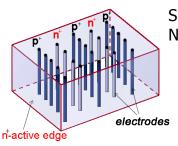
Recent Progress on 3D Silicon Detectors

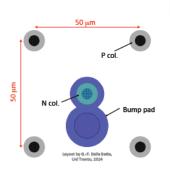
Jörn Lange

IFAE Barcelona

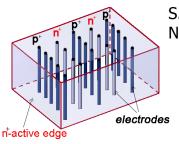
24th International Workshop on Vertex Detectors, Santa Fe, 3 June 2015

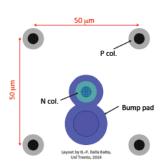
With material from the ATLAS and CMS 3D groups, RD50, CNM, FBK, SLAC and SINTEF



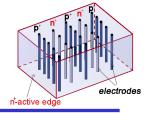

3D Detectors – a Success Story

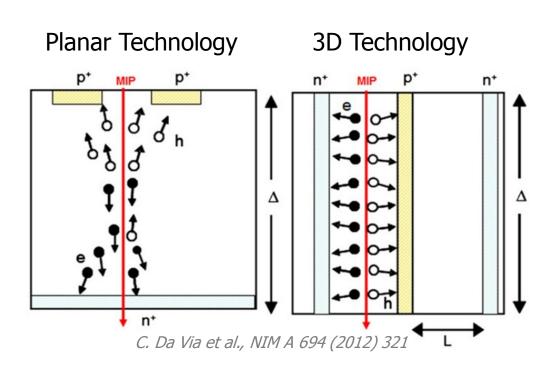
- 1997: First idea and devices
- Huge R&D effort
 - Manufacturers, ATLAS+CMS, RD50, ...
- ATLAS IBL
 - First installation of 3D detectors in a HEP experiment
- Forward Detectors: 2nd use of 3D detectors within 1 year
 - ATLAS Forward Proton (AFP)
 - CMS-TOTEM PPS
- HL-LHC Phase-2 Upgrades ~2024
 - New generation of 3D detectors


S. Parker, C. Kenney, J. Segal NIM A 395 (1997), 328


Outline

- 1997: First idea and devices
- Huge R&D effort
 - Manufacturers, ATLAS+CMS, RD50, ...
- ATLAS IBL
 - First installation of 3D detectors in a HEP experiment
- Forward Detectors: 2nd use of 3D detectors within 1 year
 - ATLAS Forward Proton (AFP)
 - CMS-TOTEM PPS
- HL-LHC Phase-2 Upgrades ~2024
 - New generation of 3D detectors
- Conclusions

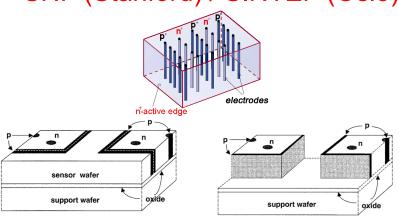



S. Parker, C. Kenney, J. Segal NIM A 395 (1997), 328

3D Detector Principle

Radiation-hard and active/slim-edge technology

Advantages


- Electrode distance decoupled from sensitive detector thickness
 - \rightarrow lower $V_{depletion}$
 - → less power dissipation, cooling
 - → smaller drift distance
 - → faster charge collection
 - → less trapping
- Active or slim edges are natural feature of 3D technology

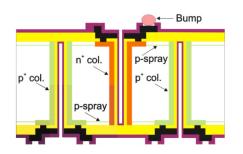
Challenges

- Complex production process
 - → long production time
 - → lower yields
 - → higher costs
- Higher capacitance
 - → higher noise
- Non-uniform response from
 3D columns and low-field regions
 → small efficiency loss at 0°

Different 3D Technologies

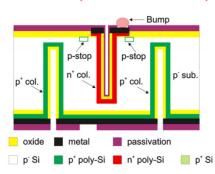
SNF (Stanford) / SINTEF (Oslo)

C. Kenney et al., IEEE TNS 48 (2001) 2405


Single-sided process ("Full 3D")

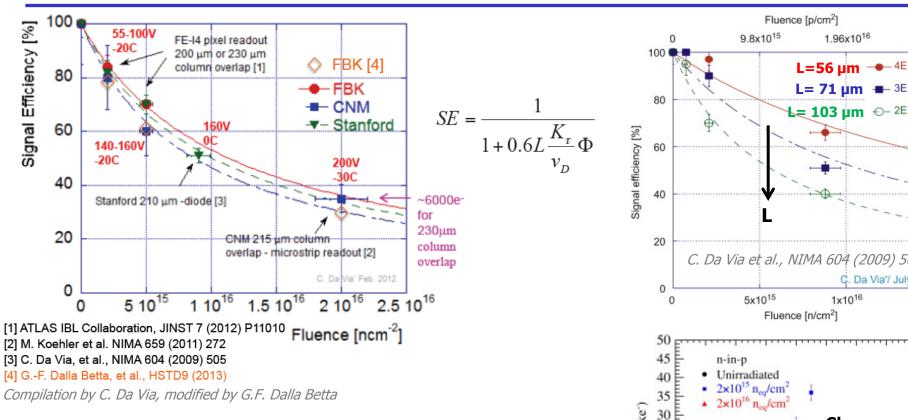
- Both column types (n, p) edged from front
 - Needs support wafer
 → removal needed
 - Bias to be applied at front side
 → overhanging bias tab or other front-side biasing

Allows active edges

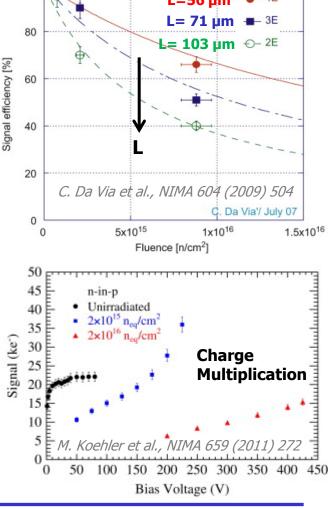

Only few µm dead material

FBK (Trento)

CNM (Barcelona)

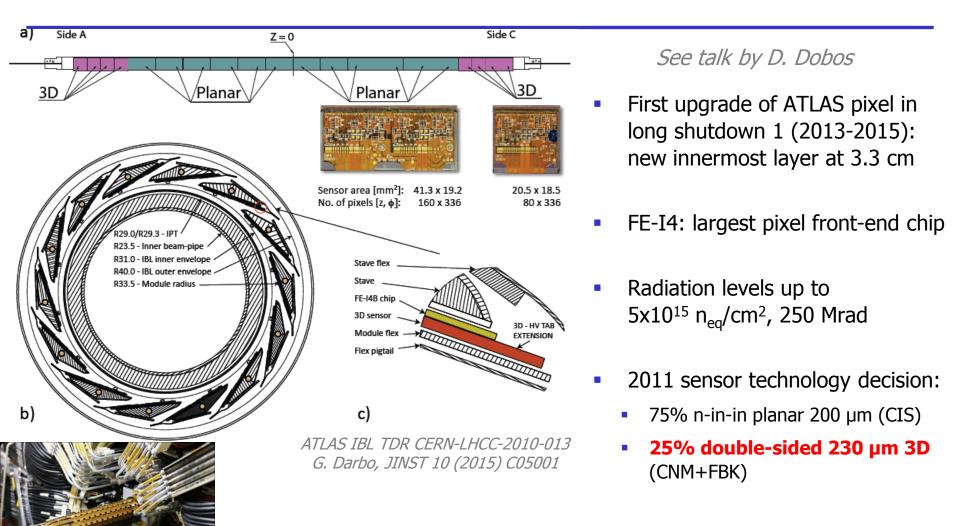


G. Pellegrini et al. NIMA 592(2008) 38 G. Pellegrini et al. NIMA 699(2013), 27

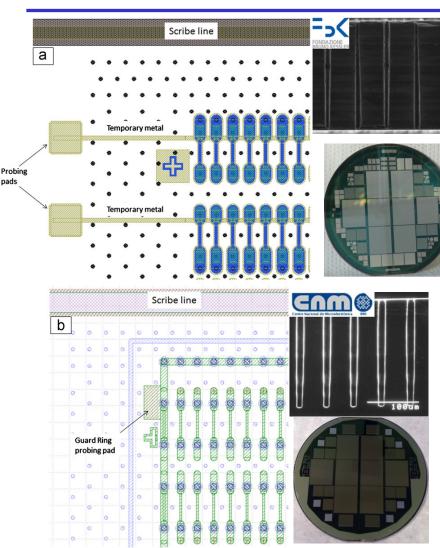

Double-sided process

- n columns etched from front, p from back
 - FBK: passing-through columns, p-spray
 - CNM: non-passing-through columns, p-stop
 - No support wafer needed
 - Bias applied at back side → no bias tab needed
 - → reduced process and assembly complexity
- Allows slim edges
 - FBK: p+ guard fence \rightarrow ~10 µm
 - CNM: p⁺ guard fence + 3D guard ring $\rightarrow \sim 150 \, \mu \text{m}$

R&D Performance Summary



- Signal efficiency (SE) of 60-70% at $5x10^{15}$ n_{eq}/cm^2 and 30% at $2x10^{16}$ n_{eq} /cm² achieved for moderate V < 200 V
- Signal efficiency (SE) improves with decreasing electrode distance L
- Charge multiplication at high fluences and V can further boost collected charge



2.94x1016

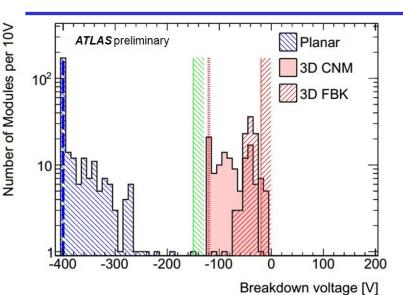
ATLAS IBL: First Use of 3D Detectors

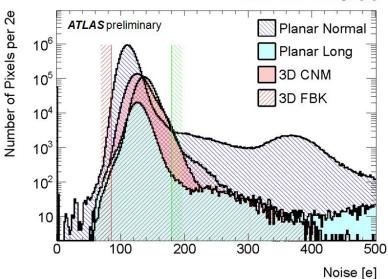
IBL 3D Production

C. Da Via et al., NIM A 694 (2012) 321

Sensors

- FE-I4 geometry: 80x336 pixels of 250x50 μm²
- 2 n+ junction columns per pixel (2E) surrounded by 6 p+ ohmic columns in 230 µm p substrate
 → L=67 µm
- Slim edge of 200 µm along columns


Technology details


- FBK:
 - Passing-through columns
 - p+ guard fence
 - Sensor selection from IV on temporary metal

CNM:

- Columns ~20 µm shorter than thickness
- 3D guard ring+p+ guard fence
- Sensor selection from IV on guard ring (GR) (not ideal)

IBL 3D Performance – Breakdown and Noise

Breakdown voltage

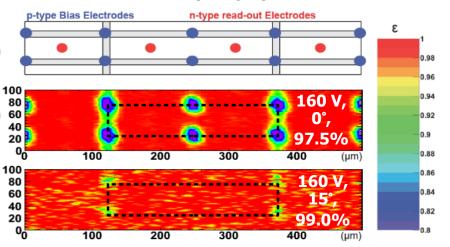
- Lower for 3D than planar, but much less bias voltage needed
- Lower for FBK than CNM due to through-passing junction columns

Noise

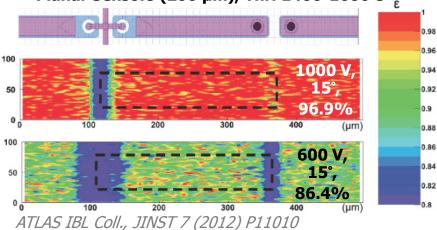
- Larger for 3D than planar due to larger capacitance (170 vs. 110 fF)
- Larger for FBK than CNM due to larger column overlap

Pixel type	e Noise [e]	
Planar Norm.	114	
Planar Long	134	
3D FBK	140	
3D CNM	131	

Measurement in lab during QA

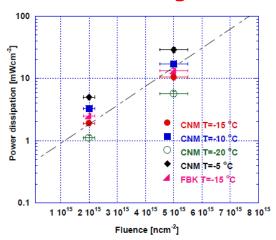

■ Calibration: 10ToT@16ke

■ Threshold: 3000e ■ Temperature: -15 °C


IBL 3D Performance -**Radiation Hardness**

Sub-Pixel Efficiency at 5x10¹⁵ n_{eq}/cm²

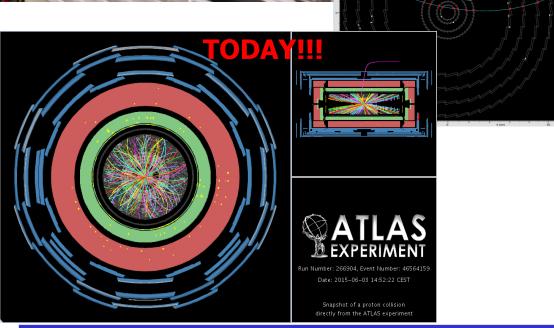
CNM 3D Sensors (230 µm), Thr. 1500 e

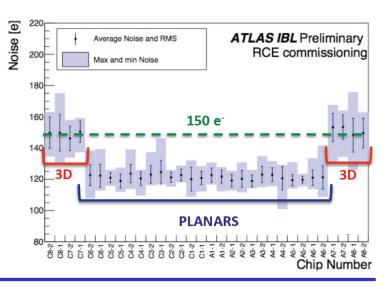


Planar Sensors (200 μ m), Thr. 1400-1600 e $_{\epsilon}$

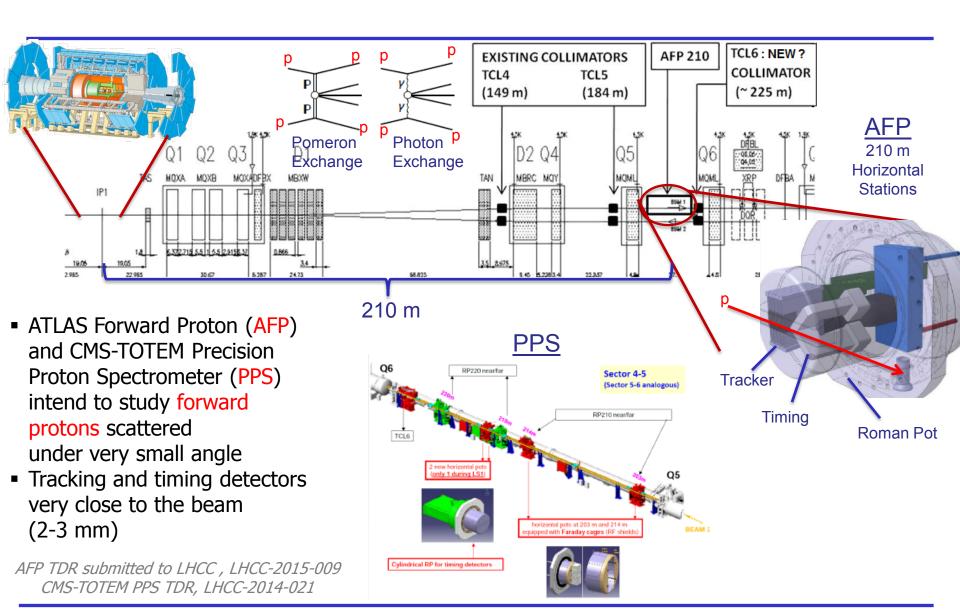
- Radiation hardness tested up to 5x10¹⁵ n_{ea}/cm²
- 3D sensors
 - Fully efficient at 160 V and 15° angle
 - Mean efficiency 1-2% lower at normal incidence due to columns
 - Power dissipation <15 mW/cm² at T=-15° C
- Planar sensors
 - Need 1000 V for similar efficiency
 - Power dissipation ~90 mW/cm² at T=-15° C

→ operational advantage for 3D sensors

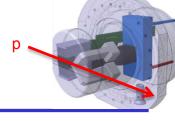

IBL Installation and Commissioning


IBL installed in May 2014

See talk by D. Dobos

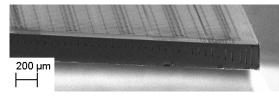

- First 13 TeV collisions!
- Overwhelming fraction of sensors works according to specifications

3D is in and working!!!

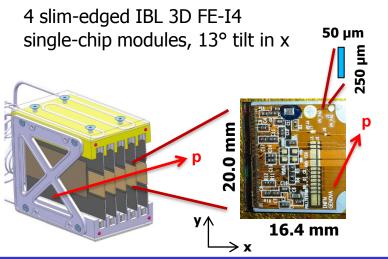


3D Sensors for Forward Detectors

AFP and PPS 3D Trackers

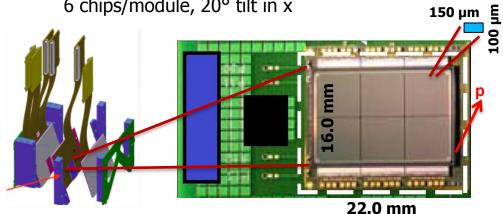


Requirements

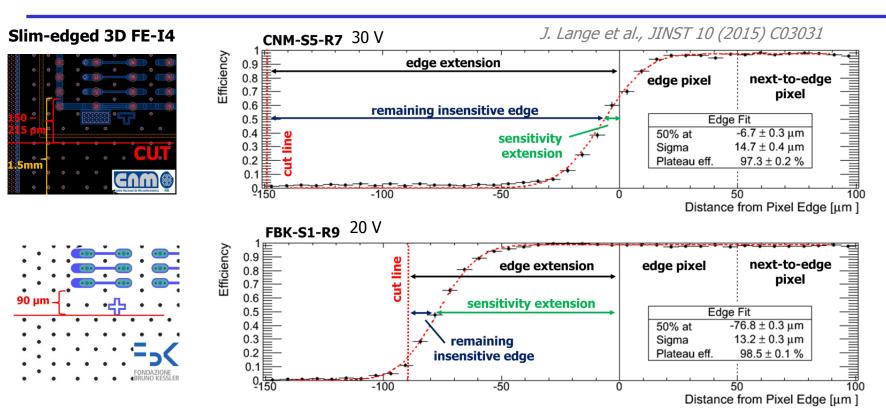

- Good position resolution (full tracker): 10 μm (x), 30 μm (y)
- Slim edge of side facing beam: 100-200 μm
- Highly non-uniform irradiation (up to 3x10¹⁵ n_{eq}/cm²)

Solution

 Several layers of slim-edged 3D pixel detectors (telescope configuration) Simple diamond-saw cut



AFP:



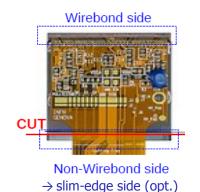
PPS:

6 3D modules with PSI46dig, 6 chips/module, 20° tilt in x

AFP: Slim-Edge Efficiency

- CNM: Fully sensitive up to last pixel (3D guard ring design)
- FBK: Sensitivity extends ~75 μm beyond last pixel (no guard ring)
 → <15 μm insensitive edge: slimmest edge apart from fully active edge
- For both CNM and FBK: <150 μm insensitive edge possible
 - → AFP slim-edge requirements fulfilled

AFP: FBK Slim-Edge Efficiency —


Dependence on V, Side and Fluence

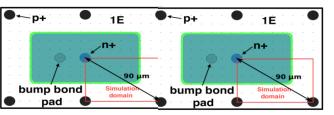
120

100

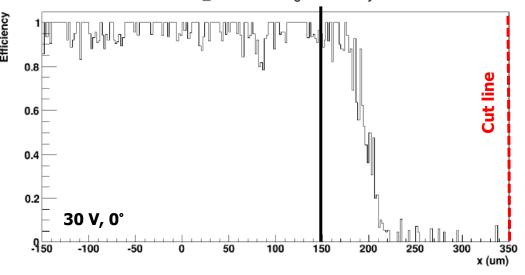
Dependence on the side

- Edges that are cut to obtain slim-edges have ~75 µm sensitivity extension, non-cut edges ~110 µm
 - → probably cut defects influence depletion growth and increased recombination near cut edge

- → to be followed up in simulations
- Dependence on irradiation
 - Here: non-cut devices
 - Sensitivity extension still present after irradiation, but reduced (increasing with V)


Sensitivity extension [µm] 80 Slim-edged 60 FBK-S1-R9 WB FBK-S1-R9 Non-WB FBK-S2-R10 Non-WB FBK-S2-R10 WB 40 FBK13, not cut, Non-WB FBK13, not cut, WB-20 15 30 Sensitivity extension [µm] 120 100 FBK13, not cut, Unirrad., WB 20 FBK9, not cut, 2e15 n_/cm², WB-FBK11, not cut, 5e15 n_{ed}/cm², WB 100 120 140 160 V_{bias} [V]

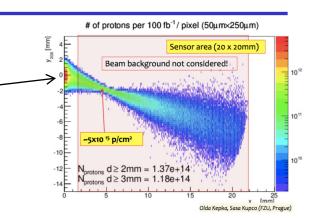
I. Lopez et al., ANIMMA 2015, Lisbon


edged

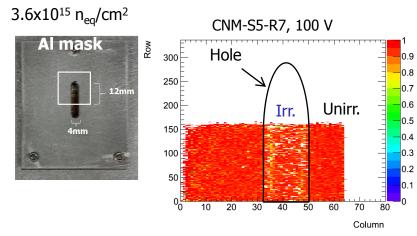
PPS: Slim-Edge Efficiency

Edge Pixel: 300x100 µm²

FBK 11-26-03: Edge Efficiency



- Typical CMS pixel 150x100 μm²
 - Here: edge pixel double size in long direction (300 µm) for this prototype (not for PPS)
- Edge-efficiency studies with 1E FBK sensors
 - 50 μm sensitivity extension at 0°,
 70 μm at 20°
 - 130-150 µm remaining insensitive edge


CMS-TOTEM PPS TDR, LHCC-2014-021 F. Ravera et al., 10th Trento Workshop 2015, Trento → PPS slim-edge requirements fulfilled

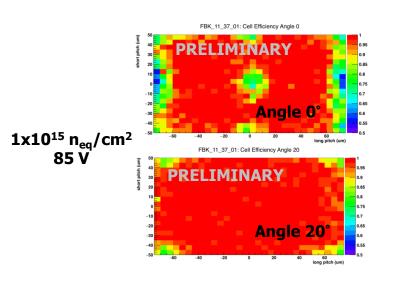
AFP: Irradiation Studies

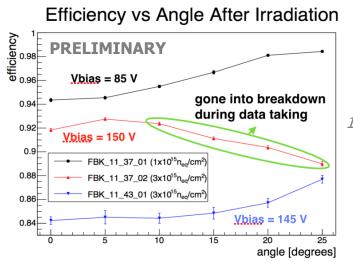
- Radiation hardness for uniform radiation to 5x10¹⁵ n_{ea}/cm² known from IBL
- AFP: Highly non-uniform fluence from diffractive p
 - $3x10^{15}$ n_{eq}/cm² in max. (~7 TeV p), orders of magnitudes less nearby
- 2 irradiation campaigns with different non-uniformity scenarios

- 1) Focussed 23 GeV p irradiation (CERN-PS) → fluence spread large
- CNM-57, 130 V Efficiency Sensor Map max. $4x10^{15}$ n_{eq}/cm^2 250 Fluence $[10^{15} \text{ n}_{eq}/\text{cm}^2]$ Unirr, half Irr. half 0.4 0.3 0.2 Pixel Column
- 2) 23 MeV p (KIT) through hole in 5mm Al plate
 - → very localised fluence with abrupt transition

Efficiency 96-99% in all regions

J. Lange et al., JINST 10 (2015) C03031 → AFP radiation-hardness requirements fulfilled

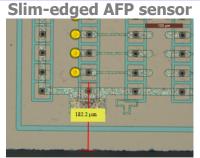

S. Grinstein et al., NIM A730 (2013) 28

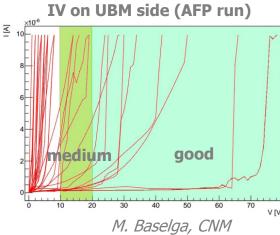

PPS: Irradiation Studies

- Study of uniform irradiation
- Builds on experience of previous CMS 3D radiation hardness studies F. Muñoz, PhD thesis (2014)
 Problems in past: chip PSI46 (analog) not radiation hard enough
- New studies with new PSI46dig: more radiation hard, lower threshold

See talk by L. Caminada for chip details

- Efficiency of 98% after 1x10¹⁵ n_{eq}/cm² and 93% after 3x10¹⁵ n_{eq}/cm² (only 1E available in first studies, 3 ke threshold)
- Some remaining non-uniform inefficiencies, expected to improve with 2E configuration

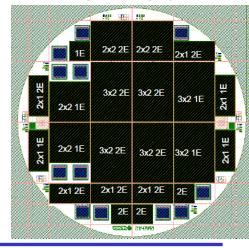



F. Ravera et al., 10th Trento Workshop 2015, Trento

AFP and PPS Production

AFP

- Production run at CNM finished in July 2014
- 8 lost wafers due to machine malfunctions, 5 wafers successfully finished (40 sensors)
- Slim-edged to 180 µm
- 9 good + 5 medium quality sensors after slim-edging
 - → Low yield due to etching problems with DRIE
 - → Identified and solved for next runs
- New IBL-like run started at CNM in February 2015
- Module assembly incl. bump- and wirebonding and QA to be done at IFAE Barcelona (on AFP flex from Oslo)
- Installation of first two AFP stations with 2 x 4 3D FE-I4 pixel modules planned for winter shutdown 2015/16 (tight!)
- **PPS**
 - First FBK 6" 3D commissioning run had low yield on large sensors due to local defects
 - CNM production run for PPS on-going
 - 2E default (also 1E); up to 6-chip sensors; no guard ring
- Installation of PPS 3D pixel modules planned for 2016



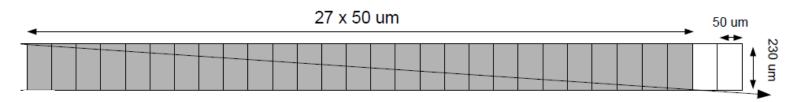
IFAE Bump-Bonding

CNM PPS run

New Developments for HL-LHC

- High-Luminosity LHC (HL-LHC) upgrade 2024
 - → increased occupancy
 - \rightarrow unprecedented radiation levels (1-2x10¹⁶ n_{eo}/cm² innermost pixels)

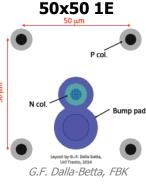
See talks by R. Bates & R. Stringer (sensors), M. Garcia-Sciveres (chip)


- Development of new pixel sensors and front-end (RD53)
 - Reduced cell size: 50x50 μm² or 25x100 μm²
 - Reduced threshold \sim 1000e (in-time), $C_{det} < 100$ fF/pixel, $I_{leak} < 10$ nA/pixel
- Strategy for 3D HL-LHC R&D
 - New generation of 3D productions under way
 - Explore the limits of existing 3D technology and devices from previous productions

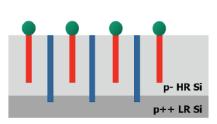
HL-LHC Studies with Existing Technology

- Radiation-hardness studies on-going
 - With strips, PSI46dig, FE-I3, FE-I4: irradiations at PS, KIT, Ljubljana
- High-eta studies
 - Large clusters → large total charge → efficiency for whole cluster not a problem
 - But for 50 μm pitch very small charge deposition per pixel (almost parallel tracks): 3300 e
 - Testbeam campaign to measure CNM+FBK IBL FE-I4 devices with 80° angle in short pitch direction (50 μm)
 - 1000 e threshold
 - Cluster size 24-27
 - >99% efficiency per pixel before irradiation
 - Analysis on-going for irradiated devices

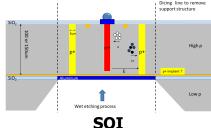
IFAE (I. Lopez et al.)


$$80^{\circ} (\eta = 2.4) \rightarrow Q = 3300 \text{ e/pixel } (50 \text{ } \mu\text{m})$$

New 3D Productions

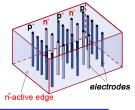

at CNM, FBK, Stanford, SINTEF

- Smaller cell sizes folded into existing FE geometries, also FE-RD53 prototypes
 - Cross-experiment runs: CMS PSI46dig, ATLAS FE-I3/4, LHCb Timepix/Velopix
- Reduced cell size means reduced electrode distance L
 - Advantageous for radiation hardness
 - Need to reduce 3D column diameter to ~5 µm to keep dead material low
 - Go to thinner detectors with fixed aspect ratio (column length/diam.) $20:1 \rightarrow \text{all vendors}$
 - Increase aspect ratio to 40:1 with cryogenic technique → CNM
- Thinner sensors
 - To reduce 3D column diameter, C_{det} and cluster size at high eta
 - Double-sided: CNM 200 µm
 - Single-sided
 - Si-Si wafer-bonding (FBK 100-130 μm, Stanford 75-150 μm)
 - SOI (SINTEF 50+100 μm, CNM 100+150 μm)
- 6" wafer production (FBK, SINTEF)
- Improved on-wafer sensor selection (CNM: poly-Si)
- Improved breakdown (FBK: non-passing through junction column)
- Varying depth of junction columns to sense full 3D hit information (Stanford)
- Active (Stanford, SINTEF) or slim (CNM, FBK) edges

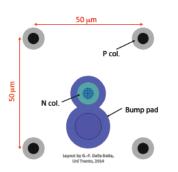


Layout	50x50 1E	25x100 1E	25x100 2E
El. Dist. L	35 µm	52 µm	28 µm

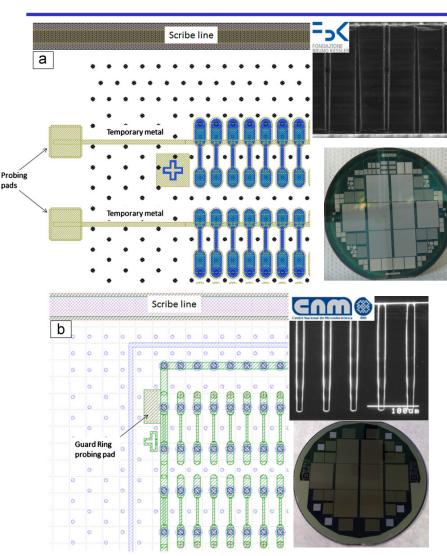
cf. FE-I4: L=67 µm



G. Pellegrini, CNM


Conclusions

- 3D silicon detectors are an intrinsic radiation-hard and active/slim-edge technology
 - Now mature
- First-time use in HEP experiment in ATLAS IBL
 - Successful qualification, production, installation, commissioning and first collision data
 - Operational advantages compared to planar
- Second use in forward detectors imminent
 - ATLAS Forward Physics (AFP)
 - CMS-TOTEM PPS
 - Successful qualifications (slim edge and non-uniform irradiation)
 - Productions on-going
- R&D for HL-LHC pixel detectors on-going
 - New 3D production runs at CNM, FBK, Stanford, SINTEF
 - Smaller cell size, thinner, smaller columns, partly 6"
 - R&D with existing devices on-going

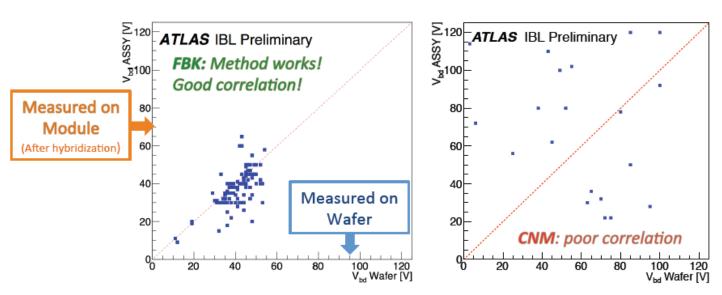


BACKUP

IBL 3D Production

C. Da Via et al., NIM A 694 (2012) 321

Sensors


- FE-I4 geometry: 80x336 pixels of 250x50 µm²
- 2 n⁺ junction columns per pixel (2E) surrounded by 6 p⁺ ohmic columns in 230 μm p substrate \rightarrow L=67 µm
- Slim edge of 200 µm along columns
- Technology details
 - FBK:
 - Passing-through columns
 - p⁺ guard fence
 - Sensor selection from IV on temporary metal → 57% wafer production yield
 - Assembly yield 56% (bump-bonding issues)

CNM:

- Columns ~20 µm shorter than thickness
- 3D guard ring+p+ guard fence
- Sensor selection from IV on quard ring (GR) → 72% wafer production yield
- Assembly yield 50% (GR IV bad indicator)

IBL 3D Assembly Yield

V_{BD} COMPARISON AFTER HYBRIDIZATION

CNM 3D-Guard Ring evaluation method not good enough!

CNM V_{BD} plot is done with a small subset of produced modules, because in the QA too low bias current (\leq 10 μ A) limit has been used.

CNM implementing poly-silicon bias structure for new production

A. Gaudiello - 10th "Trento" Workshop on Advanced Silicon Radiation Detectors

8