Natural inflation and moduli stabilization in heterotic orbifolds

Fabian Ruehle

Deutsches Elektronensynchrotron DESY Hamburg

The Particle Physics and Cosmology of Supersymmetry and String Theory 03/30/2015

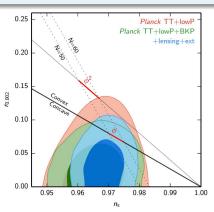
Based on [1503.07183] with Clemens Wieck

Motivation

Motivation - Large field models

Necessity of large field models

- Field range $\Delta \varphi \approx 20\sqrt{r} \rightarrow r \gtrsim 0.002 \Rightarrow \Delta \varphi > M_{Pl}$
- Joint Planck/BICEP analysis favors $r \approx 0.05$ $\Rightarrow \Delta \varphi \approx 5 M_{\rm Pl}$ at 1.8 σ , $H \sim M_{\rm GUT}^2 \sim 10^{-4} \dots 10^{-5}$



Motivation - Large field models

Necessity of large field models

- Field range $\Delta \varphi \approx 20 \sqrt{r} \quad \leadsto \quad r \gtrsim 0.002 \Rightarrow \Delta \varphi > M_{\rm Pl}$
- Joint Planck/BICEP analysis favors $r \approx 0.05$ $\Rightarrow \Delta \varphi \approx 5 M_{\rm Pl}$ at 1.8σ , $H \sim M_{\rm GUT}^2 \sim 10^{-4} \dots 10^{-5}$

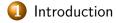
Challenges for trans-Planckian inflation

- Inflaton candidates (moduli) live in compact space ⇒ field range bounded and sub-Planckian
- Need to worry about corrections to the inflaton potential ⇒ Axionic shift symmetry can protect you (currently under discussion [Rudelius;Montero,Uranga,Valenzuela;Brown,Cottrell,Shiu,Soler] and [Bachlechner,Long,McAllister;Hebecker,Mangat,Rompineve,Witkowskij)
- Need moduli stabilization at high scale $(\geq H)$
 - ▶ to work in single field inflation
 - to avoid Polonyi problem/not spoil BBN

200

Examples

Outline



- Large field inflation and aligned inflation
- Heterotic orbifolds
- Inflation and moduli stabilization in heterotic orbifolds
 - Modular symmetries
 - Gaugino condensation and WS instantons
 - Moduli stabilization and alignment
- Examples
 - Moduli stabilization and inflation with WS instantons only
 - Moduli stabilization and inflation with WS instantons and GC
- Conclusion

Introduction

Axion monodromy inflation

- Initially proposed by [Silverstein, Westphal, McAllister]
- Mechanism:
 - Start with periodic inflaton
 - Scalar potential slightly breaks periodicity
- Many string theoretic realizations [Palti, Weigand; Marchesano, Shiu,

Uranga; Blumenhagen, Plauschinn; Hebecker, Kraus, Witkowski; . . .]

Large field inflation in string theory

Axion monodromy inflation

- Initially proposed by [Silverstein, Westphal, McAllister]
- Mechanism:
 - Start with periodic inflaton
 - Scalar potential slightly breaks periodicity
- Many string theoretic realizations [Palti, Weigand; Marchesano, Shiu,

Uranga; Blumenhagen, Plauschinn; Hebecker, Kraus, Witkowski; . . .]

Aligned axion inflation

- Initially proposed by [Kim, Nilles, Peloso]
- Mechanism:
 - ► Two axions with almost aligned axion decay constant
 - Slight misalignment gives almost-flat direction with effective trans-Planckian decay constant
- Many string theoretic realizations [Kappl, Krippendorf, Nilles; Long, McAllister, McGuirk; Ali, Haque, Jejjala; Tye, Wong; Ben-Dayan, Pedro, Westphal; . . .]

vation Introduction Inflation and moduli stabilization

Recap: KNP mechanism

Aligned axion inflation - Recap

■ Problem: axion decay constants sub-Planckian [Svřcek,Witten]

Introduction

Recap: KNP mechanism

Aligned axion inflation - Recap

- Problem: axion decay constants sub-Planckian [Svřcek,Witten]
- Way out: 2 axions with sub-Planckian decay constants

Aligned axion inflation – Recap

- Problem: axion decay constants sub-Planckian [Svřcek,Witten]
- Way out: 2 axions with sub-Planckian decay constants
- Decay constants almost identical
 - ⇒ effective axion with trans-Planckian decay constant

Aligned axion inflation – Recap

- Problem: axion decay constants sub-Planckian [Svřcek, Witten]
- Way out: 2 axions with sub-Planckian decay constants
- Decay constants almost identical
 - ⇒ effective axion with trans-Planckian decay constant

Aligned axion inflation - Realization

$$W \supset Ae^{-(\beta_1T_1+\beta_2T_2)} + Be^{-(n_1T_1+n_2T_2)}$$

$$V = \kappa_1 \left[1 - \cos(\beta_1\tau_1 + \beta_2\tau_2)\right] + \kappa_2 \left[1 - \cos(n_1\tau_1 + n_2\tau_2)\right]$$

Aligned axion inflation – Recap

- Problem: axion decay constants sub-Planckian [Svřcek, Witten]
- Way out: 2 axions with sub-Planckian decay constants
- Decay constants almost identical
 ⇒ effective axion with trans-Planckian decay constant

Aligned axion inflation - Realization

- $W \supset Ae^{-(\beta_1 T_1 + \beta_2 T_2)} + Be^{-(n_1 T_1 + n_2 T_2)}$ $V = \kappa_1 \left[1 \cos(\beta_1 \tau_1 + \beta_2 \tau_2) \right] + \kappa_2 \left[1 \cos(n_1 \tau_1 + n_2 \tau_2) \right]$
- Perfect alignment (flat direction) if $\frac{\beta_1}{\beta_2} = \frac{n_1}{n_2}$

) Q (

Aligned axion inflation – Recap

- Problem: axion decay constants sub-Planckian [Svřcek,Witten]
- Way out: 2 axions with sub-Planckian decay constants
- Decay constants almost identical
 - ⇒ effective axion with trans-Planckian decay constant

Aligned axion inflation – Realization

- $W \supset Ae^{-(\beta_1 T_1 + \beta_2 T_2)} + Be^{-(n_1 T_1 + n_2 T_2)}$ $V = \kappa_1 \left[1 - \cos(\beta_1 \tau_1 + \beta_2 \tau_2) \right] + \kappa_2 \left[1 - \cos(n_1 \tau_1 + n_2 \tau_2) \right]$
- Perfect alignment (flat direction) if $\frac{\beta_1}{\beta_2} = \frac{n_1}{n_2}$
- Slight misalignment $\frac{k}{k} := \frac{1}{n_2} \frac{\beta_1}{\beta_2} \frac{1}{n_1}$ (need $\frac{k}{k} \approx 0.1 ... 0.2$)
- Effective one-axion model with decay constant

$$f_{\text{eff}} pprox rac{eta_1^2 \sqrt{(eta_1^{-2} + eta_2^{-2})(eta_1^{-2} + n_1^{-2})}}{k n_1 \beta_2}$$

$\overline{\mathsf{KNP}}$ inflation + moduli stabilization

Ingredients

Need several axions

Examples

KNP inflation + moduli stabilization

- Need several axions
 - \Rightarrow From imaginary part of **geometric moduli**

Kähler:
$$T_i = t_i + i\tau_i$$
, Complex structure: $U_i = u_i + i\omega_i$

Examples

- Need several axions
 - \Rightarrow From imaginary part of **geometric moduli** Kähler: $T_i | = t_i + i\tau_i$, Complex structure: $U_i | = u_i + i\omega_i$
- 2 Need different non-perturbative effects

KNP inflation + moduli stabilization

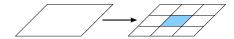
- Need several axions
 - ⇒ From imaginary part of geometric moduli Kähler: $T_i = t_i + i\tau_i$, Complex structure: $U_i = u_i + i\omega_i$
- Need different non-perturbative effects
 - ⇒ Available/calculable from
 - Worldsheet instantons
 - **Gaugino condensation**

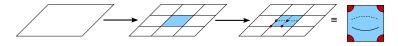
KNP inflation + moduli stabilization

- Need several axions
 - ⇒ From imaginary part of geometric moduli Kähler: $T_i = t_i + i\tau_i$, Complex structure: $U_i = u_i + i\omega_i$
- Need different non-perturbative effects
 - ⇒ Available/calculable from
 - Worldsheet instantons
 - Gaugino condensation
- Need near alignment

KNP inflation + moduli stabilization

- Need several axions
 - \Rightarrow From imaginary part of **geometric moduli** Kähler: $T_i | = t_i + i\tau_i$, Complex structure: $U_i | = u_i + i\omega_i$
- Need different non-perturbative effects
 - ⇒ Available/calculable from
 - Worldsheet instantons
 - ► Gaugino condensation
- 3 Need near alignment
 - ⇒ Both effects related:
 - Both governed by modular forms (Dedekind eta function)
 - Near alignment from fixed modular weights of Kähler and superpotential





[Dixon, Harvey, Vafa, Witten]

Orbifold data

$$\bullet : (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$$

[Dixon, Harvey, Vafa, Witten]

Orbifold data

- $\bullet : (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1, \dots, \theta^{N-1}$

[Dixon, Harvey, Vafa, Witten]

Orbifold data

- $\bullet : (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1, \dots, \theta^{N-1}$
- Moduli: Dilaton $S| = s + i\sigma$, Kähler T_i , CS U_i

[Dixon, Harvey, Vafa, Witten]

Orbifold data

Motivation

- $\bullet: (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1, \dots, \theta^{N-1}$
- Moduli: Dilaton $S| = s + i\sigma$, Kähler T_i , CS U_i

Advantages of orbifolds

■ Exact CFT description ⇒ Calculability

[Dixon, Harvey, Vafa, Witten]

Orbifold data

Motivation

- $\theta: (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1, \dots, \theta^{N-1}$
- Moduli: Dilaton $S| = s + i\sigma$, Kähler T_i , CS U_i

Advantages of orbifolds

- Exact CFT description ⇒ Calculability
- Known to yield good particle pheno [Blaszczyk,Buchmüller,Hamaguchi,Kim,Kyae,Lebedev,Nilles,Raby, Ramos-Sanchez, Ratz, FR, Trapletti, Vaudrevange, . . .]

Inflation and moduli stabilization in heterotic orbifolds

Modular symmetry

Modular transformation

■ Kähler moduli T_i transform under $SL(2,\mathbb{Z})$:

$$T o rac{aT - \mathrm{i}b}{\mathrm{i}cT + d}$$
, $ad - bc = 1$

- Kähler moduli T_i transform under $SL(2,\mathbb{Z})$: $T \to \frac{aT ib}{icT + d}$, ad bc = 1
- Kähler moduli Kähler potential: $K_{mod} = -\sum_{i} \ln(T_i + \overline{T}_i)$
- $K_{\text{mod}} \to K_{\text{mod}} + \sum_{i} \ln |ic_i T_i + d_i|^2$

Modular symmetry

- Kähler moduli T_i transform under $SL(2,\mathbb{Z})$: $T \to \frac{aT ib}{icT + d}$, ad bc = 1
- Kähler moduli Kähler potential: $K_{\text{mod}} = -\sum_{i} \ln(T_i + \overline{T}_i)$
- $K_{\text{mod}} \to K_{\text{mod}} + \sum_{i} \ln |ic_i T_i + d_i|^2$
- $G = K + \ln |W|^2$ has to be invariant

Modular symmetry

- Kähler moduli T_i transform under $SL(2,\mathbb{Z})$: $T o \frac{aT - ib}{icT + d}$, ad - bc = 1
- Kähler moduli Kähler potential: $K_{mod} = -\sum_{i} \ln(T_i + \overline{T}_i)$
- $K_{\text{mod}} \to K_{\text{mod}} + \sum_{i} \ln |ic_i T_i + d_i|^2$
- $G = K + \ln |W|^2$ has to be invariant
- $W = W(\Phi_i)$ has to have modular weight -1: $W \rightarrow \prod_i (ic_i T_i + d_i)^{-1} W$

Examples

Modular transformation

- Kähler moduli T_i transform under $SL(2,\mathbb{Z})$: $T o \frac{aT - ib}{icT + d}$, ad - bc = 1
- Kähler moduli Kähler potential: $K_{mod} = -\sum_{i} \ln(T_i + \overline{T}_i)$
- $K_{\text{mod}} \to K_{\text{mod}} + \sum_{i} \ln |ic_i T_i + d_i|^2$
- $G = K + \ln |W|^2$ has to be invariant
- $W = W(\Phi_i)$ has to have modular weight -1: $W \rightarrow \prod_i (ic_i T_i + d_i)^{-1} W$

Dedekind η -function

- $\eta(T) \rightarrow (icT + d)^{\frac{1}{2}} \eta(T)$ (up to phase)

Modular symmetry

Modular transformation

• $W \supset y_{\alpha_1,\dots\alpha_I}(T) \Phi_{\alpha_1} \dots \Phi_{\alpha_I}$

Modular symmetry

- $lacktriangledown \Phi_lpha
 ightarrow \prod_i (\mathrm{i} c_i T_i + d_i)^{m_lpha^i}$

Examples

Modular symmetry

Modular transformation

•
$$W \supset y_{\alpha_1,\dots\alpha_L}(T) \Phi_{\alpha_1} \dots \Phi_{\alpha_L}$$

$$\Phi_{\alpha} \to \prod_{i} (\mathrm{i} c_{i} T_{i} + d_{i})^{m_{\alpha}^{i}}$$

$$m = \begin{cases} -1 & k = 0 \\ 0 & kv \equiv 0 \\ kv - 1 + \text{osc.} & kv \not\equiv 0 \end{cases}$$

Examples

Modular symmetry

Modular transformation

- $W \supset y_{\alpha_1...\alpha_I}(T) \Phi_{\alpha_1} \dots \Phi_{\alpha_I}$
- $\Phi_{\alpha} \to \prod_i (ic_i T_i + d_i)^{m_{\alpha}^i}$

$$m = \begin{cases} -1 & k = 0 \\ 0 & kv \equiv 0 \\ kv - 1 + \text{osc.} & kv \not\equiv 0 \end{cases}$$

• K_{mat} has to be invariant $\Rightarrow K_{\mathsf{mat}} = \sum_{\alpha} \prod_{i} (T_{i} + \overline{T}_{i})^{m_{\alpha}^{i}} |\Phi_{i}|^{2}$

Motivation

Modular transformation

$W \supset y_{\alpha_1...\alpha_I}(T) \Phi_{\alpha_1} \dots \Phi_{\alpha_I}$

$$\Phi_{\alpha} \to \prod_{i} (ic_{i}T_{i} + d_{i})^{m_{\alpha}^{i}}$$

$$m = \begin{cases} -1 & k = 0 \\ 0 & kv \equiv 0 \\ kv - 1 + \text{osc.} & kv \not\equiv 0 \end{cases}$$

- $K_{\rm mat}$ has to be invariant $\Rightarrow K_{\rm mat} = \sum_{lpha} \prod_i (T_i + \overline{T}_i)^{m_{lpha}^i} |\Phi_i|^2$ W has to have modular weight $-1 \Rightarrow y$ has $-1 \sum_i m_{lpha}$

Modular symmetry

Modular transformation

- $W \supset y_{\alpha_1...\alpha_I}(T) \Phi_{\alpha_1} \dots \Phi_{\alpha_I}$
- $\Phi_{\alpha} \to \prod_i (ic_i T_i + d_i)^{m_{\alpha}^i}$

$$m = \begin{cases} -1 & k = 0 \\ 0 & kv \equiv 0 \\ kv - 1 + \text{osc.} & kv \not\equiv 0 \end{cases}$$

- $K_{\rm mat}$ has to be invariant $\Rightarrow K_{\rm mat} = \sum_{\alpha} \prod_i (T_i + \overline{T}_i)^{m_{\alpha}^i} |\Phi_i|^2$ W has to have modular weight $-1 \Rightarrow y$ has $-1 \sum_i m_{\alpha}$
- $W \supset A(\Phi_{\alpha}) \exp\left(-\frac{\pi}{12} \sum_{i} \left[-2(1+\sum_{\alpha} m_{\alpha}^{i}) T_{i}\right]\right)$

Modular transformation

$$W \supset y_{\alpha_1,\dots\alpha_L}(T) \Phi_{\alpha_1} \dots \Phi_{\alpha_L}$$

$$lack \Phi_lpha o \prod_i (\mathrm{i} c_i T_i + d_i)^{m_lpha^i}$$

$$m = \begin{cases} -1 & k = 0 \\ 0 & kv \equiv 0 \\ kv - 1 + \text{osc.} & kv \not\equiv 0 \end{cases}$$

- $K_{\rm mat}$ has to be invariant $\Rightarrow K_{\rm mat} = \sum_{\alpha} \prod_i (T_i + \overline{T}_i)^{m_{\alpha}^i} |\Phi_i|^2$ W has to have modular weight $-1 \Rightarrow y$ has $-1 \sum_i m_{\alpha}$
- $W \supset A(\Phi_{\alpha}) \exp\left(-\frac{\pi}{12} \sum_{i} \left[-2(1+\sum_{\alpha} m_{\alpha}^{i}) T_{i}\right]\right)$
- More complicated modular forms possible [Hamidi, Vafa; Lauer, Mas, Nilles]

Modular transformation

Introduction

$$W \supset y_{\alpha_1,\dots\alpha_L}(T) \Phi_{\alpha_1}\dots\Phi_{\alpha_L}$$

$$\Phi_{\alpha} \to \prod_{i} (ic_{i}T_{i} + d_{i})^{m_{\alpha}^{i}}$$

$$m = \begin{cases} -1 & k = 0 \\ 0 & kv \equiv 0 \\ kv - 1 + \text{osc.} & kv \not\equiv 0 \end{cases}$$

- $K_{\rm mat}$ has to be invariant $\Rightarrow K_{\rm mat} = \sum_{\alpha} \prod_i (T_i + \overline{T}_i)^{m_{\alpha}^i} |\Phi_i|^2$
- W has to have modular weight $-1 \ \Rightarrow \ y$ has $-1 \sum_i m_{\alpha}$
- $W \supset A(\Phi_{\alpha}) \exp\left(-\frac{\pi}{12} \sum_{i} [-2(1+\sum_{\alpha} m_{\alpha}^{i}) T_{i}]\right)$
- More complicated modular forms possible [Hamidi, Vafa; Lauer, Mas, Nilles]

CFT selection rules

Strings have to close on WS:

$$(\theta^{k_1}; a_i^1 e_i; V_{k_1}, v_{k_1}) \times \ldots \times (\theta^{k_L}; a_i^L e_i; V_{k_L}, v_{k_L}) \equiv (1; 0; 0, 0)$$

• At tree level: f = S

Gaugino condensation

- At tree level: f = S
- One-loop correction: [Dixon, Kaplunovsky, Louis]

$$f(S,T) = S + \frac{1}{8\pi^2} \sum_{i} (c_i b_i^{\mathcal{N}=2}) \ln[\eta(T_i)^2]$$

Gaugino condensation

- At tree level: f = S
- One-loop correction: [Dixon, Kaplunovsky, Louis]

$$f(S,T) = S + \frac{1}{8\pi^2} \sum_{i} (c_i b_i^{N=2}) \ln[\eta(T_i)^2]$$

- Only $\mathcal{N}=2$ subsectors contribute
- \triangleright Only T_i that belong to torus without fixed points; just fixed planes enter
- ▶ For these, $c_i = N_i/N$ where N is orbifold order and N_i is the twist order that leaves ith torus invariant
- $b_i^{\mathcal{N}=2}$ is the β -function of the corresponding $\mathcal{N}=2$ subsector

Gaugino condensation

- At tree level: f = S
- One-loop correction: [Dixon, Kaplunovsky, Louis]

$$f(S, T) = S + \frac{1}{8\pi^2} \sum_{i} (c_i b_i^{N=2}) \ln[\eta(T_i)^2]$$

- Only $\mathcal{N}=2$ subsectors contribute
- \triangleright Only T_i that belong to torus without fixed points; just fixed planes enter
- ▶ For these, $c_i = N_i/N$ where N is orbifold order and N_i is the twist order that leaves ith torus invariant
- $b_i^{\mathcal{N}=2}$ is the β -function of the corresponding $\mathcal{N}=2$ subsector

Superpotential from gaugino condensation

■
$$W \supset B e^{\frac{-24\pi^2}{\beta}f(S,T)}$$

= $B(\Phi_{\alpha}) \exp\left(\frac{-24\pi^2}{\beta}S\right) \exp\left(-\frac{\pi}{12}\sum_{i}\tilde{c}_{i}b_{i}^{\mathcal{N}=2}\right)$

Anomalous U(1), GS mechanism and FI term

Target space gauge anomaly

• $E_8 \times E_8$ broken to non-Abelian GGs & multiple U(1)'s

Anomalous U(1), GS mechanism and FI term

- E₈ × E₈ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous

Examples

- $E_8 \times E_8$ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism

Anomalous U(1), GS mechanism and FI term

- $E_8 \times E_8$ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism
- Induces transformation $S \to S + i\delta_{GS}\Lambda$, $\overline{S} \to \overline{S} i\delta_{GS}\Lambda$

Conclusion

Anomalous U(1), GS mechanism and FI term

- E₈ × E₈ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism
- Induces transformation $S \to S + i\delta_{GS}\Lambda$, $\overline{S} \to \overline{S} i\delta_{GS}\Lambda$
- Anomaly-free combination $S + \overline{S} \delta_{GS} \mathcal{V}_{A}$

Target space gauge anomaly

- $E_8 \times E_8$ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism
- Induces transformation $S \to S + i\delta_{GS}\Lambda$, $\overline{S} \to \overline{S} i\delta_{GS}\Lambda$
- Anomaly-free combination $S + \overline{S} \delta_{GS} \mathcal{V}_{A}$
- Induces FI term $\xi = \frac{\delta_{GS}}{(S+\overline{S})} \approx \mathcal{O}(0.1)$

Motivation

Anomalous U(1), GS mechanism and FI term

- $E_8 \times E_8$ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism
- Induces transformation $S \to S + i\delta_{GS}\Lambda$, $\overline{S} \to \overline{S} i\delta_{GS}\Lambda$
- Anomaly-free combination $S + \overline{S} \delta_{GS} \mathcal{V}_{A}$
- Induces **FI** term $\xi = \frac{\delta_{GS}}{(S+\overline{S})} \approx \mathcal{O}(0.1)$
- Resulting *D*-term $V_{D,A} \propto \sum_{\alpha} q_{\alpha}^{A} |\Phi_{\alpha}|^{2} \xi = 0$

Target space gauge anomaly

- $E_8 \times E_8$ broken to non-Abelian GGs & multiple U(1)'s
- Generically one U(1) anomalous
- **Axion** σ in dilaton multiplet can cancel anomaly in GS mechanism
- Induces transformation $S \to S + i\delta_{GS}\Lambda$, $\overline{S} \to \overline{S} i\delta_{GS}\Lambda$
- Anomaly-free combination $S + \overline{S} \delta_{GS} \mathcal{V}_{A}$
- Induces FI term $\xi = \frac{\delta_{GS}}{(S+\overline{S})} \approx \mathcal{O}(0.1)$
- Resulting *D*-term $V_{D,\,\mathsf{A}} \propto \sum_{\alpha} q_{\alpha}^{\mathsf{A}} |\Phi_{\alpha}|^2 \xi = 0$
- Typically Φ_{α} charged under several U(1)_i factors \Rightarrow *D*-flatness requires more VEVs: $V_{D,i} \propto \sum_{\alpha} q_{\alpha}^{i} |\Phi_{\alpha}|^{2} = 0$

Motivation

Schematic form of final superpotential

$$W \supset A(\Phi) e^{-(n_1T_1+n_2T_2)} + B(\Phi) e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)}$$

Schematic form of final superpotential

$$W \supset A(\Phi) e^{-(n_1T_1+n_2T_2)} + B(\Phi) e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)}$$

Typical values of n_i

 To cancel FI terms, generate masses, decouple exotics and break extra GGs, some Φ get a VEV

Schematic form of final superpotential

$$W \supset A(\Phi) e^{-(n_1T_1+n_2T_2)} + B(\Phi) e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)}$$

Inflation and moduli stabilization

Typical values of n_i

- To cancel FI terms, generate masses, decouple exotics and break extra GGs, some Φ get a VEV
- These Φ enter in $A(\Phi)$, $B(\Phi)$ w/ string scale VEVs $\langle \Phi \rangle \sim 0.1$

Schematic form of final superpotential

$$W \supset A(\Phi) e^{-(n_1T_1+n_2T_2)} + B(\Phi) e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)}$$

Typical values of n_i

- To cancel FI terms, generate masses, decouple exotics and break extra GGs, some Φ get a VEV
- These Φ enter in $A(\Phi), B(\Phi)$ w/ string scale VEVs $\langle \Phi \rangle \sim 0.1$
- lacksquare $n_i = -rac{2\pi}{12}(1+\sum_{lpha=1}^L m_lpha^i)$, so $n_i \sim rac{2\pi}{12}v_i L$

Schematic form of final superpotential

$$W \supset A(\Phi) e^{-(n_1T_1+n_2T_2)} + B(\Phi) e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)}$$

Typical values of n_i

- To cancel FI terms, generate masses, decouple exotics and break extra GGs, some Φ get a VEV
- These Φ enter in $A(\Phi)$, $B(\Phi)$ w/ string scale VEVs $\langle \Phi \rangle \sim 0.1$
- $n_i = -\frac{2\pi}{12}(1 + \sum_{\alpha=1}^{L} m_{\alpha}^i)$, so $n_i \sim \frac{2\pi}{12}v_i L$

Typical values of β_i

- Depend on particle content, typically $\sim -\frac{2\pi}{12}$
- Calculated using orbifolder [Nilles, Ramos-Sanchez, Vaudrevange, Wingerter]

$$W \supset A(\Phi) e^{-(n_1T_1+n_2T_2)} + B(\Phi) e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)}$$

$$W \supset A(\Phi) e^{-(n_1T_1+n_2T_2)} + B(\Phi) e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)}$$

Moduli stabilization with WS Instanton + GC

Full-fledged analysis very tricky [Parameswaran, Ramos-Sanchez, Zavala]

200

Inflation and moduli stabilization

$$W \supset A(\Phi) e^{-(n_1T_1+n_2T_2)} + B(\Phi) e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)}$$

Moduli stabilization with WS Instanton + GC

- Full-fledged analysis very tricky [Parameswaran, Ramos-Sanchez, Zavala]
- Alignment assumed in [Ali, Haque, Jejjala] generically present in orbifolds

$$W \supset A(\Phi) e^{-(n_1T_1+n_2T_2)} + B(\Phi) e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)}$$

Moduli stabilization with WS Instanton + GC

- Full-fledged analysis very tricky [Parameswaran,Ramos-Sanchez,Zavala]
- Alignment assumed in [Ali,Haque,Jejjala] generically present in orbifolds
- Possible avenues:
 - If S stabilized at $\mathcal{O}(1)$ then T_i stabilized at $\mathcal{O}(1)$ [de Carlos, Casas, Munoz; Lust, Munoz; Font, Ibanez, Lust, Quevedo] Racetrack for S from multiple GC or from anom. U(1) Racetrack for T_i from GC and WS instanton or...

200

Examples

General remarks on moduli stabilization and inflation

$$W \supset A(\Phi) e^{-(n_1T_1+n_2T_2)} + B(\Phi) e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)}$$

Moduli stabilization with WS Instanton + GC

- Full-fledged analysis very tricky [Parameswaran,Ramos-Sanchez,Zavala]
- Alignment assumed in [Ali,Haque,Jejjala] generically present in orbifolds
- Possible avenues:
 - If S stabilized at $\mathcal{O}(1)$ then T_i stabilized at $\mathcal{O}(1)$ [de Carlos, Casas, Munoz; Lust, Munoz; Font, Ibanez, Lust, Quevedo] Racetrack for S from multiple GC or from anom. U(1) Racetrack for T_i from GC and WS instanton or...
 - 2 Use one GC that acts as KKLT for S and together with WS instantons as racetrack for T_i [Dundee, Raby, Westphal] or...

200

$$W \supset A(\Phi) e^{-(n_1T_1+n_2T_2)} + B(\Phi) e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1T_1+\beta_2T_2)}$$

Moduli stabilization with WS Instanton + GC

- Full-fledged analysis very tricky [Parameswaran,Ramos-Sanchez,Zavala]
- Alignment assumed in [Ali, Haque, Jejjala] generically present in orbifolds
- Possible avenues:
 - If S stabilized at $\mathcal{O}(1)$ then T_i stabilized at $\mathcal{O}(1)$ [de Carlos, Casas, Munoz; Lust, Munoz; Font, Ibanez, Lust, Quevedo] Racetrack for S from multiple GC or from anom. U(1)Racetrack for T_i from GC and WS instanton or...
 - Use one GC that acts as KKLT for S and together with WS instantons as racetrack for T_i [Dundee, Raby, Westphal] or...
 - Use F-term stabilizer fields and Fl-terms to stabilize S and T_i [Wieck, Winkler; Kappl, Nilles, Winkler]

Examples

Fields

Untwisted fields χ , twisted fields $\varphi^{(k)}$

Fields

Untwisted fields χ , twisted fields $\varphi^{(k)}$

Kähler potential

$$\mathcal{K} = -\ln(S+\overline{S}) - \ln(T_1+\overline{T}_1 - |\chi_{\mathcal{A}}|^2) - \ln(T_2+\overline{T}_2 - |\chi_{\mathcal{B}}|^2) + f(T,U)|\Phi_{\alpha}|^2$$

Introduction

Fields

Untwisted fields χ , twisted fields $\varphi^{(k)}$

Kähler potential

$$K = -\ln(S + \overline{S}) - \ln(T_1 + \overline{T}_1 - |\chi_A|^2) - \ln(T_2 + \overline{T}_2 - |\chi_B|^2) + f(T, U)|\Phi_\alpha|^2$$

D-terms of $U(1)_A$ and $U(1)_i$

$$\sum_{\alpha} q_{\alpha}^{\mathsf{A}} |\Phi_{\alpha}|^2 = \xi, \qquad \sum_{\alpha} q_{\alpha}^{i} |\Phi_{\alpha}|^2 = 0$$

Fields

Untwisted fields χ , twisted fields $\varphi^{(k)}$

Kähler potential

$$\mathcal{K} = -\ln(S+\overline{S}) - \ln(T_1 + \overline{T}_1 - |\chi_A|^2) - \ln(T_2 + \overline{T}_2 - |\chi_B|^2) + f(T,U)|\Phi_\alpha|^2$$

D-terms of $U(1)_A$ and $U(1)_i$

$$\sum_{\alpha} q_{\alpha}^{\mathsf{A}} |\Phi_{\alpha}|^2 = \xi, \qquad \sum_{\alpha} q_{\alpha}^{i} |\Phi_{\alpha}|^2 = 0$$

Superpotential

$$W \supset \chi_{A} \left[\chi_{1} \chi_{2} e^{-q/\delta_{GS} S} - \chi_{3} \chi_{4} \right]$$

$$+ \chi_{B} \left[\chi_{5} \varphi^{(1)} \varphi^{(1)} \varphi^{(4)} e^{-\pi/12(2T_{1}+2T_{2})} - \chi_{6} \chi_{7} \right]$$

$$+ \chi_{C} \left[\varphi^{(1)} \varphi^{(3)} \varphi^{(4)} \varphi^{(4)} e^{-\pi/12(6T_{1}+4T_{2})} - \chi_{8} \chi_{9} \right]$$

Fields

Untwisted fields χ , twisted fields $\varphi^{(k)}$

Kähler potential

$$\mathcal{K} = -\ln(S + \overline{S}) - \ln(T_1 + \overline{T}_1 - |\chi_A|^2) - \ln(T_2 + \overline{T}_2 - |\chi_B|^2) + f(T, U)|\Phi_\alpha|^2$$

D-terms of $U(1)_A$ and $U(1)_i$

$$\sum_{\alpha} q_{\alpha}^{\mathsf{A}} |\Phi_{\alpha}|^2 = \xi, \qquad \sum_{\alpha} q_{\alpha}^{i} |\Phi_{\alpha}|^2 = 0$$

Superpotential

$$W \supset \chi_A \left[A_1 e^{-S} - B_1 \right]$$

$$+ \chi_B \left[A_2 e^{-\pi/12(2T_1 + 2T_2)} - B_2 \right]$$

$$+ \chi_C \left[A_3 e^{-\pi/12(6T_1 + 4T_2)} - B_3 \right]$$

Moduli stabilization with two WS Instantons

$\chi_{A,B,C}$	S	T_1	<i>T</i> ₂	A_1	A_2	A ₃	B_1	B ₂	B ₃
0	1.8	1.05	1.25	$3 \cdot 10^{-4}$	$7 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$3 \cdot 10^{-5}$	$2 \cdot 10^{-4}$

Example 1: Using two instantons

Introduction

Moduli stabilization with two WS Instantons

$\chi_{A,B,C}$	S	T_1	<i>T</i> ₂	A_1	A_2	A ₃	B_1	B_2	B ₃
0	1.8	1.05	1.25	$3 \cdot 10^{-4}$	$7 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$3 \cdot 10^{-5}$	$2 \cdot 10^{-4}$

Moduli stabilization with two WS Instantons

- Rotate to aligned basis $(T_1, T_2) \rightarrow (T_1, T_2)$
- Solve coupled EOMs numerically
- Extract CMB observables

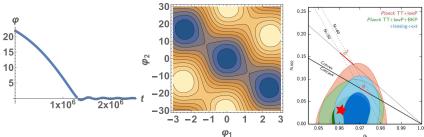
Example 1: Using two instantons

Moduli stabilization with two WS Instantons

$\chi_{A,B,C}$	S	T_1	T_2	A_1	A_2	A ₃	B_1	B ₂	B ₃
0	1.8	1.05	1.25	$3 \cdot 10^{-4}$	$7 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$3 \cdot 10^{-5}$	$2 \cdot 10^{-4}$

Moduli stabilization with two WS Instantons

- Rotate to aligned basis $(T_1, T_2) o (\widetilde{T}_1, \widetilde{T}_2)$
- Solve coupled EOMs numerically
- Extract CMB observables



Challenges

$$W \supset e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1 T_1 + \beta_2 T_2)}$$

One of the racetrack terms for T_i from GC term

Challenges

- $W \supset e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1 T_1 + \beta_2 T_2)}$ One of the racetrack terms for T_i from GC term
- GC term highly suppressed:
 - for realistic $S \sim 2 \implies e^{-\frac{48\pi^2}{\beta}}$
 - ▶ smallish $\langle S \rangle \simeq 1.5$ and/or largish gauge groups (SU(6), SO(10), E₆) preferred

Challenges

- $W \supset e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1 T_1 + \beta_2 T_2)}$ One of the racetrack terms for T_i from GC term
- GC term highly suppressed:
 - for realistic $S \sim 2 \implies e^{-\frac{48\pi^2}{\beta}}$
 - smallish $\langle S \rangle \simeq 1.5$ and/or largish gauge groups (SU(6), SO(10), E₆) preferred
- Thus [de Carlos, Casas, Munoz] and [Dundee, Raby, Westphal] problematic

₹) Q (¥

Introduction

Challenges

- $W \supset e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1 T_1 + \beta_2 T_2)}$ One of the racetrack terms for T_i from GC term
- GC term highly suppressed:
 - for realistic $S \sim 2 \implies e^{-\frac{48\pi^2}{\beta}}$
 - ightharpoonup smallish $\langle S \rangle \simeq 1.5$ and/or largish gauge groups (SU(6), SO(10), E₆) preferred
- Thus [de Carlos, Casas, Munoz] and [Dundee, Raby, Westphal] problematic

•
$$W \supset \chi_1[C e^{-\frac{24\pi^2}{\beta}S} e^{-(\beta_1 T_1 + \beta_2 T_2)} - B_1]$$

+ $\chi_2[A_2 e^{-\frac{q}{\delta_{GS}}S} - B_2]$

- ▶ Need $\langle \chi_1 \rangle \neq 0$ since it corresponds to mesonic mass term
- has to be around Hubble scale to avoid BBN problems
- Get high-scale SUSY breaking $\sim \langle \chi_1 \rangle B_1$

Kähler potential

$$K = -\ln(S+\overline{S}) - \ln(T_1+\overline{T}_1 - |\chi_A|^2) - \ln(T_2+\overline{T}_2 - |\chi_B|^2) + f(T,U)|\Phi_\alpha|^2$$

Kähler potential

$$\mathcal{K} = -\ln(S+\overline{S}) - \ln(T_1+\overline{T}_1 - |\chi_{\mathcal{A}}|^2) - \ln(T_2+\overline{T}_2 - |\chi_{\mathcal{B}}|^2) + f(T,U)|\Phi_{\alpha}|^2$$

Inflation and moduli stabilization

D-terms of $U(1)_A$ and $U(1)_i$

$$\sum_{\alpha} q_{\alpha}^{\mathsf{A}} |\Phi_{\alpha}|^2 = 10^{-1}, \qquad |\chi_3|^2 = 10^{-3}$$

Kähler potential

$$\mathit{K} = -\ln(\mathit{S} + \overline{\mathit{S}}) - \ln(\mathit{T}_1 + \overline{\mathit{T}}_1 - |\chi_{\mathit{A}}|^2) - \ln(\mathit{T}_2 + \overline{\mathit{T}}_2 - |\chi_{\mathit{B}}|^2) + \mathit{f}(\mathit{T}, \mathit{U}) |\Phi_{\alpha}|^2$$

D-terms of $U(1)_A$ and $U(1)_i$

$$\sum_{lpha} q_{lpha}^{\rm A} |\Phi_{lpha}|^2 = 10^{-1}, \qquad |\chi_3|^2 = 10^{-3}$$

Superpotential

$$W \supset \chi_{A} \left[\frac{A_{1}}{\epsilon} e^{-\frac{8\pi^{2}}{\epsilon} S + \beta_{1} T_{1} + \beta_{2} T_{2}} - \frac{B_{1}}{B_{1}} \right]$$

$$+ \chi_{B} \left[A_{2} e^{-\pi/12(6T_{1} + 4T_{2})} - B_{2} \right]$$

$$+ \chi_{C} \left[A_{3} e^{-q/\delta_{GS} S} - B_{3} \right]$$

Moduli stabilization with WS Instantons and GC

ХΑ	χв	χс	S	T_1	<i>T</i> ₂
$9 \cdot 10^{-3}$	$-8 \cdot 10^{-2}$	$-2 \cdot 10^{-2}$	1.6	2.0	1.2

A_1	A ₂	A ₃	B_1	B ₂	B ₃
14	$7 \cdot 10^{-3}$	$4 \cdot 10^{-3}$	$2 \cdot 10^{-4}$	$9 \cdot 10^{-5}$	$7 \cdot 10^{-4}$

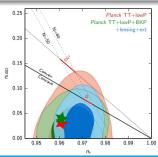
Moduli stabilization with WS Instantons and GC

ХΑ	χв	χс	5	T_1	<i>T</i> ₂
$9 \cdot 10^{-3}$	$-8 \cdot 10^{-2}$	$-2 \cdot 10^{-2}$	1.6	2.0	1.2

A_1	A_2	A_3	B_1	B_2	B_3
14	$7 \cdot 10^{-3}$	$4 \cdot 10^{-3}$	$2 \cdot 10^{-4}$	$9 \cdot 10^{-5}$	$7 \cdot 10^{-4}$

Moduli stabilization with WS Instantons and GC

Rotate to aligned basis, solve EOMs, get observables



Conclusion

Moduli stabilization and inflation

Experimental results suggest large field inflation at large Hubble scale

Examples

Conclusion

Moduli stabilization and inflation

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - Near alignment → small hierarchy between decay constants

Inflation and moduli stabilization Examples Conclusion

Conclusion

Motivation

Moduli stabilization and inflation

Introduction

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - $lackbox{Near alignment}
 ightarrow ext{small hierarchy between decay constants}$

Realization in heterotic orbifolds

 Several axions present (partner of geometric moduli) w/ shift symmetry from SL(2,Z)

Conclusion

Motivation

Moduli stabilization and inflation

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - $lackbox{Near alignment}
 ightarrow ext{small hierarchy between decay constants}$

Realization in heterotic orbifolds

- Several axions present (partner of geometric moduli) w/ shift symmetry from $SL(2,\mathbb{Z})$
- Naturally enter w/ same function in non-perturbative terms
 - ▶ in instantonic couplings to ensure modular covariance of W
 - ▶ in gaugino condensation from 1-loop correction to f

Moduli stabilization and inflation

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - $lackbox{Near alignment}
 ightarrow ext{small hierarchy between decay constants}$

Realization in heterotic orbifolds

- Several axions present (partner of geometric moduli) w/ shift symmetry from $SL(2,\mathbb{Z})$
- Naturally enter w/ same function in non-perturbative terms
 - ▶ in instantonic couplings to ensure modular covariance of W
 - ▶ in gaugino condensation from 1-loop correction to f
- Stabilization
 - ► for GC+WS instantons tension
 - for 2 WS instantons easier

ivation Introduction Inflation and moduli stabilization

Thank you for your attention!

