3)
based scheme, the channels are in fact three (1, 8, 27).

8

CP VIOLATION IN D MESON DECAYS

HQ2013 281



4 Conclusion

We studied the singly Cabibbo suppressed decays of neutral D mesons by assuming that all
the SU(3) violations are due to the final state interactions. Large values of the strong phases
are necessary to predict consistent CP violation in the decay amplitudes. In our framework we
were able to give an accurate description of decay branching ratios and of the isospin structure
of the amplitudes for pionic decays.

The experimental situation regarding the CP violating asymmetries is at present rather
confused, but we think anyhow of interest to have shown that large asymmetries can be obtained,
considering the uncertainties of long distance contributions and with some stretching of the
parameters, even without invoking New Physics.

A rather large value of the ”penguin” matrix element would be needed to obtain asymmetries
as large as in [1, 2, 3]. We recall that large ”penguin” contributions were also suggested to
reproduce rates and isospin structure of the decays of K mesons and hyperons [19], although
it is not evident that the analogy can be pursued [16]. While the absolute value of the CP
violating asymmetries cannot be safely predicted, we obtain an asymmetry for the decays into
charged pions more than twice as large and having opposite sign with respect to that for charged
kaons.
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The f0 mesons are studied in a combined analysis of data on isoscalar S-wave processes
ππ → ππ,KK, ηη and on decays J/ψ → φ(ππ,KK), ψ(2S) → J/ψ(ππ) and Υ(2S) →
Υ(1S)ππ from the Argus, Crystal Ball, CLEO, CUSB, DM2, Mark II, Mark III, and BESIII
Collaborations. The method of analysis, based on analyticity and unitarity and using an
uniformization procedure, is set forth with some details. Some spectroscopic implications
from results of the analysis are discussed.

1 Introduction

The problem of scalar mesons, particularly their nature, parameters, and status of some of them,
is still not solved [1]. In the 3-channel analyses of ππ scattering, based on the uniformizing
variable [2, 3], we obtained parameters of the f0(600) and f0(1500) which considerably differ
from results of analyses utilizing other methods (mainly based on dispersion relation and Breit-
Wigner approaches). Reasons for this difference were understood in Refs. [4, 5]. We showed
that studying wide multi-channel resonances the Riemann-surface structure of the S-matrix
of considered processes must be allowed for properly. For the scalar states this should be at
least the 8-sheeted Riemann surface. This is related to a necessity to analyze jointly coupled
processes ππ → ππ,KK, ηη because analyzing only ππ scattering it is impossible to obtain
correct parameters for the scalar states. One can conclude: Even if a wide state does not
decay into a channel which opens above its mass but it is strongly connected with this channel,
one ought to consider this state taking into account the Riemann-surface sheets related to
the threshold branch-point of this channel. I.e., the standard dispersion relation approach,
in which amplitudes are considered on the 2-sheeted Riemann surface, does not suit for a
correct determination of resonance parameters. These conclusions are important because our
approach is based only on the demand for analyticity and unitarity of amplitude and using
an uniformization procedure. The construction of the amplitude is essentially free from any
dynamical (model) assumptions utilizing only the mathematical fact that a local behaviour of
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analytic functions determined on the Riemann surface is governed by the nearest singularities
on all corresponding sheets. Therefore, our approach permits us to omit theoretical prejudice
in extracting the resonance parameters.

Analyzing only ππ → ππ,KK, ηη(ηη′) [3] we showed that data on the ππ scattering below
1 GeV admit two sets of parameters of the f0(600): in both cases mσ ≈ mρ and the total
widths about 600 and 950 MeV – solutions “A” and “B”, respectively. For the states f0(1370),
f0(1500) (as a superposition of a broad and narrow state) and f0(1710), we got four possible
scenarios of representation by poles and zeros on the Riemann surface giving similar description
of the above processes and, however, quite different parameters of some resonances. E.g., in A
solution we got the following spread of the masses and total widths for the f0(600), f0(1370)
and f0(1710), respectively: 605-735 and 567-686 MeV, 1326-1404 and 223-345 MeV, and 1751-
1759 and 118-207 MeV. Adding the data on J/ψ → φ(ππ,KK) from the Mark III, DM2 and
BESIII [6], we could diminished the number of possible scenarios [5]. Moreover, the di-pion
mass distribution of J/ψ → φππ of the BESIII data from the threshold to about 850 MeV
prefers the solution with the wider f0(600) state – B-solution. This is a problem because most
of physicists [1] prefer the narrower f0(600). Therefore, we extend our analysis adding also data
on ψ(2S) → J/ψ(ππ) and Υ(2S) → Υ(1S)ππ from the Argus, Crystal Ball, CLEO, CUSB, and
Mark II collaborations [7, 8].

There are also problems related to interpretation of scalar mesons, e.g., as to an assignment
of the scalar mesons to qq̄ nonets. A number of properties of these states do not allow one simply
to make up this. The main problem is a discordance of the approximately equal masses of the
f0(980) and a0(980) and observed ss̄ dominance in the wave function of the f0(980). If these
states are in the same nonet, then the f0(980) must be heavier than a0(980) by 250-300 MeV
because the difference of the s- and u-quark masses is 120-150 MeV. Due to this fact, various
solutions are proposed. The most popular variant is the 4-quark interpretation of the f0(980)
and a0(980) mesons, in favour of which as though additional arguments have been found based
on interpretation of the data on φ→ γπ0π0, γπ0η [9]. However, the 4-quark model, beautifully
solving the old problem of the unusual properties of scalar mesons, sets new questions. Where
are the 2-quark states, their radial excitations and the other members of 4-quark multiplets
9, 9∗, 36 and 36∗, which are predicted to exist below 2.5 GeV [10]? We proposed our way to
solve this problem.

Further we shall consider mainly the 3-channel case because this is a minimal number of
channels needed for obtaining correct values of parameters of the scalar resonances.

2 Method of the uniformizing variable

Our model-independent method which essentially utilizes a uniformizing variable can be used
only for the 2- and the 3-channel cases [2, 3]. The 3-channel S-matrix is determined on the
8-sheeted Riemann surface. The matrix elements Sij , where i, j = 1, 2, 3 denote channels,
have the right-hand cuts along the real axis of the s complex plane (s is the invariant total
energy squared), starting with the channel thresholds si, and the left-hand cuts related to
the crossed channels. The Riemann-surface sheets, denoted by the Roman numbers, are num-
bered according to the signs of analytic continuations of the square roots

√
s− si as follows:

signs
(

Im
√
s− s1, Im

√
s− s2, Im

√
s− s3

)
= + + +, − + +, −− +, + − +, + −−, −−−,

− + −, + + − correspond to sheets I, II,· · · , VIII, respectively.
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Figure 1: Sewing together the sheets of the Rie-
mann surface.

In the upper part of Fig. 1, the right-hand
cuts of the 3-channel S-matrix are shown on
the s-plane. The lower part shows how the
Riemann sheets are sewed together. E.g.,
sheet I is sewed with sheet II, III, and VI be-
tween the thresholds ππ and KK, KK and
ηη, and above the ηη threshold, respectively.
Our approach is based on analyticity and uni-
tarity and realizes an idea of the consistent
account of the nearest (to the physical re-
gion) singularities on all sheets of the Rie-
mann surface of the S-matrix, thus giving a
chance to obtain a model-independent infor-
mation on resonances from the data analysis.
The main model-independent contribution of
resonances is given by poles and correspond-
ing zeros on the Riemann surface. A simple
description of the background is a criterion of
correctness of this statement.

If a resonance has the only decay mode
(1-channel case), a general statement about
the amplitude is that for energies in proxim-
ity of the resonance energy it describes the
propagation of resonance as if it is a free par-
ticle. This means that in the matrix element the resonance (in the limit of its narrow width) is
represented by a pair of complex conjugate poles on sheet II and by a pair of conjugate zeros
on sheet I at the same points of complex energy. This model-independent statement about
the poles as the nearest singularities holds also when taking account of the finite width of a
resonance and in the multi-channel case.

An arrangement of poles and zeros of a multi-channel resonance on the Riemann surface
is obtained using the proved fact that on the physical sheet, the S-matrix elements can have
only resonance zeros (beyond the real axis), at least, around the physical region. This allows
to obtain formulas expressing analytic continuations of the S-matrix elements to all sheets
in terms of those on the physical sheet [11]. To this end, let us consider the N -channel S-
matrix (all are two-particle channels) determined on the 2N -sheeted Riemann surface. The
surface has the right-hand (unitary) cuts along the real axis of the s-variable complex plane
(si,∞) (i = 1, 2, · · · , N is a channel) through which the physical sheet is sewed together with
other sheets. The branch points are at the zero channel momenta kα = (s/4 −m2

α)1/2. For
now we will neglect the left-hand cut on the Riemann surface related to the crossing-channel
contributions, which, in principle, can be included in the background part of the amplitude.

It is convenient to label the sheets as follows (see, e.g., [12]): the physical sheet is denoted
as L0 and the other sheets as Li1···ik where i1 · · · ik is a system of subscripts of those channel-
momenta kin that change signs at analytical continuations from the physical onto the indicated
sheet. Then the analytical continuation of S-matrix elements Sik to the unphysical sheet Li1···ik
is S

(i1···ik)
ik . We obtain the formula for S

(i1···ik)
ik expressed in terms of S

(0)
ik (the matrix elements

Sik on the physical sheet L0), using the reality property of the analytic functions and the N -
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286 HQ2013



channel unitarity. The direct derivation of these formulas requires rather bulky algebra. It can
be simplified if we use Hermiticity of the K-matrix.

First, let us introduce the notation: S[i1···ik] is a matrix with zero matrix elements except
for the rows i1, · · · , ik, that consist of elements Sinim . In the matrix S{i1···ik}, on the contrary,
the rows i1, · · · , ik are zeros. Therefore, S[i1···ik] + S{i1···ik} = S. Further we introduce the
diagonal matrices ∆[i1···ik] and ∆{i1···ik} with the diagonal elements

∆
[i1···ik]
ii =

{
1 if i ∈ (i1 · · · ik),
0 for remaining i,

and ∆
{i1···ik}
ii =

{
0 if i ∈ (i1 · · · ik).
1 for remaining i,

Further using relation of the S- and K-matrices

S =
I + iρ1/2Kρ1/2

I − iρ1/2Kρ1/2
where ρij = 0 (i 6= j), ρii = 2ki/

√
s (1)

and SS+ = I, it is easy to obtain K = K+, i.e., the K-matrix has no discontinuity when
crossing the two-particle unitary cuts and has the same value in all sheets of the Riemann
surface. Using the latter fact, we obtain the needed formula. The analytical continuations of
the S-matrix to the sheet Li1···ik will be represented as

S(i1···ik) =
S(0){i1···ik} − i∆[i1···ik]

∆{i1···ik} − iS(0)[i1···ik]
. (2)

From eq. (2) the corresponding relations for the S-matrix elements can be derived by the
formula for the matrix division. In Table 1 the result is shown for the 3-channel case. We
have returned to more standard enumeration of sheets by Roman numerals I, II,...,VIII. In

L0 L1 L12 L2 L23 L123 L13 L3

Process I II III IV V VI VII VIII

1 → 1 S11 1/S11 S22/D33 D33/S22 det S/D11 D11/det S S33/D22 D22/S33

1 → 2 S12 iS12/S11 −S12/D33 iS12/S22 iD12/D11 −D12/det S iD12/D22 D12/S33

2 → 2 S22 D33/S11 S11/D33 1/S22 S33/D11 D22/det S det S/D22 D11/S33

1 → 3 S13 iS13/S11 −iD13/D33 −D13/S22 −iD13/D11 D13/det S −S13/D22 iS13/S33

2 → 3 S23 D23/S11 iD23/D33 iS23/S22 −S23/D11 −D23/det S iD23/D22 iS23/S33

3 → 3 S33 D22/S11 det S/D33 D11/S22 S22/D11 D33/det S S11/D22 1/S33

Table 1: Analytic continuations of the 3-channel S-matrix elements to unphysical sheets.

Table 1, the superscript I is omitted to simplify the notation, detS is the determinant of the
3 × 3 S-matrix on sheet I, Dαβ is the minor of the element Sαβ , that is, D11 = S22S33 − S2

23,
D22 = S11S33 − S2

13, D33 = S11S22 − S2
12, D12 = S12S33 − S13S23, D23 = S11S23 − S12S13, etc.

These formulas show how singularities and resonance poles and zeros are transferred from
the matrix element S11 to matrix elements of coupled processes. Starting from the resonance
zeros on sheet I, one can obtain the arrangement of poles and zeros of resonance on the whole
Riemann surface (“pole clusters”). In the 3-channel case, we obtain 7 types of resonances
corresponding to 7 possible situations when there are resonance zeros on sheet I only in S11 –
(a); S22 – (b); S33 – (c); S11 and S22 – (d); S22 and S33 – (e); S11 and S33 – (f);
S11, S22 and S33 – (g). A necessary and sufficient condition for existence of the multi-channel
resonance is its representation by one of the types of pole clusters. A main model-independent
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contribution of resonances is given by the pole clusters and possible remaining small (model-
dependent) contributions of resonances can be included in the background. This is confirmed
further by the obtained very simple description of the background.

The cluster type is related to the nature of state. E.g., if we consider the ππ, KK and ηη
channels, then a resonance, coupled relatively more strongly to the ππ channel than to the KK
and ηη ones is described by the cluster of type (a). In the opposite case, it is represented by
the cluster of type (e) (say, the state with the dominant ss̄ component). The glueball must be
represented by the cluster of type (g) as a necessary condition for the ideal case.

One can formulate a model-independent test as a necessary condition to distinguish a bound
state of colorless particles (e.g., a KK molecule) and a qq̄ bound state [11, 13]. In the 1-channel
case, the existence of the particle bound-state means the presence of a pole on the real axis
under the threshold on the physical sheet. In the 2-channel case, existence of the bound-state in
channel 2 (KK molecule) that, however, can decay into channel 1 (ππ decay), would imply the
presence of the pair of complex conjugate poles on sheet II under the second-channel threshold
without the corresponding shifted pair of poles on sheet III.

In the 3-channel case, the bound state in channel 3 (ηη) that, however, can decay into
channels 1 (ππ decay) and 2 (KK decay), is represented by the pair of complex conjugate poles
on sheet II and by the pair of shifted poles on sheet III under the ηη threshold without the
corresponding poles on sheets VI and VII.

According to this test, earlier we rejected interpretation of the f0(980) as the KK molecule
because this state is represented by the cluster of type (a) in the 2-channel analysis of ππ →
ππ,KK and, therefore, does not satisfy the necessary condition to be the KK molecule [11].

It is convenient to use the Le Couteur-Newton relations [14]. They express the S-matrix
elements of all coupled processes in terms of the Jost matrix determinant d(k1, · · · , kN ) ≡ d(s)
that is a real analytic function with the only branch-points at ki = 0:

Sii(s) =
d(i)(s)

d(s)
,

∣∣∣∣∣∣∣

Si1i1(s) · · · Si1ik(s)
...

...
...

Siki1(s) · · · Sikik(s)

∣∣∣∣∣∣∣
=
d(i1···ik)(s)

d(s)
. (3)

Rather simple derivation of these relations, using the ND−1 representation of amplitudes and
Hermiticity of the K-matrix, can be found in Ref. [12]. The real analyticity implies d(s∗) =
d∗(s) for all s. The unitarity condition requires further restrictions on the d-function for
physical s-values which will be discussed below in the example of 3-channel S-matrix.

In order to use really the representation of resonances by various pole clusters, it ought to
transform our multi-valued S-matrix, determined on the 8-sheeted Riemann surface, to one-
valued function. But that function can be uniformized only on torus with the help of a simple
mapping. This is unsatisfactory for our purpose. Therefore, we neglect the influence of the
lowest (ππ) threshold branch-point (however, unitarity on the ππ cut is taken into account).
This approximation means the consideration of the nearest to the physical region semi-sheets
of the Riemann surface of the S-matrix. In fact, we construct a 4-sheeted model of the initial 8-
sheeted Riemann surface that is in accordance with our approach of a consistent account of the
nearest singularities on all the relevant sheets. In the corresponding uniformizing variable, we
have neglected the ππ-threshold branch-point and taken into account theKK- and ηη-threshold
branch-points and the left-hand branch-point at s = 0:

w =

√
(s− s2)s3 +

√
(s− s3)s2√

s(s3 − s2)
(s2 = 4m2

K and s3 = 4m2
η). (4)
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In Fig. 2 we show the representation of resonances of types (a), (b), (c) and (g) used in
this analysis on the uniformization w-plane for the 3-channel-ππ-scattering S-matrix element.
Representation of other type resonances can be found in Ref. [3].
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Figure 2: Uniformization w-plane. Representation of resonances of types (a), (b), (c) and (g)
in S11 is shown.

On the w-plane, the Le Couteur–Newton relations are somewhat modified taking account
of the used model of initial 8-sheeted Riemann surface:

S11 =
d∗(−w∗)

d(w)
, S22 =

d(−w−1)

d(w)
, S33 =

d(w−1)

d(w)
, (5)

S11S22 − S2
12 =

d∗(w∗−1)

d(w)
, S11S33 − S2

13 =
d∗(−w∗−1)

d(w)
, S22S33 − S2

23 =
d(−w)

d(w)
. (6)

The 3-channel unitarity requires the following relations to hold for physical w-values: |d(−w∗)| ≤
|d(w)|, |d(−w−1)| ≤ |d(w)|, |d(w−1)| ≤ |d(w)| and |d(w∗−1)| = |d(−w∗−1)| = |d(−w)| = |d(w)|.

The S-matrix elements in Le Couteur–Newton relations are taken as S = SBSres. The d-
function is for the resonance part dres(w) = w−M

2

∏M
r=1(w+w∗

r ) (M is a number of resonance

zeros) and for the background part dB = exp[−i∑3
n=1(

√
s− sn/2mn)(αn + iβn)] where

αn = an1 + anσ
s− sσ
sσ

θ(s− sσ) + anv
s− sv
sv

θ(s− sv),

βn = bn1 + bnσ
s− sσ
sσ

θ(s− sσ) + bnv
s− sv
sv

θ(s− sv).

Here sσ is the σσ threshold and sv is the combined threshold of the ηη′, ρρ and ωω channels.
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Di-meson mass distributions in decays J/ψ → φ(ππ,KK) and V ′ → V ππ (e.g., ψ(2S) →
J/ψ(ππ) and Υ(2S) → Υ(1S)ππ) are calculated using formalism of Refs. [13]. There is assumed
that pairs of pseudo-scalar mesons in final states have I = J = 0 and only they undergo strong
interactions, whereas a final vector meson (φ, V ) acts as a spectator. The decay amplitudes
are related with the scattering amplitudes Tij (i, j = 1 − ππ, 2 −KK) as follows:

F (J/ψ → φππ) =
√

2/3 [c1(s)T11 + c2(s)T21], (7)

F (J/ψ → φKK) =
√

1/2 [c1(s)T12 + c2(s)T22], (8)

F (V ′ → V ππ (V = ψ,Υ)) = [(d1, e1)T11 + (d2, e2)T21] (9)

where c1 = γ10 + γ11s, c2 = α2/(s−β2)+ γ20 + γ21s, and (di, ei) = (δi0, ρi0)+ (δi1, ρi1)s are
functions of couplings of the J/ψ, ψ(2S) and Υ(2S) to channel i; α2, β2, γi0, γi1, δi0, ρi0, δi1
and ρi1 are free parameters. The pole term in c2 is an approximation of possible φK states,
not forbidden by OZI rules when considering quark diagrams of these processes. Obviously this
pole should be situated on the real s-axis below the ππ threshold.

The expressions N |F |2
√

(s− si)
(
m2
ψ − (

√
s−mφ)2

)(
m2
ψ − (

√
s+mφ)2

)

for J/ψ → φππ, φKK (and the analogues ones for V ′ → V ππ) give the di-meson mass dis-
tributions. N (normalization to experiment) is 0.7512 for Mark III, 0.3705 for DM2, 5.699 for
BESIII, 1.015 for Mark II, 0.98 for Crystal Ball(80), 4.3439 for Argus, 2.1776 for CLEO, 1.2011
for CUSB, and 0.0788 for Crystal Ball(85).

3 The combined 3-channel analysis of data

We performed the combined 3-channel analysis of data on isoscalar S-wave processes ππ →
ππ,KK, ηη and on J/ψ → φ(ππ,KK), ψ(2S) → J/ψ(ππ) and Υ(2S) → Υ(1S)ππ.

For the data on multi-channel ππ scattering we used the results of phase analyses which
are given for phase shifts of the amplitudes δαβ and for the modules of the S-matrix elements
ηαβ = |Sαβ | (α, β = 1, 2, 3): Sαα = ηαα exp{2iδαα}, Sαβ = iηαβ exp{iφαβ}. If below the third
threshold there is the 2-channel unitarity then the relations η11 = η22, η12 = (1−η112)1/2 and
φ12 = δ11 + δ22 are fulfilled in this energy region.

References to used data for processes ππ → ππ,KK, ηη can be found in [3]. For decays
J/ψ → φππ, φKK we have taken data from Mark III, DM2 and BESIII [6]; for ψ(2S) →
J/ψ(π+π−) from Mark II and for ψ(2S) → J/ψ(π0π0) from Crystal Ball Collaborations(80)
[7]; for Υ(2S) → Υ(1S)(π+π−, π0π0) from Argus, CLEO, CUSB, and Crystal Ball Collabora-
tions(85) [8]. In this analyses of the coupled scattering processes and decays, it is assumed that
in the 1500-MeV region two states – the narrow f0(1500) and wide f ′0(1500) – exist.

We have obtained the following scenarios: the f0(600) is described by the cluster of type
(a); the f0(1370) and f0(1500), type (c) and f ′0(1500), type (g); the f0(980) is represented only
by the pole on sheet II and shifted pole on sheet III. However, the f0(1710) can be described
by clusters either of type (b) or (c). For definiteness, we have taken type (c).

The resonances pole arrangement on the
√
s-plane can be found in [5]. The obtained

background parameters are: a11 = 0.0, a1σ = 0.0199, a1v = 0.0, b11 = b1σ = 0.0, b1v = 0.0338,
a21 = −2.4649, a2σ = −2.3222, a2v = −6.611, b21 = b2σ = 0.0, b2v = 7.073, b31 = 0.6421,
b3σ = 0.4851, b3v = 0; sσ = 1.6338 GeV2, sv = 2.0857 GeV2. The very simple description of
the ππ-scattering background (underlined values) confirms well our assumption S = SBSres and
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also that representation of multi-channel resonances by the pole clusters on the uniformization
plane is good and quite sufficient. Moreover, this shows that the consideration of the left-hand
branch-point at s = 0 in the uniformizing variable solves partly a problem of some approaches
(see, e.g., [15]) that the wide-resonance parameters are strongly controlled by the non-resonant
background.

Parameters of resonances and background are changed very insignificantly in comparison
with our analysis in Ref. [5] performed without consideration of the ψ(2S)- and Υ(2S)-decays
confirming our previous results. Parameters of the coupling functions of the decay particles
(J/ψ, ψ(2S) and Υ(2S)) to channel i, obtained in the analysis, are α2, β2 = 0.0843, 0.0385,
γ10, γ11, γ20, γ21 = 1.1826, 1.2798, -1.9393, -0.9808, δ10, δ11, δ20, δ21 = −0.127, 16.621, 5.983,
−57.653, ρ10, ρ11, ρ20, ρ21 = 0.405, 47.0963, 1.3352,−21.4343.

The data on the di-pion mass distribution in decay J/ψ → φππ, obtained by the BESIII
collaboration with rather small errors, rejects dramatically the A solution with the narrower
f0(600): the corresponding curve lies considerably below the data from the threshold to about
850 MeV. Therefore in the following we will discuss mainly the B solution.

Satisfactory description of all analyzed processes is obtained with the total χ2/NDF =
568.57/(481 − 65) ≈ 1.37; for the ππ scattering, χ2/NDF ≈ 1.15; for ππ → KK, χ2/NDF ≈
1.65; for ππ → ηη, χ2/ndp ≈ 0.87; for decays J/ψ → φ(ππ,KK), χ2/ndp ≈ 1.21; for ψ(2S) →
J/ψ(ππ), χ2/ndp ≈ 2.43; for Υ(2S) → Υ(1S)ππ, χ2/ndp ≈ 1.01.

The combined description of the 3-channel ππ scattering, decays J/ψ → φ(ππ,KK) from
the Mark III, DM2 and BESIII, and the data on ψ(2S)- and Υ(2S)-decays is practically the
same as that in Ref. [5] performed without considering decays of excited ψ- and Υ-mesons.
Therefore, here we show results of fitting only to the experimental data on the ψ(2S)- and
Υ(2S)-decays (Figs. 3 and 4).
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Figure 3: The ψ(2S) → J/ψππ de-
cays. Fitting to data [7].

Generally, wide multi-channel states are most ade-
quately represented by pole clusters, as the pole clus-
ters give the main effect of resonances. The pole
positions are rather stable characteristics for various
models, whereas masses and widths are very model-
dependent for wide resonances. However, mass values
are needed in some cases, e.g., in mass relations for
multiplets. We stress that such parameters of the wide
multi-channel states, as masses, total widths and cou-
pling constants with channels, should be calculated us-
ing the poles on sheets II, IV and VIII, because only on
these sheets the analytic continuations have the forms:
∝ 1/SI

11, ∝ 1/SI
22 and ∝ 1/SI

33, respectively, i.e., the
pole positions of resonances are at the same points of
the complex-energy plane, as the resonance zeros on
sheet I, and are not shifted due to the coupling of chan-
nels. E.g., if the resonance part of amplitude is taken
as T res =

√
s Γel/(m

2
res − s − i

√
s Γtot), for the mass

and total width, one obtains mres =

√
E2
r + (Γr/2)

2

and Γtot = Γr where the pole position
√
sr=Er−iΓr/2

must be taken on sheets II, IV, VIII, depending on the
resonance classification.
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Then masses and total widths are (in MeV): 693.9±10.0 and 931.2±11.8 for f0(600), 1008.1±3.1
and 64.0±3.0 for f0(980), 1399.0±24.7 and 357.0±74.4 for f0(1370), 1495.2±3.2 and 124.4±18.4
for f0(1500), 1539.5±5.4 and 571.6±25.8 for f ′0(1500), 1733.8±43.2 and 117.6±32.8 for f0(1710).

4 Discussion and conclusions
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Figure 4: The Υ(2S) → Υ(1S)ππ de-
cays. Fitting to data [8].

In this combined analysis of data an additional con-
firmation of the f0(600) with mass about 700 MeV
and width 930 MeV is obtained. This mass value
accords with prediction (mσ ≈ mρ) on the basis of
mended symmetry by Weinberg [16] and with an anal-
ysis using the large-Nc consistency conditions between
the unitarization and resonance saturation suggesting
mρ−mσ = O(N−1

c ) [17]. Also, e.g., the prediction of a
soft-wall AdS/QCD approach [18] for the mass of the
lowest f0 meson – 721 MeV – practically coincides with
the value obtained in our work. Of course, such large
width of this state is a problem. Maybe, we observe
a superposition of two states – narrower σ-meson and
wider state as it is the case in the 1500-MeV region.

Indication for f0(980) is obtained to be a non-qq̄
state, e.g., the bound ηη state. The f0(1370) and
f0(1710) have the dominant ss̄ component that agrees
with a number of experiments (see discussion in[3]).
In the 1500-MeV region, there are two states: the
f0(1500) (mres ≈ 1495 MeV, Γtot ≈ 124 MeV) and the
f ′0(1500) (mres ≈ 1539 MeV, Γtot ≈ 574 MeV). The
f ′0(1500) is interpreted as a glueball due to its biggest
width among enclosing states [19].

We propose the following assignment of the scalar
mesons to lower nonets, excluding the f0(980) as the
non-qq̄ state. The lowest nonet: the isovector a0(980),
the isodoublet K∗

0 (900), and f0(600) and f0(1370)
as mixtures of the 8th component of octet and the
SU(3) singlet. The Gell-Mann–Okubo (GM-O) formula
3m2

f8
= 4m2

K∗
0
− m2

a0
gives mf8 = 870 MeV.

In relation for masses of nonet mσ + mf0(1370) =
2mK∗

0 (900) the left-hand side is by about 14% bigger
than the right-hand one. For the next nonet we find:
the isovector a0(1450), the isodoublet K∗

0 (1450), and
two isoscalars f0(1500) and f0(1710). From the GM-
O formula, mf8 ≈ 1450 MeV. In formula mf0(1500) +
mf0(1710) = 2mK∗

0 (1450) the left-hand side is by about
10% bigger than the right-hand one. This assignment
removes a number of questions, stood earlier, and does
not put any new.
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The Latest Results of the ATLAS Experiment on

Heavy Quark Physics

Stano Tokar on behalf of the ATLAS Collaboration

Comenius University, FMPI, Mlynska dolina F1, 94248 Bratislava, Slovakia

The latest experimental results obtained by the ATLAS Collaboration using the data
produced in pp collisions at

√
s = 7 and 8 TeV are shown. The data were collected by

the ATLAS detector in 2011 (7 TeV) and 2012 (8 TeV) with the integrated luminosity of
4.9 fb−1 and 21 fb−1, respectively. The main emphasis is on the top and bottom quark
physics but the Higgs boson physics and searches of physics beyond the Standard Model
are also reported. A lot of new results on the top quark and bottom quark physics are
shown and new confirmation are given that the new boson seen at 125 GeV is compatible
with the Standard Model Higgs boson at confidence level better than 7σ. No signs of
physics beyond the Standard Model found.

1 Introduction

The Large Hadron Collider (LHC) experiments have started a new era of particle physics.
The high collision energy available at LHC (7-14) GeV together with the high luminosity allow
progress to be made in investigation of the main challenges of particle physics such as the status
of the Higgs boson, precision tests of the Standard Model (SM), searches for new physics.

In the pre-LHC era there was a very good agreement between the experimental results
and the SM predictions – see the pulls of Quantum Chromodynamics (QCD) and Electroweak
(EW) observables in Ref. [1]. All the expected fundamental fermions in three generations and
the expected gauge bosons have been experimentally confirmed. The only missing particle was
the Higgs boson. Existence of the Higgs boson is critical for the SM as particles acquire mass
by interacting with Higgs field which has non-zero vacuum expectation value. This mechanism,
called usually Higgs mechanism, is responsible for electroweak symmetry breaking (EWSB).
The discovery of a new boson with properties compatible with the SM Higgs boson announced
by ATLAS and CMS in July 2012 has filled the last missing piece of the SM.

The SM, despite its success, is widely believed to be only an effective theory valid at the
presently accessible energies. It has no appropriate answer to the global questions like the dark
matter, baryon asymmetry and dark energy, it does not include the gravitational force, and
it does not explain the pattern of fermion masses and the number of generations. The theory
has no expplanation for the naturalness (or hierarchy) problem of the Higgs mass. Higgs mass
corrections (△m2

H) coming from the heaviest particles (mainly the top quark) are quadratically
divergent: △m2

H ∼ Λ2
UV, where ΛUV is the ultraviolet cutoff for loop momentum integration.

Among the suggestions to solve this problem the most attractive are approaches presented by
Supersymmetry (SUSY) and extra dimensional (ED) models (see Sec. 4).

In the search for a manifestation of a BSM physics, a special role is played by processes with
top quarks and b-quarks. Many BSM physics scenarios, if occur, could change significantly these
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processes. BSM physics could significantly modify the forward - backward asymmetry in tt̄ and
bb̄ production, the spin correlation in tt̄ production, the size of the top quark decay width, the
polarization of W bosons from the top quark decays, etc. Processes with b-quarks are important
especially for a better understanding of CP violation phenomena and rare decays which, being
suppressed in the SM, can be sensitive to BSM physics, e.g. the decay B0

d(s) → µ+µ−. The
results of the ATLAS studies of processes with top quarks and b-quarks are main goal of this
contribution.

2 The ATLAS Detector
The ATLAS detector [2] is a multipurpose particle physics apparatus operating at one of the
beam interaction points of the LHC. It covers almost the entire solid angle around the collision
point. ATLAS uses a right-handed coordinate system with its origin in the centre of the detector
(the nominal interaction point) and the z-axis along the beam pipe. The x-axis points from
the coordinate system origin to the centre of the LHC ring, and the y-axis points upward.

The innermost part of this detector is an inner tracking detector (ID) comprised of a silicon
pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID covers
the pseudo-rapidity1 range | η |< 2.5 and is surrounded by a thin superconducting solenoid
providing a 2 T magnetic field, and by liquid-argon electromagnetic sampling calorimeters
with high granularity (LAr). An iron-scintillator tile calorimeter provides hadronic energy
measurements in the central pseudorapidity range (| η |< 1.7). The end-cap and forward regions
are instrumented with LAr calorimetry for both electromagnetic (EM) and hadronic energy
measurements up to | η |= 4.9. The calorimeter system is surrounded by a muon spectrometer
incorporating three superconducting toroid magnet assemblies, with bending power between
2.0 and 7.5 Tm and the pseudorapidity coverage is: | η |< 2.7.

3 Higgs boson search
The most significant results on the Higgs (H) boson search are obtained for the H boson
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Figure 1: Two photon mγγ spectrum.

decay to two photons (H → γγ) and its decay to
four leptons (H → ZZ∗ → 4l). In the analyses the
proton-proton (pp) collision datasets corresponding to
integrated luminosities of 4.8 fb−1 collected at

√
s =

7 TeV and 20.7 fb−1 collected at
√
s = 8 TeV have

been used. Figure 1 shows the two-photon invariant
mass, mγγ , for the combination of

√
s = 7 and 8 TeV

data with the new boson clearly seen. The largest local
significance of the effect for the data sample combina-
tion is 7.4σ at the H boson mass MH =126.5 GeV
[3]. Combining the H boson decay channels the H → γγ and H → ZZ(∗) → 4l channels
the local significance exceeds 8σ and the combined mass is measured to be MH = 125.5 ±
0.2(stat) ± 0.6(syst) GeV. For comparison the combined MH measured by CMS experiment is
MH = 125.7 ± 0.3(stat.) ± 0.3(syst.) GeV. To confirm that the observed new boson is the H
boson predicted by the SM, the global signal strength parameter, µ, as well as the strength pa-
rameters, µi, for the individual channels and a fixed mass MH have been measured. The signal
strength is defined as a ratio of the measured cross section for a given channel characterized
by production and decay modes to that expected for the SM. Its value measured by ATLAS,

1The pseudorapidity is defined in terms of the polar angle θ as η = −ln(tan(θ/2))
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combining the individual channel strength parameters, is µ = 1.30 ± 0.20, a good compatibility
with the SM (µ =1). An important test of the status of the new boson is the parity-spin deter-
mination. For the SM H boson this quantity is: JP = 0+. The ATLAS and CMS experiments
strongly favor JP = 0+ for the new observed boson. The alternatives JP = 0−, 1−, 1+, 2+

are excluded at the 95 % confidence level (C.L.). Details of the H boson studies carried out by
ATLAS and CMS can be found on their public results web pages [4, 5].

Though the experiments clearly favor the SM hypothesis, questions on the nature of H
boson are still relevant. Is the H boson a fundamental boson or is it a composite boson with a
new underlying dynamics? For a better understanding of these issues the planned increase in
collision energy to 13-14 GeV and integrated luminosity to 300 fb−1 is vital.

4 Search of physics beyond the Standard model

The search for physics beyond the SM is a most important task of the ATLAS experiment.
Searches are carried out in many directions, among the most promising are the searches within
the SUSY and ED approaches.

Search for SUSY particles. The SUSY models [6, 7] are very attractive as they offer a
recipe for the naturalness and have a candidate for solution of the dark matter problem. In
the former case the large corrections to MH from the top quark loops are compensated by the
loop contributions from the SUSY top quark partner - top squark, provided that its mass is not
far from the top quark mass. SUSY (R-parity conservation models) predicts pair production
of SUSY particles and as a consequence of the lightest SUSY particle (LSP) being stable and
serving as a candidate for the dark matter particle. In the minimal SUSY extension of the SM
(MSSM) [8] such a particle is neutralino χ̃0

1.
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Figure 2: Limits on the top squark mass.

The search for the top squark has been carried
out by ATLAS in many final states. The super-
partners of the left- and right-handed top quarks,
t̃L and t̃R, mix to form the two mass eigenstates
t̃1 and t̃2, where t̃1 is the lighter one. The pair
produced top squarks, t̃1, are assumed to decay to
a top quark and a neutralino (t̃1 → t+ χ̃0

1) or to a
bottom quark and a chargino (t̃1 → b + χ̃±

1 ). An
example of such a search, carried out by ATLAS at
pp collision energy of 8 TeV on 20.7 fb−1 of data,
is shown in Figure 2 where the mass limits on the
top squark are presented. Assuming both the top
squarks decay to a top quark and an LSP, the top
squark masses between 200 and 610 GeV are excluded at 95% C.L. for massless LSPs, and the
masses below 500 GeV are excluded for the LSP masses up to 250 GeV. Assuming both the top
squarks decay to a bottom quark and the lightest chargino, the top squark masses are excluded
up to 410 GeV for massless LSPs and an assumed chargino mass of 150 GeV.

Search for non-SUSY new physics. The hierarchy problem can be solved within the
theories with extra dimensions. In the ADD model [9] this problem is solved by lowering the
fundamental scale of quantum gravity, MD, to a few TeV instead of MP = 1019 TeV. If MD

is of the order of 1 TeV, evaporating fast microscopic black holes (µBH) are predicted to be
produced at LHC. The µBH are produced when the impact parameter of the two colliding
partons is smaller than the Schwarchild radius of µBH (RS = 2GNMBH/c

2, GN is gravitational

3
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constant, MBH is the µBH mass). An example of a search for µBH in ATLAS is the analysis
carried out in a like-sign dimuon final state [10]. The search for µBH has been carried out using
the data sample of 20.3 fb−1 at 8 TeV. No excess of events over the SM expectations has been
observed. Assuming MD = 1.5 GeV a limit on the µBH mass is found to be 5 TeV.

An example of an ATLAS search for a new physics predicted by Technicolor [11], is the
search for a resonant production of two high transverse momentum jets in association with a
SM W or Z boson decaying leptonically. In this model a spin 1 particle called technirho (ρT)
decays into a lighter technimeson (technipion πT) and a SM W or Z boson, if the ρT mass is
larger than the sum of the πT and gauge boson masses. In the ATLAS search for resonant dijet
production in Wjj → lνjj and Zjj → lljj (l = e, µ) events [12], a data-set of 20.3 fb−1 at
8 TeV has been analysed, but no significant deviation from the SM background prediction is
observed in the mjj spectra. The upper limit (95% C.L.) for the technipion is 180 GeV for the
Wjj channel and 170 GeV for the Zjj one under the assumption of mρT = 3/2×mπT

+55 GeV.
From the ATLAS and CMS searches at energies 7 and 8 TeV for the new physics phenomena,

can be concluded that no hints of a physics beyond the SM are seen. Details can be found on
the public results web-sides of the ATLAS and CMS experiments [4, 5].

5 Top quark physics studies

Top quark physics is one of the most important subjects presently studied at LHC. The top
quark properties are still not known properly and the top quark is in many respects an extraor-
dinary particle:

• The mass of top quark (mtop) is very big - it is close to the EWSB scale. Its Yukawa
coupling, λt =

√
2mtop/η ≈ 1.

• The top quark is an excellent perturbative object for testing QCD as it is produced at
small distances (∼ 1/mtop) characterized by low value of coupling constant αS ≈ 0.1.

• It decays before hadronization: the production time (1/mtop) < lifetime (1/Γtop) <
hadronization time (1/ΛQCD). It permits study of spin characteristics of the top quark as
it is not diluted by hadronization (test of the top production mechanisms) or measurement
of W boson helicity (test of the EW V-A structure).

• the tt̄ production cross section is sensitive to new physics, e.g. resonant production of
tt̄ pairs would be a hint of existence of a new boson (KK-gravitons, etc.) or the decay
t→ H+b would indicate presence of a charged Higgs boson.

In addition, the top quark processes are a very important background for the Higgs processes.
It can be concluded that the top quark physics can provide stringent tests of the SM as well as
it is an excellent platform for searches for new physics.

The top quark decays rapidly (the decay width is Γ(t→Wb) = 1.42 GeV [15]) without form-
ing hadrons and almost exclusively through the mode t → Wb, where the b-quark hadronizes
producing shower of particles called b-jet and the W boson decays leptonically or hadronically.
From the experimental point of view the tt̄ events are classified according to the W bosons de-
cays dividing them into three channels: the dilepton channel (D-L) – both W decay leptonically,
the lepton+jets channel (L+J) – one W decays leptonically and the other one hadronically, and
the all-hadronic channel (A-H) – both W decay hadronically.

Top quark pair production cross section. The top quark is produced via strong
interactions mediated through gluon (production of tt̄ pair) and in the electroweak ones (single
top quark production). In the former case the main production mechanisms are : the quark
annihilation (qq̄ → tt̄) and gluon fusion(gg → tt̄). In the latter case the production is mediated
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by W boson (e.g. ud̄→W+ → tb̄). The top quark production cross section is calculated using
the so-called factorization theorem:

σ =
∑

i,j

∫
dx1dx2F

(1)
i (x1, µF )F

(2)
j (x2, µF ) σ̂ij (s;µF , µR) , (1)

Cross section 2 TeV 7 TeV 8 TeV 14 TeV
tt̄ [nb] 7.2 172.0 245.8 953.6

single top [nb] 3.0 84.9 115.7 320.0

Table 1: Top quark production cross section for the ener-

gies: 2 TeV (Tevatron) and 7, 8 and 14 TeV (LHC), for the

tt̄ production and for the single top quark one (single top).

where F
(λ)
i (x1, µF ) is the probabil-

ity density to observe a parton i with
longitudinal momentum fraction xλ in
incoming hadron λ, when probed at a
scale µF , µF is the factorization scale
(a free parameter) - it determines the
proton structure if probed (by virtual
photon or gluon) with q2 = −µ2

F , µR is the renormalization scale defining size of the strong
coupling constant and σ̂ij(s) is the partonic cross section.
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butions in data in µ+jets channel used for

the tt̄ cross section determination. The

hatched bands display the combined sta-

tistical and systematic uncertainty.

Eq. 1 connects the experimentally measured cross
section with the theoretical one and the proton struc-
ture functions. The theoretical tt̄ partonic cross section
is now calculated at the next-to-next-to-leading order
(NNLO) with the next-to-next-to-leading logarithmic
approximation (NNLL) [13]. The predicted tt̄ produc-
tion cross sections and the single top quark ones [14]
are summarized in Table 1. The uncertainty of the the-
oretical calculations is 4% in the tt̄ case and 3-4% in the
single top one. The tt̄ cross section analysis is carried
out in all three above mentioned channels (the L+J,
D-L and A-H channels). The most precise results are
obtained for the L+J channel. The analysis is based on
single lepton high transverse momentum (high pT) trig-
ger. The following reconstructed objects are required
[16]: one high-pT lepton, at least four high-pT jets, one
or two of them b-tagged, and high missing transverse
energy ET

miss. Electrons were required to have trans-
verse energy pT > 40 GeV and pseudorapidity in the
range | η |< 2.47 excluding the region 1.37 <| η |< 1.52.
Muons were reconstructed using information from the
muon spectrometer and the inner detector. They were
required to have transverse momentum pT >40 GeV
and pseudorapidity | η |< 2.5. The main background processes at this study are W boson
+ jets, Z boson + jets, diboson, single top quark and multi-jet production. The background
processes are studied using MC dedicated samples and using a data driven technique [17].

The measured cross section, σtt̄, is determined using the likelihood discriminant to separate
signal events from the background ones and then a procedure is used based on the relation:

σtt̄ =
Nobs −Nbkg

A · ǫ ·
∫
L.dt

, (2)

where Nobs (Nbkg) is the number of the observed candidate (expected background) events, A
is the acceptance, ǫ is the trigger efficiency and

∫
Ldt is the integrated luminosity.

5

STANO TOKAR

298 HQ2013



The analysis was carried out using the data sample of 5.8 fb−1 at the pp collision energy of
8 TeV. Figure 3 shows the likelihood discriminant distribution in data fitted to the sum of the
signal and background templates for the µ+jets channel. The cross section is found to be

σtt̄ = 241 ± 2(stat.) ± 31(syst.) ± 9(lumi) pb.

This result is in excellent agreement with the theoretical prediction [13]: σtheo
tt̄ = 245.8+6.2

−8.4

(stat.) +6.2
−8.4 (pdf) pb as well as with the CMS results obtained in L+J (2.8 fb−1) [18] and D-L

(2.4 fb−1) [19] channels: σtt̄ = 228 ± 9(stat.) ± 29(syst.) ± 10(lumi.) pb and σtt̄ = 227 ±
3(stat.) ± 11(syst.) ± 10(lumi.) pb, respectively.

The tt̄ cross section measurements were carried out also at the collision energy of 7 TeV
for different channels [20]. The measured tt̄ cross sections at 7 and 8 TeV are summarized in
Figure 4, where they are compared to the exact NNLO QCD calculation complemented with
NNLL resummation [21]. The differential tt̄ production cross section was also measured giving
good agreement with the SM expectations, details are in Ref. [22].

Measurement of top quark mass. The top quark mass, mtop, is one of the SM param-
eters and is important also for the consistency tests of the SM (indirect determination of the
Higgs boson mass). It is reconstructed from the invariant mass of the top quark decay products.

 [TeV]s
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b
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 12 pb±Single Lepton (7 TeV) 179 

 pb
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+17
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+11Combined  177  

7 8

150

200
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Figure 4: Summary of ATLAS mea-
surements of the tt̄ production cross-
section at 7 and 8 TeV compared to
an approximate NNLO QCD calcula-
tions as a function of

√
s.

The top quark mass can be reconstructed in all tt̄
topologies (L+J, D-L, A-H). The best results are usually
obtained in L+J topology. The most common methods
used to reconstruct mtop are template methods and ma-
trix element methods. In the former case, the method
is based on distributions of an observable sensitive to
mtop (signal templates) for different mtop values. Data
distribution of this sensitive observable is compared to
a combination of the signal and background templates
and the best agreements defines the mass (see further
for an example). In the latter case, a dependence of the
top pair production cross section on top quark mass is
used to extract mtop. In addition, any variable corre-
lated with top quark mass can be used for determination
of mtop, e.g. mean lepton pT. An interesting example
of an application of the template method is the ATLAS measurement of mtop carried out for
the tt̄ lepton+jets channel using the data sample of 4.7 fb−1 at 7 TeV.

 [GeV]topm
155 160 165 170 175 180 185 190 195

1

8

syst.⊕JSF 0.71± stat. 0.51±173.20 
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Figure 5: Summary of the ATLAS top

quark mass measurements compared with

the LHC and Tevatron averages.

It is so-called 3-D template method using an approach
based on observables mreco

top , mreco
W and Rreco

lb [23]. The
reconstructed top quark mass is found to be

mtop = 172.31 ± 0.75 (stat+JSF) ± 1.35 (syst) GeV

The first uncertainty corresponds to a combined un-
certainty of the statistics, jet energy scale and b-jet
energy scale. In ATLAS the analyses on the top quark
mass determination are carried out not only in the L+J
channel but also in the D-L and A-H channels (see in
Ref. [4]). The results of the ATLAS measurements are
compared with the CMS and Tevatron results in Figure 5.
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5.1 Single top quark results

The single top-quark production occurs via EW interaction. There are three sub-processes
contributing to this production: the exchange of a virtual W boson in the t-channel, or in the
s-channel, and the associated production of a top quark and an on-shell W boson. The process
with the highest expected cross section at the LHC is the t-channel mode.

b) [GeV]νm(l
0 100 200 300 400 500

E
v
e
n
ts

 /
 2

0
 G

e
V

0

50

100

150

200
Data

Single­top t­channel

, Other toptt

W+heavy flavour

W+light jets

Z+jets, Diboson

Multijets

ATLAS
­1

 = 1.04 fbL dt ∫
 = 7 TeVs2 jets 1 b­tag

Figure 6: The invariant massm(ℓνb) dis-

tribution for the 2-jet b-tagged sample -

the signal and different backgrounds are

compared.

Among the virtues of the single top quark produc-
tion are: (1) its cross section is proportional to | Vtb |2,
where Vtb is an element of the Cabbibo-Kobayashi-
Maskawa (CKM) matrix [24] so it enables a direct
measurement of this CKM matrix element, (2) charge
asymmetry in production of t with respect to t̄ is sen-
sitive to the proton u- and d-quark PDFs, and (3) is
sensitive to many models of new physics [25]. In addi-
tion, the single top quark processes are an important
background for Higgs boson studies.

An example of the ATLAS single top quark studies
is the analysis of the t-channel process [26] using 1.04
fb−1 of pp collision data at

√
s = 7 TeV and using

5.8 fb−1 at
√
s = 8 TeV [27]. The study is based on

event selection requiring one charged lepton candidate, e or µ, two or three hadronic high-pT

jets; and missing transverse momentum ET
miss. The measurement of the cross section, σt,

is based on a fit to a multivariate discriminant constructed with a neural network (NN) to
separate signal from background. The most significant background comes from from W -boson
production in association with jets .

Energy σt [pb] | Vtb |
7 TeV 83.0 ± 4(stat) +20

−19(syst) 1.13+0.14
−0.13(exp) ± 4(syst)

8 TeV 95.1 ± 2.4(stat.) ±18(syst.) 1.04+0.10
−0.11(exp.)

Table 2: Single top quark production cross sections (σt) measured by

ATLAS at 7 and 8 TeV and the extracted CKM element | Vtb |.

Other significant back-
grounds comes from mul-
tijet events and tt̄ pro-
duction. Figure 6 shows
the invariant mass of the
b-tagged jet, the charged
lepton, and the neutrino, m(ℓνb), for the 2-jet b-tagged sample at 7 TeV. Table 2 shows the
t-channel cross sections at

√
s = 7 and 8 TeV inferred from simultaneous measurements in the

2-jet and 3-jet channels applying a NN-based analysis. Even at 7 TeV the significance of the
observed signal corresponds to 7.2σ. The lower limit of | Vtb |at 95% C.L. is 0.75 at 7 TeV and
| Vtb |> 0.80 at 95% C.L. at 8 TeV.

Measurement of the separate t and t̄-quark cross sections, σt(t) and σt(t̄), was carried out
by ATLAS using the data sample of 4.7 fb−1 at 7 TeV [28]. The separate cross sections are
sensitive to the u- and d-quark PDFs an the SM expectations are σt(t) = 41.9+1.8

−0.8 pb and

σt(t̄) = 22.7+0.9
−1.0 pb. The multivariate technique combining several kinematic variables into one

neural network discriminant was used. The obtained cross sections σt(t) and σt(t̄) are:

σt(t) = 53.2 ± 1.7(stat.) ± 10.7(syst.) pb, σt(t̄) = 29.5 ± 1.5(stat.) ± 7.3(syst.) pb.

The cross sections are, within uncertainties, compatible with the SM expected ones and give
the ratio Rt = σt(t)/σt(t̄) =1.81 ± 0.10(stat.) +0.14

−0.13(syst.).
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5.2 Top quark properties

Study of the top quark properties enables a test of the SM predictions and search for new
physics which can modify the top quark production mechanisms, the Wtb coupling, the top
quark decays, etc.

W boson helicity fractions. In the SM (NNLO) the W boson helicity fractions are
predicted to be [29]:

F0 = 0.687 ± 0.005, FL = 0.311 ± 0.005 and FR = 0.0017 ± 0.0001.
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Figure 7: Overview of the measurements

included in the combination as well as the

results of the combination (see text).

The fractions F0, FL and FR are extracted from angular
distributions of top quark decay products:

1

σ

dσ

dθ⋆
=

3

4

(
1 − cos2θ⋆

)
F0

+
3

8
(1 − cosθ⋆)

2
FL +

3

8
(1 + cosθ⋆)

2
FR,

(3)

where θ⋆ is the angle between the lepton and b-quark
reversed momentum in the W boson rest frame. The
ATLAS measurement of the W helicity fractions car-
ried out using the data of 1.04 fb−1 at 7 TeV and taking
into account L+J and D-L events [30] resulted in

F0 = 0.67 ± 0.03 ± 0.06, FL = 0.32 ± 0.02 ± 0.02,

FR = 0.01 ± 0.01 ± 0.04 (±stat ± syst).

The ATLAS W boson helicity result is compared with
other results (CMS, ATLAS dilepton and LHC combination [31]) in Figure 7 giving good
agreement of the LHC data with the SM.

Anomalous Wtb couplings. Any deviation of F0. FL and FR from their SM values is

)
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Figure 8: Allowed regions at 68% and at
95% C.L. for the couplings gR and gL.

a sign of a new physics. In general the new physics
contributing to the Wtb coupling can be generally
expressed through an effective lagrangian:

LWtb =
g√
(2)

b̄γµ (VLPL + VRPR) t ·W−
µ

+
g√
(2)

b̄
iσµνqν
MW

(gLPL + gRPR) t ·W+
µ + h.c.,

In the SM at tree level VL = Vtb ≈ 1 and VR = gL =
gR = 0. The limits on the anomalous coupling are
inferred from measurement of the helicity fractions using their dependence on the couplings.
The ATLAS limits on the anomalous couplings obtained using the data sample of 1.04 fb−1

recorded at 7 TeV [30] are shown in Figure 8.
Spin correlation in tt̄ events. While the polarization of the t and t̄ quarks in tt̄ production
is predicted to be very small, their spins are predicted be correlated [32]. The analysis carried
out by ATLAS [33] uses a data sample of 2.1fb−1 collected at 7 TeV. The search was performed
in the dilepton topology (tt̄→ ℓ+νℓ−ν̄bb̄) with large Emiss

T and at least two jets. The observable
studied was the azimuthal angle between two leptons, ∆φ. The measured degree of correlation
is found in the helicity and the maximal bases (see details in Ref. [33]):

Ahelicity = 0.40 ± 0.04(stat.)+0.08
−0.07, the SM expected: ASM

helicity = 0.31

Amaximal = 0.57 ± 0.06(stat.)+0.12
−0.10, the SM expected: ASM

maximal = 0.44
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The measured values are compatible within uncertainties with the SM expectations.

Top quark charge. The main issue in the top quark charge study is determination between
the SM scenario with decaying top quark having the electric charge of 2/3 (in units of the
electron charge magnitude), t → W+b, and the exotic one with an exotic quark having the
charge of -4/3, tX → W−b̄. The study carried out by ATLAS, using the data of 2.05 fb−1 at√
s = 7 TeV [34], is based on exploiting of the charges of the top quark decay products (W

boson and b-quark). The charge of the W boson is determined through charge of the lepton
from its leptonic decay (W± → ℓ±νℓ). The b-quark charge cannot be determined directly,
but it should be correlated with an effective charge of b-jet found using a charge weighting
procedure. Within this procedure the charges of tracks belonging to a b-jet cone are weighted
using their momentum projection into the b-jet axis giving finally an effective b-jet charge.
The observable which is used to distinguish between the SM top quark and the exotic one is
Qcomb = Qℓ×Qb−jet, where Qℓ and Qb−jet are the charge of lepton and effective charge of b-jet.
The lepton and b-jet should come from the same decaying quark, what is provided by fulfilling
a lepton b-jet pairing condition based on the lepton–b-jet invariant mass (m(ℓ, b−jet) which
should be (within resolution) less than mtop, if lepton and b-jet are top quark decay products.
The analysis was performed in the L+J channel and the experimentally observed value is Qobs

comb

= -0.077 ± 0.005, which is in excellent agreement with the SM expected value: QSM
comb = -0.075

± 0.004. For the exotic model a positive value is expected: QXM
comb = +0.069 ± 0.004. Taking

into account all statistical and systematic uncertainties, the statistical analysis excluded the
exotic model with more than 8σ C.L.

From the value of Qobs
comb assuming the b-quark charge of -1/3, the value of the top quark

charge was inferred: Qtop = 0.64 ± 0.02 (stat.) ± 0.08 (syst.)

6 Study of b-quark results
Study of B-physics is interesting from many respects but the most attractive are processes
connected with the violation of CP symmetry and with the physics beyond the SM.

Dimuon decay of B0
S meson. The decay B0

S → µ+µ− is highly suppressed in the SM and
its branching ratio BR(B0

S → µ+µ−) = (3.5± 0.3)×10−9. To observe a deviation from the SM
branching would mean a manifestation of a new physics. The ATLAS analysis of this decay
is based on a dimuon trigger using a data sample of 4.9 fb−1 at 7 TeV [35]. The branching
BR(B0

S → µ+µ−) is measured with respect to the well-known reference decay B± → J/ψK±.

The main background comes from bb̄ → µ+µ−X and from b-hadron decay with one or two
hadrons misidentified as muons. Multivariate technique using a Boosted Decision Tree (BDT)
was applied to select candidate events. The discriminating variable used by the BDT takes into
account that the decay vertex of B0

S → µ+µ− is separated from event primary vertex and that
it is two body decay. Using the full data sample at 7 TeV the extracted limits are:

BR(B0
S → µ+µ−) < 1.5 ×10−8 at 95% C.L.

After inclusion of the data sample of 21 fb−1 at 8 TeV a comparable result with those obtained
by LHCb [36] and CMS [37], i.e. to see a value of the branching not only a limit, is expected.

Cross section of b-hadron production. The b-hadron cross section was measured by
ATLAS using the data sample of 3.3 pb−1 collected at collision energy of 7 TeV. The events were
selected using the single muon trigger with a pT threshold of 6 GeV [38]. The analysis is based
on partially reconstructed b-hadron decay final state D∗+µ−X with D∗+ → π+D0 (→ K−π+).
The measured integrated b-hadron cross section for pT(Hb) > 9 GeV and | η(Hb) |< 2.5 is
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Figure 9: Differential b-hadron cross sec-
tion as a function of its pT(Hb) and |
η(Hb) |, the cross section is compared
with those of the theoretical approaches.

σ(pp→ HbX) = 32.7 ± 0.8(stat.)
± 3.1(syst.) +2.1

−5.6(α) ± 2.3(BR) ± 1.1(lumi.) µb,

where in addition to the statistical and system-
atic uncertainties are explicitly shown the uncertain-
ties connected with the decay acceptance (α), the
branching ratio (BR) and the luminosity (lumi.).

Comparison with the theoretical calculation
shows good agreement as is demonstrated in figure 9.
The measured cross section is slightly higher than
that of the theoretical model, but still within the
uncertainties (for details see ref. [38]).

Angular analysis of B0
d → K∗0µ+µ−. The decay B0 → K∗0µ+µ− with K∗0 → K+π− is

a FCNC decay which in the SM is forbidden at tree level and goes only through loops, giving
the branching BR=(1.06 ± 0.1)×10−6 [1]. The analysis of this decay takes into account the
invariant mass of µ+µ−-pair (q2) and three angles θL, θK and φ (θL is the angle between the
µ+ and the direction opposite to the B0

d in the di-muon rest frame, θK is the angle between
the K+ and the direction opposite to the B0

d in the K∗0 rest frame, and φ is the angle between
the plane defined by the two muons and the plane defined by the kaon-pion system in the
B0
d rest frame). The result of analysis is K∗0 longitudinal polarisation fraction, FL, and the

lepton forward-backward asymmetry, AFB, extracted from the angular distribution of the decay
products:

1

Γ

d2Γ

dq2dcosθL
=

3

4
FL

(
1 − cos2θL

)
+

3

8
FL

(
1 + cos2θL

)
+AFBcos θL, (4)

where Γ is the decay length and q2 bin (GeV2) AFB FL

2.00 < q2 < 4.30 0.22 ± 0.28 ± 0.14 0.26 ± 0.18 ± 0.06
4.30 < q2 < 8.68 0.24 ± 0.13 ± 0.01 0.37 ± 0.11 ± 0.02

10.09 < q2 <12.86 0.09 ± 0.09 ± 0.03 0.50 ± 0.09 ± 0.04
14.18 < q2 <16.00 0.48 ± 0.19 ± 0.05 0.28 ± 0.16 ± 0.03
16.00 < q2 <19.00 0.16 ± 0.10 ± 0.03 0.35 ± 0.08 ± 0.02

1.00 < q2 < 6.00 0.07 ± 0.20 ± 0.07 0.18 ± 0.15 ± 0.03

Table 3: Summary of the fit results: the extracted asymmetry

AFB and longitudinal polarisation FL for different bins in q2 in-

cluding the statistical and systematic uncertainties.

a similar distribution can be
written also for the angle θK.
The analysis was carried out us-
ing the data sample of 4.9 fb−1

recorded at 7 TeV [39]. A like-
lihood fit was applied to the
angular distributions and the
quantities FL and AFB were
found for six q2 bins. Table 3
shows the measured ATLAS values of FL and AFB as a function of q2. The values are in good
agreement with the BaBar, Belle, CDF and LHCb experiments (for details see ref. [39]) as well
as with the theoretical predictions.

Study of CP violation in B0
S → J/ψφ.

In the decay B0
S → J/ψ(µ+µ−)φ → K+K− the CP violation is a result of interference

between the BS − B̄S mixing followed by B̄S decay and the direct BS(→ J/ψφ) decay. The CP
violation phase φS is a phase difference between the mention amplitudes. The SM expectation
is φSM

S ≈ −0.0363+0.0016
−0.0015 [40]. The ATLAS study was carried out at 7 TeV using the data

sample of 4.9 fb−1 [41]. The trigger used to select events requires two opposite charge muons
identifying a J/ψ → µ+µ− decay.
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of mixing-induced CP violation.

The final state of B0
S decay was analyzed with

the aim to disentangle CP-even states (CP = 1)
corresponding to an orbital momentum L = 0 or
2 and CP-odd states (CP = -1). The analysis was
performed in the transversity coordinate system (for
details see ref. [41]) and resulted in extraction of sev-
eral physical parameters among them φS and ∆ΓS

(the width difference between the heavy and light
mass eigenstates of B0

S meson). The extracted val-
ues are:
φS = 0.12 ± 0.25(stat.) ± 0.11(syst.) rad,
∆ΓS =0.053 ± 0.021(stat.) ± 0.009(syst.) ps−1.
Figure 10 shows that the obtained values for φS and
∆ΓS are consistent, within uncertainties, with the SM expectations.

Production cross section of upsilonia.

State σ(pp→ Υ)×Br(Υ → µ+µ−)

Υ(1S) 8.01 ± 0.02 ± 0.36 ± 0.31 [nb]
Υ(2S) 2.05 ± 0.01 ± 0.12 ± 0.08 [nb]
Υ(3S) 0.92 ± 0.01 ± 0.07 ± 0.04 [nb]

Table 4: The integrated production cross sec-

tion of upsilonia for the kinematic range: pT <

70 GeV and | η |< 2.25, with the statistical,

systematic and luminosity uncertainties.

Study of Υ(nS), bb̄ bound states, is an important
test of QCD. The dominant production mecha-
nism is gluon fragmentation. The ATLAS mea-
surement is carried out using the data of 1.5 fb−1

at 7 TeV [42]. The analysis is based on reconstruc-
tion of the dimuon decay mode. Total production
cross sections for Υ(1S), Υ(2S), Υ(3S) and differ-
ential cross sections as a function of upsilonium
pT and η are measured. The measured integrated
cross sections are summarized in Table 4. The study also provides the differential cross sections
of Υ(1S), Υ(2S) and Υ(3S) as functions of pT for | η |< 1.2 (see for details in ref. [42]).
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Relativistic Corrections to Pair Charmonium

Production at the LHC
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On the basis of perturbative QCD and relativistic quark model we calculate relativistic and
bound state corrections to processes of a pair S-wave charmonium production at the LHC.
The obtained result for J/ψ pair production at the energy

√
S = 7 TeV lies below the

experimental value measured by LHCb collaboration. In the case of ηc pair the examined
effects decrease total nonrelativistic cross section more than two times and on 20 percents
in the rapidity region of LHCb detector.

1 Introduction

Relativistic corrections caused by relative motion of constituent quarks are known to bring an
essential modifications to the values of pair charmonium production cross sections. For example,
it was found in Ref. [1] that account of relativistic corrections in the NRQCD formalism increases
the nonrelativistic result for σ[e+e− → J/ψ + ηc] by about 40%. Analogously, the large values
of discussed corrections to cross sections of S- and P -wave charmonium production in e+e−

annihilation were revealed in the framework of potential models and other approaches in Refs. [2]
and [3]. In the current work we present the results of relativistic corrections calculation to the
processes of pair J/ψ and ηc production in proton–proton collisions at the LHC relevant energies√
S = 7 TeV and 14 TeV [4]. Within the quasipotential approach we consider two types of the

relativistic corrections sources: quark bound state wave functions, which are described by means
of the potential model based on the QCD generalization of the Breit potential, and expansions
of quark and gluon propagators entering production amplitude. More detailed description of
the used approach and the results obtained with it can be found in Refs. [3, 4].

2 General formalism

The differential cross section dσ for the inclusive double charmonium production in proton–
proton interaction can be presented in the form of the convolution of partonic cross section
dσ[g+g → 2J/ψ(ηc)] with the parton distribution functions (PDF) in the initial protons [5, 6, 7]:

dσ[p+ p→ 2J/ψ(ηc) +X] =

∫
dx1dx2 fg/p(x1, µ)fg/p(x2, µ) dσ[g + g → 2J/ψ(ηc)],

where fg/p(x, µ) is a partonic distribution function for the gluon in the proton, x1,2 are longi-
tudinal momentum fractions of gluons, µ is the factorization scale. Neglecting the proton mass
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Figure 1: The typical LO diagrams contributing to the partonic process g + g → 2J/ψ(ηc).
The others can be obtained by reversing the quark lines or interchanging the initial gluons.

and taking the c.m. reference frame of initial protons with the beam along the z-axis we can

introduce the gluon on mass-shell momenta in the form k1,2 = x1,2

√
S
2 (1, 0, 0,±1).

√
S is the

center-of-mass energy in proton–proton collision.
In the quasipotential approach the double charmonium production amplitude for the parton

subprocess g + g → 2J/ψ(ηc) can be expressed as a convolution of perturbative production
amplitude of two c-quark and c̄-antiquark pairs T (p1, p2; q1, q2) and the quasipotential wave
functions of the final mesons Ψ [3, 4]:

M[g + g → 2J/ψ(ηc)](k1, k2, P,Q) =

∫
dp

(2π)3

∫
dq

(2π)3
Ψ̄(p, P )Ψ̄(q,Q) ⊗ T (p1, p2; q1, q2), (1)

where p1 and p2 are four-momenta of c-quark and c̄-antiquark in the pair forming the first meson,
and q2 and q1 are the appropriate four-momenta for quark and antiquark in the second meson.
They are defined in subsequent transformations in terms of total momenta P (Q) and relative
momenta p(q) as follows: p1,2 = 1

2P ± p, (pP ) = 0; q1,2 = 1
2Q± q, (qQ) = 0. Here p = LP (0,p)

and q = LQ(0,q) are the relative four-momenta obtained by the Lorentz transformation of
four-vectors (0,p) and (0,q) to the reference frames moving with the four-momenta P and Q.

At leading order of perturbation theory in strong coupling constant αs there are 31 Feynman
diagrams contributing to the amplitude of pair J/ψ production due to gluon fusion. The typical
diagrams from this set are presented in Fig. 1. In the case of ηc pair there are also 8 additional
diagrams shown in Fig. 2. The calculation of the diagrams and subsequent analytical transfor-
mations are performed by means of the package FeynArts [8] for the system Mathematica and
FORM [9]. Then, the production amplitude (1) has the following structure:

M[g + g → 2J/ψ(ηc)](k1, k2, P,Q) =
1

9
Mπ2α2

s

∫
dp

(2π)3

∫
dq

(2π)3
[
TrM + 3 τ∆M

]
, (2)

M = D1γβΨ̄q,QΓβ1 Ψ̄p,P ε̂2
m− k̂2 + p̂1

(k2 − p1)2 −m2
+ D2γβΨ̄q,QΓβ2 Ψ̄p,P ε̂1

m− k̂1 + p̂1

(k1 − p1)2 −m2
+

D3Ψ̄q,QΓβ3 Ψ̄p,P γβ + D4Ψ̄p,PΓβ4 Ψ̄q,Q γβ + D1Ψ̄q,QΓβ5 Ψ̄p,P γβ
m+ k̂2 − q̂1

(k2 − q1)2 −m2
ε̂2+

D2Ψ̄q,QΓβ6 Ψ̄p,P γβ
m+ k̂1 − q̂1

(k1 − q1)2 −m2
ε̂1,

2
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Figure 2: The additional LO diagrams
contributing to the partonic process
g + g → 2 ηc.

where inverse denominators of gluon propagators are
defined as D−1

1,2 = (k2 − p1,2 − q1,2)
2 and D−1

3,4 =

(p1,2 + q1,2)
2, ε1,2 and k1,2 are polarization vectors and

four-momenta of the initial gluons, m is c-quark mass,
M is observable J/ψ(ηc) mass, and the hat symbol
means a contraction of the four-vector with the Dirac
gamma matrices. The amplitude (2) contains wave
functions Ψp,P and Ψq,Q of the mesons taken in the
reference frame moving with four momenta P and Q.
The transformation law of the bound state wave func-
tion from the rest frame to the moving one was derived
in the Bethe–Salpeter approach in Ref. [10] and in the
quasipotential method in Ref. [11]. The ∆M integrand
contribution corresponds to the 8 additional diagrams
from Fig. 2, so the parameter τ in (2) equals zero in
the case of J/ψ and τ = 1 for ηc pair. Explicit expressions for ∆M and vertex functions Γi
entering (2) can be found in Refs. [4].

In order to calculate relativistic corrections to the amplitude (2) we expand the inverse
denominators of gluon and quark propagators as series in relative quark momenta p and q:

1

(p1 + q1)2
=

4

s
− 16

s2
[
(p+ q)2 + pQ+ qP

]
+ · · · ,

1

(k2 − q2)2 −m2
=

2

t−M2
− 4

(t−M2)
2

[
q2 + 2(k2q) +

1

4
M2 −m2

]
+ · · · ,

where s = (k1 + k2)
2 and t = (P − k1)

2 are Mandelstam variables of the partonic subprocess.
Preserving in the expanded amplitude terms up to the second order in the relative momenta p
and q, we can perform angular integration and calculate the squared modulus of the amplitude
summed over polarizations of the initial gluons and, if necessary, over polarizations of the final
charmonium states. Then, we obtain the following result for the pair production cross sections:

dσ

dt
[g + g → 2J/ψ(ηc)](s, t) =

πM2α4
s

9216 s2
|R̃(0)|4

3∑

i=0

ωiF
(i)(s, t). (3)

The auxiliary functions F (i) entering the cross sections (3) are written explicitly in Refs. [4].
Note that the function F (0) describes non-relativistic result, which coincides in the limit M =
2m with the corresponding function obtained in Refs. [12, 13, 14] for the case of pair J/ψ
production and in Ref. [13] for ηc pair production in the approach of NRQCD. Relativistic
corrections in (3) are determined by a number of relativistic parameters ωi:

ω0 = 1, ω1 =
I1
I0
, ω2 =

I2
I0
, ω3 = ω2

1 ,

I0 =

∞∫

0

m+ ǫ(p)

2ǫ(p)
R(p)p2dp, I1,2 =

m∫

0

m+ ǫ(p)

2ǫ(p)

(
m− ǫ(p)

m+ ǫ(p)

)1,2
R(p)p2dp,

R̃(0) =

√
2

π

∞∫

0

m+ ǫ(p)

2ǫ(p)
R(p)p2dp,

3
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Table 1: The comparison of relativistic and nonrelativistic cross sections of a pair S-wave
charmonium production in proton–proton collisions obtained for different sets of partonic dis-
tribution functions.

Energy
√
S Meson pair, σ(total), nb σ(2 < yP,Q < 4.5), nb

cross section type CTEQ5L CTEQ6L1 CTEQ5L CTEQ6L1√
S = 7 TeV J/ψ J/ψ, relativistic 9.6 7.4 1.6 1.2

J/ψ J/ψ, nonrelativistic 23.0 17.7 3.8 2.9
ηc ηc, relativistic 23.7 19.9 1.3 1.0
ηc ηc, nonrelativistic 56.3 48.1 1.5 1.2√

S = 14 TeV J/ψ J/ψ, relativistic 17.1 13.2 3.0 2.1
J/ψ J/ψ, nonrelativistic 41.0 31.6 7.1 5.1
ηc ηc, relativistic 47.8 39.3 2.4 1.7
ηc ηc, nonrelativistic 116.5 94.7 2.8 2.0

where ǫ(p) =
√
m2 + p2 is quark energy and R(p) is the radial charmonium wave function. All

parameters, which contain the meson wave functions and describe the transition of (cc̄) pairs
to the bound state, are calculated in the framework of relativistic quark model. This model is
based on the Schrödinger equation with the Breit Hamiltonian in QCD and the nonperturbative
confinement terms. Using the program of numerical solution of the Schrödinger equation, we
obtain relativistic wave functions and bound state energies of S-wave charmonia. The additional
details on our relativistic quark model can be found in Refs. [3, 4].

3 Numerical results and discussion

The numerical results of our calculation of the pair S-wave charmonium production cross sec-
tions in the case of non-relativistic approximation as well as with the account of relativistic
corrections of order v2 are presented in Table 1. Along with total cross section values, we
have also included there the cross section predictions corresponding to the rapidity interval
2 < yP,Q < 4.5 of the LHCb experiment [15] calculated with two different sets of linear
PDFs: CTEQ5L [16] and CTEQ6L1 [17]. At the current moment, the only known experi-
mental result for the cross section of pair S-wave charmonium production in proton–proton
collisions is the result measured by LHCb collaboration for the pair J/ψ production at the
energy

√
S = 7 TeV [15]: σexpLHCb = 5.1 ± 1.0 ± 1.1 nb. The corresponding relativistic result

obtained in our model with CTEQ5L partonic function is σtheorrel = 1.6 nb. It is evident that
this results lies below the experimental value measured by LHCb collaboration. Nevertheless,
despite the difference between σtheorrel and σexpLHCb, we consider that at present it is difficult to
state that there is the discrepancy between the theory and experiment in double charmonium
production. Along with the possibility of large contribution from NLO αs corrections (as in
the case of e+e− production [7, 18]), there exists an additional mechanism through the double
parton scattering, which gives the contribution comparable with the standard nonrelativistic
result [19]: σDPS [p + p → 2J/ψ + X] = 2 nb. Accounting for this result and our value of
the cross section σtheorrel , we obtain the summary value σ[p + p → 2J/ψ +X] = 3.6 nb. Then,

4
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taking into account the experimental error, the difference with the LHCb result does not look so
significant. A new experimental data as well as theoretical exploration of NLO αs corrections
and other uncertainties are desirable to clarify the situation.

Recently, the NRQCD calculation of relativistic corrections to pair J/ψ production cross
section was performed [20]. Contrary to our results, relativistic effects were found to be much
smaller in that approach. The authors of [20] investigate only one part of relativistic corrections
to the production amplitude, so direct comparison of our results with [20] is difficult. More-

over, the choice of numerical value 〈0|OJ/ψ(3S
[1]
1 )|0〉 in [20] is at variance with quark model

calculations.
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The rise and fall of the

fourth quark-lepton generation

M.I. Vysotsky1

1ITEP, 117218 Moscow, Russia

The existence of the fourth quark-lepton generation is not excluded by the electroweak
precision data. However, the recent results on the 126 GeV higgs boson production and
decay do not allow an extra generation at least as far as the perturbation theory can be
used.

1 Prehistory

In the course of 1974 November Revolution J/ψ particle was discovered, and soon it was
understood that it consists of cc̄-quarks. In this way the second quark-lepton generation (νµ,
µ, s, c) was completed. Two years later τ -lepton was found, and in 1978 Υ(bb̄)-meson was
discovered as well. t-quark was found only in 1994, however, already in the 1980s people
started to plan finding the particles of the next, fourth, quark-lepton generation. And the main
question, of course, was: How heavy are U , D, and E?

2 SLC, LEP

In the year 1989 e+e− colliders SLC and LEP started to work at
√
s = MZ , and from the

determination of Z invisible width it soon became clear that only three neutrino exist. Ac-
cording to the final data Γ(invisible) = 499 ± 1.5 MeV, while according to the theory it equals
166 ·3 = 498 MeV, so there is no space for extra neutrinos. However the possibility of the heavy
fourth generation neutrino with the mass mN > MZ/2 is not excluded.

3 Electroweak precision data

Since the fourth generation quarks and leptons contribute to the W - and Z-boson polarization
operators and since these contributions do not decouple in the limit of heavy new generation
(which is the essence of the electroweak theory and quite opposite to the case of QED, where,
say, the top quark contribution to the anomalous magnetic moment of muon is suppressed as
(g − 2)µ ∼ (mµ/mt)

2) one can get the constraints on the 4th generation from the precision
measurements of MW ,mt, and Z-boson parameters.

Indeed, in 1998 volume of the Review of Particle Properties Erler and Langacker wrote:
“An extra generation is excluded at the 99.2% CL”[1]. The statement of the published in the
year 2000 paper [2] is: “One extra generation is still allowed“.

The following two points were missed by Erler and Langacker:

1HQ2013 311



50

100

150

200

250

300

350

400

450

500

550

-200 -150 -100 -50 0 50 100 150 200

mU-mD (GeV)

m
N

 (
G

eV
)

Figure 1: MH = 120 GeV, mE = 200 GeV, mU + mD = 600 GeV, χ2/d.o.f. = 17.7/11, the
quality of fit is the same as in SM.

1. S, T, and U parametrization is valid only when the masses of all the new particles are
much larger than MZ ;

2. Instead of making a global fit they studied S, T, and U separately, while these quantities
are correlated. The evolution of RPP analysis of extra quark-lepton generation in the years
1998 - 2010 is described in detail in paper [3].

The results of the fit of the electroweak precision observables in the presence of the fourth
generation just before LHC started obtaining data are shown in Figures 1 and 2 [4]. Fig. 1
corresponds to the light higgs boson, mH = 120 GeV, while Fig. 2 corresponds to heavy higgs,
mH = 600 GeV. In both cases the values of the fourth generation quark and lepton masses are
determined, for which the quality of the fit is practically the same as for the Standard Model
with three generations. In Figures 1 and 2 we put mE = 200 GeV, mU +mD = 600 GeV, and
the values of mN and mU −mD at which χ2/d.o.f. is minimal (and the same as in SM) are
shown by star.

4 LHC direct bounds

Since the search of heavy quarks is a relatively easy task for LHC; the first lower bounds on
their masses appeared soon after the start of LHC. The last ATLAS bounds are: mt′ > 656 GeV
at 95% CL if t′ → Wb decay dominates [5] and mb′ > 480 GeV if b′ → Wt decay dominates.
CMS has similar bounds. These bounds push heavy quarks out of the perturbative unitarity
domain: mq′ < 500 GeV, so if such quarks exist, their interaction with the higgs doublet is
described by strong dynamics (let us remind that even for a top quark the coupling with higgs
is not small: λt = mt/(η/

√
2) = 172/(246/

√
2) ≈ 1.

However, these bounds depend on the pattern of heavy quark decays and are not univer-

2
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Figure 2: MH = 600GeV, mE = 200 GeV, mU + mD = 600 GeV, χ2/d.o.f. = 18.4/11, the
quality of fit is the same as in SM.

sal. Much more interesting indirect bounds follow from higgs boson production and decay
probabilities measured at LHC.

5 Higgs data

In the following Table the values of µ measured by ATLAS and CMS collaborations are given.
µ is equal to the ratio of the measured product of the cross section of H production at LHC
and branching ratio of H decay to a specific final state to the value of this product calculated in
Standard Model. Thus, if there are no heavy quarks or any other kind of New Physics, µ equals
one for any decay mode. The data in the Table are taken from papers [6, 7] and correspond to
the summer 2013. H → bb decay was observed only for the associative production of the higgs
boson with Z- or W -boson.

Table

decay mode ATLAS CMS
H → γγ 1.6 ± 0.3 0.77 ± 0.27
H → ZZ∗ 1.5 ± 0.4 0.92 ± 0.28
H →WW ∗ 1.0 ± 0.3 0.68 ± 0.20
H → ττ 0.8 ± 0.7 1.10 ± 0.41

V H → V bb 0.2 ± 0.5 1.00 ± 0.49

The values of µi ≡ (σH · Bri)exp/(σH · Bri)SM3. A new ATLAS result is µττ = 1.4 ± 0.5.

3
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Figure 3: t −→ t, t′, b′. σ(gg −→ H)SM4 ≈ 9σ(gg −→ H)SM3.

The dominant diagram which describes the higgs boson production at LHC is shown in Fig.
3. In case of the fourth generation the amplitude triples since the contributions of heavy U(t′)
and D(b′) quarks are the same as that of t-quark. As a result, the cross-section of H production
in the case of 4 generations is nine times bigger than in the Standard Model:

σ(gg −→ H)SM4 ≈ 9σ(gg −→ H)SM3 (1)

Analogously the width of H → gg decay which in the Standard Model for MH = 126 GeV
is about 0.3 MeV in SM4 becomes 2.7 MeV. Taking into account that in the Standard Model
ΓH ≈ 4.2 MeV, we get that the branching ratios of H → ZZ∗ and H → WW ∗ decays in the
case of SM4 are multiplied by factor 4.2/6.6 ≈ 0.7, which becomes 0.6 when the modification
of other higgs decay probabilities are taken into account. However, the electroweak radiative
corrections to the H → V V decay amplitude being enhanced by factor (GFm

2
t′,b′) are big and

according to [8] the factor 0.6 is changed to 0.2 (for mt′ ≈ 600 GeV) when they are taken
into account. It demonstrates that with such heavy new quarks we leave the domain of masses
generated by Higgs mechanism where the perturbation theory is applicable. For the value of
µ in case of H → WW ∗, ZZ∗ decays we get the enhancement by factor 2 in the case of the
fourth generation. Such an enhancement is excluded by the experimental data from the Table.
For the lighter fourth generation quarks the electroweak radiative corrections which diminish
H →WW ∗, ZZ∗ decay widths are smaller, so exclusion will be even stronger.

There is a possibility to diminish Br(H →WW ∗, ZZ∗) by choosing MH/2 > mN > MZ/2,
which makes H → NN a dominant higgs decay mode (N is a neutral lepton of the fourth
generation). ¿From the ATLAS search of ZH → l+l− + invisible decay mode the 95% CL
upper bound Br(H →invisible)< 0.65 follows [9]. According to CMS Br(H →invisible)< 0.52.
Thus, for light N the values of µ for visible final states can be diminished by factor 2 and
for H → WW ∗ and ZZ∗ decay modes µ approaches its SM3 values. Up to now we present
the result of the 4th generation electroweak loop corrections for the moderate values of the
masses of new leptons. If their masses approach 600 GeV, then factor 0.2 in the suppression of
Br(H → V V ∗) becomes 0.15 [10] and the value of µ approaches its value for the 3 generation
case.
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6 H → γγ

In SM3 this decay is described by two one-loop diagrams shown in Fig. 4. In the limit MH <<
2mt, 2MW for the decay amplitude we have:

A3 ∼ 7 − 4/3 ∗ 3 ∗ (2/3)2 = 7 − 16/9 . (2)

H

W
t

t
W

H

Figure 4: H → 2γ decay in SM3.

The numbers 7 and 16/9 are one-loop QED β - function coefficients; the signs correspond to
asymptotic freedom and zero charge behavior, respectively. Number 7 for the first time appears
in 1965 paper of V.S. Vanyashin and M.V. Terentiev [11]. Nowadays it could be derived from
the following equation:

7 = 22/3 − 1/6 − 1/6 , 22/3 = 11/3 ∗ 2 , (3)

where the factors 1/6 originate from the higgs doublet contribution into running of SU(2) and
U(1) couplings g and g′, while 22/3 is a vector boson contribution into the running of g.

For MW = 80.4 GeV 7 should be substituted by 8.3, while 16/9 has 3% accuracy for
mt = 172 GeV. So, in SM3 A3 ∼ 8.3 − 16/9 = 6.5, while in the case of the fourth generation a
strong compensation occurs:

A4 ∼ 8.3 − 16/9 − 16/9 − 4/9 − 4/3 = 3.0 (4)

and taking into account the enhancement of gg → H production cross-section and the modifi-
cation of Higgs decay probabilities (mainly the enhancement of H → gg decay), we obtain the
same σ ∗Br (H → 2γ) as in SM3:

µ2γ = 9 ∗ 0.6 ∗ (3/6.5)2 ≈ 1.2 . (5)

But the electroweak radiative corrections greatly diminish σ ∗ Br(H → 2γ); according to [8] it
equals 1/3 of SM3 result or even less, while the average of ATLAS and CMS data is 1.2±0.2, so
the 4th generation is excluded at 4-5 σ level. It would be good to calculate 3 loop electroweak
corrections to the Γ(H → 2γ) in the case of the fourth generation.

7 H → ττ , H → bb

µ for the (ττ) mode at tree level equals approximately

µττ ≈ 9 (from H production cross section)∗0.6 (enchancement of H width in SM4) ≈ 5 , (6)

and the electroweak loop corrections make the decay width larger by 30% [8]. The experimental
data exclude this huge enhancement.

The consideration differs for H → bb̄ mode: it is seen only in the associative higgs boson
production V H → V bb, which unlike gluon fusion is not enhanced in the 4th generation case,
and there is no contradiction with the LHC experimental data.
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8 Conclusions

• LHC data on 126 GeV higgs boson production and decays exclude the Standard Model
with the sequential fourth generation in the perturbative domain: too small gg → H → γγ
probabilitiy, too big gg → H → ττ probability;

• If we are out of the perturbative domain (m4 ∼ 1 TeV) extra generation cannot be
excluded, but we are unable to understand why all the experimentally measured µ’s are
close to one and SM3 works so well;

• In two higgs doublets model the fourth generation is still allowed [12];

• Since the vector generation has SU(2)×U(1) invariant masses it is not excluded by higgs
data.
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Nišandžić, Ivan, 32

Nicotri, S., 20

Oliinychenko, D. R., 269

Parkhomenko, Alexander, 253, 264

Rusov, Aleksey, 264

Sagun, V. V., 269

Saleev, Vladimir, 248

Santorelli, Pietro, 274

Schmidt, Ivan, 225

Surovtsev, Yurii S., 284

Tokar, Stano, 294

Trunin, A. M., 306

Vega, Alfredo, 225

Vysotsky, M. I., 311

Zotov, N. P., 243

HQ2013 317



Participants

Ahmadov, Azad (JINR, Dubna)

Ali, Ahmed (DESY, Hamburg)

Alvarez Castillo, David Edwin (Wroclaw Uni., Wroclaw; JINR, Dubna)

Barreiro, Fernando (ATLAS Coll.) (Uni. Autonoma, Madrid)

Bastian, Niels-Uwe (Rostock Uni., Rostock)

Bean, Alice (CMS Coll.) (Kansas Uni.)

Blaschke, David (Wroclaw Uni., Wroclaw; JINR, Dubna)

Bystritskiy, Yury M. (JINR, Dubna)

Bytev, Vladimir (JINR, Dubna)

Chesnokov, Petr (MSU, Moscow)

Cirilo-Lombardo, Diego (JINR, Dubna)

Colangelo, Pietro (Bari Uni., Bari)

Deka, Mridupawan (JINR, Dubna)

Dzyuba, Alexey (LHCb Coll.) (PNPI, St. Petersburg)

El-Bennich, Bruno (Cruzeiro do Sul Uni., St. Paolo)

Fajfer, Svjetlana (Ljubljana Uni., Ljubljana)

Faustov, Rudolf N. (Dorodnicyn Computing Centre RAS, Moscow)

Friesen, Alexandra V. (Scientific Secretary; JINR, Dubna)

Frolov, Ivan (Yaroslavl Uni., Yaroslavl)

Galkin, Vladimir O. (Dorodnicyn Computing Centre RAS, Moscow)

Gerasimov, Sergo B. (JINR, Dubna)

Gevorgyan, Narine (Yerevan Uni., Yerevan)

Ghandilyan, Yeranuhi (Yerevan Uni., Yerevan)

Godunov, Sergey (ITEP, Moscow)

Grozin, Andrey G. (INP, Novosibirsk)

Hambrock, Christian (Dortmund Uni., Dortmund)

Hartmann, Florian (Siegen Uni., Siegen)

Ilgenfritz, Ernst Michael (JINR, Dubna)

Ivanov, Michail A. (JINR, Dubna)

Ivanytskyi, Oleksii (BITP, Kiev)

Ivashyn, Sergiy (NSC KIPT, Kharkiv)

Jäh, Christian (TU Bergakademie, Freiberg)

318 HQ2013



Kazakov, Dmitri I. (JINR, Dubna)

Khodjamirian, Alexander (Siegen Uni., Siegen)

Kidonakis, Nikolaos (Kennesaw State Uni., Kennesaw)

Koerner, Juergen G. (Mainz Uni., Mainz)

Khvorostukhin, Andrey S. (JINR, Dubna)

Kotikov, Anatoly V. (JINR, Dubna)

Kuraev, Eduard A. (JINR, Dubna)

Lange, Jens Soeren (Giessen Uni., Giessen)

Liebing, Simon (TU Bergakademie, Freiberg)

Liventsev, Dmitri (Belle Coll.) (ITEP, Moscow)

Lyubovitskij, Valery E. (Tuebingen Uni., Tuebingen)

Makhaldiani, Nugzar (JINR, Dubna)

Malyshev, Maxim (SINP, MSU, Moscow)

Massimo, Masera (ALICE Coll.) (Turin)

Mitselmakher, Guenakh (CMS Coll.) (Florida)

Mkrtchyan, Hripsime (Yerevan Uni., Yerevan)

Nedelko, Sergey N. (JINR, Dubna)

Nefedov, Maxim (Samara Uni., Samara)

Nesterenko, Vladimir V. (JINR, Dubna)

Novikova, Valentina K. (JINR, Dubna)

Olakunle, Oluwaleye(Uni. of Johannesburg, Johannesburg)

Parkhomenko, Alexander Ya. (Yaroslavl Uni., Yaroslavl)

Pena, Carlos (Wroclaw Uni., Wroclaw)

Pozdeeva, Ekaterina (SINP, MSU, Moscow)

Rivasplata, Antonio (Uni. Na. De Trujilio; JINR, Dubna)

Rosenthal, Denis (Siegen Uni., Siegen)

Rusov, Aleksey (Yaroslavl State Uni., Yaroslavl)

Sagun, Violetta (BITP, Kiev)

Saleev, Vladimir A. (Samara Uni., Samara)

Santorelli, Pietro (Napoli Uni., Napoli)

Shipilova, Alexandera (Samara Uni., Samara)

Straub, David (Mainz Uni., Mainz)

Surovtsev, Yuri S. (JINR, Dubna)

Tetlalmatzi-Xolocotzi, Gilberto (IPPP, Durham)

Tokar, Stanislav (ATLAS Coll.)(Bratislava Uni., Bratislava)

Tretyakov, Petr V. (JINR, Dubna)

Trunin, Anton (Samara Uni., Samara)

Vysotsky, Mikhail I. (ITEP, Moscow)

Yargina, Kseniya (Yaroslavl Uni., Yaroslavl)

Yeletskikh, Ivan (JINR, Dubna)

Zhuravlev, Vyacheslav I. (JINR, Dubna)

HQ2013 319


