
Search for B0
s–B

0
s Oscillations with

a Charge Dipole Technique at

SLD

Dissertation

zur Erlangung des Doktorgrades

des Fachbereichs Physik

der Universität Hamburg

vorgelegt von
Julia Thom

aus Bonn

Hamburg
2001



Zusammenfassung

Das Thema dieser Arbeit ist die Studie der B0
s − B0

s Oszillationen bei SLD. Die

Studie gibt Aufschluß über noch ungenau gemessene Konstanten der Theorie der

elektroschwachen Wechselwirkung. Die Studie bezieht sich auf B0
s Mesonen, die in

400,000 hadronischen Zerfällen des Z-Bosons von 1996 bis 1998 am SLC erzeugt

wurden.

Zur Bestimmung der Oszillationsfrequenz muß die Ladung des Bottom-Quarks

bei der Entstehung und beim Zerfall des B0
s Mesons gemessen werden. Außerdem

muß die Zerfallszeit des B0
s Mesons bestimmt werden. Zur Bestimmung der Quark-

ladung bei der Entstehung wird die Asymmetrie von polarisierten Z-Boson Zerfällen

in Bottom- und Anti-Bottom Quark Paare benutzt. Die Quarkladung beim Zer-

fall wird mit der Ladungsdifferenz zwischen inclusiv rekonstruierten B-Hadronen

und D-Hadronen gemessen, und die Zerfallszeit wird mit den gemessenen Werten

für Zerfallslänge und Energie des B-Hadrons bestimmt. Eine besondere Rolle fällt

dabei dem hochauflösenden Silizium-Pixel-Detektor zu.

In der Studie ergab sich kein statistisch signifikantes Signal für eine bestimmte

Oszillationsfrequenz. Die folgenden Werte der Oszillationsfrequenz ∆ms konnten

mit 95% CL ausgeschlossen werden:

∆ms < 4.9 ps−1, und

7.9 ps−1 < ∆ms < 10.3 ps−1.

Alle Ergebnisse von SLD, LEP und CDF wurden kombiniert. Damit kann

∆ms <14.6 ps
−1 mit 95% CL ausgeschlossen werden. Das Ergebnis schränkt das

Unitaritätsdreieck erheblich ein.
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Abstract

We report a study of the time dependence of B0
s–B

0
s mixing using a sample of

400,000 hadronic Z decays collected by the SLD experiment at the SLC between

1996 and 1998. The analysis determines the b hadron flavor at production by

exploiting the large forward-backward asymmetry of polarized Z → bb decays and

uses additional information from the hemisphere opposite that of the reconstructed

B decay. To determine the b hadron flavor at decay, the charge difference between

inclusively reconstructed B and D decay vertices is used. The proper time of the

decay is determined from the reconstructed B decaylength and a measure of the B

hadron energy. The analysis takes advantage of the excellent vertexing efficiency

and resolution of the pixel-based CCD Vertex Detector.

No significant signal for a particular value of the oscillation frequency was found.

The following ranges of the oscillation frequency of B0
s–B

0
s mixing are excluded at

95% CL from the analysis presented in this thesis:

∆ms < 4.9 ps−1, and

7.9 ps−1 < ∆ms < 10.3 ps−1.

Combining results from SLD, LEP and CDF, ∆ms <14.6 ps
−1 can be excluded at

95% CL. This limit puts significant constraints on the CKM unitarity triangle.
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C H A P T E R 1

Theoretical Motivation

1.1 Introduction

Quantum chromodynamics (QCD), the electroweak theory and general relativ-

ity currently give an accurate description of all known phenomena in fundamental

physics. No experimental facts are known that disagree with these theories. The

Standard Model (SM) incorporates QCD and the electroweak theory. Its matter

content consists of spin 1/2 quarks and leptons, and spin 1 gauge bosons. They

are considered to be elementary, meaning that they have no constituents. There

are six quark flavors (up, down, charm, strange, top and bottom) and in addition

to its spin each of the quarks has a second degree of freedom, called color, which

can have three different values. There are also six different leptons, e, νe, µ, νµ, τ

and ντ . Forces between fermions due to the electroweark interaction are mediated

by exchanges of four gauge bosons (γ,W+,W−and Z0); and the forces due to the

strong interaction, or QCD, are mediated by eight gauge bosons, the gluons. An

in depth description of the SM can be found in [1], [2].

Together the 12 fermions are arranged in 3 families, ordered according to their

masses, such that each family contains a pair of up- and down-type quarks, as well

as one charged lepton and one neutrino.
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A set of twenty-five fundamental constants are required in order to describe the

particle masses and the strength of the interactions between them. For example,

the electroweak interaction can be expressed in terms of three constants, the electric

charge e, the weak charge g, and the mass of either the W or Z. The strengths of

the quark flavor changing transitions can be described using a unitary 3×3 matrix,

the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Its elements can be described in

terms of four constants.

The determination of the Standard Model constants is an important goal of

particle physics today. It is conceivable that future measurements will give results

that do not fit into the Standard Model framework and would question its validity.

This thesis is dedicated to putting tighter constraints on two poorly measured

SM parameters, ρ and η, two of the four constants that determine the CKM quark

transition matrix. They are related to the coupling of the top quark to lighter

quarks. A very promising way to do this is to measure the rates for B0–B0 mixing,

i.e., the conversion of neutral B mesons into their anti-particles. Here, we will

review how measurements of the B0
s and B

0
d mixing rates can be combined to

constrain the two SM parameters in question. A summary of how non-SM physics

could affect the B0–B0 mixing rates will also be given.

1.2 The Electroweak Interaction

The theory of electroweak interactions is based on an SU(2)L×U(1) local gauge

symmetry [3]. The i’th family of quarks consists of left-handed up and down type

quarks, uLi
and dLi

, which transform as an SU(2)L doublet ΨLi
=







uL

dL







i

, and

right handed SU(2)L singlet quarks u
i
R and d

i
R. Similarly, each family of leptons
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contains an SU(2)L doublet and a right handed SU(2)L singlet charged lepton.

All of the fields are charged under the U(1) symmetry. The requirement of local

gauge invariance implies the existence of 4 massless spin 1 bosons, which are the

mediators of the electroweak interactions. Three of them, theW+,W−and Z0, gain

mass due to electroweak symmetry breaking, whereas the photon remains massless.

Table 1: Standard Model fermions [4]

quarks Q/e mass[GeV] leptons Q/e mass[GeV] family

up 2/3 ≈0.001-0.005 e -1 0.005 1
down -1/3 ≈0.003-0.009 νe 0 < 3 · 10−6

charm 2/3 ≈1.15-1.35 µ -1 0.106 2
strange -1/3 ≈0.075-0.17 νµ 0 < 2 · 10−4

top 2/3 174.3±5.1 τ -1 1.778 3
bottom -1/3 ≈4.0-4.4 ντ 0 < 0.018

Table 2: The electroweak gauge bosons

boson Q/e mass[GeV]

γ 0 0
Z0 0 91.19
W± ±1 80.42± 0.06

The fermions couple to the gauge bosons γ and Z via neutral currents and to

the W± via charged currents. The transitions measured in this thesis are due to

charged currents, so their structure is reviewed here. The mechanism of quark mass

generation is also briefly discussed.

In the SM particle masses are generated via the Higgs-mechanism. A description

can be found in [5]. In the simplest version a single SUL(2) doublet of scalar
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fields Φ ≡







Φ+

Φ0






is introduced. The potential for Φ is arranged so that the

neutral component acquires a vacuum expectation value, < Φ0 >= v√
2
, leading to

spontaneous symmetry breaking. Of the four degrees of freedom in Φ, three become

the longitudinal components of the massive W± and Z0, leaving a single physical

neutral Higgs scalar H. Unfortunately, the Higgs field has as yet not been observed,

so that a complete understanding of the mechanism for electroweak symmetry

breaking remains one of the central problems in particle physics today.

The Lagrangian contains ’Yukawa’ terms for the coupling of the quarks to Φ:

LYukawa = −
[

hUΨLΦ̃uR + hDΨLΦdR

]

+ h.c., (1.1)

where hU and hD are 3 × 3 Yukawa coupling matrices containing the dimension-

less coupling strengths, and Φ̃ ≡ iσ3Φ
⋆ =







Φ
0

−Φ−






. Substituting the vacuum

expectation value for Φ0 into LYukawa yields up and down quark mass matrices:

mU = hU · v√
2
and mD = hD·

v√
2
. (1.2)

The 3×3 mass matricesmU andmD can be transformed into real, diagonal matrices

describing the physical mass eigenstates via bi-unitary transformations:

V U
L mUV

U†
R ≡













mu 0 0

0 mc 0

0 0 mt













and VD
LmDV

D†
R ≡













md 0 0

0 ms 0

0 0 mb













. (1.3)

The Lagrangian for the charged current interactions of the W± with the quarks in

the weak interaction basis can be written as

LCC =
e√

2 sinΘW

3
∑

i=1

ui
Lγ

µW+
µ d

i
L + h.c., (1.4)
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where ΘW is the weak mixing angle and e the electric charge. The three ‘physical’

up and down type quark mass eigenstates are given by

uPhy
i

L = (V U
L uL)

i and dPhy
i

L = (VD
LdL)

i, i = 1, 2, 3. (1.5)

The physical up quarks are denoted by u,c,t (for up, charm, top), and the down

quarks by d,s,b (for down, strange, bottom). The CKM matrix [6], [7] is defined

as

VCKM ≡ V U
L V

D†

L . (1.6)

It is unitary, but not diagonal. Finally we can rewrite the charged current La-

grangian in the physical quark basis as:

LCC =
e√

2 sinΘW

(u c t)LγµW
µVCKM













d

s

b













L

. (1.7)

The elements of the CKM matrix

VCKM =













Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb













(1.8)

describe the “mixing”-strengths of the quarks, i.e. the strengths of the charged

current transitions between up and down type quarks.1 The elements of VCKM

are not predicted in the SM, but can in principle be determined by measuring the

strength of transitions between quarks.

1Up to about two years ago, neutrino masses were assumed to vanish in the Standard Model,

which excluded lepton flavor changing transitions. However, recent experimental results strongly

suggest non zero neutrino masses and the existence of transitions between at least two lepton

families. It is possible therefore, that a mixing matrix analogous to the CKM matrix exists in the

lepton sector.
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Table 3: Relative strengths of quark transitions

relative amplitude transition example of source of information

∼ 1 u,d Nuclear β decay
∼ 1 c,s D0 → K−e+νl

∼ 0.22 u,s K
0 → π+e−νe

∼ 0.22 c,d D0 → π−e+νl
∼ 0.04 c,b B → Xclνl
∼ 0.04 t,s b→ sγ
∼ 1 t,b t→ bW

∼ 0.003 u,b B → πlν

∼ 0.01 t,d B0 − B0
mixing

1.3 The CKM Matrix

A hierarchy of quark flavor-changing transitions is observed experimentally in

the sense that transitions between the first and second families are about an order

of magnitude stronger than transitions between the second and third. Transitions

between the first and third families are even weaker. Table 3 summarizes the

approximate observed strengths of the quark transitions and lists one source of

information for each. A more detailed discussion will be given in section 1.5.

The CKM matrix is usually parametrized in some specific way. The pur-

pose of the parametrizations is to incorporate the constraints of 3 × 3 unitarity.

Some parametrizations also reflect experimental information, like the Wolfenstein

parametrization, which is based on the flavor transition strength hierarchy. It is

a parametrization in which unitarity only holds approximately. Other possible

parametrizations can for example be based on the observed mass hierarchies.

In general a complex N ×N matrix V is parametrized by 2N2 parameters. The
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number of independent parameters is halved if unitarity is imposed:

∑

j

VijV
∗
kj = δik (1.9)

As the phases are arbitrary, 2N − 1 of them can be absorbed by phase rotations.

Furthermore, a unitary matrix is a complex extension of an orthogonal matrix,

therefore 1
2
N(N − 1) parameters need to be identified with rotation angles, leaving

1
2
N(N − 3) + 1 phases. Thus, the appearance of a complex phase requires N > 2.

In the case of the unitary CKM matrix with N=3, four free parameters are left

after phase rotations and unitarity conditions are imposed. Three of them can be

identified with the real Euler angles, leaving one phase. This phase allows for the

accommodation of CP violation. A discussion follows in section 1.6.

In the Wolfenstein parametrization [8], three real parameters (λ,A, ρ) and a

phase η representing CP violation, are arranged in the following way:

VCKM =













1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1













+O(λ4). (1.10)

The small parameter λ serves as an expansion parameter: transitions between the

first and second families are of order λ, between the second and third of order

λ2, and between the first and third of order λ3. λ and A are identified with Vus

and |Vcb|
λ2 , which are determined from the precisely measured semileptonic K and B

decays [4].

λ = |Vus| = 0.2205± 0.0018, (1.11)

A =
|Vcb|
λ2
= 0.824± 0.075. (1.12)

The parameters ρ and η, on the other hand, are not very well known.

A way to illustrate the unitarity relations between the different matrix elements

is via a triangle in the complex (ρ, η) plane. Fig. 1 gives the full description of the
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(0,0) (1,0)

(ρ,η)

γ

α

β

Vud Vub
*

Vcd Vcb
*

Vtd Vtb
*

Vcd Vcb
*

Figure 1: Unitarity Triangle in the Wolfenstein Parametrization.

A

BC

CKMmatrix in the Wolfenstein approximation. This ‘unitarity triangle’ is obtained

by rescaling one of the nine unitarity relations

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (1.13)

by a factor |VcdV
∗
cb| so that the base is normalized to unity. The lengths CA and

BA are equal to
∣

∣

∣

VudV
∗
ub

VcdV
∗
cb

∣

∣

∣
and

∣

∣

∣

VtdV
∗
tb

VcdV
∗
cb

∣

∣

∣
, respectively.

One can achieve a greater level of precision in a similar parametrization with

redefined parameters (ρ̃, η̃), where higher orders of λ are included and unitarity

holds to an excellent approximation. With

ρ̃ ≡ ρ(1− λ
2

2
) and η̃ ≡ η(1− λ

2

2
), (1.14)
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one obtains

VCKM =













1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ̃− iη̃) −Aλ2 + 1
2
A(1− 2ρ)λ4 − iηAλ4 1













.

(1.15)

The corresponding lengths CA and BA in the complex (ρ̃, η̃) plane are equal to

Rb ≡
√

ρ̃2 + η̃2 = (1− λ2

2
)
1

λ

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

and (1.16)

Rt ≡
√

(1− ρ̃)2 + η̃2 = (1− λ2

2
)
1

λ

∣

∣

∣

∣

Vtd

Vcb

∣

∣

∣

∣

. (1.17)

In order to determine if the weak hadronic decays are correctly described in the

SM it is essential to over-determine the CKM parameters ρ̃ and η̃ by making as

many independent measurements as possible. In the language of the unitarity tri-

angle this means that the bands in the (ρ̃, η̃) plane extracted from all measurements

should overlap at the apex of the triangle.

In the next section, the possibility of obtaining a constraint on ρ̃ and η̃ via

measurements of the B0–B0 mixing rates is discussed.

1.4 Determination of Vts and Vtd from B0–B0 mixing

Flavor-changing neutral current processes that are generated at the one loop

level in the SM play a crucial role in the determination of the CKM matrix elements

Vts and Vtd. However, the extraction of these elements is complicated by the pres-

ence of hadronic uncertainties. New Physics can also make significant contributions

to one loop processes. This will be discussed in section 1.6.

Examples of such processes are rare decays of neutral mesons, B0
d , B

0
s , K

0 and

D0, and neutral meson mixing, which we discuss here.
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1.4.1 General discussion of heavy neutral meson systems

Consider a beam of neutral mesons P 0. It is described by the wave function

|Ψ(t) >= Ψ1(t)|P 0 > +Ψ2(t)|P 0 >, (1.18)

where t is the proper time. P 0 and P 0 are flavor eigenstates. The wave function

evolves according to the time dependent Schroedinger equation

i
d

dt







Ψ1

Ψ2






=







R11 R12

R21 R22













Ψ1

Ψ2






(1.19)

with

R =M − i

2
Γ. (1.20)

M and Γ are 2×2 hermitian matrices known as the mass and decay matrices. They

describe the dispersive and absorptive parts of P 0–P 0 mixing. Hermiticity implies

M12 = M∗
21 and Γ12 = Γ

∗
21, however R itself is not hermitian. Mij and Γij can

in principle be calculated from second order perturbation theory. CPT invariance

guarantees that M11 =M22 and Γ11 = Γ22.

The flavor eigenstates P 0 and P 0 are not the physical mass eigenstates. The

latter are obtained by solving the eigenvalue problem for R. The two eigenstates

of R may be labeled as Pa and Pb. In the B
0–B0 system it is customary to choose

a=H and b=L for heavy and light states. In the K0 system, where the lifetimes of

Ka and Kb are widely different, the labels L and S (for long and short lifetime) are

used to distinguish the two physical eigenstates.

The heavy and light mass eigenstates can be written as a quantum mechanical

superposition of flavor eigenstates:

|PH >= p|P 0 > +q|P 0 >, (1.21)
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|PL >= p|P 0 > −q|P 0 > . (1.22)

Since R is not hermitian their eigenvalues are complex:

µH = mH − i

2
ΓH (1.23)

µL = mL − i

2
ΓL, (1.24)

where mH,L and ΓH,L denote the masses and widths of the physical states PH and

PL. Using the convention

∆µ ≡ µH − µL = ∆m− i

2
∆Γ (1.25)

∆m ≡ mH −mL (1.26)

∆Γ ≡ ΓH − ΓL, (1.27)

the eigenvalue problem

det |M− i
2
Γ− µ| = 0 (1.28)

leads to the condition

∆µ = 2
√

(M∗
12 − iΓ∗12/2)(M12 − iΓ12/2). (1.29)

The real and imaginary parts of this equation give

∆m2 − (∆Γ2/4) = 4(|M12|2 −
1

4
|Γ12|2) and

∆m∆Γ = 4Re(M12Γ
∗
12). (1.30)

Finally, using these two equations one can write down the mass and decay width

differences in terms of M12 and Γ12:

∆m =
√
2

√

|M12|2 −
1

4
|Γ12|2 +

√

(|M12|2 −
1

4
|Γ12|2)2 + [Re(M12Γ

∗
12)]

2, (1.31)

∆Γ = 2
√
2

(

√

|M12|2 −
1

4
|Γ12|2 + [Re(M12Γ∗12)]

2 − (|M12|2 −
1

4
|Γ12|2)

)
1
2

. (1.32)
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Figure 2:
Box Graphs for B0–B0 mixing. Shown is the dominant
contribution due to the exchange of a top quark.

Solving for the eigenvalues yields

q

p
=

−∆µ
2(M12 − iΓ12/2)

= ±
√

M∗
12 − i

2
Γ∗12

M12 − i
2
Γ12
. (1.33)

In the next section, we apply the above to the case of B0–B0 mixing in the SM.

1.4.2 B0–B0 mixing

The matrix element M12 can be obtained from the exchange of all virtual in-

termediate states, with the dominant contribution due to the exchange of a top

quark (see Fig. 2). On the other hand, Γ12 is given by the exchange of all possible

real intermediate states (i.e. states that both the B0 and the B0 mesons can decay

into). The extraction of M12 and Γ12 is summarized here, for detailed discussions

see for example [9], [10].

At the quark level the amplitudeM for bs→ sb or bd→ db transitions is given

by

M = −g4|VtbV
∗
tq|2m2

t

iπ2

M4
W

A

(

m2
t

M2
W

)

, (1.34)

where q = d (for the B0
d system) or q = s (for the B0

s system). g is the weak
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coupling constant, mt is the top quark mass and MW is the W mass. A
(

m2
t

M2
W

)

is

the Inami-Lim function [11], given by

A(x) = [1− 3
4

x+ x2

(1− x)2 − 3
2

x2

(1− x)2 ln x] (1.35)

It follows from the integral over loop momenta.

The corresponding effective Hamiltonian is

Heff =
G2

F

2π2
|VtbV

∗
tq|2m2

tA

(

m2
t

M2
W

)

(qLγµbL)(qLγ
µbL), (1.36)

where the Fermi constant GF is given (at lowest order) by

GF√
2
=

g2

8M2
W

. (1.37)

Note that the coefficient of the 4-quark operator in Heff is a purely short dis-

tance quantity, which can be calculated perturbatively. M12 is given by the matrix

element M12 =
1

mBq
< B0|Heff |B0 >, yielding

M q
12 ≈

G2
F

12π2
f 2Bq

BBq
mBq

ηQCD|VtbV
∗
tq|2A

(

m2
t

M2
W

)

m2
t . (1.38)

fBq
is the Bq decay constant and Bq is the ‘bag parameter’ which parameterizes the

non-perturbative matrix element of the 4-quark operator. ηQCD is the perturbative

QCD correction.

A perturbative estimate of Γq
12 gives

Γq
12 ≈

G2
F

8π
f 2Bq

BqmBq
m2

bηQCD

[

(VtbV
∗
tq)

2 + VcbV
∗
cqVtbV

∗
tqO

(

m2
c

m2
b

)

+ (VcbV
∗
cq)

2O

(

m4
c

m4
b

)]

.

(1.39)

Note that |M q
12| ≫ |Γq

12| because of the top mass dependence of M12. Together

with Eq.(1.31) this implies

∆m ≈ 2|M12| (1.40)
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and therefore

∆m ≈ G2
F

6π2
f 2Bq

BBq
mBq

ηQCD|VtbV
∗
tq|2A

(

m2
t

M2
W

)

m2
t . (1.41)

The ratio of mass and decay width differences becomes

∆Γ

∆m
∼ O

(

m2
b

m2
t

)

. (1.42)

Measurements of ∆ms and ∆md in principle allow the extraction of the mag-

nitudes of the CKM matrix elements Vtd and Vts. Especially interesting, as men-

tioned earlier, is the matrix element Vtd, which is related to ρ̃ and η̃, i.e., V
2
td =

(Aλ3(1− ρ̃ − iη̃))2. ∆md is already measured with very good precision, and more

measurements are expected in the future. The current world average is [12]

∆md = 0.487± 0.014 ps−1. (1.43)

The main problem for the extraction of Vtd is the large uncertainty in the de-

termination of fBq

√

BBq
. Currently, lattice QCD calculations [13] give a 20− 30%

uncertainty. It is advantageous to extract the ratio Vts/Vtd from the ratio
∆ms

∆md
, as

many theoretical uncertainies are common to B0
s and B

0
d mixing, and cancel [13]:

∆md

∆ms
= (1.16± 0.05)2

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2

. (1.44)

To obtain a rough estimate of the value of ∆ms compared to ∆md in the SM

consider the CKM matrix in powers of λ,

VCKM ≈













1 λ λ3

λ 1 λ2

λ3 λ2 1













, (1.45)

so that

∆ms ∝ m2
t |VtbV

∗
ts|2 ∼ (λ2mt)

2 and (1.46)
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∆md ∝ m2
t |VtbV

∗
td|2 ∼ (λ3mt)

2. (1.47)

This illustrates that (in the SM) one expects ∆ms to be about a factor
1
λ2 ∼ 20

larger than ∆md. Such a large mixing frequency is experimentally very hard to

measure and requires, among other things, the ability to resolve fast oscillations in

the detector.

In order to extract an expression that relates to measurable quantities, one

calculates the time dependence of the mass eigenstates. The exponential evolution

of PH(t) and PL(t) is given by

|PH(t) >= e
−iµH t|PH >= e

−imH te−ΓH t/2|PH > (1.48)

|PL(t) >= e
−iµLt|PL >= e

−imLte−ΓLt/2|PL >, (1.49)

where t refers to the time measured in the rest frame of the decaying particle. Using

Eqs. (1.21) and (1.22) the time dependence of the flavor eigenstates follows:

|P 0(t) >= g+(t)|P 0 > +
q

p
g−(t)|P 0 > (1.50)

|P 0(t) >=
q

p
g−(t)|P 0 > +g+(t)|P 0 >, (1.51)

where

g±(t) ≡
1

2
(e−iµH t ± e−iµLt). (1.52)

The above equation describes how a beam produced at t = 0 as a flavor eigenstate

|P 0 > evolves in time. The two flavor eigenstates oscillate into each other with

time dependent probabilities proportional to |g±(t)|2. Note that for the B0
s system

the ratio q
p
, as given in Eq.(1.33), is 1 to a very good approximation, because

arg(VtbV
⋆
ts) ≈ 0 (i.e. mixing induced CP asymmetries vanish). The deviation of q

p

from 1 signifies the amount of mixing induced CP violation.

One defines

Γ ≡ ΓH + ΓL

2
, (1.53)
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Figure 3:
The probability for a B0

s decaying as a B0
s , as a function of

the proper time. The plots show |g±(t)|2 for different values
of ∆Γ and ∆ms: the solid line was obtained with the values
∆ms = 20 ps−1 and ∆Γ = 0 ps−1, and the dashed line for the
values ∆ms = 0 ps−1 and ∆Γ = 0.075 ps−1. The dotted line
was calculated for ∆ms = 0 ps−1 and a very large assumed
value of ∆Γ = 10× 0.075 ps−1.

Proper time (ps)

Prob(B0
s → B0

s )

so that

|g±(t)|2 =
e−Γt

2
[cosh

∆Γ

2
t± cos∆mt]. (1.54)

This time dependent quantity can be determined experimentally. Fig 3 shows this

mixing probability as a function of proper time t for the case of B0
s–B

0
s mixing only.

All experimental effects, for example detector effects and background composition,

which rapidly wash out the mixing amplitude, have been left out. The plots show

|g±(t)|2 for different values of ∆Γ and ∆ms: the solid line was obtained with the

values ∆ms = 20 ps
−1 and ∆Γ = 0 ps−1, and the dashed line for the values ∆ms

= 0 ps−1 and ∆Γ = 0.075 ps−1 [4]. The dotted line was calculated for ∆ms = 0

ps−1 and a very large assumed value of ∆Γ = 10× 0.075 ps−1. As expected, ∆Γ
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only has a marginal effect on the exponential decay. However, ∆Γ plays a role in

the search for new physics in B0
s–B

0
s mixing. For experimental purposes, one uses

|g±(t)|2 =
e−Γt

2
[1± cos∆mst]. (1.55)

To conclude, it is possible to extract the ratio Vts/Vtd from
∆ms

∆md
with relatively

low theoretical uncertainties of about 5%. B0
d–B

0
d mixing has been measured with

good precision, but B0
s–B

0
s mixing is expected to be an order of magnitude faster

and experimentally hard to resolve. The B0
s–B

0
s mixing rate will be measured as a

function of proper time.

1.5 CKM matrix elements from Tree Level Decays and

Unitarity

In this section current results from direct measurements of the CKM matrix

elements and other constraints are reviewed, in decreasing order of precision. The

resulting upper and lower limits on the CKM elements will be discussed [4]. The

accuracy of the measurements varies greatly. For example, Vud is determined up to

0.1%, whereas measurements sensitive to Vtb suffer from large errors of about 15%.

1.5.1 Vud, Vus and Vcb

The errors on Vud, Vus and Vcb are the smallest because large data samples are

available for decays into light hadrons. Concerning Vcb, the heavy quark effective

theory (HQET) provides a nearly model-independent treatment of B semileptonic

decays to charmed mesons resulting in small theoretical errors.

|Vud| has been determined from the comparison between different nuclear beta

decays. Small theoretical uncertainties in this measurement arise from radiative
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corrections. |Vud| can also be determined from neutron decays, its value depending

on the free neutron lifetime and other parameters, so that the errors on those

measurements are larger. The current world average for |Vud| is [4]

|Vud| = 0.9735± 0.0008. (1.56)

|Vus| is known from the semileptonic decays of strange particles, for example from

the K
0 → π+e−νe decay rate. Theoretical uncertainties come from the calculation

of the K → π form factor. The value is [14]

|Vus| = λ = 0.2205± 0.0018. (1.57)

Semileptonic hyperon decays can also be used to extract |Vus| and give consistent

results.

Inclusive semileptonic B → Xclν decays can be calculated in HQET. This

allows |Vcb| to be extracted from the semileptonic branching ratio. In the exclusive

method (for example B0 → D∗lν) the differential decay rate can be determined

from HQET, and depends on the D∗ form factor FD(q). Combining all LEP data

on exclusive and inclusive decays the average value of |Vcb| is [15]

|Vcb| = 0.0402± 0.0019. (1.58)

The new CLEO inclusive result is somewhat different: |Vcb| = 0.0462± 0.0032 [16].

1.5.2 Vcd and Vcs

The direct determinations of Vcd and Vcs are rather poor and are affected by

considerable theoretical uncertainties. Information can be extracted from deep in-

elastic neutrino scattering in reactions like νµd→ µ−c and νµs→ µ−c (CDHS [17],
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CCFR [18] collaborations). The resulting value of Vcs depends on assumptions

about the strange-quark density in the parton sea. Average values are given by [4]

|Vcd| = 0.224± 0.016, (1.59)

|Vcs| ≥ 0.59. (1.60)

Another source of information for Vcs is the exclusive semileptonic decay D →

Ke+νe. The procedure is similar to the one mentioned for Vcb: one compares the

experimental value for the width of the decay with the following expression that

follows from the standard weak interaction amplitude:

Γ(D → Ke+νe) = |fD
+ (0)|2|Vcs|2(1.54× 1011s−1). (1.61)

Here fD
+ (q

2) with q = pD − pK is the form factor relevant to the decay. The

result depends on the calculation of fD
+ (0), which is the main source of error. The

result is fD
+ (0) = 0.7± 0.1 [19], [20], which yields, together with the experimental

information,

|Vcs| = 1.04± 0.16. (1.62)

1.5.3 |Vtb| and |Vub|

A first rough measurement of |Vtb| from t → bW decays at CDF [21] gives

Vtb = 0.99± 0.15. There are no tree level results for the other top quark couplings

Vtd and Vts. Because of very small branching ratios for such tree level top quark

decays it is presently only possible to determine these elements in loop induced

processes like B0 mixing (as discussed earlier), or radiative b→ sγ decays. However,

there are experiments [22] which intend to measure Vtd and Vts from extremely rare

K+ → π+νν and K0
L → π0νν decays. In the SM these decays are mediated by box
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and electroweak penguin diagrams. The ratio |Vtd|/|Vts| is directly related to the

length Rt of the unitarity triangle.

Measurements of |Vub| have been obtained from the end-point of the lepton

energy spectrum in B → Xueνe decays. The theoretical model dependence can be

reduced by using exclusive decays, but the final result still contains a large error.

Usually the ratio [23]

|Vub|/|Vcb| = 0.09± 0.025 (1.63)

is quoted. Future measurements will also focus on the hadronic and charged lepton-

neutrino invariant mass spectra.

The measurement of |Vub|/|Vcb| corresponds to one of the sides of the unitarity

triangle:

Rb = (1−
λ2

2
)
1

λ
|Vub|/|Vcb|. (1.64)

1.5.4 Unitarity Constraints

The assumption of 3 × 3 unitarity of the CKM matrix allows one to further

constrain the matrix elements. One starts with the 90% confidence level values for

the following elements:

0.219 ≤ Vus ≤ 0.226 (1.65)

0.038 ≤ Vcb ≤ 0.042 (1.66)

0.002 ≤ Vub ≤ 0.005. (1.67)

Using the unitarity relations

|Vud| =
√

1− |Vus|2 − |Vub|2, (1.68)

|Vtb| =
√

1− |Vcb|2 − |Vub|2 (1.69)
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one then obtains

0.9742 ≤ |Vud| ≤ 0.9757 (1.70)

0.9990 ≤ |Vtb| ≤ 0.9993. (1.71)

Interestingly, |Vtb| is the most tightly constrained matrix element, even though

its direct measurement has a 15% uncertainty. A discrepancy between the highly

constrained value of |Vtb| and future direct measurements would be a signal for New

Physics.

Using the unitarity conditions on the remaining 4 elements one arrives at the

following 90% confidence bounds [4]:

|V | =













0.9742− 0.9757 0.219− 0.226 0.002− 0.005

0.219− 0.225 0.9734− 0.9749 0.037− 0.043

0.0034− 0.014 0.035− 0.043 0.9990− 0.9993













(1.72)

To summarize, the SM parameters A and λ have been measured in tree level

decays. The associated errors are at the few per cent level. On the other hand,

constraints on the parameters ρ and η from tree level decays are plagued by much

larger errors.

Not mentioned so far are measurements of the amount of CP violation, i.e. the

magnitude of the complex phase η .

1.6 CP Violation and New Physics in Mixing

CP stands for the combination of discrete operations of charge conjugation C,

transforming particles into antiparticles, and parity transformation P, taking ;r to

−;r. Note that the orientation of the particle spin relative to its direction of flight
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is switched. The combination CPT (T symmetry standing for time reversal) is an

exact symmetry in any local quantum field theory.

The expression “CP symmetry breaking”, or “CP violation”, relates to a dif-

ference in the dynamical behavior of particles and antiparticles. CP violation is an

expected consequence of the SM with three quark generations, as discussed in sec-

tion 1.3.1. In fact, CP is broken in any theory that has complex coupling constants

in the Lagrangian which cannot be removed by any choice of phase redefinition of

the fields in the theory. An example is the introduction of complex couplings in the

Yukawa terms, as in the SM electroweak theory. CP violation has been observed

in the neutral kaon system [24], and in the decays of B0
d mesons [25], [26]. In the

next few years further tests are expected at the B-factories, and at the Tevatron.

The possible manifestations of CP violation can be classified in the following

way:

• CP violation in decay, which occurs in both charged and neutral decays,

when the amplitude for a decay and its CP conjugate process have different

magnitudes;

• CP violation in mixing, which occurs when the two neutral mass eigenstates

cannot be chosen to be CP eigenstates;

• CP violation in the interference between decays with and without mixing,

which occurs in decays into final states that are common to B0 and B
0
. It can

occur in combination with the other two types. CP violation in B0
d decays

allows the determination of sin 2β [27], one of the angles of the unitarity

triangle.

CP violation is required for an explanation of the observed asymmetry between

the number of baryons and anti-baryons in the universe (baryogenesis). In a large
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class of models CP violation and baryogenesis are electroweak in origin. However,

the amount of CP violation in the SM is not sufficient to obtain a large enough

baryon asymmetry.

1.6.1 New Physics in the B0
s system

The B0
s system is a prime candidate for the discovery of non-SM physics. The

B0
s–B

0
s mixing amplitude is a CKM-suppressed fourth order weak interaction pro-

cess. Therefore it is very sensitive to the intervention of New Physics (NP). More-

over, in the SM the mixing induced CP asymmetries in B0
s decays almost vanish

because the mixing phase φSM = arg(M12) = arg(VtbV
∗
ts) ≈ 0. This is different

than for the B0
d system, where the SM predicts a large CP violating effect. Any

sizable mixing induced CP violating effects in B0
s decays would therefore have to

come from non-SM processes, which makes the B0
s system especially interesting.

For example, new flavor-changing interactions in supersymmetric models can give

large new contributions to the mixing amplitude with O(1) CP-violating phases

that are unrelated to the phase of the CKM matrix (see, e.g., Refs. [28], [29]).

NP effects on the mixing amplitude M12 can be parametrized as

M12 = |M12|eiφ =MSM
12 (1 + ae

iΘ). (1.73)

Note that φ ≈ φNP , as explained above. The parameters a and Θ denote the

relative magnitude and phase of the NP contribution, i.e. a = |MNP
12 /M

SM
12 | and

Θ = arg(MNP
12 /M

SM
12 ). So far experimental constraints do not exclude a > 1 and Θ

can have any value.

Three of the many models that can give NP contributions to B0
s–B

0
s mixing are

briefly mentioned here.

• SUSY models where squark-gluino box diagrams contribute to B0
s–B

0
s mixing.

23



a > 1 is allowed and Θ is arbitrary [29].

• Left-Right-Symmetric models, with a SU(2)L × SU(2)R × U(1) × CP sym-

metry. As an example, the particular model described in [30] predicts a ≈ 1

and arbitrary Θ. The measured ∆ms value could be compatible with the

SM, and NP could only be confirmed by a measurement of the CP violating

phase.

• Fourth generation models with large contributions from t′ box diagrams allow

a > 1 and arbitrary Θ [31], [32].

Note that even if ∆ms is found to be consistent with SM predictions this would not

rule out large NP contributions to the mixing amplitude. However, a measurement

of CP violation in mixing would provide an unambiguous signal for NP.

A promising testing ground for NP induced CP violation in B0
s–B

0
s mixing are

decays into CP eigenstates f in the b→ ccs chain, for example the hadronic decay

B0
s → D

(∗)+
s D

(∗)−
s (mostly CP-even [33]). The observable is the time dependent CP

asymmetry aCP (t)

aCP (t) ≡
Γ(Bs(t)→ f)− Γ(Bs(t)→ f)

Γ(Bs(t)→ f) + Γ(Bs(t)→ f)
, (1.74)

which can be calculated to be [34]

aCP (t) =
sinφ sin(∆mt)

cosh(∆Γt/2)− | cosφ| sinh(|∆Γ|t/2) . (1.75)

Another example is the decay B0
s → ΨΦ, which is an admixture of CP-even and

CP-odd components. It is experimentally easier to detect, but requires an angular

analysis to disentangle the components. Denoting the linear polarization ampli-

tudes with A0(t), A‖(t) and A⊥, the decay rates are given by

|A0(t)|2 = |A0(0)|2e−Γt

[

cosh
∆Γt

2
− | cosφ| sinh |∆Γ|t

2
+ sinφ sin(∆mt)

]

, (1.76)
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|A‖(t)|2 = |A‖(0)|2e−Γt

[

cosh
∆Γt

2
− | cosφ| sinh |∆Γ|t

2
+ sinφ sin(∆mt)

]

, (1.77)

|A⊥(t)|2 = |A⊥(0)|2e−Γt

[

cosh
∆Γt

2
+ | cosφ| sinh |∆Γ|t

2
− sin φ sin(∆mt)

]

. (1.78)

CP asymmetries or a sizeable sin φ from a fit of the decay rates |A0,‖,⊥(t)|2 would

provide an unambiguous signal of NP contributions to B0
s–B

0
s mixing. ∆ms needs

to be resolvable to measure φ.

A possible test for the presence of NP independently of ∆ms is a precise mea-

surement of ∆Γ. NP contributions in most cases reduce ∆Γ [35]. This can be

understood intuitively by considering that CP violation would allow both mass

eigenstates to decay into CP even final states, thereby lowering the SM predicted

width difference between them. Another possibility would be a fit to the time

dependent decay width into CP even eigenstates, for example B0
s → D

(∗)+
s D

(∗)−
s .

In the SM Γ(t) ∝ e−iΓSt, whereas in the presence of new sources of CP violation

Γ(t) ∝ e−iΓSt + e−iΓLt, i.e. the decay width could only be fitted with two exponen-

tials.
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C H A P T E R 2

Experimental Apparatus: the SLC and SLD

The Stanford Linear Collider (SLC) at SLAC is dedicated to the study of Z0

boson physics. Electron- and positron bunches are sent down a two mile long

linear accelerator before they are split and kicked into two arcs, forcing the beams

to collide. The beams are accelerated to about 46 GeV each, resulting in a head-on

collision at the Z-boson energy.

Construction of the SLC began in 1983 and concluded in 1987. The first physics

results from the SLC were reported by the Marc II Collaboration in 1989 and 1990.

The physics program of the SLC Large Detector (SLD) began with an engineer-

ing run in 1991 and ended in the spring of 1998. The research program includes

electroweak and QCD studies, as well as heavy quark physics, e.g., B0
s–B

0
s mix-

ing. Physics studies take advantage of SLC’s polarized electron beams and the

extremely small and stable beam spot size. Many studies, including the B0
s–B

0
s

mixing analysis, also rely on the very high resolution of the SLD vertex detector.

2.1 The SLC

Figure 4 shows an outline of the SLC with its two mile long linear accelerator

(linac) for both electrons and positrons, and the adjoining arcs and collision area.
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Figure 4: Layout of the SLC.

The SLC operates with a very low repetition rate, at a 120 Hz machine cycle, be-

cause of klystron power limits. In the final focus sections, both beams are focussed

by superconducting quadrupole magnets before colliding head-on in a micron-sized

interaction point (IP) inside the SLD. After passing through the IP each spent

bunch is absorbed into a beam dump behind the collision area.

2.1.1 Beam Transport

Each accelerator cycle begins at the electron source with the production of

two bunches containing about 5 × 1010 electrons each. These bunches, which are

accumulated with a 178 MHz RF field, are accelerated to 50MeV, enter the linac

and are further accelerated. Then they are fed into the North Damping Ring, where

their emittance is reduced by synchroton radiation. This is essential to get small

beam spots. The lost energy is restored by an accelerating cavity. The electrons

are stored for one machine cycle (=8.3 ms), then fed back into the linac. About

2/3 down the linac the first electron bunch is peeled off and diverted into a target

in order to produce positrons, while the other bunch travels to the IP. Positrons

are produced by pair-production in the positron target, packed into bunches with
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the same density as electron bunches, sent via a return line back to the beginning

of the accelerator and into the South Damping ring. As they have a larger energy

spread than electrons, a positron bunch stays in the damping ring for two machine

cycles (=16.6ms) and awaits the next accelerator cycle.

2.1.2 Polarized Electrons

The SLC electron gun produces polarized electrons. A strained-lattice GaAs

photocathode is exposed to circularly polarized laser light from a Nd:YAG-pumped

Ti sapphire laser. It excites electron transitions into longitudinally-polarized states

in the conduction band of the photocathode. Figure 5 shows the electron transitions

between the relevant energy levels.

The electron bunch is then accelerated by a 30 kV electric field before it is

injected into the linac. The 1992 physics run made use of a bulk GaAs photocathode

whose theoretical maximum polarization of 50% is due to the degeneracy in the

valence band as shown in Figure 5. Approximately 22% average polarization was

achieved. For the 1993 physics run, a strained lattice photocathode consisting of

a 300 nm layer of GaAs deposited on a GaAsP substrate was used. The name for

this cathode derives from the difference in the lattice spacings of the two materials,

which leads to a strain on the GaAs layer. This strain breaks the degeneracy in the

valence band, yielding a theoretical maximum polarization of 100%. About 63%

average polarization was achieved. For the 1994-5 physics run, the thickness of the

epitaxial layer was further reduced to 100 nm, improving the average polarization

to 77%. This type of photocathode was retained for the 1996 (1997-1998) physics

run, and resulted in an average polarization of 77% (73%).

The electron polarization needs to be preserved in the Damping Ring and trans-

ported undisturbed to the IP. Unless the spin vector is vertical, precessions dilute
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Figure 5:
Energy state diagram for (top) bulk GaAs and (bottom)
the strained GaAs lattice. The encircled numbers denote
the relative intensities of the transitions. The strained
lattice breaks the degeneracy and allows a theoretical po-
larization of 100%.

the polarization. Thus it is essential to turn the originally longitudinal spin into

a perpendicular spin, along the direction of the magnetic field, to preserve the

spin state. This is achieved by passing the electrons through a solenoidal field just

as they enter the ring. The electrons are accelerated with their spin pointing up

through the whole linac, before passing through a series of “spin bumps” in the

arcs, which turn the spin back into the longitudinal direction. SLC is running

with flat beams (ǫx = 10 × ǫy), because the lower emittance in the vertical plane

increases the luminosity, i.e. the reaction rates per unit cross-section, and reduces

the backgrounds in the SLD detector.
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2.1.3 Positrons

Electron bunches that are deflected from the linac at an energy of 30 GeV

are used to produce (unpolarized) positrons. The electron beam is directed onto

a 6 X0 tungsten-rhenium alloy target. The relativistic electrons initially produce

Bremsstrahlung (e− → e−γ), followed by pair production γ → e+e−. Electrons and

positrons repeat the process, so that a shower develops. Positrons with energies

between 2 and 20 MeV are captured in an accelerator structure imbedded in a

strong solenoidal field. They are transported back to the front-end of the linac in

a separate line, and used in the next acceleration cycle.

2.1.4 Acceleration and the Final Focus

Radio frequency cavities powered by klystrons provide an accelerating field of

17 MeV/m. A series of 240 klystrons power the 2 miles of cavities. The particles

are accelerated to an energy of 0.9 GeV higher than their energy at the IP. There

are no more RF cavities in the arcs, and the extra energy is used up as synchroton

radiation, until the beam energy reaches 45.6 GeV just before the final focus region,

thus setting the collision energy to the mass of the Z0.

The repetition rate of a linear collider is much lower than that of a storage

ring. It has to be compensated by an extraordinarily small beam size. The final

focus (FF), an array of superconducting magnets reduces the beams to micron size.

The FF consists of three superconducting quadrupole magnets, the first of which is

located 1.5 meters in front of the IP. At the IP the beam spot dimension is about

1mm along the beam direction (z), and 0.8µm perpendicular to the beam direction

(xy). The SLC constantly improved the luminosity since it started producing Z0

in 1989. By 1998 SLC achieved production rate peaks of well above 200 Z0/hour
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Figure 6:
SLC/SLD luminosity history. In the 1997-8 data
run, the luminosity improved substantially and reached
20,000 Z0/week.

(L = 2× 1030cm−2s−1). The SLC luminosity history is summarized in Figure 6.

2.1.5 The Beam Energy Measurement

After the IP, before the beams are dumped, a spectrometer is used to measure

the energy of both electron and positron beams. It is called “The Wire Imaging

Synchrotron Detector” (WISRD) [36], and works essentially by bending the beam

and observing the angle of synchroton radiation with respect to the initial beam di-

rection. The beam is deflected horizontally, then vertically by a bend magnet, then
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Figure 7:
Schematic layout of the WISRD. The deflection of the
beam is inversely proportional to its energy.

horizontally again. The horizontal bends produce two radiation swaths that can be

measured using the two WISRD spectrometers. The vertical distance between the

two stripes is inversely proportional to the beam energy, which can be extracted us-

ing the integrated field of the bend magnet and the distance to the detector. During

the 1997-8 SLD data taking period, a Z0 peak scan was performed which allowed

the WISRD energy spectrometer to be calibrated against the precise Z0 mass mea-

surement obtained at LEP. The resulting luminosity weighted mean center-of-mass

energy for the 1997-8 data run was determined to be Ecm = 91.237±0.029 GeV [37].

Figure 7 shows a schematic view of the WISRD.

2.1.6 The Electron Beam Polarization Measurement

Many of the SLD physics studies, for example the study of B0
s–B

0
s mixing dis-

cussed in this thesis, depend on the knowledge of the electron beam polarization at

the IP. The polarization at SLD is measured using the asymmetry in the Compton

scattering cross sections for the Jz = 3/2 and Jz = 1/2 combinations of circularly
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polarized light and the longitudinally polarized electron beam. The differences in

scattering probability are observable as an asymmetry in the scattered electron

energy spectrum. The unknown electron beam polarization Pe can be extracted

from

Ameas =
σJz=

3
2
− σJz=

1
2

σJz=
3
2
+ σJz=

1
2

= adPePγAc(E), (2.1)

where Pγ is the (measured) laser polarization, E is the (measured) scattered elec-

tron energy, and Ac is the (calculated) Compton scattering asymmetry. Ameas is the

observed asymmetry, and ad is the (calculated) analyzing power of the detector [38].

The errors on the beam polarization measurement come primarily from uncer-

tainties in the net circular polarization of the laser and the analyzing power of the

detector. The polarimeter system is shown in Figure 8. A beam of 2.33 eV photons

is provided by a frequency-doubled YAG laser. The beam is transported down into

the SLC to collide with the electron beam, 33 meters downstream of the SLC IP.

The electron energy is then measured by a spectrometer consisting of an analyzing

bend magnet and a multi-channel Cherenkov detector.

Two additional detectors, the Polarized Gamma Counter (PGC) and the Quartz

Fiber Calorimeter (QFC), are used to measure the electron beam polarization.

They work by observing the scattered photons rather than the electrons, as shown

in Figure 8.

Both devices provide cross checks of the Compton Polarimeter result with a

precision of better than 1%.

Finally, we expect the polarization of the positron beam to be zero. The mea-

surement of the positron beam polarization with a Møller Polarimeter [39] in the

SLAC End Station A yielded Pe+ = (−0.02±0.07)%, i.e. it is consistent with zero.
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Figure 8: Schematic view of the Compton Polarimeter.

2.2 The SLC Large Detector (SLD)

The SLD measures the properties of collisions at the IP. It is a cylindrical device

with a radius of about 4.5 meters and a length of 10 meters. It combines excellent

tracking, calorimetry and particle identification. Two endcaps, which can be moved

for access to the interior of the detector barrel, close off the detector at both ends.

Figures 9 and 10 show the layout of the SLD. Each layer of the detector contains

a separate sub-detector used to record different aspects of the collision. The sub-

division into layers is similar for the barrel and the endcaps. The narrow beampipe

and its support structures allow for a 98% solid angle coverage. The detector

elements, from the IP outward, are a CCD-based vertex detector (VXD2 1992-96,

VXD3 97-98) and a Drift Chamber (CDC) for extremely precise particle tracking,

the Cherenkov Ring Imaging Detector (CRID) for charged particle identification,

the Liquid Argon Calorimeter (LAC) for electromagnetic and hadronic calorimetry,
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the solenoid magnet which produces a 0.6 Tesla axial magnetic field, in which the

trajectories of charged particles bend, and the Warm Iron Calorimeter (WIC) used

for muon identification. Table 7 summarizes the performance of each subsystem of

the SLD detector. All subsystems have optical fiber transmission cable connections

for readout.

Table 4: SLD performance.

Detector sub-system performance

Vertex Detector segmentation: 20µm× 20µm
(VXD3) Impact parameter resolution: 10µm

Two track separation: 40µm
Solid Angle coverage: 97%

Drift Chamber System spatial resolution: < 100µm
Momentum Resolution:

σ(1/p) measurement limit: 1.3×10−3(GeV/c)−1

σ(p)/p Coulomb scattering limit: 1×10−2

Two track separation 1mm
Particle Identification e/π 1× 10−3

µ/π (above 1 GeV) 2× 10−3

K/π (up to 30 GeV) 1× 10−3

K/p (up to 50 GeV) 1× 10−3

Calorimetry EM calorimeter energy resolution σE/E = 15%/
√

E(GeV )

Hadronic calorimeter energy resolution σE/E = 60%/
√

E(GeV )
segmentation(EM): 33× 36 mrad
segmentation(Had): 66× 72mrad
angular resolution(EM): 5 mrad
angular resolution(Had): 10 mrad
Solid Angle coverage (EM): ≥ 99%
Solid Angle coverage (Had): 97%

The following discussion presents more details on each sub-system, especially

the tracking system, which is important for the B0
s–B

0
s mixing analysis presented

here. Only the “barrel” of the detector will be described. Depending on the sub-

system, the barrel covers tracking to cos θ = 0.8. The coordinate system used is
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Figure 9:
The SLD in isometric view showing the cylindrical layout
of the sub-detectors. The Luminosity Monitor and end-
caps are not shown.

Figure 10: The SLD in quadrant view. The dimensions are indicated.
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the usual right handed polar system, with z-axis pointing north in the direction of

the positron beam, and x and y axes in the plane perpendicular to the beams. The

vertical y axis points upwards. φ runs from 0 to 2π, with φ = 0 pointing west, and

θ runs from 0 (north) to π (south).

2.2.1 The Luminosity Monitor (LUM)

The SLD Luminosity Monitor (LUM) [40] measures the luminosity delivered

by the SLC using small-angle Bhabha scattering (e+e− → e+e−), whose rate is

well known and which is easy to identify. The Bhabha events are measured 1 m

downstream from the IP with a silicon-tungsten calorimeter module, the Luminos-

ity Monitor/Small Angle Trigger (LMSAT), providing polar angle coverage from

28 mrad to 68 mrad. Electromagnetic showers develop in the 23 layers of alternat-

ing silicon detectors and tungsten radiator plates. The ionization signal is detected

after amplification. The depth of the LUM is 21 radiation lengths. The LUM is

shown in Figure 11. An energy resolution of about 3% at 50 GeV has been achieved.

Figure 11:
The SLD luminosity monitor, showing the MASiC (not
used) and the LMSAT.

2.2.2 The Vertex Detectors (VXD2 and VXD3)

Vertex detectors are located just outside the beampipe, and, because of the

highest track density in that area, have to have the highest segmentation.

37



The SLD Vertex Detector (VXD) [41] detects the ionization deposited by par-

ticles passing through it. Silicon pixel Charged Coupled Devices (CCD’s) are used

as the medium. SLD is the first collider experiment to use the CCD technology for

a vertex detector. It allows for extremely high tracking and vertexing resolution,

as well as high track reconstruction efficiency.

After a prototype “VXD1”, the 120M pixel VXD2 was installed in 1992, and a

much improved version, the VXD3, in December 1995. Its improved resolution and

larger solid angle coverage greatly enhance the heavy flavor program. CCD-based

vertex detectors need certain conditions that are met by the SLC: long intervals

between beam crossings and a relatively low background environment as provided

by an e+e− machine like the SLC. The goal is to reach optimal coverage of the IP

area, as close to the IP as possible, with the largest tracking lever arm possible.

The small SLC beam pipe allows detectors to be placed very close to the interaction

region, at 2.8 cm, allowing for very high resolution heavy quark studies.

Only a small fraction of the SLD data was taken with the VXD2, most of it

taken with the upgraded detector, VXD3. In this section the VXD3 detector is

discussed, and VXD2 mentioned briefly.

VXD3 uses CCDs with an active area measuring 80× 16 mm2. Each individual

pixel is 20 × 20µm2, for a total of 4000× 800 pixels. Two CCDs are mounted on

a beryllium substrate to form a ladder, as shown in Figure 12. The two CCDs

overlap by ∼1 mm to allow their relative alignment using charged tracks. The

ladders were mounted onto a series of three concentric beryllium annuli in a shingled

arrangement, so that complete azimuthal coverage was obtained, with ∼ 500µm

overlap between adjacent ladders for alignment purposes. Views of the VXD3

ladder layout transverse and parallel to the beamline are shown in Figures 13 and

14. Figure 15 compares the ladder layout of VXD2 and VXD3.
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Figure 12: Two-CCD VXD ladder.

4–97 8262A11

Outer CCD

Flex-Circuit
Fiducials

Pigtail
(Kapton/
Copper
stripline)Beryllium

substrate

Inner CCD

South EndNorth End

CCD Fiducials

Figure 13: Schematic
layout of
VXD3 in the
xy view.

Figure 14: Schematic
layout of
VXD3 in the
z view.
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Figure 15:
Comparison of VXD2 and VXD3, viewed in the xy plane.
VXD3 features overlapping layers and a longer lever arm.

The layer one radius is 28 mm, fixed by the radius of the beam-pipe. The

layer three radius of 48.3 mm was determined by requiring three-layer acceptance

for tracks with | cos θ| ≤ 0.85, to match the effective acceptance of the central

drift chamber. The layer two radius of 38.2 mm provides acceptable lever arm for

tracks with a missing hit on layer one or three, and provides a third space point

for enhanced pattern recognition at high | cos θ| and for self-tracking purposes.

The device is 159mm long. A total of 48 ladders are used, for a total number of

307 million pixels. Each layer contributes a radiation thickness of only 0.4%X0,

reducing the tracking errors caused by multiple scattering.

The bias voltage applied to the CCDs was ∼10 V, producing a depletion zone

of around 20 µm thickness. A minimum-ionizing particle produces about 1200

electron/hole pairs. The charge which is collected in each pixel is read out in a

doubly-serial manner. Each CCD is divided into four quadrants, with one output

amplifier for each located at the four corners of the CCD. The entire dectector is

read out in 0.2 seconds or about 26 beam crossings at 120 Hz. Because the pixel

occupancy is < 10−4 background pileup hits is easily rejected.

The full assembly is mounted in a nitrogen gas cryostat and maintained at

40



a temperature of around 185 K. It is necessary to operate the detector at low

temperatures to reduce lattice defects caused by radiation damage, which can cause

trapping centers to develop in the silicon. Because CCDs are read out serially, a

trapping center affects not just nearby pixels, but can impact the charge transfer

out of all pixels behind it in that column.

The CCD height profiles and the relative positions of the ladders on the detector

were optically surveyed at room temperature to a precision of about 10 µm. In order

to achive the desired precision of about 4 µm an internal alignement using tracks

was necessary. Even though translations, rotations and distortions in CCD shape

are corrected after the optical survey, higher order systematics due to changes after

installation, cooling etc. exist. Fixing the deviations at the CCD edges to 0, 3

additional parameters are needed to correct these higher order systematics. The

procedure used to determine the internal alignment parameters works as follows:

Since the true track trajectory is unknown it is necessary to identify hits on at

least three CCDs associated with a track reconstructed in CDC. Only the measured

momentum from the CDC track is used to constrain the track extrapolation inside

the VXD3. Good quality tracks are selected with a momentum of at least 1 GeV.

In general, the track is constrained to pass through two of the CCD hits and a

corresponding residual with respect to the third CCD hit is measured. Groups of

residuals are classified (“shingle”-residual: a track passes through the overlapping

shingle region of two neighboring CCDs. A vector is fixed at the hit on one of

the shingle ladders and the furthest away hit on a different layer. The residual

is determined from the distance of the second shingle ladder to the fixed vector.

“Doublet”-residual: calculated using a vector fixed at one of the hits through over-

lapping CCD’s on the same ladder. “Triplet”-residual: calculated using a vector

fixed at a layer 3 and layer 1 hit.)
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Figure 16: Miss distance of tracks in Z → µ+µ− events, in the xy and
z projections.

For each type of residual and each combination of CCDs data files are compiled

containing the residuals as a function of the dip angle and angle φ. These data files

are fitted to polynominals, to determine the parameters. After a combination of all

parameters using weights for the different classes, the final alignment parameters

are extracted. From the results, a consistent one-hit resolution of about 4µm in xy

is obtained.

The track position resolution at the IP can be estimated from the miss distance

of the two tracks in Z → µ+µ− decays, shown in Figure 16. The widths indicate

resolutions of 7.7 µm in xy and 9.6 µm in z [42].

2.2.3 The Drift Chamber (CDC)

The Central Drift Chamber (CDC) [43] is the primary SLD tracking device.

The CDC cylinder is 2m long, and its inner and outer radii are 20 cm and 1 m,

respectively. It is immersed in a uniform solenoidal field of 0.6 T. The inner and
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outer walls consist of an aluminum sheet-Hexcell fiberboard laminate, entailing

1.8%X0 (1.6%X0) for the inner (outer) wall. The endplates are constructed from

aluminum. The drift cells in the CDC are arranged in 10 staggered superlayers,

as shown in Figure 17. The sense wires in the superlayers are either axial or have

a 41 mrad stereo angle with respect to the beam axis. The wire layout – 8 sense

wires, 18 guard wires, and 25 field wires – for a cell, measuring about 6 cm by

5 cm high, is displayed in Figure 18. The sense wires consist of 25 µm gold-coated

tungsten, and the guard and field wires are made of 150 µm gold-coated aluminum.
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Figure 17:
Endplate view of the CDC, showing the arrangement of
the axial (A) and stereo (S) superlayers.

The gas in the CDC consists of 75% CO2, 21% Ar, 4% Isobutane, and 0.2% H2O.

Properties of this mixture are low drift velocity and low diffusion, improving the
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spatial resolution. The addition of H2O helps diminish the effects of wire aging [44].

The average drift field of 0.9 kV/cm leads to a drift velocity of 7.9 µm/ns in the

gas.

When a charged track passes through the cells, a trail of ions is produced in

the drift gas. The drift field directs the freed electrons toward the sense wires,

as shown in Figure 19. The hit position is given by the wire address, drift time

information, and charge division along the wire. Together with information from

the other sense wires in the same cell, a “vector hit” is formed. Since the sense

wires in one cell are not staggered, an ambiguity in the form of a mirror image

arises. A pattern recognition program combines the vector hits from adjacent cells

into track candidates. The individual wire hit information is then used to perform

a detailed fit, using the more precise z information from the stereo layers, and

taking into account electric and magnetic field variations, and energy loss of the

track. Details of the track reconstruction algorithms can be found in [45]. After

alignment [46], the momentum resolution for the CDC has been determined to be

(σp⊥/p⊥)
2 = 0.0102+(0.0050p⊥)

2 where p⊥ is the track momentum transverse to the

beam axis in GeV/c. The first term denotes the uncertainty arising from multiple

scattering, and the second term the measurement error [43],[47]. The momentum

resolution improves to (σp⊥/p⊥)
2 = 0.00952+(0.0026p⊥)

2 when the vertex detector

hit information is added to the fit [48].

2.2.4 The Cherenkov Ring Imaging Detector (CRID)

The barrel portion of the Cherenkov Ring Imaging Detector (CRID) [49] allows

efficient charged particle identification over a wide momentum range. The oper-

ating principle of the CRID is based on the Cherenkov effect. Charged particles

traversing a dielectric medium with a velocity exceeding the velocity of light in that
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medium emit a coherent wave front of Cherenkov photons. The emission angle, θC ,

to the track is given by cos θC =
1
βn
where n denotes the index of refraction and

β = v/c, with the particle velocity v.

The Cherenkov photons are imaged on an array of Time Projection Chambers

(TPCs), filled with C2H6 gas and an admixture of tetrakis-dimethylamino-ethylene

(TMAE). Photons with an energy greater than 5.4 eV ionize TMAE which releases

photo-electrons into the drift gas. These photoelectrons drift to the instrumented

ends of the TPCs. The barrel CRID, shown in Figure 20, utilizes two Cherenkov

radiators.
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Figure 20:
The barrel CRID, showing one sector in (top) axial view
and (bottom) transverse view.

The liquid C6F14 radiator is contained in 40 quartz-windowed trays of 1 cm

liquid thickness. The gaseous radiator, consisting of 85% C5F12 and 15% N2, is

40 cm thick. Cherenkov photons from the liquid radiator pass directly into the
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Figure 21:
The Cherenkov angle for the liquid (solid line) and gas
radiators (dashed line) in the barrel CRID as a function
of momentum for the three long lived hadronic particle
species.
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TPC, whereas the photons from the gas radiator are focused by an array of 400

spherical mirrors into rings on the TPCs.

The origin of each photo-electron can be inferred from the drift time, the wire

address, and the charge division on the wire. The measured diameter of the ring of

reconstructed photoelectrons allows the velocity of the particle to be determined.

Together with the momentum measurement provided by the CDC, the five charged

particle candidates e±, µ±, π±, K±, p/p̄ can be distinguished over much of the mo-

mentum range. Figure 21 illustrates the Cherenkov angle curves for π±, K± and

p/p̄ as a function of momentum for the two radiators.

The momentum thresholds for the 5 charged particle candidates e±, µ±, π±,

K± and p/p̄ are summarized in Table 5.
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Table 5:
Momentum thresholds for the barrel CRID radiators in
GeV/c.

Radiator e± µ± π± K± p/p̄

C5F12/N2 0.009 1.811 2.393 8.463 16.084
C6F14 0.001 0.134 0.177 0.628 1.193

2.2.5 The Liquid Argon Calorimeter (LAC)

The Liquid Argon Calorimeter (LAC) [50] provides energy measurements of

charged and neutral particles. The barrel extends radially from 1.8 m to 2.9 m,

providing coverage between 35o and 145o in polar angle. The endcaps extend the

coverage down to 8o and 172o. About 98% of the solid angle is covered by the LAC.

The LAC is a lead-argon sampling calorimeter consisting of lead plates immersed in

liquid argon. The lead plates induce particle showers and collect the charge caused

by charged particles ionizing argon as they pass through it. The lead consists of

alternating layers of grounded plates and tiles held at -2 kV, separated by plastic

spacers and immersed in liquid argon. Several tiles from adjacent layers form

projective towers, covering about 33 mrad in polar angle and azimuth. These are

connected to amplifiers to measure the charge deposited. The LAC is segmented

into four radial layers denoted EM1, EM2, HAD1, and HAD2 for their primary

role: in the EM sections, the 2.0 mm thick lead plates are separated by 2.75 mm

Ar gaps. The HAD sections consist of 6.0 mm thick lead plates with identical Ar

gap size. The first two layers, EM1 and EM2, contain most of the energy from

electromagnetic showers in 21 radiation lengths of material. The outer two layers,

HAD1 and HAD2, extend the containment to hadronic showers in 2 absorptions

lengths of material. The EM and HAD sections combined contain 49 radiation

lengths and 2.8 absorptions lengths of material. Figure 22 shows a schematic view
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Figure 22: EM and HAD modules in the barrel LAC.

of the LAC modules. About 99% of the energy of a 45 GeV electron is contained

in the EM sections, and 90-95% of the total energy of a hadronic Z0 decay [51]

is contained by the entire LAC. The energy resolution [50, 48] for the LAC is

approximately 15%/
√
E for electromagnetic showers and 60%/

√
E for hadronic

showers, with the energy E given in GeV.

2.2.6 The Warm Iron Calorimeter (WIC)

The Warm Iron Calorimeter (WIC) [52] serves multiple roles. Primary roles are

the flux return for the solenoid and the structural support for the SLD, also it has

also been instrumented to provide muon identification and additional calorimetry

information. The intent to use the WIC for containing the 5-10% energy from

hadronic showers leaking through the LAC was not realized due to problems in

the calibration of its energy response. The WIC is constructed from 18 layers of

Iarocci streamer tubes [53] contained in 3.2 cm gaps between 5 cm thick steel plates.
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Figure 23:
Cutaway view of a WIC section, including details of single
layers and double layers.

Figure 23 illustrates a section of the WIC. The Iarocci tubes are long, rectangular

plastic extrusions with central copper-beryllium anode wires, and filled with 88%

CO2, 9.5% isobutane, and 2.5% Ar. The tubes feature external copper cathode

readouts, square readout pads for calorimetric measurements, and long strips for

muon tracking, arranged in separate, perpendicular arrays.

2.3 The SLD Event Trigger

The 8.3 ms SLC beam crossing time simplifies the design of the trigger which

decides if data should be recorded to tape. The data acquisition at the SLD uti-

lizes a FASTBUS architecture. Data from the various detector sub-systems reach

“slave” modules, which depend on the sub-system being read out via fiber optics

connections. The slave modules process data from the sub-systems, as summarized

in Table 6.

The data from these slave modules is pooled in ALEPH event builder (AEB)
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Table 6: The slave modules for the different detector sub-systems.

Detector sub-system Slave module

VXD2 and VXD3 Vertex Data Acquisition (VDA)
CDC and CRID Waveform Sampling Module (WSM)

LAC Calorimeter Data Module (CDM)
WIC Digital Readout Module (DRM)

modules [54] which assemble complete data events by combining the data from

each sub-system. A dedicated trigger AEB performs the data triggering. The

trigger criteria are given in more detail in Refs. [55], [56] and are summarized

below. Except for the Bhabha trigger, all sub-systems of the detector are written

out when a trigger occurs.

• Energy trigger: requires at least 8 GeV of total deposited energy in the EM

and/or HAD calorimeter towers in the LAC. Only towers above the threshold

of 60 (120) ADC counts for EM (HAD) towers, corresponding to 246 MeV

(1.298 GeV), contribute.

• Charged Track trigger: based on a pattern map of the cells that might be

hit as a charged track of momentum greater than 250 MeV/c passes through

the CDC [57]. A hit cell is defined as a cell where pulses consistent with hits

from tracks fire at least 6 of the possible 8 wires. Only events containing two

tracks passing through at least 9 superlayers of the CDC and lying roughly

120o apart are passed by this trigger.

• HAD trigger: combines the first two triggers

• Muon trigger: requires a combination of a charged track in the CDC and hits

in opposite WIC octants, as this is the expected signature for a Z0 → µ+µ−
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event.

• WAB trigger: enables the recording of wide angle Bhabha events by requir-

ing two charged back-to-back tracks in the CDC. Even short track pieces,

dismissed by the tracking trigger, may satisfy this requirement.

• Bhabha trigger: requires at least 12.5 GeV of total energy in both the north

and south EM2 sections of the LUM. Background splashes on the luminosity

monitor do not trigger detector readout.

• Random trigger: occurs every 20 seconds. This trigger writes out data for

background studies, independent of the status of other triggers.

The software controlling data taking at the SLD runs on a Digital Equipment

Corporation VAX/VMS computer cluster. Data is written to tape via fiber optic

connections to a silo located in the SLAC computing center. A typical SLD event

is roughly 250-300 kbytes. About 40%, 25%, and 25% in size is contributed by

the CRID, the drift chambers, and the VXD, respectively. Background conditions,

varying with the tuning of the SLC, have a strong impact on the event size. Typical

trigger rates were about 0.2 Hz (0.5 Hz) for the 1993-6 (1997-8) data taking periods

under low background conditions. It is estimated that the combined efficiency for

the three hadronic triggers (Energy, Tracking, HAD) exceeds 96% [55] for accepting

hadronic events.
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2.4 The SLD Monte Carlo

Modern Particle Physics experiments rely on detailed Monte Carlo simulations

to model both underlying physical processes and the detector response. The simu-

lation process consists of two steps. The generation of simulated events starts with

the production of generator level events, followed by a full detector simulation of

the SLD detector response.

The JETSET 7.4 [58] event generator, based on the LUND fragmentation model

with parameters tuned to hadronic e+e− annihilation data [59], was used to generate

the 1994-8 SLD Monte Carlo. JETSET 6.3 was used for the 1993 SLD Monte Carlo,

with similar tuning. For c and b quarks, the Peterson fragmentation function [74]

was used, and the B hadron decay model [48],[61] developed at CLEO was tuned

to ARGUS [62] and CLEO [63] data. In the next step, acceptance, efficiency,

and resolution effects are modeled in a detailed Monte Carlo simulation of the

detector. The SLD uses the standard GEANT 3.21 [64] package which tracks

particles through the various sub-detectors, accounting for e.g. the magnetic field,

scattering, and energy loss. The description of the showering in calorimeters is

based on EGS4 [65] and GEANT GHEISHA [66] for electromagnetic and hadronic

interactions, respectively. Random trigger data are overlaid with the results of

the simulation to simulate both, beam-related backgrounds and electronic noise.

Finally, simulated data and real data are processed by the same reconstruction

package.

The detailed simulations of tracking [45], calorimetry [51],[40], and CRID re-

sponse [67] give confidence that the detector response is properly modeled. Inclusive

distributions of single-particle and event-topology observables in hadronic events

are found to be well described by the SLD simulation [56].
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The simulated Z0 → q q events are generated using JETSET 7.4 [58]. The B

meson decays are simulated using the CLEO B decay model [68] tuned to reproduce

the spectra and multiplicities of charmed hadrons, pions, kaons, protons and leptons

as measured at the Υ(4S) by ARGUS and CLEO [69]. Semileptonic decays of B

mesons follow the ISGW model [70] including 23% D∗∗ production. The branching

fractions of the charmed hadrons are tuned to the existing measurements [73]. The

b-quark fragmentation follows the Peterson et al. parameterization [74]. Finally,

the SLD detector is simulated using GEANT 3.21 [75].
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C H A P T E R 3

Event Selection

In this chapter the identification of hadronic Z decays and b-tagging, the prereq-

uisites of the B0
s–B

0
s mixing analyses, are discussed. The procedure is to first flag

hadronic events with triggers and filters, then to tag long lived heavy flavor decays

by searching for events that have vertices of tracks displaced from the interaction

point (IP). The last step is to discard Z→ cc events using a Neural Net based on

the vertex mass (assuming that all tracks are pions and correcting for neutral decay

products), the total charged track momentum, the flight distance of the vertex and

the track multiplicity.

3.1 Hadronic Event Selection

The SLD triggers that are used to flag hadronic events are the Energy, Track and

Hadron triggers, described in section 2.3. The rejection of backround is improved

by a filter that requires either a >1 GeV/c track in the drift chamber or energy

deposition in the LAC inconsistent with beam-gas or SLC muon background events.

The combination of the trigger system and this filter is estimated to be 92% efficient

for hadronic Z decays [80].
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To enhance the fraction of hadronic Z decays the charged track multiplicity and

their total energy is taken into account. At least seven CDC tracks are required per

event, where a well-measured track has momentum transverse to the beam direction

pperp > 0.2 GeV/c and passes within 5 cm of the IP at the point of closest approach

to the beam axis. In addition there must be at least three CDC tracks with hits in

the vertex detector. The total energy measured using CDC tracks must exceed 18

GeV. Detector acceptance is also considered by evaluating the event thrust axis,

;T , which is intended to provide information about the energy flow direction of the

event. The thrust axis is located by maximizing the following quantity T ,

T =

∑i |T̂ · ;Ei|
∑i | ;Ei|

(3.1)

where ;Ei represents the energies and directions of final state particles determined

by calorimeter clusters. The discussed quantities are shown in Figure 24. A total

of 228712 events from the SLD 1996-98 data pass this hadronic event selection.

Background, predominately due to τ pairs, is estimated at < 0.1%.

3.2 Heavy Flavor Tagging

In a next step long-lived heavy hadrons are selected. The strategy is to look for

vertices of tracks displaced from the IP. First, the IP has to be reconstructed using

charged tracks. Then a secondary vertex is determined with a topological vertexing

technique. Since the mass of the Z is significantly greater than the mass of the quark

pairs it decays into, the selected events can be divided into two hemispheres. For

example, in Z0 → b b events a b hadron decay is expected in each hemisphere (except

in the case of hard gluon radiation). In each hemisphere there will usually be tracks

originating from three vertices: the fragmentation tracks from the primary vertex
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Figure 24:
Distributions of event selection variables: (a) Number of
CDC tracks, (b) visible energy. The points (histogram)
denote the data (Monte Carlo). The arrows indicate the
regions which pass the cuts, which are applied cumula-
tively for each successive plot. A subset of the 1998 data
is shown.

(a) (b)

Evisible(GeV)Ntracks

−→ −→

at the IP, tracks from the secondary b hadron decay and tracks from the tertiary d

hadron decay.

3.2.1 IP Reconstruction

The common technique for locating the IP is, for each event, to fit all tracks

consistent with the luminous region to one vertex. The SLC final focus optics give

an IP which is approximately 1µm× 2µm in the directions transverse to the beam

and about 700µm in the longitudinal direction. The beam feedback mechanism used

to stabilize collisions indicates that the transverse movement in the IP is smaller

than 6µm over periods of 20-30 events. Therefore, the transverse location of the

IP can be determined more accurately by averaging over such event sequences. A

trial IP location is chosen, and all tracks with VXD hits that pass within 3σ of the

trial IP are fit to a common vertex. The new IP position is taken as the new trial
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IP and the procedure is repeated until it converges.

As the longitudinal (z) bunch size is much larger, the best estimate of the z

coordinate is obtained event-by-event with hadronic decays. The point of closest

approach to the transverse IP position is determined for each track with a VXD hit.

The z coordinate at that point is called zPOCA. Tracks with xy impact parameters

less than 500µm that pass within 3σ of the IP are then selected and the z coordinate

of the IP is obtained from the median of the zPOCA distribution from each event.

The transverse beam position error can be determined on average from the data

using decays of the Z into muon pairs. The impact parameter σimp of such high

momentum tracks is plotted in Figure 25. The width of the impact parameter dis-

tribution is 8.2µm. This distribution is the convolution of the IP error distribution

with the high momentum track error distribution. The track error distribution

σtrack is independently measured from the miss distance between the two muons.

The width of the distribution is about 7.6µm. The IP measurement errors in the

xy direction can then be estimated as σIP =
√
8.22 − 7.552 = 3.2µm.

The longitudinal IP position error has to be estimated from MC studies. On

average it is 20µm for bb events.

In the next section, a general description of Neural Networks is given, as they

are used repeatedly throughout the analysis.

3.2.2 Neural Networks

A common problem in particle physics is how to select a subsample of events

with certain properties, for example: how to find tracks originating from the B

decay vertex, as opposed to fragmentation tracks from the IP. The usual procedure

is to apply a cut on one or more of the sensitive variables xi. One possibility is

to select tracks within a certain transverse momentum range. In general, the xi
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Figure 25: Muon-pair xy impact parameter to the IP.

are correlated, so that a simple cut ignores information from other variables that

could improve the selection. A way around that are cuts in 2 or 3 dimensional

space, which can be impractical to handle. Neural Networks (NN) are a method to

combine the information contained in the xi to find signal regions. The procedure

is essentially an iterative process that, using a ‘training sample’ of MC, finds the

probability for any track being a ‘signal track’ as a function of the xi. In other

words, the MC training sample is used to ‘learn’ how the xi are correlated with

each other and with the signal parameter [81]. Neural Networks can be constructed

using a variety of architectures and learning algorithms, but the most common are

feed-forward networks trained using back-propagation. The discussion here will be

restricted to this type.

A typical feed-forward network architecture is shown in Figure 26. The basic

elements of a Neural Network are nodes and links. In a feed-forward network the

nodes are arranged in layers as shown, with links only between nodes in adjacent
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Figure 26: Schematic diagram of a typical feed-forward neural net-
work.
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layers. The first layer of nodes corresponds to the input variables xi, with one node

for each variable. Next come any number of hidden layers, with any number of

nodes in each. In practice networks with more than two hidden layers are rarely

used, and one hidden layer with one more node than in the input layer proves

sufficient for most problems. The last layer contains the output node(s) (it is

possible to construct a NN with a reduced set of variables yk instead of only one

output node. More than one output node may be in place if the network is to be

used to sort the items into more categories than just signal and background).

Feed-forward networks are evaluated layer by layer, so that the input variables

xi are propagated step-by-step through the network to the output layer. The value

of a node hj in the first hidden layer is given by:

hj = g(
∑

i

ωijxi + θj), (3.2)
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where ωij is the weight assigned to each link between the input and hidden layers,

θj is the threshold for each hidden node hj , and g(z) is the node activation function.

For purposes as described above, the activation function is usually:

g(z) =
1

2
(1 + tanh z) =

1

1 + e−2z
. (3.3)

If there are more hidden layers they are evaluated in turn, replacing the input node

values xi with the appropriate hj values from the previous layer. The output layer

values yk are given by:

yk = g(
∑

j

ωjkhj + θk), (3.4)

where now the ωjk are the weights for the links between the last hidden and output

layers, and θk are the output node thresholds. ω and θ are free parameters of the

network, which are determined by training it against test samples. The training

samples are collections of items for which both the input patterns xi and the desired

network outputs tk are specified. The samples are drawn from the Monte Carlo,

which provides good modeling of the data distributions. The training procedure

involves minimization of an error measure, usually a mean square error:

E =
1

2Np

∑

p

∑

k

(y
(p)
k − t(p)k )

2, (3.5)

where Np is the number of patterns (items) in the training set, and the (p) de-

notes the observed and target network outputs for a particular input pattern x
(p)
i .

Training is therefore analogous to performing a χ2 fit for the parameters w.

3.2.3 Secondary Vertex Reconstruction

The method for reconstructing secondary vertices is to search for space points

in 3D where track density functions overlap [84]. Each track is parameterized by
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a Gaussian probability density tube f(;r) with a width equal to the uncertainty in

the track position at its point of closest approach (POCA) to the IP, ;r0,

f(;r) = exp

{

−1
2

[

(

x− (x0 + y2κ)
σ1

)2

+

(

z − (z0 + y tanλ)
σ2

)2
]}

(3.6)

The first term is a parabolic approximation to the track circular trajectory in the

xy plane, where κ is a function of the track charge and transverse momentum and

of the SLD magnetic field. The second term represents the track linear trajectory

in the rz plane, where λ is the track dip angle from the vertical. The σ parameters

are the uncertainties in the track positions after extrapolation to ;r0 for the two

projections.

The function fi(;r) is formed for each track under consideration and used to

construct a vertex probability function V (;r). Also included is f0(;r), a 7×7×20µm

(x×y×z) Gaussian ellipsoid, centered at the IP position, reflects the uncertainty in

the position of the IP. A smooth, continuous function is desired so that its maxima

may be found. The requirements result in the form:

V (;r) =

N
∑

i

fi(;r)−
∑N

i f
2
i (;r)

∑N
i fi(;r)

, (3.7)

where N is the number of tracks. The track and vertex functions are shown in

Figure 27 for a simple MC event hemisphere. Secondary vertices are found by

searching for local maxima in V (;r) that are well-separated from the peak at the IP

position. The tracks whose density functions contribute to a local maximum are

then identified as originating from a secondary vertex (SV).

A loose set of cuts is applied to tracks used for secondary vertex reconstruction.

Tracks are required to have ≥ 3 VXD hits and pperp > 250 MeV. Tracks with 3D

impact parameter > 3 mm or consistent with originating from a γ conversion or
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Figure 27: The track (a) and vertex (b) functions projected onto the
xy plane (cm). Primary and secondary vertices are visible
in (b).

from K0, or Λ0 decay are also removed. The event is divided into two hemispheres

using the thrust axis, and the vertexing procedure is performed in each using only

the tracks in that hemisphere.

The identified vertices are required to be within a radius of 2.3 cm of the center of

the beam pipe to remove false vertices from interactions with the detector material.

A mass cut of |MV TX −MK0| < 0.015 GeV removes any K0 decays that survived

the track cuts. The remaining vertices are then passed through a simple neural

network to further improve the background rejection. A subset of the 1998 Monte

Carlo was used for training purposes. The input variables are the flight distance

from the vertex to the IP, that distance normalized by its error, and the angle

between the flight direction and the total momentum vector of the vertex. These

quantities are shown in Figure 28, along with the output of the neural network, for

a separate Monte Carlo subsample. Vertices with NNvtx > 0.7 are retained. At

least one good secondary vertex is found in 72.7% of bottom, 28.2% of charm, and
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0.41% of light quark hemispheres in the Monte Carlo. Around 16% of the bottom

hemispheres have more than one good secondary vertex.

3.2.4 Track Attachment

Due to the cascade nature of B decays, not all secondary tracks originate from

the same space point. In order to recover information about the true B vertex

location and for better reconstruction of the b hadron charge, a process of recon-

sidering discarded tracks and reattaching tracks to the secondary vertex has been

developed [82]. It uses a second neural network.

The network is trained to accept only tracks which come from a B or D decay,

and to reject tracks from the IP or from strange particle decays. To optimize the

charge reconstruction, any track not already part of a good SV and with ≥ 2 VXD

hits is tried, including those which were removed from the SV-finding procedure.

The first four inputs of the NN are defined at the point of closest approach of

the track to the axis joining the secondary vertex to the IP. They are the transverse

distance from the track to that axis (T ), the distance from the IP along that axis

to the POCA (L), that distance divided by the flight distance of the SV from the

IP (L/D), and the angle of the track to the IP-SV axis (α). The last input is the

3D impact parameter of the track to the IP normalized by its error (b/σb). These

quantities are shown schematically in Figure 29. The distributions are shown in

Figure 30, along with the neural network output. Tracks with NNtrk > 0.6 are

added to the list of secondary vertex tracks.

3.2.5 VXD-Alone Tracking

Because the SLD tracking system is not 100% efficient, not all of the heavy

hadron charged decay products will be found even for perfect secondary vertex
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Figure 28: Distributions of seed vertex selection variables: (a) dis-
tance from IP, (b) normalized distance from IP, (c) angle
between flight direction and vertex momentum, (d) neu-
ral network output. The arrow indicates the accepted
region.
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Figure 29: Schematic illustration of the quantities used in the track-
attachment procedure described in the text (not to scale).
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reconstruction. The MC indicates that ∼90% of the charged decay products of a

heavy hadron produce a VXD-linked track. Part of the inefficiency can be recovered

by using tracks reconstructed in the vertex detector alone. Vectors of VXD hits

not associated with a CDC track are used, where there is at least one hit on each

of the three VXD layers. Including these vectors raises the tracking efficiency to

∼97% for heavy hadron decay products. A trial track is constructed from each

vector using a helix fit to the VXD hits. A third neural network is used to select

the vectors consistent with the heavy hadron decay chain, using as inputs the first

four variables used for the track attachment NN. These quantities are shown in

Figure 31, along with the neural net output. The normalized impact parameter is

not used since the momentum determination is poor and the error can’t be reliably

calculated. Vectors with NNout > 0.5 are added to the secondary vertex track list.

Once a vector has been attached to a secondary vertex, the helix fit is repeated

but with the vertex as an additional point to improve the curvature determination.
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Figure 30: Distributions of cascade track selection variables: (a) T ,
(b) L, (c) L/D, (d) α, (e) b/σb, (f) neural network output.
The arrow indicates the accepted region.
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Figure 31: Distributions of VXD-vector selection variables: (a) T ,
(b) L, (c) L/D, (d) α, (e) neural network output. The
arrow indicates the accepted region. The probability to
assign the correct charge to a vector based on its fitted
curvature is shown in (f), both with and without the sec-
ondary vertex as a constraint.
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The charge of the underlying particle is correctly found from this fit for ∼ 85%

of the attached vectors. Figure 31f shows the correct-sign probability for attached

vectors as a function of the true momentum of the underlying MC particle, both

with and without the secondary vertex constraint. At this point each hemisphere

is associated with a list of tracks, including tracks that were already used to fit a

secondary vertex, attached tracks and attached VXD-alone tracks.

3.2.6 Flavor Discrimination

From the list of secondary vertex tracks and attached tracks or VXD-alone

tracks several signatures can be computed that help to discriminate between bot-

tom, charm and light hemispheres [82]. The first three do not use the VXD-alone

tracks because of their poor momentum resolution. A vertex position for the hemi-

sphere as a whole is determined by fitting all SV and cascade tracks to a common

vertex. The first signature is the vertex mass. Each track is assigned the mass

of a charged pion and the invariant mass Mch of the selected tracks is calculated.

This mass can be partially corrected for the unknown contribution from neutral

decay products using the vertex transverse momentum. The minimum amount of

momentum Pmin
t required to align the charged momentum ;Pch of the vertex with

its flight direction ;D from the IP to within errors is found, as shown in Figure 32.

The charged mass is then corrected to obtain the Pt-corrected vertex mass

MV TX =
√

M2
ch + P

min2

t + |Pmin
t |. (3.8)

The magnitude of Pt is constrained to be ≤ Mch to prevent fake vertices from

resulting in large masses through this correction. The second and third signatures

are the magnitudes of the charged momentum |Pch| and flight distance |D| of the
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Figure 32: Schematic illustration of the missing Pt determination.
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total hemisphere vertex. The last signature is just the selected track multiplicity,

now with the VXD-alone tracks included. These four signatures are used as inputs

for a neural network trained to distinguish bottom/charm/light hemispheres. The

four inputs and the neural network output are shown in Figure 33. Also shown

is the correlation between Mvtx and Pch for bottom and charm. This correlation

in the low Mvtx region provides a mechanism for selecting pure samples of charm

hemispheres.

This last selection neural network is trained to put charm hemispheres near

zero, bottom hemispheres near one, and light-flavor background near one-half. This

allows a simple selection of bottom hemispheres by specifying an lower limit for the

NN output.

A cut requiring the total Pt-corrected mass of all tracks in the vertex to be >2

GeV/c2 in the event hemisphere achieves an efficiency of 62% and a b-purity of

98% (from all-flavor Monte Carlo). In the 96-98 SLD data 73812 hemispheres pass
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Figure 33: Distributions of flavor discrimination variables: (a)MV TX ,
(b) PV TX, (c) MV TX −PV TX correlation, (d) DV TX, (e) Ntrk,
(f) neural network output.
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this cut.

3.2.7 Recovering Low Decay Length Vertices

In the process of IP and light flavor background discrimination, events with

low proper time are likely to be discarded, as they may contain IP or light flavor

tracks. For example, in the all flavor MC the average true B0
s decay length is 0.3

cm, whereas the average decay length of b-tagged B0
s mesons is 0.4 cm, indicating

a bias toward higher decay length. In order to recover some low proper time

events, a different criterion for track selection can be used to find displaced high-

mass vertices. This is only done if the high-purity NN b-tagging procedure fails

to find a secondary vertex in the event hemisphere, but finds such a vertex in

the opposite hemisphere. The criterion for track selection, so-called quality track

selection, requires tracks to have ≥23 CDC hits, momentum transverse to the beam

axis p⊥ > 250MeV/c, a χ
2/d.o.f of the CDC track fit < 8, and a χ2/d.o.f of the

CDC/VXD fit < 8. In addition, the radius of the first CDC hit is required to

be < 39.0 cm, 2-D impact parameter in xy <1 cm, at least 2 VXD hits, and a

distance of closest approach to the IP in z < 1.5 cm. The topological vertexing

method described earlier [84] is used to find secondary vertices, and the Pt-corrected

mass is then required to be > 2 GeV/c2 in the event hemisphere to tag Z → bb

events. Note that there is no procedure to reject IP or light flavor tracks. However,

the requirement of a standard NN-selected B-vertex in the opposite hemisphere

keeps the light flavor background at the 1% level overall. The average decay length

of vertices selected in this way is 0.2 cm, indicating that this procedure recovers

hemispheres containing B decays with low decay lengths.

Using this procedure in addition to the standard NN b tagging method adds

35% more b-tagged data events. The net number of b-tagged events is 99844.
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Fig. 34 shows the decay length distribution of standard NN events, quality tracks

and background events.

Figure 34: The all-flavor MC B decay length distribution of standard
NN selected events, events reconstructed with quality
tracks and udsc background (hatched histograms). The
points are the 96-98 SLD data.
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3.2.8 Tracking Efficiency

The tracking efficiency in the default SLD Monte Carlo appears to be somewhat

higher than what can be inferred from the data, therefore some tracks in the Monte

Carlo are discarded to produce a better match. The rate at which tracks should be

‘tossed’ has been estimated using two methods.

The first method selects a sample of hemispheres tagged with MV TX > 2

GeV/c2, and tunes the track-tossing rate to best match the QV TX distribution
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to that observed in the data. The width of the QV TX distribution is used due to

its insensitivity to the generated b hadron decay charged particle multiplicity. This

procedure first calculates QV TX using only the full VXD+CDC tracks, and finds

that 1.5% of the tracks should be discarded from the Monte Carlo. This is done by

‘unlinking’ the track, i.e., breaking the VXD to CDC link, leaving VXD-vectors.

To determine what should be done with these vectors, the QV TX distributions are

compared again, using the remaining tracks plus any newly attached VXD-vectors.

From this it is found that 75% of the leftover VXD-vectors from the unlinked tracks

should themselves be discarded.

The second method to estimate the track-tossing rate compares the fraction

of CDC tracks which have associated VXD hits. The rate at which Monte Carlo

linked tracks must be considered unlinked (and for tagging purposes, discarded)

is found by demanding that this linked fraction match that observed in the data.

An advantage of this method is that it can be performed in bins of φ and cos θ to

correct for any local efficiency variations. No significant such effects are seen, and

the overall unlinking rate of 1.5% is in excellent agreement with the first method. It

is not possible with this method to determine whether the VXD part of an unlinked

track should be retained as a VXD-vector, so the 75% tossing rate found from the

first method is used.

Applying the tracking efficiency corrections the charge reconstruction of b-

tagged events is shown in Fig. 35. The achieved charge reconstruction purity is

83%. The plot demonstrates SLD’s ability to select neutral b hadrons, due to the

high tracking efficiency and the high b tagging purity.
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Figure 35:
The overall reconstructed charge of b-tagged events. The
points are the data, the histogram is the all-flavor Monte
Carlo, and the shaded histogram shows the fraction of
true neutral B decays.
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C H A P T E R 4

Flavor Tagging and Proper Time Reconstruction

In this chapter the strategy to analyze time dependent B0
s–B

0
s mixing is dis-

cussed. First, the B flavor has to be determined at production and at decay, to

determine if mixing occurred or not. Secondly, the B decay proper time has to

be reconstructed. Final state tagging and proper time reconstruction will be dis-

cussed below in section 4.2 on the charge dipole analysis. These three ingredients

will determine a time dependent mixing probability. Finally, a method to estimate

the signal to noise ratio of the experiment using Fourier analysis is discussed.

4.1 B flavor at production: the Initial State Tag

The initial state B flavor is determined with a combination of six tags of differing

strength. Some of them use information about the opposite hemisphere of the decay

hemisphere. These tags, in rough order of importance, are the polarized forward-

backward asymmetry, jet charge, vertex charge, charge dipole, lepton and kaon

tags. The charge dipole initial state tag is identical to the charge dipole final state

tag, which will be discussed in detail in section 4.2.
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4.1.1 Polarized Forward-Backward Asymmetry

The differential cross section for polarized e+e− → Z → bb has a large forward-

backward asymmetry, i.e., for polarized Z decays the outgoing quark is produced

preferably along the direction opposite to the spin of the Z. The polarized forward-

backward asymmetry ÃFB can be described by

ÃFB(cos θT ) = 2Ab
Ae − Pe

1− AePe

cos θT
1 + cos2 θT

, (4.1)

where Ab = 0.935 and Ae = 0.150 (Standard Model values), Pe is the electron

beam longitudinal polarization (Pe > 0 for right handed electron beam), and θT

is the angle between the thrust axis and the electron beam direction (the thrust

axis is signed such that it points in the same hemisphere as the reconstructed

B vertex). Thus, left- (right-)polarized electrons tag b (b̄) quarks in the forward

hemisphere, and b̄ (b) quarks in the backward hemisphere. Averaged over the

acceptance, this yields a correct tag probability of 72% for an average electron

polarization of Pe = 73%. The probability for correctly tagging a b quark at

production is expressed as

PA(cos θT ) =
1 + ÃFB(cos θT )

2
. (4.2)

Fig. 36 shows the distributions for data and Monte Carlo tagged using the polar-

ized forward-backward asymmetry, as selected in the charge dipole analysis (the

description of the analysis follows in the next section). It indicates the clear sepa-

ration between b and b quarks and good agreement between data and Monte Carlo.
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Figure 36:
Distribution of the initial state b-quark probability using
the polarized forward-backward asymmetry tag. Data
(points) and Monte Carlo (histograms) showing the b and
b̄ components for the events selected in the charge dipole
analysis.

4.1.2 Jet Charge

A jet charge technique is used in addition to the polarized forward-backward

asymmetry. For this tag, tracks in the hemisphere opposite that of the recon-

structed vertex are selected. These tracks are required to have momentum trans-

verse to the beam axis p⊥ > 0.15 GeV/c, total momentum p < 50 GeV/c, impact

parameter in the plane perpendicular to the beam axis δ < 2 cm, distance between

the primary vertex and the track at the point of closest approach along the beam

axis ∆z < 10 cm, and | cos θ| < 0.90. With these tracks, an opposite hemisphere
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momentum-weighted track charge is defined as

Qopp =
∑

i

qi

∣

∣

∣
;pi · T̂

∣

∣

∣

κ

, (4.3)

where qi is the electric charge of track i, ;pi its momentum vector, T̂ is the thrust

axis direction, and κ is a coefficient chosen to be 0.5 to maximize the separation

between b and b quarks. This technique yields an average correct tag probability

of 66% and is independent of the polarized forward-backward asymmetry tag.

4.1.3 Opposite Hemisphere Topological Tags

Finally, the tag is further enhanced by the addition of other flavor-sensitive

quantities from the hemisphere opposite that of the selected vertex. For this pur-

pose, the inclusive topological vertexing technique mentioned earlier is used. The

sensitive variables are:

• total track charge and charge dipole of a topologically reconstructed vertex.

• the charge of a kaon identified in the Cherenkov Ring Imaging Detector.A

K−(K+) signifies that the parent hadron had a b(b) quark. If more than one

kaon is associated with the B decay chain, the total charge is used.

• charge of a lepton originating from the B vertex. The charge correlation

between b quark and lepton follows the chain b→ W+ → l+.

4.1.4 Combination of the Tags

The various tags are combined using a series of neural networks to form an

overall initial state tag characterized by a b quark probability Pi [83]. Neural

Networks are of advantage in this situation, because of the strong correlations
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between the tags. For practical reasons three separate networks are trained first

for vertex charge, charge dipole and lepton/kaon/jet charge (these last three tags

are combined).

Table 7:
Input parameters for a Neural Net combining several initial
state tags.

Tag input parameters average tag purity efficiency

vertex charge Pt corrected mass 74% 52%
vertex charge

vertex decay length
number of VXD-alone tracks

charge dipole B,D charge difference 68% 29%
Pt corrected mass
B decay length
vertex charge

lepton,kaon, Qjet 67% 20%
jet charge vertex charge

B decay length
lepton charge (weighted by
transverse momentum)
sum of kaon charges
(weighted by

total momentum of kaons)

A fourth net is trained to combine the results of the three charge tag neural

nets and returns the b-quark probability Pi as the output. Finally, the result

of the combination net is analytically combined with the independent b quark

probability from the polarization tag. The overall tagging purity is 78%, however

the information is used on an event-by-event basis, so that a big fraction of the

events have the benefit of a very high initial state tag purity. The combined tag

is 100% efficient. Fig. 37 shows the Pi distributions for data and Monte Carlo as

selected in the charge dipole analysis (the description of the analysis follows in the
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next section). It indicates the clear separation between b and b quarks and good

agreement between data and Monte Carlo. The tagging power has improved due

to the addition of the jet charge tag and the opposite hemisphere tags.
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Figure 37:
Distribution of the computed initial state b-quark prob-
ability for data (points) and Monte Carlo (histograms)
showing the b and b̄ components for the events selected
in the charge dipole analysis.

4.2 B flavor at decay: Vertex Charge Dipole Analysis

The charge dipole analysis aims at selecting decays with distinct B and D

vertices and tags the B0 or B0 decay flavor based on the charge difference between

them. This analysis technique was first developed at SLD and relies extensively on
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the excellent resolution of the vertex detector. It is the most inclusive and therefore

the most efficient final state tag at SLD.

The algorithm used to identify primary, secondary and tertiary vertices (‘ghost

track algorithm’) is described in detail in appendix B. It is optimized for this

analysis. The vertex finding process relies on the kinematic fact that the boost

of the B decay system carries the cascade charm decay downstream from the B

decay vertex. In general, any secondary and tertiary vertices will be located along

the direction of the jet. First, the best estimate of the straight line from the IP

directed along the B decay chain is found. This line is promoted to the status of

a track (‘ghost track’) by assigning it a finite width. Secondly, the selected tracks

are vertexed with the ghost track and the IP to build up the decay chain along the

ghost direction. The ghost track algorithm operates on any set of input tracks.

The charge difference between the reconstructed secondary and tertiary vertices

is the charge dipole flavor tag, and the reconstructed decay length of the secondary

vertex is used to reconstruct the B decay proper time.

Once an event passes the b tag, the same tracks that make up secondary vertices

are used to feed into the ghost track algorithm. Note that there are two groups

of tracks, as described in sections 3.2.6 and 3.2.7: the large group of standard NN

selected secondary tracks (seed tracks, attached tracks and VXD-alone tracks), and

the small group of quality tracks originating from low decay length B decays. The

ghost-track algorithm operates on these groups of tracks and arranges them into

one or several vertices. Hemispheres in which three vertices are found – the pri-

mary (IP), a secondary and a tertiary – are used for the charge dipole analysis.

The secondary vertex is identified as the B decay vertex and the tertiary as the

cascade charm decay. As well as improving the purity and efficiency of the dipole

reconstruction (by requiring the vertices be consistent with a single line of flight),
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the ghost track algorithm has the additional advantage of allowing the reconstruc-

tion of 1-prong vertices (vertices with only one track attached to them), including

the topology consisting of 1-prong B and D decays.

In the case of quality track hemispheres VXD-alone tracks are attached to the

B decay chain only after vertices have been located, to improve the overall charge

reconstruction. The attachment criteria rely on the variables T̃i and L̃i for each

track i, as defined below. A vertex axis is formed by a straight line joining the IP to

a vertex combining both secondary and tertiary tracks. The 3-D distance of closest

approach of the track to the vertex axis, T̃i, and the distance from the IP along

the vertex axis to this point, L̃i, are calculated. Track i is attached to the vertex if

T̃i < 0.1 cm, L̃i > 0.025 cm and 0.25 < L̃i/L̃ < 2 (where L̃ is the distance between

the IP and the combined vertex). An average of 0.2 VXD-alone tracks is added

per decay, to be compared with an average of 5.0 VXD+CDC tracks per decay (for

M > 2 GeV/c2). The VXD-alone tracks are attached to either the B or D vertex

according to their longitudinal displacement L̃i: tracks with L̃i < LB+0.5(LD−LB)

are attached to the B vertex and all others are attached to the D vertex; LB (LD)

is the distance between the IP and the B (D) vertex.

4.2.1 Final State Tag Event Selection

For the charge dipole analysis hemispheres containing both a secondary and a

tertiary vertex are selected. This requirement rejects∼71% of the b-tagged hadronic

events, leaving a sample of 29208 event hemispheres. Furthermore, the total track

charge Qtot (from both secondary and tertiary vertices) is required to be zero, and

B and D charges are required to be different from each other. This is meant to

enhance the fraction of B0
s decays in the sample and to increase the quality of the

charge difference reconstruction for neutral B decays. Another 28% of the sample
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Figure 38:
Distributions of a)B decay length, b)B to D distance,
c)total B momentum and d)cosΘ of the thrust axis for
data (points) and Monte Carlo (histograms).

a) b)

c) d)

is rejected in this way. As mentioned in the previous section, the vertex closer to

the IP is labelled ‘B’(secondary) and that further away (tertiary) is labelled ‘D’.

Fig. 38 demonstrates that basic distributions of the B vertex decay length, B to

D distance, total B momentum and the distribution of the cos θthrust in the SLD

data are modelled well in the Monte Carlo, except for small discrepancies at large

| cosΘ|.

A ‘charge dipole’ is defined as δQ ≡ DBD×SIGN(QD−QB), where DBD is the

distance between the two vertices and QB (QD) is the charge of the B (D) vertex.

Positive (negative) values of δQ tag B0 (B0) decays. Further vertex selection cuts

are:

• A minimal separation between the B and D vertex to avoid decays with
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incorrectly attached secondary and tertiary tracks: 250 µm < DBD < 1 cm.

This cut rejects another 12% of the events.

• A mass cut on the D vertex mass is applied to restrict the reconstruction of

fake D vertices: D vertex mass < 2.0 GeV/c2(assuming all tracks are pions).

Only 4% of the events are removed (each previous cut is applied in the quoted

percentages of rejected events).

• A cut on events with negative decay lengths (i.e.the B vertex is reconstructed

behind the IP): B vertex decay length LB > 0. This cut removes only 1% of

the events.

• The ghost track width (see appendix B) is required to be < 300 µm. Very

large ghost track errors allow random track attachment to the vertices. This

cut only removes 0.5% of the events.

• The cosine of the angle between the straight line connecting the IP and the

B vertex, and the nearest jet axis direction is required to be < 0.9. This

removes another 2.5% of the events.

• The decay is rejected if any attached VXD-alone track has p⊥ > 4 GeV/c,

since in that case the charge is not reliably reconstructed. Only very few

decays (0.1%) are rejected in this way.

Applying all of the dipole final state tag cuts, a sample of 13587 decays is selected

from the original sample of 99844 decays with a b-tag in the 1996-98 data. Figure 39

shows distributions of the IP, B and D vertex track multiplicities, as well as the

distance and charge difference between B and D vertices in the selected sample.

Good agreement between data and MC is obtained. The slight discrepancy in the
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Figure 39:
Distributions of (a)Number of tracks attached to the pri-
mary vertex, (b)B vertex track multiplicity, (c)D vertex
track multiplicity, (d)charge difference between B and D
vertices, (e)number of tracks and (f)number of VXD-
alone vectors for data (points) and Monte Carlo (his-
tograms) in the charge dipole analysis.

(a) (b)

(c) (d)

(e) (f)

D vertex track multiplicity, due to a deficit in 1-prong D decays in the SLD Monte

Carlo, was determined to have negligible impact on the analysis.

Fig. 40 displays the distribution of the charge dipole δQ for the data sample.

It indicates the separation between b hadrons containing b or b̄ quarks in the MC.

The Charge Dipole correct tag probability, Pf , as extracted from the SLD Monte

Carlo can be plotted as a function of the charge dipole (see Fig. 41). As already

shown in Fig. 40, the purity of the tag increases from ∼50% at |δQ|=0 cm to ∼80%

at |δQ|=0.2 cm. The track assignment improves as B and D vertices become more

clearly separated (i.e., the distance between the vertices becomes much larger than

the vertex resolution). Beyond |δQ|=0.2 cm no improvement of the tagging purity
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Figure 40:
Distribution of the charge dipole for data (points) and
Monte Carlo (solid histogram). Also shown are the con-
tributions from b hadrons containing a b quark (dashed
histogram) or a b̄ quark (dotted histogram).
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with increasing |δQ| is observed. This is due to the B → DD background which

limits, independently of B and D vertex separation, the tagging purity. Double

charm events will be discussed in detail in the next section. The function used to

fit the charge dipole correct tag probability is described using two parameters a

and b:

f(|δQ|) = 0.5 + a (1− e
b|δQ|)

(1 + e b|δQ|)
. (4.4)
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Figure 41:
The Charge Dipole correct tag probability for B0

s decays
as a function of the charge dipole magnitude, as extracted
from the Monte Carlo. The solid line is the result of a fit
to the points.

Pf

Note that all of the Charge Dipole cuts also enhance the fraction of B0
d decays

in the sample. In order to suppress the dominant contribution of B0
d mesons,

events with inclusively reconstructed D⋆ decays are discarded, as one expects a
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large branching ratio for B0
d → D⋆−X. The corresponding branching ratio for

B0
s → D⋆−X is < 1%.

The D⋆+ → D0π+ decays can be reconstructed inclusively using slow pion

candidates from either the secondary or the tertiary vertex. Fig. 42 shows the mass

difference between D vertices with an associated slow pion and D vertices without

one, as simulated in the Monte Carlo. 4 different cases are shown: neutral (charged)

B decays and neutral (charged) B decays with a D mass cut at mD >1 GeV. A

D⋆ peak can be seen in the mass distribution of neutral B decays at 0.14 GeV

< M(D⋆) −M(D) < 0.16 GeV. Fig. 43 shows the corresponding distributions in

the 1996-98 SLD data. Requiring there are no slow pion candidates with M(D⋆)−

M(D) <0.16 GeV and M(D) >1 GeV, increases the relative fraction of B0
s events

in the dipole event sample by 4%. Only 2.5% B0
s decays are removed, mostly

from B0
s → D0X decays. The cut removes another 4.6% of the charge dipole data

sample, reducing its size to 12960 decays.
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Figure 42:
Monte Carlo distributions of M(D⋆)−M(D) for 4 different
cases: a)neutral B decays, b)charged B decays, c)neutral
B decays with mD >1 GeV and d)charged B decays with
mD >1 GeV.
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Figure 43:
The distribution of M(D⋆)−M(D) for 4 different cases in
the 96-98 SLD data set: a)neutral B decays, b)charged
B decays, c)neutral B decays with mD >1 GeV and
d)charged B decays with mD >1 GeV.
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4.2.2 Characterizing the event sample

The charge dipole event sample is composed of many different decays because

of its inclusive nature. It is important to understand which decays are contained

in the event sample to be able to describe it accurately. In the analysis, the impor-

tant groups of events are identified and their behavior is parametrized. First, the

fractions of different b hadrons in the event sample are determined from the Monte

Carlo. The dipole cuts boost the B0
s fraction from its assumed production value

of 9.8% to 16% due to the selection of neutral events and the cut on inclusively

reconstructed D⋆ decays. All b hadron fractions are summarized in table 8 [76].

A detailed discussion of b hadron production fractions can be found in appendix

A1. Note that the largest fraction of hadrons in the sample are B0
d mesons. It will

Table 8:
b hadron fractions in the Monte Carlo at production and
after the dipole selection.

Hadron Type production fraction fraction in dipole sample

B0
s 9.8% 16.0%
B0

d 39.9% 58.3%
B+ 39.9% 18.3%

Baryons 10.3% 7.4%

be important later on to demonstrate that the dipole tag is indeed sensitive to the

oscillations of the small fraction of B0
s mesons.

The fraction of the different b hadron species in the event sample is not con-

stant over the whole range of acceptance. Beyond | cosΘ| ≈ 0.7 the fraction of

neutral b hadrons in the selected event sample decreases while the background of

misreconstructed B+ mesons increases. This is due to the fact that at the edge of

the detector acceptance tracking inefficiencies are more likely. The functions used
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to scale the average b hadron fractions are the results of fits to the distributions

shown in Fig. 44. They are parametrized in terms of three parameters a, b and c:

fb = a+
b

c
e−| cosΘ|/c. (4.5)

cos(theta)  Bu cos(theta)  Bd
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Figure 44:
The distribution of the relative b hadron fractions as a
function of cosΘ. The functions are the result of fits.
They are used to scale the average b hadron fractions.

As discussed above, the dipole selection is optimized to tag events with a B → D

cascade structure, where the total charge of all tracks in the event is required to be

zero, and the individual charges of B and D vertices are different from each other.

This is tailored to select events of the type B0
d → D−X or B0

s → D−
s X. These

decays have a very high tagging purity (or low mistag rate). Other decay modes,

like B → D0X, which are expected not to have a charged dipole, are most likely to

have been mistagged, due to tracking inefficiencies or incorrectly attached tracks.

93



The decay mode with the worst tagging purity corresponds to B → DD decays.

Very often one of the D vertices is mistaken for a B, and the charge assignment is

random. Double charm events therefore have no tagging power.

Table 9:
B0

s decay mode fractions and average mistag probabilities
for the charge dipole analysis.

Decay mode fraction average mistag probability

B0
s → D0X 10.2% (38.2±0.8)%

B0
s → D−X 6.1% (7.0±0.6)%
B0

s → DsX 59.5% (9.1±0.2)%
B0

s →charmed baryon X 2.9% (30.3±0.2)%
B0

s → DDX 21.2% (46.9±0.5)%

Table 10:
B0

d decay mode fractions and average mistag probabilities
for the charge dipole analysis.

Decay mode fraction average mistag probability

B0
d → D0X 32.0% (26.6±0.2)%

B0
d → D−X 41.7% (6.7±0.1)%
B0

d → DsX 1.7% (8.6±0.7)%
B0

d →charmed baryon X 3.7% (21.3±0.7)%
B0

d → DDX 20.9% (43.6±0.3)%

Because of these differences the mistag probability is parameterized separately

for B0
d and B

0
s decays into five different final states: D

0X, D+X, DsX, charmed

baryon X, and DDX (this last category also incorporates charmonium production,

i.e. it includes all b → ccs decays). For example, the mistag probability is only

9% for B0
s → DsX decays but 47% for B

0
s → DDX decays. Similarly, the mistag

probability of B0
d decays is only 7% for the B

0
d → D−X decay channel but 44%

for B0
d → DDX decays. The mistag probabilities are extracted from the MC

simulation. Tables 9 and 10 show all decay modes of the B0
s and B

0
d mesons that
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are modelled, as well as their respective fractions and average mistag probabilities

extracted from the Monte Carlo. Averaged over all decay modes, the charge dipole

mistag probabilities for B0
s and B

0
d are quite similar: (20.6± 0.2)% for the B0

s and

(21.3± 0.2)% for the B0
d meson. The largest decay mode fractions are B

0
s → DsX

and B0
d → D−X with similar average mistag probabilities.

The tagging power of charged B mesons and baryons does not need to be

parametrized in such great detail, because these background decays do not con-

tribute to the mixing signal. The average mistag probabilities are (29.1±0.3)% for

B± and (30.3± 0.4)% for baryons.

The correct tag probability of the decay modes could also depend on the B

decay length L, because a B decaying very close to the IP is in general harder to

reconstruct than one that decays far away, as IP tracks may be included in the B

or even the D vertex. Therefore the correct tag probability is parameterized as a

function of decay length, as shown in Fig. 45 for the low decay length range of 0-2

mm. Note that most decay modes exhibit no decay length dependence, indicating

excellent tagging strength even at distances < 200µm.

Another effect that needs to be accounted for is the dependence of the decay

mode fractions on the Pt-corrected B vertex mass. For example, the fraction of

B0
s → DsX decays increases with the vertex mass, whereas the fraction of B0

s

decays into DDX final states decreases. This is due to the fact that missing or

incorrectly attached tracks result in a low B vertex mass, so that a mistake in the B

vertex reconstruction is more likely. Figure 46 shows the fractions of the five decay

modes as a function of the B reconstructed vertex mass. The function is the result

of a third degree polynomial fit to the decay mode fractions between M >2 GeV

and M <6 GeV. For M <2 GeV and M >6 GeV the fractions are kept constant.

95



Decay Length  (cm)

  18.30    /    15
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Figure 45:
Charge dipole correct tag probability as a function of
reconstructed decay length in simulated B0

s decays. a)all

decay modes, b)B0
s → D0X, c)B0

s → D−X, d)B0
s → DsX,

e)B0
s → c baryons, f)B0

s → DD. The functions are the fit
results used to parametrize the charge dipole correct tag
probability as a function of decay length.

f)e)

c) d)

a) b)

4.3 Proper time reconstruction

The proper time of the B decay is determined from the reconstructed B decay

length and the relativistic boost, γβ = pB

mB
, where the B mass is assumed to be 5.3

GeV and the B momentum pB is calculated from the reconstructed B energy. The

decay proper time is then computed from trec =
L

βγc
.
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Figure 46:
The decay mode fractions as a function of the B0

s vertex
mass. a)B0

s → D0X, b)B0
s → D−X, c)B0

s → DsX, d)B
0
s →

baryons, e)B0
s → DD.

a) b)

c) d)

e)

Pt corrected B0

s
vertex Mass [GeV]

4.3.1 Decay Length Reconstruction

The general procedure to locate the B decay vertex and thereby the B decay

length has been described in section 4.2.1. Some aspects will be pointed out here

in more detail.

After the initial B vertex position has been located using the ghost track algo-

rithm, an additional piece of information using a virtual D track can be used to

increase its precision, if at least two tracks were attached to the tertiary vertex.

In this procedure all tertiary tracks are fit to a common vertex, and a resultant

D track with finite width is created. Its direction is given by the net momentum

of the tertiary tracks. The computation of track width and direction have been
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done using the Kalman Fitter method, described in [86]. The angular uncertainty

of the resulting D track is scaled with the mass of the D vertex, giving the D track

a higher angular uncertainty the more the reconstructed D mass differs from the

true D mass, thereby accounting for misreconstruction of the D track direction due

to missing tracks. This virtual D track is then included in a vertex fit with all of

the tracks associated with the B vertex which results in a B vertex location with

associated error ellipse. The advantage of creating such a D track is that a realistic

error is assigned to 1-prong B vertices. Also, the vertex resolution improves with

the addition of the D track.

For events with only one track in the tertiary vertex, it is not useful to create

such a virtual track as theD direction is poorly determined. If the secondary vertex

has more than one track associated with it, the loss of the virtual D track results

in slightly worse decay length resolution. If both B and D vertices have only

one track associated with them, large uncertainties in vertex finding and proper

time determination are to be expected. As discussed before, the vertex finding

procedure produces a ghost track along the B decay chain, and in principle the B

decay length can be reconstructed from the intersection point of ghost track and B

track, Lghost+B. The ghost track and the secondary track generally have a rather low

angle between them, producing an elongated error ellipse along the decay direction.

A general bias towards lower decay lengths is observed. Another possibility is to

use the intersection point of the B track and the D track, LB+D, which suffers from

the opposite problem, a bias toward larger decaylength. The method chosen here is

to average LB+D and Lghost+B, which produces a reconstructed decay length closest

to the true decay length.

A discussion of the decay length resolution follows in section 5.3.1.
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4.3.2 Boost Reconstruction

Two different methods of determining the boost are combined to achieve the

optimal boost reconstruction for selected dipole events. These two methods are

the mass method [87], where the B energy is calculated using the known invariant

mass of the B vertex, and the maximum missing mass method [88] which, in a

certain mass limit, uses additional kinematic information to constrain neutral and

ν energy.

Method 1: The B energy EB, is the sum of neutrino energy Eν , charged track

energy Ech and neutral particle energy Eneut: EB = Ech + Eν + Eneut. Ech is the

energy of all charged tracks associated with the secondary B decay chain assuming

pion mass, and Eneut is determined from electromagnetic calorimeter clusters that

can be associated with the B decay but are not associated with any charged track.

To test if these neutral clusters come from the decay of the B rather than from

fragmentation tracks, the clusters are tested for compatibility with the B invariant

mass. Each neutral cluster is added to the secondary vertex while keeping the

direction of the vertex momentum unchanged. The process starts with the cluster

closest to the secondary vertex flight direction. The cluster also has to pass a

minimum energy cut of E > 3 GeV. The invariant mass of the vertex is then

recalculated, and if the mass of the new combination is closer to mB=5.3 GeV

than before, the cluster is considered to come from a neutral particle originating

from the B decay. This procedure continues as long as the B mass remains below

5.3 GeV. Any other clusters are considered unassociated with the B decay.

To determine the energy of the escaped neutrinos, Eν , the total energy in the

jet containing the B, Ejet, is considered: Eν = Ejet − Evisible. Ejet is calculated

from the Z mass. For events with two jets a Z → bb event is assumed and Ejet is

99



fixed to mZ/2. For a three jet event, the energy in each jet is calculated using the

jet directions:

E1,2,3
jet =

sinΘ23,13,12

sinΘ12 + sinΘ13 + sinΘ23

mZ , (4.6)

where Θij is the angle between jets i and j. In the few cases of four jets the event

is divided into two hemispheres and treated as a two jet event. The visible energy

Evisible is simply all of the energy which is measured in the calorimeter for the event

hemisphere.

Method 2: This method determines Eν and Eneut by calculating the missing

invariant mass, M0, and the missing longitudinal momentum, P
2
0l, to reconstruct

the energy of all particles not associated with the vertex (neutrinos and other

neutral particles):

E0 = Eν + Eneut =M
2
0 + p

2
0t + p

2
0l. (4.7)

The transverse neutral momentum p0t is identical to the measured total charged

track momentum transverse to the B flight direction (by momentum conservation).

One kinematic constraint on the two other quantities comes from the fact that

m2
B = E

2
B−p2B, where the total momentum of the secondary vertex is pB = pchl+p0l,

where pchl is the longitudinal momentum of the vertex-associated charged tracks

(the component along the vertex flight direction). An additional constraint comes

from the mass of the B vertex:

√

M2
ch + P

2
t +

√

M2
0 + P

2
t ≤ MB. (4.8)

The equality holds in the limit where both p0l and pchl vanish in the B rest frame.

It sets an upper bound on the missing mass:

M2
0max = m

2
B − 2MB

√

M2
ch + P

2
t +M

2
ch. (4.9)
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It appears from MC studies that for small M2
0max, M

2
0 ≈ M2

0max. With the trans-

verse charged mass M2
ch⊥ =M

2
ch + P

2
t one can then calculate P0l:

P0l =
mB −Mch⊥
Mch⊥

Pchl. (4.10)

Finally, using Eq.4.7, E0 = Eν +Eneut can be computed and, adding the energy of

all charged tracks, EB is obtained.

Methods 1 and 2 are combined linearly in five different bins of reconstructed

energy such that the optimal B energy determination for dipole selected events is

chosen. The B boost is then determined by

reconstructed boost
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1 2 3 4 5 6 7 8 9

Figure 47:
The reconstructed boost of events selected in the dipole
analysis. The histogram denotes the Monte Carlo distri-
bution, and the points show the reconstructed boost in
the data.

βγ =
pB
mB

=

√

E2
B −m2

B

mB

, (4.11)
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where mB is assumed to be 5.3 GeV. The distribution of the reconstructed boost

is shown in Fig. 47 for data and Monte Carlo simulation. Note that the Monte

Carlo boost distribution does not reflect the measured information about the b

quark fragmentation function [88], so that the small disagreement between data

and Monte Carlo observed in the plot is expected. The reconstructed proper time

is shown in Fig. 48. For a discussion of the boost resolution see section 5.3.2.

reconstructed proper time (ps)
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2000

0 1 2 3 4 5 6 7 8

Figure 48:
The reconstructed proper time of events selected in
the charge dipole analysis. The histogram denotes the
Monte Carlo distribution, and data points show the re-
constructed proper time in the data.

4.4 Mixing Tag

It is now possible to tag individual events as mixed or unmixed based on the

initial and final state tags: decays are tagged as mixed or unmixed if the product
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(Pi − 0.5)× (Pf − 0.5) is smaller or greater than 0, respectively.

4.4.1 Checking the Dipole Tagging Power

It is important to check the dipole tagging power directly with data. Such a

test is provided by the polarized forward-backward asymmetry shown in Fig. 49.

This figure shows good agreement between data and Monte Carlo indicating that

the tagging power is adequately modelled by the simulation. The asymmetry is
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Figure 49:
Distributions of cos θ for the thrust axis direction signed
by the product (δQ×Pe) for data (points) and Monte Carlo
(histograms) in subsamples with Qtot = 0 and Qtot = ±1 for
the charge dipole analysis.

diluted by both initial and final state mistags and by B0–B0 mixing. The dilution

due to mixing can be reduced by selecting vertices with total charge Qtot = ±1, in

which case a stronger asymmetry is observed.
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Figure 50:
The fraction of events tagged as mixed in the dipole sam-
ple, as a function of the reconstructed proper time. The
histogram is taken from the MC, the data points are ex-
tracted from the 96-98 data.

Another way of checking the tagging power is to compare the mixed fraction,

which is the number of events tagged as mixed divided by the total number of

events, in data and Monte Carlo. Fig.50 is a plot of the mixed fraction as a

function of reconstructed proper time. The MC is plotted as a histogram, and the

data as points. The mixed fraction is expected to rise as a function of time due to

the slow B0
d mixing. The rapid B

0
s oscillations are invisible on a plot of this type.

A typical sign for an overestimated MC tagging power would be a higher mixed

fraction in the data than the MC at low proper time, which is not observed.

Another interesting comparison between the tagging power in the data and the

Monte Carlo is shown in Fig.51. It shows the mixed fraction as a function of
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the computed mistag rate, in 4 bins of reconstructed proper time. The last plot

is integrated over all time bins. In the first bin of proper time, at low mistag

probability the mixed fraction is expected to be low, as the average number of

mixed events due to B0
d mixing is small at small reconstructed proper times. The

mixed fraction is expected to rise with the mistag rate, eventually reaching a mixed

fraction of 50% (no mixing information) with a mistag fraction of 50%. With

increasing proper time the contribution of B0
d mixing becomes larger. The general

agreement of data and Monte Carlo mixed fraction shows that the Monte Carlo is

describing the tagging power correctly in all bins of proper time.

All plots show good agreement between data and MC. The tagging ability is

well-modelled in the MC and the selected events are sensitive to mixing.

4.5 A Signal to Noise Estimate

It is interesting to ask how well one can hope to measure a B0
s–B

0
s mixing signal

with the charge dipole event sample (or any other experiment), given the set of

experimental parameters associated with it.

It is clear that the signal to noise ratio, or ‘sensitivity’, will depend on the B0
s

fraction in the event sample, on the number of events selected, on the mistag rate

and on the time resolution in the detector. The B0
s fraction fB0

s
and mistag rate w

are multiplicative factors that effectively reduce the amplitude of the mixing signal.

Starting with Pm(t), the probability for a neutral B meson to mix into its an-

tiparticle before decaying, as it was obtained in chapter 1 from quantum mechanics,

is

Pm(t) = Γ
e−Γt

2
[1− cos∆mt], (4.12)
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Figure 51:
The fraction of events tagged as mixed in the dipole
sample, as a function of the probability that an event
was tagged incorrectly, shown in 4 bins of reconstructed
proper time. The last plot is integrated over all time bins.
The histograms are taken from the MC, the data points
are extracted from the 96-98 data.
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where Γ is the decay width of the B meson, t is the true proper time of the B

decay and ∆m the mass difference between the two mass eigenstates. Similarly,

the probability Pu(t), that a neutral B meson does not mix and decays as it was

produced, is

Pu(t) = Γ
e−Γt

2
[1 + cos∆mt]. (4.13)

Taking into account the experimental factors w and fB0
s
, Pm becomes

P exp
m (t) = ΓfB0

s

e−Γt

2
[1− (1− 2w) cos∆mt]. (4.14)

The factor (1− 2w) is derived by considering that either a mixed state was tagged

correctly or an unmixed state was mistagged.

To quantify the size of a periodic signal it is of advantage to perform a Fourier

analysis of the frequency spectrum [89]. The expected Fourier transform (FT) of

the mixing signal in a data sample of n events is,

FT (∆m) ≈ nfB0
s
(1− 2w)
2

(

Γ2

Γ2 + (∆m−∆mtrue)2
+

Γ2

Γ2 + (∆m+∆mtrue)2

)

+n(1− fB0
s
)(1− 2w) Γ2

Γ2 +∆m2
. (4.15)

The second term of the function can be neglected because ∆m > Γ. It can be

assumed that the last term (from the non-mixing B) can be subtracted in the final

analysis. Therefore, we expect a peak in the frequency spectrum at ∆m = ∆mtrue

with a Breit-Wigner shape of width 2Γ:

FT (∆m) ≈ nfB0
s
(1− 2w)
2

(

Γ2

Γ2 + (∆m−∆mtrue)2

)

. (4.16)

To estimate the effect of the time resolution of the detector, σt, each measured

time t is smeared with Gaussian errors, given the resolution σt:

P exp
m (t)→ P̂ exp

m (t) =

∫ ∞

0

P exp
m (t)

1√
2πσt

e
− (t−t′)

2σ2
t dt′. (4.17)
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To simulate this effect in the FT analysis one can use the convolution theorem.

It states that the FT of the convolution of two functions is proportional to the

product of the individual FTs of these functions:

FT[P̂expm (t)] =
√
2πFT[Pexpm (t)] ∗ FT[g(σt)], (4.18)

where g(σt) is a Gaussian function of width σt. The proper time is computed from

the measured decay length L and the boost γβ:

t =
L

γβc
. (4.19)

Therefore, the proper time resolution σt is

σt =

√

(

σL
γβc

)2

+

(

σγβt

γβ

)2

. (4.20)

The FT of a Gaussian is simply another Gaussian, but the calculation is com-

plicated by the time dependence in the boost component of the resolution. The

approximate result is given by

FT[g(σt)] = e
−σ2

L∆m2

2 r(∆m2, σp). (4.21)

The first term is a Gaussian of width 1/σL and describes the damping of the FT

peak due to the decay length resolution σL. The expected peak amplitude decreases

with ∆ms.

The second term accounts for the boost resolution and can be approximated by

r(∆m2, σp) =
√
πY eY

2

ERFC(Y ) (4.22)

with

Y =
1√
2

Γ

σp∆m
, ERFC(Y ) =

2√
π

∫ ∞

Y

e−t2dt. (4.23)

This term also results in a reduction of the FT peak as the frequency increases.
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In conclusion, a measurement of the Fourier amplitude becomes more difficult

as the frequency increases, as faster oscillations are harder to resolve given a limited

time resolution in the detector. The expected size of the signal, or FT peak at the

true frequency, is

FT (∆ms) =
n

2
fB0

s
(1− 2w)e−

σ2
L

∆m2

2 r(∆m2, σp). (4.24)

The noise is given by
√

n
2
. Therefore, the sensitivity S is

S =

√

n

2
fB0

s
(1− 2w)e−

σ2
L

∆m2

2 r(∆m2, σp). (4.25)

This is an important equation. It shows that the sensitivity depends linearly on the

square root of the number of events, mistag probability and B0
s fraction, whereas

the proper time resolution appears in the exponent. This means that at high

oscillation frequencies the proper time resolution becomes the limiting factor of a

measurement. As an example, Fig. 52 shows the difference in observable mixing sig-

nal in two simulated experiments, both with the typical LEP/SLD relative boost

resolution of 10%, a mistag rate of 25% and ∆ms=20 ps
−1, but different decay

length resolutions: σL = 60µm (SLD-like) and σL = 200µm (LEP-like). At high

frequencies the SLD analysis will dominate due to the high resolution of the vertex

detector, whereas at the low ∆ms end, the LEP experiments dominate the mea-

surement due to the advantage in statistics. Both experiments suffer from severe

damping of the oscillating signal at proper times >1.5ps−1 due to the boost reso-

lution. The interplay between boost and decaylength resolution will be discussed

in detail later on.
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Figure 52:
A plot of the analytical function of the mixed fraction
assuming a typical set of experimental parameters and
∆ms = 20ps

−1, for σL = 60µm (SLD-like) and σL = 200µm
(LEP-like).
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C H A P T E R 5

Maximum Likelihood Analysis

In this chapter, the analysis procedure used to extract limits on the B0
s os-

cillation frequency ∆ms from the full 96-98 SLD data set will be discussed. An

amplitude fit to the frequency spectrum of the mixing signal is introduced.

5.1 B Hadron Physics Functions

The likelihood function for bb events is composed of terms describing the prob-

ability for observing a mixed or unmixed event as a function of proper time. B+,

B0
d, B

0
s , b baryons and background events have to be treated separately.

Based on the experimental probability density function P̂ exp
m (t) introduced in

the last chapter, an experimental function F that includes the effect of B+, B0
d,

B0
s , b baryons or background events can be derived. A discussion of proper time

resolution, selection efficiency and other effects will follow in the next sections. The

function Fmix describing the probability for a decay with proper time t to be tagged
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as mixed is:

Fmix = ΓB+fB+

e−Γ
B+ t

2
wu

+ ΓB0
d
fB0

d

e
−Γ

B0
d
t

2
[(1− (1− 2wd) cos∆mdt)]

+ ΓB0
s
fB0

s

e
−Γ

B0
s
t

2
[(1− (1− 2ws) cos∆mst)]

+ ΓΛfΛ
e−ΓΛB

t

2
wΛ

+ fudsc
1

2
Fudsc(t), (5.1)

where fj represents the fraction of each b hadron type (see table 8) and light quark

background (fudsc=0.1%), (j = u, d, s, baryon, and udsc correspond to B
+, B0

d , B
0
s ,

b baryon, and udsc background). Fudsc(t) is a function describing the proper time

distribution of the small contribution of background events. To parametrize this

contribution, a sum of Gaussian and exponential functions is used. The distribution

is shown in Fig.53.

wu,d,s,Λ are the mistag rates of the different b hadrons, as described in the

previous chapter. It was discussed in the last chapter that w depends on the

decay modes. In order to give an accurate description of the data sample these

different decay modes must be treated separately in Fmix. Also recall that the

net mistag probability depends on both the initial state mistag wI and final state

mistag probability wF . For example, a B+ can only be in the mixed sample if a

mistake either in the initial state or the final state tag was made, but not both:

w = wI(1− wF ) + wF (1− wI).
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Figure 53:
The proper time distribution of the small contribution of
background events in the SLD Monte Carlo. The func-
tion is the fit result used to parametrize the light flavor
background component as a function of true proper time.

The complete physics function describing the time development of the proba-

bility for a decay to be in the mixed sample is then expressed as

Fmixed(t) =ΓB+fB+

e−Γ
B+ t

2

[

wI(1− wF
u ) + (1− wI)wF

u

]

+ ΓB0
d
fB0

d

e
−Γ

B0
d
t

2

(

5
∑

k=1

gdk
[

(1− wF
dk)(1 + [2w

I − 1] cos∆mdt) + w
F
dk(1− [2wI − 1] cos∆mdt)

]

)

+ ΓB0
s
fB0

s

e
−Γ

B0
s
t

2

(

5
∑

k=1

gsk
[

(1− wF
sk)(1 + [2w

I − 1] cos∆mst) + w
F
sk(1− [2wI − 1] cos∆mst)

]

)

+ ΓΛfΛ
e−ΓΛB

t

2

[

wI(1− wF
baryon) + (1− wI)wF

baryon

]

+ fudsc
1

2
Fudsc(t). (5.2)

A similar expression for the probability Funmixed to observe a decay tagged as
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unmixed is obtained by replacing the initial state mistag rate wI by (1− wI).

The quantities wF
dk and w

F
sk are the final state mistag probabilities for B

0
d and

B0
s , with the index k = 1, ..., 5 representing the five different decay final states:

D0X, D+X, DsX, charmed baryon X, and DDX; gdk and gsk are the fractions of

B0
d and B

0
s decays into each of the above final states (see tables 9 and 10).

Several of the quantities in Eq. (5.2) can be determined on an event by event

basis, as discussed in the last chapter. The initial state mistag probability wI

depends on cos θ of the thrust axis, the electron beam polarization, as well as several

quantities from the opposite hemisphere: jet charge, vertex charge, kaon charge,

lepton charge and dipole charge. Recall that the final state mistag probabilities wF
jk

are parametrized as functions of the reconstructed decay length to take into account

the degradation of the charge dipole tag close to the IP, and that the average b

hadron type depends on cosΘ. Finally, the decay final state fractions gdk and gsk

are parametrized as a function of the overall B vertex mass.

The functions Fmix(t) and Funmix(t) are functions of the true B decay proper

time t. They need to be transformed into functions of the reconstructed time trec

as observed in the data. This will be done by taking into account all effects that

depend on true proper time and integrating over it.

5.2 Efficiency

One important effect when considering proper time dependencies is that caused

by the event selection cuts. It introduces a considerable bias, because at low proper

time the IP is not very well separated from any secondary vertex. The effect

is a time dependent b hadron selection efficiency. It is parametrized with a time-

dependent function ǫ(t) for each b hadron type, shown in Fig.54. It is defined as the
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Figure 54:
The event selection efficiency per b hadron in the dipole
analysis (MC simulation), as a function of true proper
time. The functions are the fit results used to parametrize
the charge dipole efficiency as a function of true proper
time.

fraction of B+, B0
d , B

0
s and b baryons in the bb Monte Carlo that pass the analysis

cuts. All of the efficiency functions fall off at low proper time, but are fairly flat

otherwise. At very high true proper time the selection efficiency decreases. This

is due to a cut in the event selection removing K0 and Λ candidates. Recall that

for the B0
s–B

0
s mixing analyses the high proper time region ( > 1.5ps

−1) is less

important, as the sensitivity for an oscillating signal decreases rapidly beyond that

point due to the boost resolution. For example, the efficiency for B0
s decays can be

parametrized using 4 parameters a, b, c and d,

ǫ(t) = a
1− ebt
1 + ebt

+ ct+ dt2. (5.3)
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Note that the contamination of B+ at low proper time is considerable. However,

with increasing proper time the fraction of neutral b hadrons becomes larger.

5.3 Proper Time Resolution

To convert the functions Fmixed and Funmixed into real experimental functions

they are convoluted with a proper time resolution function R(t, trec). This is nec-

essary because to be able to relate true proper time and reconstructed time, infor-

mation about the time resolution σt is needed. The reconstructed proper time trec

is computed from the measured decay length L and the boost γβ:

trec =
L

γβc
(5.4)

with calculated proper time resolution σt

σt =

√

(

σL
γβc

)2

+

(

σγβt

γβ

)2

. (5.5)

At very low proper time the decay length resolution dominates, whereas at larger

times, the boost resolution component limits σt. This can be seen in Fig. 55, where

Eq.5.5 is plotted for average values of the core component of σL and σγβ/γβ in B
0
s

decays. The proper time resolution σt is almost constant up to values of t ≈ 0.3ps.

For higher values of t, σt rises linearly with t.

Given these residuals one can form a Gaussian resolution function relating true

and reconstructed proper times:

G(t, trec) =
1√
2πσt

e−
1
2
((t−trec)/σt)2 (5.6)

For both decay length and boost reconstruction, the resolution can be estimated

decay-by-decay. This is preferable to using resolution averages, because a fraction
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Figure 55:
σt as a function of t, plotted analytically using average
values for the B0

s core fraction of σL and σγβ/γβ.

σt

t

of the events then have the benefit of a very high resolution and the sensitivity

increases since well-reconstructed decays tend to have better decay length and

boost resolution as well as lower mistag.

In the following sections, the two components of the proper time resolution,

decay length and boost resolution, are discussed.

5.3.1 Decay Length Resolution

For decays with more than one track in either the B or D vertex, the resolution

σL is estimated on an event-by-event basis from the B vertex fit and IP position

measurement errors, combined to yield an uncertainty σmeas along the flight direc-

tion.

As an example, Fig. 56 shows the distribution of the normalized decay length

residuals, Lmeas−Ltrue

σmeas
, for the case of correctly (incorrectly) tagged B0

s → DsX and

B0
s → DDX events. Note that the latter distributions have very large asymmetric

tail. The bias towards larger reconstructed decay length is due to the fact that
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in B0
s → DDX decays, as discussed earlier, very often one of the D decays is

misreconstructed as a B vertex, while the true B decay is missed. This results in

a bias towards large reconstructed decay length.

Two Gaussians are fitted to the 60% core fractions and the 40% tail fractions

of the events. The widths s1 and s2 of the two Gaussians for correctly (incorrectly)

tagged B0
s → DsX decays are 0.91(1.35) and 1.96(4.45). The parameters s1 and s2

are used to appropriately scale σmeas, and a 60% core resolution σL1 = s1 × σmeas

and a 40 % tail resolution σL2 = s2 × σmeas is determined. The offsets in the

distributions are addressed later, in the discussion of systematic shifts. As before,

the charged B meson and b baryon scale factor parametrizations are extracted by

averaging over all decay modes, whereas for B0
s and B

0
d decays the scale factors are

extracted separately for each of the decay modes.

For decays with only one track in both B and D vertices the resolution is

extracted from the overall decay length residual distributions in the simulation.

The difference in decay length resolution between right and wrong charge dipole

tags motivates treating those separately in the likelihood function. Fig. 57 shows

the average decay length residual for B0
s events with only one track in each of the B

and D vertices, plotted separately for correctly and incorrectly tagged events. The

average decay length resolution for all B0
s decays with right (wrong) charge dipole

tag can be parameterized by the sum of two Gaussians of widths σL1 = 76 µm

(112 µm) and σL2 = 311 µm (450 µm), where the first Gaussian represents 60% of

the decays. In the case of B0
d and B

0
s decays, the right- and wrong-tag decay length

resolutions are estimated separately for each of the five decay final states.

As for the question why we trust the Monte Carlo modelling of the resolution,

it is tuned to the data using impact parameter distributions and τ 3-prong decay

vertices. This is discussed in section 6.2.2.
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Figure 56:
The widths of the Gaussian functions fitted to these MC
distributions of Lrec−Ltrue

σmeas
are the scale factors for correctly

and incorrectly tagged events used to adjust the event-by-
event decay length resolution. a) correctly tagged B0

s →
DsX decays, b) incorrectly tagged B0

s → DsX decays, c)
correctly tagged B0

s → DDX decays, and d) incorrectly
tagged B0

s → DDX decays. Two Gaussian functions are
fitted with 60% of the decays in the core and 40% of the
events in the tail.

a) b)

c) d)
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Figure 57:
The widths of the Gaussians fitted to these MC distribu-
tions are the residuals for correctly (left) and incorrectly
(right) tagged B0

s decays with one track in each of the B
and D vertices. Two Gaussians are fitted with 60% of the
decays in the core and 40% of the events in the tail.

Lrec−Ltrue

σmeas

5.3.2 Boost Resolution

The relative boost resolution σγβ/γβ is parametrized with the sum of two Gaus-

sians using the MC simulation. Considering all selected B0
s decays, the widths of the

two Gaussians are σB1 = 0.07 and σB2 = 0.21, where the first Gaussian represents

60% of the decays. However, the analysis takes into account the strong dependence

of the resolution on the total charged track energy in each decay. Recall that the

boost is determined as the sum of charged track energy E±
B and neutral energy.

The charged track energy E±
B can be determined accurately, because the CDC and

the vertex detector provide precise tracking determination. By comparison, the

LAC information used to determine the neutral component is relatively imprecise

due to problems such as track-cluster association and cluster overlap [87], and the
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fact that it is very difficult to determine the origin of neutral particles. Therefore,

the strong dependence of the relative boost resolution on E±
B is to be expected.

Fig. 58 shows the width of the relative boost residual as a function of the charged

B energy for the four different b hadrons. Using this information, σγβ/γβ can be

estimated on an event-by-event basis.
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Figure 58:
The width of the relative boost residual as a function
of the charged B energy for the 4 different b hadrons.
The open squares represent the 60% core fraction of the
decays. The dark squares represent the 40% tail fraction.
The functions are the fit results used to parametrize the
relative boost resolution as a function of the charged B
energy.

5.3.3 Systematic Shifts in Proper Time Resolution

Once estimates of the decay length and boost resolutions are made per event,

the resolution function can be derived. The resolution function can in principle be
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parametrized by the sum of four Gaussians:

G(t, trec) =
2

∑

i=1

2
∑

j=1

fij
1

σij(t)
√
2π
e−

1
2
((t−trec)/σij (t))2 (5.7)

where the index i = 1(2) corresponds to the core (tail) component of the decay

length resolution scale factor, and the index j = 1(2) similarly corresponds to the

core (tail) component of the relative boost resolution
σγβj

γβ
. The various fractions

are f11 = 0.36, f12 = f21 = 0.24, and f22 = 0.16. This produces a Gaussian function

centered at t = trec and therefore does not account for any systematic shifts in the

reconstruction.

Decays reconstructed within 200µm of the IP or at low reconstructed boost have

worse proper time resolution and suffer from asymmetric tails. In addition, offsets

in the proper time residuals are observed in the Monte Carlo. This is mostly due

to double charm decays with one of the D vertices misreconstructed as a B vertex

with a long decay length. To account for this effect, an estimate of the proper time

shift is extracted for each event from fits to the proper time residuals in bins of

true proper time. A Gaussian was found to yield a good fit to the symmetric core

fraction of 60% of the events, and a Novosibirsk function (described below) was

used to fit the 40% tail fraction, which is distributed asymmetrically around zero.

The Novosibirsk function is used to fit Gaussian-like distributions with asymmetric

tails. In addition to a width and a mean, σ(t) and µ, as in the case of a Gaussian

function, the Novosibirsk function uses a third parameter Ptail which parametrizes

the width of the asymmetric tail. Both the Gaussians that parametrize the core

fraction of the events and the Novosibirsk functions for the tail fractions have time

dependent offsets µc(t) and µt(t), respectively. The Novosibirsk function is given
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by:

fNovo(t; σ(t), µ
t(t), Ptail) =

1

(
√
2πσ(t))

exp






−1
2

log
[

1.0 + Ptail(trec − t− µt(t)) sinh(1.18Ptail)
(1.18σPtail)

]

Ptail

2

− 1
2
P 2

tail






,(5.8)

and the Gaussian is given by

fGauss(t; σ(t), µ
c(t)) =

1

(
√
2πσ)

exp

(

−1
2

(

(trec − t− µc(t))

σ(t)

)2
)

. (5.9)

fNovo and fGauss are then combined to form a resolution function that includes the

systematic shifts due to the offsets:

G(t, trec) = 0.36fGauss(t; σ11(t), µ
c(t))

+ 0.24fGauss(t; σ12(t), µ
c(t))

+ 0.24fNovo(t; σ21(t), µ
t(t), Ptail)

+ 0.16fNovo(t; σ22(t), µ
t(t), Ptail). (5.10)

This is done separately for decays involving one or two charm particles, as the

effect is smaller for the former. Mistagged and correctly tagged events are also

treated separately, as the effect is stronger for mistagged events.

The results of the event-by-event resolution parametrization can be checked in

the Monte Carlo. Fig.59 shows the proper time residuals, trec − t, in 6 bins of

true proper time, for the case of B0
s → DDX decays. The points are extracted

from the Monte Carlo, and the histogram is the calculated resolution function with

the corrected reconstructed proper time. The plots indicate that the resolution

function adequately describes the resolution and biases in the simulated proper

time reconstruction.
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Figure 59:
The proper time residuals, trec−t, in 6 bins of true proper
time, for the case of B0

s → DDX decays. The data points
are extracted from the Monte Carlo, and the histogram
is the calculated resolution function.
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Given the vertex efficiency ǫ and the resolution function G(t, trec), we now trans-

form Fmix and Funmix into functions of the reconstructed proper time trec:

Pmix(trec) =

∫ ∞

0

Fmix(t)ǫ(t)G(t, trec)dt, (5.11)

and

Punmix(trec) =

∫ ∞

0

Funmix(t)ǫ(t)G(t, trec)dt. (5.12)

To summarize, Pmix(trec) and Punmix(trec) describe the expected reconstructed

proper time distributions of the charge dipole tag that would agree or disagree

respectively with the initial state tag. Finally, the likelihood function is given by

L =
∏

events

[Pmix(trec) + Punmix(trec)] (5.13)

5.4 The Amplitude Fit

One of the ways to search for a periodic signal is to perform a Fourier analysis of

the frequency spectrum. This technique is called the amplitude fit [89]. The proce-

dure is to modify the B0
s oscillatory terms in the likelihood function by introducing

the parameter A:

1

2
(1± cos∆mst)→

1

2
(1± Acos∆mst). (5.14)

For fixed values of ∆ms the logL function is minimized with respect to the pa-

rameter A, which is the normalized Fourier amplitude of the mixing signal for a

given frequency ∆ms. The Fourier analysis of an oscillation signal was introduced

in section 4.5 (see Eq.4.16). In this context, the amplitude A is equivalent to a

normalized Fourier amplitude A(∆ms):

A(∆ms) =
d(∆ms)

a(∆ms)
, (5.15)
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where d(∆ms) represents the Fourier transform of the data and a(∆ms) is the

expected peak amplitude. Using Eq.4.16 one obtains

A(∆ms) =
F (∆mtrue

s )

F (∆ms)

Γ2

Γ2 + (∆ms −∆mtrue
s )2

. (5.16)

The expected amplitude distribution retains the Breit-Wigner shape with A = 1

at ∆m = ∆mtrue. For |∆m −∆mtrue| > 2Γ, A is expected to be ≈0. This is true

in the limit of good proper time resolution. As studies with toy Monte Carlo at

LEP suggest, the Breit-Wigner shape can be distorted considerably if the resolution

smearing is large. For reference on this subject, see [93]. The statistical uncertainty

in A is

σ(A) =
σd

a(∆ms)
, (5.17)

where σd is the statistical noise in the FT of the data. Since a(∆ms) decreases with

increasing ∆ms due to the proper time resolution, we expect the uncertainty on A

to grow as a function of ∆ms.

The likelihood fits for A are generally nearly parabolic at the minima. As an

example, Fig. 60 shows the likelihood fits for A at four different values of ∆ms:

5 ps−1, 10 ps−1, 15 ps−1 and 20 ps−1. Shown is the MC with an input mixing

frequency of ∆ms=10 ps
−1.

The ±1σ errors, σA, are easily estimated by the ∆ logL = 1/2 range about the

minimum. If no measurement of ∆ms can be made, a lower limit can be determined

by the frequency at which A+1.645σA crosses the A = 1 line, and one can exclude

any value of ∆ms for which A + 1.645σA < 1. Systematic errors must also be

included and will be discussed later on. The intrinsic sensitivity to set a 95%

confidence limit on ∆ms is determined by the frequency at which 1.645σA = 1.

To conclude, the amplitude fit method is a procedure in which for each oscil-

lation frequency a hypothetical amplitude is fitted. It combines the method of a
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Figure 60:
The likelihood fits for A at four different values of ∆ms:
a) 5 ps−1, b) 10 ps−1, c) 15 ps−1 and d) 20 ps−1.

a) b)

c) d)

Fourier analysis and a ‘classical’ likelihood fit. It can be shown that likelihood

referenced to infinity and amplitude fit method are mathematically equivalent [89],

however, the amplitude fit method offers the possibility to combine the results of

independent analyses by averaging the different amplitude spectra taking into ac-

count the errors. In the case of likelihood methods, a similar combination is only

possible when using reference to infinity. A combination is not possible when using

likelihood differences from the minimum. This would need a calibration of the total

likelihood which appears to be not feasible.

Before progressing to an amplitude fit to the data, it is important to check if

the complicated fit mechanism works correctly. For this reason it has been tested

on the Monte Carlo in various cases. For example, Fig. 61 shows the results of

the amplitude fits performed on a pure B0
s Monte Carlo sample as selected by the

charge dipole analysis. The fit clearly indicates a signal at the Monte Carlo input
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value of ∆ms= 10ps
−1. The amplitude curve reaches a peak at A = 1. The error

bars on the amplitude measurements grow, as expected, as a function of ∆ms. The

negative fluctuation of the amplitude at ≈ 6 ps−1 is at the 3σ level. Note that

deviations of two or three σ are not uncommon in amplitude plots, as will be seen.

The result of the fit is a value of ∆ms = 10.324± 0.114ps−1 at A=1.
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Figure 61:
Amplitude fit to a pure Monte Carlo B0

s sample, selected
by the dipole charge analysis. The Monte Carlo ∆ms

input value is 10ps−1.

∆ms (ps
−1)

A

Fig. 62 shows a plot of the amplitude fit performed on bbMonte Carlo, which has

∼10 times more events than the 1996-98 data set. Again, the plot of the amplitude

indicates a signal at the Monte Carlo input value of ∆ms= 10ps
−1.

It is interesting to change the Monte Carlo input value to ∆ms=15 ps
−1, a

more realistic value, to observe if the faster oscillation can still be observed in

the amplitude fit to the Monte Carlo (see Fig. 63). At ∆ms = 15ps
−1 a value of

A=0.698± 0.294 is observed, consistent with 1. The central value of the amplitude
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Figure 62:
Amplitude fit to a Monte Carlo bb sample, selected by
the dipole charge analysis. The Monte Carlo ∆ms input
value is 10ps−1.
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A

continues to rise to ∆ms = 16ps
−1 and decreases beyond that point. The amplitude

fluctuates 2.5σ low at ∆ms = 7ps
−1.

Fig. 64 shows the amplitude fit in the SLD Monte Carlo, as the input value of

∆ms is changed from 10ps
−1 to 200ps−1. Also shown are the amplitude A divided

by σA and A/σA versus ∆ms. A Gaussian fit to the distribution of A/σA has a

width consistent with 1 and a mean consistent with 0. This signifies that σA covers

the range of fluctuations around an amplitude of A = 0ps−1 and is well modelled.

In other words, the fact that A/σA versus ∆ms does not fluctuate beyond values

much higher than A/σA ≈ 1 signifies that the amplitude fit does not introduce any

unexpected fluctuations due to mismodelling of the Monte Carlo.

It is also possible to divide the Monte Carlo into data-size samples and to run

the amplitude fit on them. Fig. 65 shows 12 small Monte Carlo samples, with a
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Figure 63:
Amplitude fit to a Monte Carlo bb sample, selected by
the dipole charge analysis. The Monte Carlo ∆ms input
value is 15ps−1.
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size comparable to the data sample (the data sample contains 11462 events, the 12

small MC samples contain 8700 events each). The input value of ∆ms has again

been set to 200 ps−1. These samples are statistically uncorrelated. Fig. 66 shows

a plot of A/σA for the 12 experiments. Since the amplitude points are correlated,

A/σA is plotted for well-separated values of A at ∆ms=1 ps
−1, 5 ps−1, 10 ps−1, 15

ps−1 and 20 ps−1 only. The fluctuations are Gaussian, with a width of 1.114±0.140

and a mean compatible with 0. This signifies that the errors on A cover the range

of fluctuations around an amplitude of A = 0ps−1 and are well modelled.

A useful test of the likelihood function is to study the match of mixed fraction,

i.e., the fraction of events tagged as mixed, in the MC and the likelihood function.

Fig. 67 shows the mixed fraction for the four b hadron types with their respective

likelihood functions, as a function of reconstructed proper time. Note the slow
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oscillation in the B0
d mesons (the SLD MC input B

0
d–B

0
d mixing frequency is ∆md

= 0.484 ps−1), and the rapid oscillations in the B0
s mesons (the SLD MC input

B0
s–B

0
s mixing frequency is ∆ms = 10 ps

−1). As expected, the mixed fraction in

B+ and b baryons is flat as a function of time. Note the small increase of the mixed

fraction for B+ at very small proper time, due to the lower tagging power in that

region. The match between Monte Carlo and likelihood function is excellent and

gives confidence in the accuracy of the likelihood function.
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Figure 64:
Amplitude fit to the SLD Monte Carlo sample, selected
by the dipole charge analysis. The Monte Carlo ∆ms

input value is 200ps−1. Also shown are the amplidude A
divided by σA and A/σA versus ∆ms.
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Figure 65:
Amplitude fits for 12 data-size Monte Carlo samples,
where the input value of ∆ms has been set to 200 ps−1.
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Figure 66:
A/σA for the 12 independent MC experiments. A/σA is
plotted for well-separated values of A at∆ms=1 ps−1, 5
ps−1, 10 ps−1, 15 ps−1 and 20 ps−1 only. The function is
the result of a Gaussian fit to the histograms.
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Figure 67:
The mixed fraction for the four b hadron types as a func-
tion of reconstructed time. The points are the Monte
Carlo, and the histogram represents the likelihood func-
tion for each b hadron type separately. The input B0

s–B
0
s

mixing frequency is ∆ms = 10 ps−1.

B+ B0
d

B0
s b baryons
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C H A P T E R 6

Results

In this chapter, the results of the amplitude fit method will be presented for the

B0
s–B

0
s mixing analysis. The systematic uncertainties on the measurement will also

be examined. In addition, several consistency checks including the measurement

of the B0
d–B

0
d mixing frequency with the amplitude fit method will be presented.

Finally, the implications of this measurement on the determination of the CKM

matrix elements will be discussed.

6.1 B0
s–B

0
s Mixing Results

Fig. 68 shows the amplitude versus ∆ms for the charge dipole analysis using

the full 96-98 SLD data. From the approximately 400k hadronic events selected

during this period, 11462 dipole events were selected. This number excludes 1498

events that were selected by the other two SLD B0
s–B

0
s mixing analyses, to keep

the analyses statistically uncorrelated. The procedure of removing these overlap

events is discussed later, in section 6.4. The amplitude errors are statistical only.

The sensitivity is represented by the dashed curve. The plot shows that all values

of the amplitude are consistent with A = 0 ps−1. The largest deviation from

A= 0, although statistically insignificant, occurs around ∆ms = 17 ps
−1. Even
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Figure 68:
Measured amplitude for the full 96-98 SLD data set us-
ing the charge dipole analysis described in this thesis.
The 1σ error bars are statistical only. The dashed line is
1.645σA. The ∆ms value for the intersection between this
line and the A = 1 line represents the sensitivity of the
experiment.

∆ms (ps
−1)

A

less significant bumps are observed at ∆ms = 7 ps
−1 and at ∆ms = 12 ps

−1. A

discussion of excluded regions has to be postponed until systematic errors have

been taken into account. Fig. 69 shows the likelihood fit performed on the same

sample, where the amplitude has been set to 1. Instead of minimizing -logL for A

at different values of ∆ms, here the -logL is minimized directly for ∆ms. It exhibits

the same structure as the amplitude fit. The most significant minimum occurs at

∆ms = 17 ps
−1. Two other local minima are observed as in the amplitude fit, at

∆ms = 7 ps
−1 and at ∆ms = 12 ps

−1.

It is important to check if the likelihood function used to extract the amplitude

fit is a good representation of the data. For this purpose, it is instructive to study
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Figure 69:
Measured logL fit for the full 96-98 SLD data set using
the charge dipole analysis described in this thesis.
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Fig. 70. It shows the mixed fraction as a function of reconstructed proper time, for

the charge dipole selected data events. The mixed fraction is the ratio of events

tagged as mixed to the full sample of events. The data points are the 96-98 data,

and the histogram is a representation of the likelihood function used to extract the

amplitude fit. The likelihood function was generated with the very high frequency

of ∆ms=25ps
−1, so that no oscillations (other than the B0

d oscillations) can be

seen in the plot. The likelihood function appears to be a very good description

of the data. Note that the data points fluctuate above and below the likelihood

function. Every fluctuation observed in the data mixed fraction corresponds to a

fluctuation in the amplitude plot. This is demonstrated in Fig. 71, where the data

mixed fraction is overlaid with four different likelihood functions, generated with

∆ms=25 ps
−1, ∆ms=7 ps

−1, ∆ms=12 ps
−1 and ∆ms=17 ps

−1. In each of the three
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Figure 70:
The mixed fraction as a function of reconstructed proper
time, for dipole selected events. The datapoints are from
the 96-98 data, the histogram is a representation of the
likelihood function used to extract the Amplitude fit. The
likelihood function was generated with ∆ms = 25ps

−1.

last cases, the likelihood function fits a certain aspect of the data fluctuations.

This shows that the amplitude fits in the high ∆ms region are especially sensitive

to the structure of the data in the very low reconstructed proper time region, where

the uncertainties on the reconstruction are the highest. As a check on how much

of the amplitude fit structure is due to events reconstructed at the very low end of

the proper time, the amplitude fit was repeated for events with trec > 0.2ps
−1 only.

Fig. 72 shows the amplitude fit with a cut at trec=0.2ps
−1, excluding the very low

proper time region. The figure shows a small change in structure in the high ∆ms

region, whereas it stays the same for values of ∆ms lower than 12ps
−1. This means

that the effect of these events on the shape of the amplitude fit is not significant.

Also, σA stays the same.
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Figure 71:
The mixed fraction as a function of reconstructed proper
time. Shown are the 96-98 data selected by the dipole
analysis (points) overlaid with four different likelihood
functions, generated with (a)A=1.0 and ∆ms=25 ps−1,
(b)A=0.6 and ∆ms=7 ps−1, (c)A=0.6 and ∆ms=12 ps−1

and (d)A=1.8 and ∆ms=17 ps−1.
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Figure 72: The amplitude fit with a cut at trec=0.2ps
−1.
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A

6.1.1 B0
d–B

0
d Mixing

B0
d–B

0
d mixing provides a good check of the B

0
s–B

0
s mixing results, as the data

analysis is essentially identical. The difference in the fitting procedure is that ∆ms

is fixed and -logL is minimized with respect to ∆md. The B
0
d mixing frequency has

been measured within 3%, which gives a well measured calibration point.

Fitting for the B0
d–B

0
d mixing frequency yields ∆md = 0.537± 0.030 ps−1 (sta-

tistical error only). This value is within 1.8σ of the latest world average value of

0.485± 0.015 ps−1 [90]. Fig. 73 shows the amplitude fit for the full 96-98 data set

in the charge dipole analysis. The measured amplitude near the world average is

A = 0.940± 0.064 at ∆md = 0.48 ps
−1, consistent with the expectation of A = 1.
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Figure 73:
The amplitude fit for the full data set 96-98 in the charge
dipole analysis.∆ms is fixed and logL is minimized for A
at each value of ∆md.
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6.2 Systematic Errors

In order to estimate the size of systematic errors introduced by physics mod-

elling, detector resolution and other uncertainties, the effect of varying the input

parameters on the amplitude is studied. In all of the current B0
s–B

0
s mixing anal-

yses, the systematic errors on the amplitude are much smaller than the statistical

ones.

The systematic error σsyst
A is determined using the following formula [89]:

σsyst
A = Anew −Anom + (1−Anom)

σnew
A − σnom

A

σnom
A

. (6.1)

Anom and σnom
A are the measured amplitude and its error with the nominal set of

input parameters, Anew and σnew
A are the new amplitude and error obtained after

one or more input parameters are varied. The systematic error has to be calculated
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for every value of ∆ms considered, and depends on both the amplitude and the

statistical uncertainty.

The main source of systematic error is our limited knowledge of the exact com-

position of the selected data sample, i.e., the errors on the production fractions of

the b hadrons, which originate in uncertainties on measurements of branching ra-

tios and theoretical assumptions (see Appendix A). For this analysis, the following

uncertainties on the b hadron production fractions were used[76]:

fB0
s
= (9.8± 1.2)%

fb−baryon = (10.3± 1.8)%

fB0
d
= fB+ = (39.9± 1.1)%

Other sources of systematic error that were considered for this analysis are

discussed in the next sections.

6.2.1 B Hadron Lifetimes

Since the analysis is highly sensitive to any time dependence of relevant param-

eters like the sample composition, the effect of b hadron lifetimes has to be taken

into account, in addition to the errors on the time integrated quantities like the b

hadron fractions.

The current world averages and their errors used to estimate the systematic

errors are summarized in table 11 [92].

6.2.2 Errors on the Proper Time Resolution

The proper time resolution σt determines the rate at which the uncertainty on

the individual amplitude measurements grows as a function of ∆ms. Recall that
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Table 11: b hadron lifetimes.

b hadron lifetime

B0
d (1.542± 0.029) ps
B0

s (1.464± 0.057) ps
B+ (1.656± 0.025) ps

b baryon (1.208± 0.051) ps

the proper time resolution is a function of proper time itself. For example, between

0.2 and 0.5 ps the average proper time resolution is 0.06 ps for the 60% core fraction

of the events, and 0.18 ps for the 40% tail fraction of the events (see Fig. 59 in the

last chapter). For proper times > 2.5 ps, the average proper time resolution is 0.32

ps for the 60% core fraction of the events, and 0.89 ps for the 40% tail fraction of

the events. For errors on the proper time resolution, the two components of σt, σL

and σγβ , are considered separately.

As already discussed, σL is estimated on an event-by-event basis, by scaling

tracking errors according to fits to the core- and tail fractions. The Monte Carlo

tracking has been tuned to the track impact parameter distribution in the data.

The amount of systematic error that needs to be assigned to the decay length

resolution was estimated from τ pair events [77], in particular the 3-prong τ decays,

which can be selected such that backgrounds become negligible. The error on the

vertex resolution is measured using the width of the negative tail of the 3-prong

τ vertex decay length distribution. In the MC, the width of the vertex resolution

is 202± 8µm and in the data it is 207 ± 14µm. The difference is 5±16µm, so for

the purpose of estimating the systematic error on σL an uncertainty of 10% was

assumed.

To estimate the error on σγβ, on the other hand, MC and data were studied
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for the amount of unassociated cluster energy in the electromagnetic calorimeter.

Comparing the data with qq MC the average neutral energy was found to be 15%

too low in the data. As the calorimetry component of the observed B energy

is about 20%, the uncertainty in the B energy due to calorimetry is about 3%.

Combining the error in quadrature with the 3% uncertainty due to tracking the

total uncertainty becomes 4%. A very conservative error estimate of 20% was used

for the analysis. In addition, the uncertainties about the resolution model were

included by lowering the core fractions in the parametrization of systematic shifts

in proper time reconstruction from 60% to 55%.

6.2.3 Initial and Final State Tag Purity

The uncertainty on the initial state tag purity can be estimated in the data by

comparing the results of the tag in both hemispheres: from the measured number

of events with a a) b in both hemispheres, b) b in both hemispheres and c) b in

one and a b in the other hemisphere, the correct tag probability can be determined

analytically. It is (70.2± 0.75)% for b-quarks and (70.6± 0.75)% for b-quarks. The

corresponding Neural Net correct tag probability outputs are 70.5% and 70.7%,

respectively. In order to account for uncertainties in the initial state tagging the

above errors were applied.

Systematic uncertainties in the charge dipole final state mistag modelling are

obtained by varying the final state mistag probability derived from the MC simu-

lation by 2.5%. This is a conservative estimate taken from comparisons between

the tagging power in the data and Monte Carlo. The average mixed fraction is

0.427±0.003 in the data and 0.433±0.001 in the MC. Therefore the difference in

mixed fraction is 0.006±0.001. From that the difference in mistag fraction can be

calculated to be 0.012±0.002, i.e. the difference in average mistag fraction between
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data and MC is 1.2%. As a further test on the charge dipole final state tagging

power, see the next section.

Not mentioned in the discussion so far are two minor sources of systematic error:

the light quark background, which is at the 1% level, and the effect of uncertainties

due to the assumed value of ∆md.

Light quark background events are concentrated at small proper times. To

be conservative, the light quark fraction was varied by ±20%, motivated by the

maximum amount of disagreement found between data and Monte Carlo in the

distributions of reconstructed B decay proper time.

The effect of incorrect values of ∆md on the ∆ms amplitude fit is negligible but

taken into account by applying the following value: ∆md = 0.480± 0.020 ps−1.

Fig. 74 shows the impact of each of the systematic errors on the amplitude. The

solid curves correspond to the positive variation of the parameter, while the dotted

curves correspond to the negative variation. The largest systematic effects are due

to the uncertainty in the B0
s production fraction and boost resolution. Note that

all systematic errors are very small compared to the statistical errors.

6.3 Does the Dipole Analysis work for B0
s?

It is important to test if the dipole analysis, which is done on a data sample of

mostly B0
d decays, works for B

0
s decays. As the MC information used to model B

0
s

decays is incomplete and relies on theoretical assumptions it would be interesting

to probe the dipole strength in a sample that is clearly enhanced in B0
s decays.

Naturally, the statistics in such a sample is bound to be very low.

One possibility to select a sample enhanced in B0
s decays is to use a Neural Net.

The network was trained to select B0
s decays. The input parameters that were used
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Figure 74:
The systematic errors due to uncertainties in B0

s pro-
duction fraction, resolution model, initial and final state
tag, decay length resolution and relative boost resolution.
The solid curves correspond to the positive variation of
the parameter, while the dotted curves correspond to the
negative variation.

include

• the number of kaons identified by the CRID originating from the tertiary

vertex (pointing to a Ds → K+K−X decay).

• the number of identified fragmentation kaons (pointing to B0
s production).

• the charge correlation between a lepton from the secondary vertex and a kaon

from the tertiary vertex.

• the decay length of the B vertex, B and D vertex masses and multiplicities.
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• φ candidates from the tertiary vertex, pointing to a B0
s → DsX → φX

decay. φ candidates were reconstructed combining any two oppositely charged

tracks from the tertiary vertex. Assuming kaon masses for the two tracks,

the invariant mass mφ was computed and the candidate closest to mφ=1.019

GeV and within the mass range of 1GeV< mKK <1.04 GeV was selected.

The output parameter is the B0
s fraction in the sample. Figure 75 shows the Neural

Net output for the Monte Carlo (histogram) and the data (points). Data and MC

are in reasonable agreement.
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Figure 75:
The B0

s fraction output parameter. The points are the
SLD data, the histogram is the Monte Carlo. The shaded
histogram shows the true MC B0

s content in every bin.

Fig. 76 shows the b hadron fractions as a function of the Neural Net output, for

148



B+, B0
d, B

0
s and b baryons separately. The functions are the result of a fit to the

MC points.

bsnn

  89.13    /    24

A0  0.1849  0.6253E-02

A1 -0.2284  0.3159E-01

01/08/14   23.57

bsnn

  39.01    /    25

A0  0.7475  0.1499E-01

A1 -0.8702  0.7538E-01

bsnn

  130.8    /    27

A0  0.1593E-01  0.8857E-02

A1  0.9242  0.5105E-01

bsnn

  91.78    /    22

A0  0.8922E-01  0.4338E-02

A1 -0.9952E-01  0.2217E-01

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6

Figure 76:
The MC b fraction versus the B0

s fraction NN output pa-
rameter, for each b hadron separately. The functions are
the result of a fit to the MC points.

B+ B0
d

B0
s b baryons

With a NN cut excluding events below 0.35 the average B0
s fraction is 40%. 159

data events satisfy this requirement. Fig. 77 shows the dipole separation in data

and MC, demonstrating that the dipole tag is sensitive to the B0
s component.

The dipole strength can also be tested using the events selected by the lepton+D

analysis as a control sample. Events tagged by the lepton+D analysis are well

modelled in the Monte Carlo and have a low mistag fraction. For the dipole test,

mixed lepton+D events at proper time <2ps−1 were selected. The B0
s fraction in

this sample is high, as the slowly mixing B0
d decays are tagged as mixed generally at
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Figure 77:
The dipole distribution for a small event sample selected
by a NN to enhance the fraction of B0

s decays. The points
are the data, the histograms MC. Also shown are the
contributions from b hadrons containing a b quark (dashed
histogram) or a b̄ quark (dotted histogram).

higher proper times. MC studies show that the average B0
s fraction in this sample

is 28%. The semileptonic tag purity is 88% in the selected sample. If available, the

dipole tag agrees with the lepton tag (94±1)% of the time in the qq Monte Carlo,

and (95±2)% in the data, demonstrating that the dipole tag works correctly for a

control sample enriched in B0
s decays.

In the data, the control sample contains 139 events. Fig. 78 shows its dipole

distribution for data and MC, demonstrating the dipole separation.
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Figure 78:
The dipole distribution for a small event sample of mixed
and leptonically tagged decays. The points are the data,
the histograms MC. Also shown are the contributions
from b hadrons containing a b quark (darkly shaded his-
togram) or a b̄ quark (lightly shaded histogram).

6.4 Setting a Limit on ∆ms

Fig. 79 shows the amplitude fit for the full 96-98 SLD data set as selected by

the charge dipole analysis including systematic errors. The lightly shaded region

includes A± 1.645σA (stat) and the darker region is A± 1.645σA (stat+sys). The

dashed curve is 1.645σA(stat+sys) which represents the sensitivity of the experi-

ment.

The amplitude fit consists of measured values of the amplitude and its uncer-

tainty as a function of ∆ms. The probability density of the amplitude at a given

∆ms is represented by a single Gaussian centered at A with width σA. As A is
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Figure 79:
The amplitude fit for the full 96-98 SLD data set from the
charge dipole analysis including systematic errors. The
solid curve bordering on the lightly shaded region is A+
1.645σA (stat) and the solid curve bordering on the darker
region is A + 1.645σA (stat+sys). The dashed curve is
1.645σA(stat+sys) which represents the sensitivity of the
experiment.
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simply the normalized Fourier peak of the oscillating signal, the amplitude is ex-

pected to be consistent with 1 at the true value of ∆ms and 0 far away from the

true value. Therefore, a given value of ∆ms can be excluded at the 95% Confidence

Level if [91]
∫ ∞

1

g(Am, σA)dA < 5%. (6.5)

This is equivalent to excluding ∆ms at the 95% CL if

Am + 1.645σA < 1, (6.6)

i.e. in 5% of equivalent experiments one would expect the true value to be excluded.

Applying this technique to Fig. 79 the following region of ∆ms can be excluded at

the 95% confidence level:

∆ms < 4.9 ps−1, and

7.9 ps−1 < ∆ms < 10.3 ps−1. (6.7)

The sensitivity of the charge dipole analysis in the 96-98 SLD data is 8.6 ps−1.

6.5 Combination of Mixing Analyses

The charge dipole analysis is one of three analyses performed at SLD. All of

the SLD analyses use the same initial state tagging technique. The final state

flavor tagging and the proper time reconstruction are different for each one of the

analyses. The three analyses use discrete sets of events, so that no event is used

twice. To determine how to distribute events that were tagged by more than one

analysis, the analyses are ranked in order of sensitivity per event. Each analysis is

then required to remove those events already selected by a more sensitive analysis.
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The two other SLD final state tags used to obtain an SLD average are the

‘lepton+D’ and the ‘Ds+ tracks’ analyses. The lepton+D analysis [101] uses the

charge of leptons produced in semileptonic B decays to tag the final state b flavor.

Topological vertexing is used to partially reconstruct a D vertex downstream of the

selected lepton. This vertex is required to have a reconstructed mass < 1.95 GeV.

The lepton is selected using a Neural Network. The input parameters include the

lepton Pt with respect to the D vertex line of flight. The B decay position is located

by intersecting the D vertex momentum with the lepton. A double Gaussian fit

to the decay residual yields a core width of 54µm and tail width of 213µm with

a 60% core fraction. As in the dipole analysis, the B vertex charge is required to

be zero to boost the fraction of B0
s decays to 16%. The mistag rate for B

0
s decays

is 4%. The same boost reconstruction algorithm as in the dipole analysis is used.

The efficiency achieved is about four times lower than that of the dipole analysis.

The third SLDB0
s mixing analysis is theDs+ tracks analysis [102]. It exclusively

reconstructs Ds → K⋆0K− and Ds → φπ− decays, thereby boosting the B0
s fraction

to 38% overall. The Ds candidates are then intersected with any secondary tracks,

to reconstruct a B vertex. The mistag rates are 13% for Ds+ hadrons and 5% for

Ds+ leptons. Only 361 events are found in the 96-98 SLD data, however the very

high decay length resolution of 50µm (core) and 151µm (tail) makes this analysis

competitive at high ∆ms. The combined SLD amplitude fit is shown in Figure 80.

The measured values are consistent with A = 0 for the whole range of ∆ms up

to 25 ps−1. No evidence is found for a preferred value of the mixing frequency. The

following range of B0
s–B

0
s oscillation frequencies is excluded at 95% C.L.

∆ms < 11.1ps
−1. (6.8)

154



-3

-2

-1

0

1

2

3

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

∆m
s
 (ps

-1
)

A
m

p
li

tu
d

e

data ± 1 σ 95% CL limit   11.1 ps
-1

1.645 σ sensitivity    13.2 ps
-1

data ± 1.645 σ

data ± 1.645 σ (stat only)

SLD COMBINED PRELIMINARY

Figure 80:
Measured amplitude as a function of ∆ms for the lep-
ton+D, Ds+tracks, and charge dipole analyses combined.
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The combined sensitivity to set a 95% C.L. lower limit is found to be at a ∆ms

value of 13.2 ps−1. These results are preliminary.

6.6 Conclusions

A combined world average has been compiled by the B Oscillations Working

Group from the latest LEP, CDF and SLD results which includes the work presented

in this thesis [92]. The averaging procedure takes into account common systematic

uncertainties as well as differing parameter values assumed in the various analyses.

The combined amplitude plot is shown in Fig. 81. The 95% confidence level allowed

region is:

∆ms > 14.6ps
−1, (6.9)

and the combined sensitivity is 18.3 ps−1. An upper value on the ratio
∣

∣

∣

Vtd

Vts

∣

∣

∣
can be

extracted, using Eq.1.44, and the current world average of ∆md. The result is

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

< 0.165. (6.10)

The very small statistical error at low ∆ms is mostly due to the LEP analyses.

Note that the SLD analyses dominate the structure of the combined amplitude fit

beyond ∆ms ≈ 16ps−1 because of the much better decay length resolution of the

SLD vertex detector. This can be seen in a comparison of the different SLD and

LEP B0
s–B

0
s mixing analyses at ∆ms=17ps

−1, see Fig.82.

The greatest deviation of the amplitude fit from 0 is at ∆ms=17 ps
−1 with 2.6

standard deviations. Toy Monte Carlo studies determined that the probability of

this deviation to be consistent with a fluctuation is ≈ 3% [93], too large to conclude

at this point that the structure originates from a signal at ∆ms=17 ps
−1.
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The current experimental measurements of B0
d mixing, B

0
s mixing and sin2β and

the current theoretical constraints and uncertainties have been included in global

fits to constrain the ρ and η parameters of the CKM matrix in the Wolfenstein

parametrization. The resulting constraints on the unitarity triangle are [103]

ρ = 0.218± 0.038 and

η = 0.316± 0.040, (6.11)

shown in Fig. 83. For details on the analysis, see [104].

The bands are the ±1σ allowed regions determined by the measurement of ∆md,

ǫK , sin2β and |Vub/Vcb|. The dashed curve represents the current lower limit on

∆ms at 14.6 ps
−1. The portion of the ρ − η plane to the left of the dashed curve

is excluded by the B0
s mixing studies. The apex of the SM unitarity triangle is

significantly constrained.

In conclusion, SLD has made significant progress towards a measurement of

B0
s–B

0
s mixing. Despite a factor of ∼40 less statistics compared to the LEP exper-

iments, SLD is producing a highly competitive result.

In the next few years, a measurement of B0
s–B

0
s mixing is expected at the

Tevatron. For example, the CDF experiment can observe a 5σ signal up to ∆ms ≈

40 ps−1 using exclusively reconstructed B0
s → D−

s π
+ decays (Run II, 2 fb−1) [105].

Combined with the expected precision on the value of ∆md of better than 1% from

measurements at the B factories and at the Tevatron, a measurement of |Vtd| with a

precision better than 5% will be possible. Also, within a few years sin2β is expected

to be measured with a precision better than 7% at the B factories. Measurements

of ∆ms and sin2β will be the most powerful constraints on the Unitarity Triangle

due to their precision and the fact that they are nearly orthogonal. A confirmation

of the fundamental Standard Model predictions or a discovery of New Physics is
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within reach.
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A P P E N D I X A

B decay modelling in the SLD Monte Carlo

In this chapter, a summary of the B decay modelling at SLD is given. First,

the current knowledge about the production of the different species of B hadrons is

summarized, and then the decay model of B hadrons, especially B0
s mesons, used

in the SLD Monte Carlo is discussed.

For a B0
s mixing analysis it is essential to correctly model the composition and

decay structure of B hadrons, i.e., to produce the correct rate of visible vertices

and the correct number of tracks coming from the vertices, as well as realistic B

hadron decay length distributions and kinematics.

A.1 The Composition of B Hadrons

The default composition of B hadrons produced in the SLD Monte Carlo is 41%

B+, 41% B0
d , 11% B

0
s and 7% b baryons. The B

0–B0 mixing analyses use the latest

world average of the B hadron fractions to scale these production rates.

The measurements of branching ratios and the theoretical assumptions used to

obtain the B hadron fractions and their estimated systematical errors are summa-

rized here.
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The B0
s and b baryon fractions fB0

s
and fbary are estimated from measurements

of branching fraction products using channels with characteristic signatures. fB0
d

and fB+ are then calculated assuming that fB0
s
+ fB0

d
+ fB+ + fbary = 1 (Bc mesons

are neglected), and fB0
d
= fB+ , which is motivated by the CLEO measurements of

the ratio of B0
dB

0
d to B

+B− decays at the Υ(4S) and the near equality of the B0
d

and B+ masses [4].

Direct information on production rates is available frommeasurements of branch-

ing fraction products using channels with characteristic signatures. For a detailed

description, see [76]. At CDF and LEP, the B0
s production rate has been evaluated

using events with a D+
s accompanied by a lepton of opposite sign in the final state.

Since the rate of these events is given by fB0
s
×BR(B0

s → D−
s l

+νX), it is necessary

to evaluate BR(B0
s → D−

s l
+νX). This has been done assuming, from SU(3) sym-

metry, that the partial semileptonic decay widths into D, D⋆ and D⋆⋆ final states

are the same for all b mesons. Also, isospin symmetry is assumed, and known

semileptonic branching ratios of the B0
d can, using the lifetime ratio τ(B

0
s )/τ(B

0
d),

be used to extract semileptonic branching ratios of the B0
s mesons. At LEP, the

result is fB0
s
= (12.2+4.5

−3.1)%.

In a similar way, the fraction of b baryons is estimated from the measured

production rates of Λ+
c l

− [98] and Ξ−l− [99] final states, yielding, respectively,

fΛ0
b
= (11.6+4.6

−3.1)% and Ξ
−
b = (1.1

+0.6
−0.4)%. The value for BR(Λ

0
b → Λ+

c Xl
−νl) has

been obtained considering that there could be only one Λ+
c produced in every

decay. Similar considerations have been applied to Ξb semileptonic decays. The

semileptonic decay width Γ(Ξb → ΞcXl
−νl) has been taken to be equal to Γ(Λ

0
b →

Λ+
c Xl

−νl). The total b baryon production rate is then: fb−baryon = (13.7
+4.8
−3.2)%. The

result has been combined with the direct measurement of fb−baryon = (10.2± 2.8)%

from the number of protons in b events [100]. Finally, the CDF Collaboration has
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measured the production rate of b baryons relative to non-strange B mesons using

Λ+
c e

− final states.

Additional information on the production rates can be obtained from measure-

ments of the time-integrated mixing probability of b hadrons. For an unbiased

sample of semileptonic b hadron decays with fractions gB0
d
and gB0

s
of B0

d and B
0
s

mesons, this mixing probability is equal to:

χ = gB0
s
χs + gB0

d
χd (A.1)

where χd is the the time integrated mixing probability for B
0
d mesons. As already

mentioned, the semileptonic width is assumed to be the same for all b-hadron

species, implying gi = fiRi, where Ri =
τi

τb
are the lifetime ratios. This leads to the

relation

fB0
s
=
1

Rs

(1 + r)χ− (1− fb−baryRb−bary)χd

(1 + r)χs − χd

(A.2)

where r = Ru/Rd = τ(B
+)/τ(B0

d). This is used to extract another determination

of fB0
s
from the b baryon fraction, the lifetime ratio average, the world average

value of χd = 0.181 ± 0.007 and the χ average of 0.1194 ± 0.0043 [92]. This new

estimate of fB0
s
= (10.1±1.4)%, is then combined with the b-hadron fractions from

direct measurements, taking into accound correlations. The final average values

and errors are[76]:

fB0
s
= (9.8± 1.2)%

fb−baryon = (10.3± 1.8)%

fB0
d
= fB+ = (39.9± 1.1)%
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A.2 The SLD B Decay Model

The SLD B decay model is a combination of the JETSET [58] and CLEO [68]

decay models. In addition, specific decay kinematics can be adjusted. If nothing

else is specified, a random phase space sampling technique is used. For the decays

of the B+, B0
d and B

0
s the CLEO decay tables were used, whereas b baryons and

charmed hadrons follow the JETSET decay model. The known exclusive branching

ratios do not make up a complete table of all possible decays, however it is possible

to deduce a number of unknown branching ratios from measured ones, using the-

oretical assumptions like isospin symmetry and factorization (the assumption, for

example, that the virtual W± particle decays and fragments into hadrons indepen-

dently of the fragmentation of the remaining quarks from the decaying particle).

Another assumption made is that since vector mesons have three polarizations,

the branching fraction to the vector meson is three times the branching fractions

for the corresponding pseudoscalar meson. In case the vector meson branching

fraction has not been measured, this rule is used to obtain relative rates.

Even after using these assumptions to obtain additional information, the mea-

sured and deduced exclusive branching fractions sum up to only 60%. The remain-

ing 40% have to be modelled using inclusive channels of B to D decays. Two kinds

of models can be used:

• the B decays to a D and a number of hadrons (qq pairs are popped out of

the vacuum, hadronized and given kinetic energy until the phase space of the

B is used up). This method typically produces relatively low D energy, and

a large number of low momentum light hadrons. The rate of producing D⋆

mesons is adjusted to match the rates measured by CLEO.

• the B decays into a higher mass charm resonance and then into 2-body modes
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like Dπ or DK, thereby shifting the D meson to higher energies. The mass

of the resonance controls the produced D energy. The remaining quarks in

the B decay are hadronized using the first method.

The models are combined with the goal of reproducing measured distributions like

the D momentum and multiplicity, K± and π± momentum, and B charged track

multiplicities [77]. A typical problem with this procedure is that a low charged

multiplicity is observed in the distributions measured at SLD, so that the tracks

obtain rather high kinetic energy. This causes disagreement at the low end of

the measured K± and π± momentum distributions, and a compromise has to be

found. Still, this procedure is preferable to model dependent assumptions about

the decays.

The resulting inclusive B decay mode composition is shown in table 12. “B”

refers to (B+, B0
d , B

0
s and b baryons). For a more detailed discussion of the SLD

B decay model, see [77].

Table 12: B Decay Model Composition.

mode branching ratio

BR(B → D0X) 0.452
BR(B → D±X) 0.154
BR(B → DsX) 0.075
BR(B → 2DX) 0.178

BR(B → c baryonX) 0.118
BR(B → J/ΨX) 0.023

In the following, only the decay model of B0
s mesons is discussed, as the com-

position of the B0
s decays is of particular interest for the B

0
s–B

0
s mixing analyses.

Unfortunately, little direct experimental information is available for B0
s decays.

Therefore, the MC simulation is bound to be somewhat model-dependent. It is for
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this reason that all information related to the B0
s Monte Carlo used in the analysis

will have to be tested carefully against the available data.

For the SLD B0
s decay Monte Carlo isospin symmetry was assumed so that

the B0
s decays could basically be modelled according to tabulated measured modes

of B0
d mesons, including the Isgur-Wise model for semileptonic decays. All Ds

production has been tuned by CLEO to match the measured momentum spectrum.

Both “upper vertex” and “lower vertex” Ds production is included, (upper vertex

refers to the Ds production from the W
±. In the case of lower vertex production

only one of the quarks from theW± recombines to produce a Ds meson). The SLD

B0
s decay table breaks up into the following groups of decays:

• 24.7% semileptonic decays: b→ c (lν).

This includes 10.8% DsXeν, 10.8% DsXµν, 2.7% DsXτν and 0.4% Λclν.

• 9.1% b→ charm baryons.

• 18% b→ c (sc) (upper vertex Ds production).

A major source of double charm production.

• 0.8% b→ c (lower vertex Ds production).

• 0.6% b→ c (dc),

modelled based on results reported in [78].

• 6.8% b→ c (du). (exclusive channels)

• 38.3% b→ c (du) and 5% b→ c (su) (“inclusive unknowns”),

modelled using a combination of methods as explained above.

The charge dipole B0
s–B

0
s mixing analysis, relies on the b→ c cascade structure.

In particular, it tags the flavor of the B0
s by reconstructing the charges of secondary
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(B) and tertiary (D) vertices. This works best in the case of single charm decays,

e.g. B0
s → DsX. On the other hand, double charm decays like B

0
s → DsDsX are

problematic, as one of the D vertices is easily mistaken for a B vertex. Table 13

displays the branching ratios of single and double charm decays of the B0
s meson, as

modelled in the SLD Monte Carlo. Not included in this table are the contributions

from decays into c baryons and the inclusive unknowns.

Table 13: Inclusive mode composition of the SLD B0
s decay MC.

Mode branching ratio

BR(B0
s → D

(∗)
s D

(∗)
s X) 0.03

BR(B0
s → D

(∗)
s D(∗)X) 0.14

BR(B0
s → D(∗)D(∗)X) 0.004

BR(B0
s → D

(∗)
s X) 0.26

BR(B0
s → D∗∗

s X) 0.05

BR(B0
s → D(∗)X) 0.003
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A P P E N D I X B

Ghost Track Algorithm

Monte Carlo studies show that in B decays producing a single D meson the

cascade D decays on average 4200µm from the IP, while the intermediate B vertex

is displaced on average only 46µm transversely from the line joining the IP to the D

decay vertex. This kinematic stretching of the B decay chain into an approximately

straight line is exploited by the ghost track algorithm. It has two stages and

operates on any given list of tracks. First, the best estimate of the straight line

from the IP directed along the B decay chain is found. This line is promoted to

the status of a track (“ghost track”) by assigning it a finite width. Secondly, the

selected tracks are vertexed with the ghost track and the IP to build up the decay

chain along the ghost direction. Both stages are now described in more detail.

Given a set of tracks in a hadronic jet or hemisphere a new track G is created

with the properties that it is a straight line from the IP directed along the jet or

thrust axis and has a constant resolution width of 25 µm in both xy and z. For

each track i a vertex is formed with track G and the vertex location ri, fit χ
2
i and

Li are determined (Li is the longitudinal displacement from the IP of ri projected

onto the direction of track G). This is calculated for each of the tracks and the
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summed χ2 is formed:

χ2S =
∑

i

χ2i Li ≥ 0.0

(2χ20i − χ2i ) Li < 0.0
(B.1)

where χ20i is the χ
2
i of track i to track G determined at Li = 0 rather than at the

best fit vertex location. The aim is to construct this quantity, χ2S, such that when

the direction of G is varied the minimum of χ2S provides the best estimate of the B

decay direction. If the initial direction is a relatively long way from the B line of

flight, some or all of the decay tracks may vertex with G with a negative value of

Li. In this case the 2χ
2
0i−χ2i term above helps to push track G towards the B flight

path as χ2S is minimized. This first minimization using equation B.1 is designed for

this purpose. (Note that the contribution of each track as χ2S is minimized changes

in a continuous manner even if Li changes sign since χ
2
i = χ

2
0i at Li = 0.)

The value of χ2S is recalculated as track G is rotated (about the pivot at the

IP) incrementally in ever decreasing angular steps δθ and δφ until the minimum is

found within the required precision (< 0.1mrad, i.e. within 1µm at 1 cm from the

IP). The width of track G is set such that the maximum χ2i = 1.0 for all tracks

with Li > 0 (if this is less than 25µm, it is restored to 25µm). The track G is

now consistent with all potential B decay candidate tracks (Li > 0) at the level

χ2i ≤ 1.0. In other words, the new width of G measures the degree to which the

tracks conform to a straight line decay chain. A second iteration in δθ,δφ now takes

place with the summed χ2 redefined as:

χ2S =
∑

i

χ2i Li ≥ 0.0

χ20i Li < 0.0
(B.2)

which is not sensitive to any spurious background track with a negative value of

Li which might otherwise perturb the direction of track G. After finding the new
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minimum of χ2S the width of G is again recalculated such that χ
2
i ≤ 1.0 for all

tracks i with Li > 0. Again this width is required to be at least 25 µm. Track G

is now directed along the best guess of the B decay line of flight and has a width

such that it is consistent with potential B decay tracks in the jet, track G is now

called the “ghost” track.

The second stage of the algorithm begins by defining a fit probability for a

set of tracks to form a vertex with each other and with the ghost track (or IP).

This probability then measures the likelihood of the set of tracks both belonging

to a common vertex and being consistent with the ghost track (or IP) and hence

forming a part of the B decay chain. These probabilities are determined from the

fit χ2 which is in turn determined algebraically from the parameters of the selected

tracks and the ghost track (or the 7 × 7 × 30µm3 ellipsoid assumed for the IP).

The earlier requirement that each Li > 0 track makes a χ
2
i ≤ 1.0 with the ghost

track has the effect that the fit probabilities have the desired property of having an

approximately flat distribution from 0.0 to 1.0 for genuine vertices, independent of

both multiplicity and decay length. This property also relies on the choice of the

number of degrees of freedom as 2N−2 (or 2N) when fitting N tracks together with

the ghost track (or IP). Fake vertices peak at probability close to 0.0.

For a set of N tracks, there are initially N+1 candidate vertices (N secondary

vertices made up of only one track and the ghost track, and a bare IP). A matrix of

track i – track j associations is constructed to store the calculated probabilities of

each candidate vertex pair fitted together with the ghost track. A further column

and row is added to the matrix to store the probabilities of each track fit with the IP

ellipsoid. The upper triangle of the matrix (i.e. the ij (i < j) elements) stores the

probabilities while the lower triangle (initialized with ij (i > j) elements set to 0.0)

indelibly records which tracks (and IP) have been assigned together in a common
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vertices as the algorithm progresses. Once the upper triangle has been filled, the

highest probability in the matrix table is found and the corresponding candidate

vertex pair are from then on tied together in a new candidate vertex for all future

computations by flagging the corresponding lower triangle elements of the matrix

with non-zero values. The upper triangle of the matrix is now refilled taking into

account the associations that have so far been made, the new maximum probability

is found, and the corresponding subset of the tracks and IP is tied together. At

each iteration of combining the maximum probability matrix element contributors,

the number of candidate vertices decreases by one. The iterations continue until

the maximum probability is less than 1%. At this point the tracks and IP have

been divided into unique subsets by the associations thereby defining topological

vertices.
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