P-D-04

CORRELATED HETEROGENEOUS DYNAMICS IN GLASS-FORMING POLYMERS

<u>F. Lehmkühler^{a,b}</u>, H. Conrad^a, B. Fischer^c, F. Westermeier^d, M.A. Schroer^{a,b}, Y. Chushkin^e, C. Gutt^f, M. Sprung^a, and G. Grübel^{a,b}

^aDeutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

^bThe Hamburg Centre for Ultrafast Imaging (CUI), 22761 Hamburg, Germany

^cUniversity Hamburg, Institute for Physical Chemistry, 20146 Hamburg, Germany

^dMPI Struktur und Dynamik der Materie, 20146 Hamburg, Germany

^eEuropean Synchrotron Radiation Facility ESRF, 38000 Grenoble, France

^fUniversity Siegen, Department of Physics, 57072 Siegen, Germany

Although glasses are very common in everyday life, the transition from a supercooled liquid to the glassy state is one of the mysteries in condensed matter physics [1]. Upon approaching the glass transition, the sample dynamics slows down by orders of magnitude while the sample structure remains almost unchanged. In addition, relaxation phenomena become non-exponential pointing to a broad distribution of relaxation times and the existence of dynamical heterogeneities that are closely connected to spatial heterogeneities [1,2]. Such heterogeneities can be accessed by higher-order correlation functions, as demonstrated in simulations [3] and recently for coherent X-ray scattering experiments [4].

Here, we study the dynamics of polypropylene-glycol (PPG) with the help of colloidal silica tracer particles by means of X-ray photon correlation spectroscopy (XPCS) [5]. A temperature range from room temperature to the glass transition temperature at $T_g = 205$ K was investigated. Three temperature regimes are identified: At high temperatures, Brownian motion of the tracer particles is observed. Near T_g , the dynamics is hyperdiffusive and ballistic. Around 1.12 T_g we observe an intermediate regime. By analyzing higher-order correlations in the scattering data we find that dynamical heterogeneities dramatically increase in this intermediate temperature regime. This leads to two effects: a) increasing heterogeneous dynamics and b) correlated motion at temperatures close to and below 1.12 T_g .

References

- [1] L. Berthier and G. Biroli, Rev. Mod. Phys. 83 (2011), 587.
- [2] T. Kawasaki and H. Tanaka, J. Phys.: Condens. Matter 22 (2010), 232102.
- [3] W. Kob *et al.*, Phys. Rev. Lett. 79 (1997), 2827; N. Lacevic *et al.*, J. Chem. Phys. 119 (2003), 7372; T. Kawasaki *et al.*, Phys. Rev. Lett. 99 (2007), 215701.
- [4] A. Madsen et al., New J. Phys. 12 (2010), 55001.
- [5] H. Conrad et al., under review (2015).

Submitting Author: felix.lehmkuehler@desy.de