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1 Introduction

With the delivery and exploitation of over 20fb~! of integrated luminosity at a centre-of-
mass energy of 8 TeV in proton-proton collisions at the CERN Large Hadron Collider, many
models of new physics now face significant constraints on their allowed parameter space.
Final states including three or more charged, prompt, and isolated leptons have received
significant attention, both in measurements of Standard Model (SM) diboson [1-3] and
Higgs boson production [4, 5], and in searches for new phenomena. Anomalous production
of multi-lepton final states arises in many beyond the Standard Model (BSM) scenarios,
including excited-lepton models [6, 7], the Zee-Babu neutrino mass model [8-10], super-
symmetry [11-19], models with pair production of vector-like quarks [20], and models with
doubly charged Higgs bosons [21, 22| including Higgs triplet models [23, 24]. An absence
of significant deviations from SM predictions in previous measurements and dedicated
searches motivates an inclusive search strategy, sensitive to a variety of production modes
and kinematic features.



In this paper, the results of a search for the anomalous production of events with
at least three charged leptons are presented. The dataset used was collected in 2012
by the ATLAS detector at the Large Hadron Collider, and corresponds to an integrated
luminosity of 20.3fb~! of pp collisions at /s = 8 TeV. Events with at least three leptons
are categorized using their flavour content, and signal regions are constructed using several
kinematic variables, to cover a wide range of different BSM scenarios. Inspection of the
signal regions reveals no significant deviations from the expected background, and model-
independent upper limits on contributions from BSM sources are evaluated. A prescription
for confronting other models with these results is also provided, along with per-lepton
efficiencies parameterized by lepton flavour and kinematics.

The model-independent limits are also used to provide constraints on two bench-
mark models. The first model predicts the Drell-Yan production of doubly charged Higgs
bosons [21, 22], which then decay into lepton pairs. The decays can include flavour-violating
terms that can lead to final states such as (7T 7T, where ¢ denotes an electron or muon,
and the tau lepton is allowed to decay hadronically or leptonically. Lepton-flavor-conserving
decays are not considered in this paper. The second benchmark scenario is a composite
fermion model predicting the existence of excited leptons [25]. The excited leptons, which
may be neutral (v*) or charged (¢£*), are produced in a pair or in association with a SM lep-
ton either through contact interactions or gauge-mediated processes. Their decay proceeds
via the same mechanisms, with rates that depend on the lepton mass and a compositeness
scale, A. The final states of such events often contain three or more charged leptons with
large momentum.

Related searches for new phenomena in events with multi-lepton final states have not
shown any significant deviation from SM expectations. The CMS Collaboration has con-
ducted a search similar to the one presented here using 5fb~! of 7TeV data [26] and
also with 19.5fb~! of 8 TeV data [27]. The ATLAS Collaboration has performed searches
for supersymmetry in multi-lepton final states [28-30], as have experiments at the Teva-
tron [31, 32]. The search presented here complements the previous searches by providing
model-independent limits and by exploring new kinematic variables. Compared to a similar
analysis presented in ref. [33] using 7 TeV data, this search tightens the lepton requirements
on the momentum transverse to the beamline (pr) from 10(15) GeV to 15(20) GeV for elec-
trons and muons (hadronically decaying taus), includes new signal regions to target models
producing heavy-flavour signatures and events without Z bosons, and tightens the require-
ments for previously defined signal regions to exploit the higher centre-of-mass energy and
integrated luminosity of the 2012 data sample.

2 The ATLAS detector

The ATLAS detector [34] at the LHC covers nearly the entire solid angle around the colli-
sion point.! It consists of an inner tracking detector surrounded by a thin superconducting

LATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in
the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre
of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,¢) are used in the transverse



solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporat-
ing three large superconducting toroid magnets with eight coils each.

The inner-detector system is immersed in a 2 T axial magnetic field and provides
charged-particle tracking in the range |n| < 2.5. A high-granularity silicon pixel detector
covers the vertex region and typically provides three measurements per track, with one
hit being usually registered in the innermost layer. It is followed by a silicon microstrip
tracker, which usually provides four two-dimensional measurement points per track. These
silicon detectors are complemented by a transition radiation tracker, which enables radially
extended track reconstruction up to || = 2.0. The transition radiation tracker also provides
electron identification information based on the fraction of hits (typically 30 in total) above
a higher energy threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |n| < 4.9. Within the region
In| < 3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity
lead/liquid-argon (LAr) electromagnetic calorimeters, with an additional thin LAr
presampler covering |n| < 1.8, to correct for energy loss in material upstream of the
calorimeters. Hadronic calorimetry is provided by a steel/scintillator-tile calorimeter,
segmented into three barrel structures within |n| < 1.7, and two copper/LAr hadronic
endcap calorimeters. The solid angle coverage is completed with forward copper/LAr
and tungsten/LAr calorimeter modules optimized for electromagnetic and hadronic
measurements respectively.

The muon spectrometer comprises separate trigger and high-precision tracking cham-
bers measuring the deflection of muons in a magnetic field generated by superconducting
air-core toroids. The precision chamber system covers the region |n| < 2.7 with three layers
of monitored drift tubes, complemented by cathode strip chambers in the forward region,
where the background is highest. The muon trigger system covers the range |n| < 2.4 with
resistive plate chambers in the barrel, and thin gap chambers in the endcap regions.

A three-level trigger system is used to select interesting events [35]. The Level-1 trigger
is implemented in hardware and uses a subset of detector information to reduce the event
rate to a design value of at most 75 kHz. This is followed by two software-based trigger
levels which together reduce the event rate to about 400 Hz.

3 Event selection

Events are required to have fired either a single-electron or single-muon trigger. The elec-
tron and muon triggers impose a pr threshold of 24 GeV along with isolation requirements
on the lepton. To recover efficiency for higher pt leptons, the isolated lepton triggers are
complemented by triggers without isolation requirements but with a higher pt threshold
of 60 (36) GeV for electrons (muons). In order to ensure that the trigger has constant
efficiency as a function of lepton pr, the offline event selection requires at least one lepton
(electron or muon) with pt > 26 GeV consistent with having fired the relevant single-lepton
trigger. A muon associated with the trigger must lie within |n| < 2.4, while a triggered

plane, ¢ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the
polar angle 6 as n = — Intan(0/2).



electron must lie within |7| < 2.47, excluding the calorimeter barrel/endcap transition re-
gion (1.37 <|n| < 1.52). Additional muons in the event must lie within |7| < 2.5 and have
pr > 15 GeV. Additional electrons must satisfy the same 7 requirements as triggered elec-
trons and have pt > 15 GeV. The third lepton in the event may be an additional electron
or muon satisfying the same requirements as the second lepton, or a hadronically decaying
tau (Thaa) with p¥* > 20GeV and |[n¥®| < 2.5, where p¥* and n"®® denote the pr and 7
of the visible products of the tau decay, with no corrections for the momentum carried by
neutrinos. Throughout this paper, the four-momenta of tau candidates are defined only by
the visible decay products.

Events must have a reconstructed primary vertex with at least three associated tracks
with ppr > 0.4 GeV. In events with multiple primary vertex candidates, the primary vertex
is chosen to be the one with the highest Epgf, where the sum is over all reconstructed tracks
associated with the vertex. Events with pairs of leptons that are of the same flavour but
opposite sign and have an invariant mass below 15 GeV are excluded to avoid backgrounds
from low-mass resonances.

The lepton selection includes requirements to reduce the contributions from non-
prompt or fake leptons. These requirements exploit the transverse and longitudinal impact
parameters of the tracks with respect to the primary vertex, the isolation of the lepton
candidates from nearby hadronic activity, and in the case of electron and 7,4 candidates,
the lateral and longitudinal profiles of the shower in the electromagnetic calorimeter. These
requirements are described in more detail below. There are also requirements for electrons
on the quality of the reconstructed track and its match to the cluster in the calorimeter.

Electron candidates are required to satisfy the “tight” identification criteria described
in ref. [36], updated for the increased number of multiple interactions per bunch crossing
(pileup) in the 2012 dataset. The tight criteria include requirements on the track properties
and shower development of the electron candidate. Muons must have tracks with hits in
both the inner tracking detector and muon spectrometer, and must satisfy criteria on track
quality described in ref. [37].

The transverse impact parameter significance is defined as |dy/o(dp)|, where dj is the
transverse impact parameter of the reconstructed track with respect to the primary vertex
and o(dp) is the estimated uncertainty on dy. This quantity must be less than 3.0 for both
the electron and muon candidates. The longitudinal impact parameter zg must satisfy
|20 sin(6)| < 0.5 mm for both the electrons and muons.

Electrons and muons are required to be isolated through the use of two variables sen-
sitive to the amount of nearby hadronic activity. The first, piTS?track, is the scalar sum of the
transverse momenta of all tracks with pr > 1 GeV in a cone of AR = \/(An)? + (A¢)? =
0.3 around the lepton axis. The sum excludes the track associated with the lepton can-
didate, and also excludes tracks inconsistent with originating from the primary vertex.
The second, E%f’cal, is the sum of the transverse energy of cells in the electromagnetic and
hadronic calorimeters in a cone of size AR = 0.3 around the lepton axis. For electron can-
didates, this sum excludes a rectangular region around the candidate axis of 0.125 x 0.172

in n x ¢ (corresponding to 5 x 7 cells in the main sampling layer of the electromagnetic



calorimeter) and is corrected for the incomplete containment of the electron transverse
energy within the excluded region. For muons, the sum only includes cells above a certain
threshold in order to suppress noise, and does not include cells with energy deposits from
the muon candidate. For both the electrons and muons, the value of EiTSfjcal is corrected
for the expected effects of pileup interactions. Electron and muon candidates are required
to have piTsf’track /pr < 0.1 and EiTs?c;ﬂ/ pr < 0.1. The isolation requirements are tightened
for leptons with pr > 100 GeV, which must satisfy 1%, < (10 GeV + 0.01 x py [GeV])
and EiTSféal < (10 GeV + 0.01 x pr [GeV]). The tighter cut for high-pr leptons reduces
non-prompt backgrounds to negligible levels.

Jets are used as a measure of the hadronic activity within the event as well as
seeds for reconstructing m,q candidates. Jets are reconstructed using the anti-k; algo-
rithm [38], with radius parameter R = 0.4. The jet four-momenta are corrected for the
non-compensating nature of the calorimeter, for inactive material in front of the calorime-
ters, and for pileup [39, 40]. Jets used in this analysis are required to have pp > 30 GeV
and lie within |n| < 4.9. Jets within the acceptance of the inner tracking detector must
fulfil a requirement, based on tracking information, that they originate from the primary
vertex. Jets containing b-hadrons are identified using a multivariate technique [41] based
on quantities such as the impact parameters of the tracks associated with the jet. The
working point of the identification algorithm used in this analysis has an efficiency for tag-
ging b-jets of 80%, with corresponding rejection factors of approximately 30 for light-jets
and 3 for charm-jets, as determined for jets with pt > 20 GeV within the inner tracker’s
acceptance in simulated ¢t events.

Tau leptons decaying to an electron (muon) and neutrinos are selected with the elec-
tron (muon) identification criteria described above, and are classified as electrons (muons).
Hadronically decaying tau candidates are seeded by reconstructed jets and are selected
using an identification algorithm based on a boosted decision tree (BDT) trained to dis-
tinguish hadronically decaying tau leptons from quark- and gluon-initiated jets [42]. The
BDT uses track and calorimeter quantities associated with the tau candidate, including the
properties of nearby tracks and the shower development in the calorimeter. It is trained
separately for tau candidates with one and three charged decay products, referred to as
“one-prong” and “three-prong” taus, respectively. In this analysis, only one-prong maq
candidates satisfying the criteria for the “tight” working point [42] are considered. This
working point is roughly 40% efficient for one-prong m,.q candidates originating from W
or Z boson decays, and has a jet rejection factor of roughly 300 in multi-jet topologies.
Additional requirements to remove 7,4 candidates initiated by prompt electrons or muons
are also imposed.

To further ensure the prompt nature of our lepton candidates, and to resolve am-
biguities in cases where tracks and clusters of energy deposited in the calorimeter are
reconstructed as multiple physics objects, the following logic is applied. Muon candidates
with a jet within AR < 0.4 are neglected. If a reconstructed jet lies within AR < 0.2 of an
electron or m,,q candidate, this object is considered to be a lepton and the jet is neglected.
If the separation of the jet axis from an electron candidate satisfies 0.2 < AR < 0.4, the
electron is considered non-isolated due to the nearby hadronic activity and is neglected.



Jets within 0.2 < AR < 0.4 of 7,,q candidates are considered as separate objects within
the mhaq reconstruction algorithm, and are not explicitly treated here. Electrons within
AR < 0.1 of a muon candidate are also neglected, as are ,,q candidates within AR < 0.2
of electron or muon candidates. Finally, if two electrons are separated by AR < 0.1, the
candidate with lower pr is neglected.

The missing transverse momentum is defined as the negative vector sum of the trans-
verse momenta of reconstructed jets and leptons, using the energy calibration appropriate
for each object [43]. Any remaining calorimeter energy deposits unassociated with recon-
structed objects are also included in the sum. The magnitude of the missing transverse
momentum is denoted E%liss.

4 Signal regions

Events satisfying all selection criteria are classified into one of two channels. Events in
which at least three of the lepton candidates are electrons or muons are selected first,
followed by events with two electrons or muons (or one of each) and at least one Taq
candidate. These two channels are referred to as > 3e/u and 2e/u+ > 17mp,q respectively.

Next, events are further divided into three categories. The first category includes
events that contain at least one opposite-sign, same-flavour (OSSF) pair of leptons with
an invariant mass within 20 GeV of the Z boson mass. This category also includes events
in which an OSSF pair can combine with a third lepton to satisfy the same invariant mass
requirement, allowing this category to capture events in which a Z boson decays to four
leptons (e.g. via Z — 00 — ll~v* — 000'0") or has some significant final-state radiation
that is reconstructed as a prompt electron. This category is referred to as “on-Z”. The
second category is composed of events that contain an OSSF pair of leptons that do not
satisfy the on-Z requirements; this category is labelled “oft-Z, OSSF”. The final category
is composed of all remaining events, and is labelled “no-OSSF”. The wide dilepton mass
window used to define the on-Z category is chosen to reduce the leakage of events with
real Z bosons into the off-Z categories, which would otherwise see larger backgrounds from
SM production of ZZ, WZ, and Z+jets events. In > 3e/u events, the categorization is
performed using only the three leading leptons (ordered by lepton pr). In 2e/u+ > 11haq
events, the categorization is performed using the two light-flavour leptons and the 7.4
candidate with the highest pr. The categorization always ignores any additional leptons.

Several kinematic variables are used to characterize events that satisfy all selection
criteria. The variable HITep " s defined as the scalar sum of the pr, or pf® for maq
candidates, of the three leptons used to categorize the event. The variable pfr’min is defined
as the minimum pr of the three leptons used to categorize the event. The variable ngets
is defined as the scalar sum of the pp of all selected jets in the event. The “effective
mass”, Mmeg, i the scalar sum of E%iss, H%?ts, and the pp of all identified leptons in the
event. For events classified as on-Z, the transverse mass (m/V) is constructed using the
E%liss and the highest-pT lepton not associated with a Z boson candidate. It is defined as

m¥ = \/ 2pL EMisS(1 — cos(A¢)) where A¢ is the azimuthal angle between the lepton and
the missing transverse momentum. In on-Z events where a triplet of leptons forms the




Variable  Lower Bounds [GeV]  Additional Requirements
HXPO™ 900 500 800

pm 50 100 150

Emiss 0 100 200 300 HE™ <150 GeV

Emiss 0 100 200 300 HE™>150 GeV

Meft 600 1000 1500

Meft 0 600 1200 Emiss > 100 GeV

Meff 0 600 1200 mYFV > 100 GeV, on-Z
Variable Multiplicity

b-tags >1 > 2

Table 1. Kinematic requirements for the signal regions defined in the analysis. The signal regions
are constructed by combining these criteria with the six exclusive event categories. The regions
with combined requirements on meg and m¥ are an exception as they are only defined for the on-Z
category.

Z-boson candidate, another Z boson is defined using the OSSF pair of leptons with the
largest invariant mass, and mTW is constructed using the third lepton. In events in which
two Z boson candidates can be formed from the three leading leptons, the candidate with
mass closer to the pole mass is defined as the Z boson.

Signal regions are defined in each channel and category by requiring one or more
variables to exceed minimum values. Signal regions based on Hé?ptons are made without
requirements on other variables, as are regions based on pffmin and the number of b-tagged
jets. Signal regions based on E%ﬁss are defined separately for events with Hglf’ts below
and above 150 GeV, which serves to distinguish weak production (e.g. pp — W* — £*v*)
from strong production (e.g. pp — QQ' — WqZq', where Q is some new heavy quark).
Signal regions based on meg are constructed with and without additional requirements of
E%liss > 100 GeV and m%v > 100 GeV. The definitions of all 138 signal regions are given
in table 1.

Several of the categories and signal regions described above are new with respect to
the analysis performed using the 7TeV dataset [33]. The distinction between the off-Z,
OSSF and the off-Z, no-OSSF categories is introduced, as are the signal regions defined
using the variables pfF’min, mYFV , and the number of b-tagged jets. As mentioned earlier,
thresholds that define signal regions in the 7 TeV analysis are also raised to exploit the
higher centre-of-mass energy and larger dataset at 8 TeV.

5 Simulation

Simulated samples are used to estimate backgrounds from events with three or more prompt
leptons, where prompt leptons are those originating in the hard scattering process or from
the decays of gauge bosons. The response of the ATLAS detector is modelled [44] using
the GEANT4 [45] toolkit, and simulated events are reconstructed using the same software



as used for collision data. Small post-reconstruction corrections are applied to account
for differences in reconstruction and trigger efficiency, energy resolution, and energy scale
between data and simulation [37, 46, 47]. Additional pp interactions (pileup) in the same
or nearby bunch crossings are modelled with PyTHIA 6.425 [48]. Simulated events are
reweighted to reproduce the distribution of the average number of pp interactions per
crossing observed in data over the course of the 2012 run.

The largest SM backgrounds with at least three prompt leptons are WZ and ZZ
production where the bosons decay leptonically. These processes are modelled with
SHERPA [49] using version 1.4.3 (1.4.5) for WZ (ZZ). These samples include the contin-
uum Drell-Yan processes (7*), where the boson has an invariant mass above twice the muon
(tau) mass for decays to muons (taus), and above 100 MeV for decays to electrons. Dia-
grams where a v* is produced as radiation from a final-state lepton and decays to additional
leptons, i.e. W — (*v — by*v — U0'0'v and Z — 00* — Lly* — 0000, where £ and ¢ need
not have the same flavour, are also included. Simulated samples of SM Z~* — (T/~eTe™
events generated with MADGRAPH 5.1.3.28 [50] are used to verify that this analysis has
negligible acceptance for Z~* events when the mass of the v* is less than 100 MeV. The
simulation and reconstruction efficiency of such events was probed in an analysis of Dalitz
decays [51], where good agreement of simulation and data was observed. The leading-order
predictions from SHERPA are cross-checked with next-to-leading-order (NLO) calculations
from VBFNLO-2.6.2 [52]. Diagrams including a SM Higgs boson give negligible contributions
compared to other diboson backgrounds in all signal regions under study.

The production of tt + W/Z processes (also denoted ¢t + V) is simulated with ALPGEN
2.13 [53] for the hard scattering, HERWIG 6.520 [54] for the parton shower and hadronization,
and JIMMY 4.31 [55] for the underlying event. Single-top production in association with a
Z boson (tZ) is simulated with MADGRAPH 5.1.3.28 [50]. Both the t¢+V and tZ samples
use PYTHIA 6.425 for the parton shower and hadronization. These samples also include
production of tty* and ¢y*, with the mass of the generated v* required to be above 5 GeV.
As for Z~*, cross checks with dedicated MADGRAPH samples in which the mass of the
~* is allowed to drop to twice the electron mass show that the contributions from such
events are negligible in this search. Corrections to the normalization from higher-order
effects for these samples are 30% [56, 57]. Leptons from Drell-Yan processes produced in
association with a photon that converts in the detector (denoted Z++ in the following) are
modelled with SHERPA 1.4.1. Additional samples are used to model dilepton backgrounds
for control regions with fewer than three leptons. Events from tf production are generated
using POWHEG-BOX [58] with PYTHIA 6.425 used for the parton shower and hadronization.
Production of Z+jets is performed with ALPGEN 2.13 [53] for the hard scattering and
PyTHIA6.425 for the parton shower.

Samples of doubly charged Higgs bosons, generated with PyTHIA 8.170 [59], are nor-
malized to NLO cross sections. The samples include events with pair-produced doubly
charged Higgs bosons mediated by a Z/v*, and do not include single-production or as-
sociated production with a singly charged state. Samples of excited charged leptons and
excited neutrinos are generated with PYTHIA 8.175 using the effective Lagrangian described
in ref. [25].



The CT10 [60] parton distribution functions (PDFs) are used for the SHERPA and
POWHEG-BOX samples. MRST2007 LO** [61] PDFs are used for the PYTHIA and HERWIG
samples. For POWHEG-BOX, MADGRAPH and ALPGEN, the CTEQG6L1 [62] PDFs are used.
The underlying event tune for POWHEG-BOX and PYTHIA 8.175 is the ATLAS Underlying
Event Tune 2 (AUET2) [63], while for the PyTHIA 6.425 and MADGRAPH samples the
tune is AUET2B [64]. The ALPGEN ¢tV samples use AUET2B, while the ALPGEN Z+jets
samples use P2011C [65].

6 Background estimation

Standard Model processes that produce events with three or more lepton candidates fall
into three classes. The first consists of events in which prompt leptons are produced in the
hard interaction or in the decays of gauge bosons. A second class of events includes Drell-
Yan production in association with an energetic «, which then converts in the detector to
produce a single reconstructed electron. A third class of events includes events with at
least one non-prompt, non-isolated, or fake lepton candidate satisfying the identification
criteria described above.

The first class of backgrounds is dominated by WZ — vl and ZZ — (00’ events.
Smaller contributions come from tt+ W, tt + Z, and t + Z events, where the vector bosons,
including those from top quark decays, decay leptonically. Contributions from triboson
events, such as WWW, and events containing a Higgs boson, are negligible. All processes
in this class of backgrounds are modelled with the dedicated simulated samples described
above. Reconstructed leptons in the simulated samples are required to be consistent with
the decay of a vector boson or tau lepton using generator-level information.

The second class of backgrounds, from Drell-Yan production in association with a hard
photon, is also modelled with simulation. Prompt electrons reconstructed with incorrect
charge (charge-flips) are modelled in simulation, with correction factors derived using Z —
ee events in data. Similar corrections are applied to photons reconstructed as prompt
electrons.

The class of events that includes non-prompt or fake leptons, referred to here as the
reducible background, is estimated using #n situ techniques that rely minimally on simu-
lation. Such backgrounds for muons arise from semileptonic b- or c-hadron decays, from
in-flight decays of pions or kaons, and from energetic particles that reach the muon spec-
trometer. Non-prompt or fake electrons can also arise from misidentified hadrons or jets.
Hadronically decaying taus have large backgrounds from narrow, low-track-multiplicity jets
that mimic 73,4 signatures.

The reducible background is estimated by reweighting events with one or more leptons
that do not satisfy the nominal identification criteria, but satisfy a set of relaxed criteria,
defined separately for each lepton flavour. To define the relaxed criteria for electrons, the
identification working point is changed from tight to loose [36]. For muons, the |dy/o(dp)|
and isolation cuts are loosened. For taus, the BDT working point is changed from tight to
loose. The reweighting factors are defined as the ratio of fake or non-prompt leptons that
satisfy the nominal criteria to those which only fulfil the relaxed criteria. These factors
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Figure 1. (a) Tau pr distribution for 7,,q4 candidates in the enriched 7,4 validation region. (b)
Missing transverse momentum distribution in the t¢ validation region for electrons and muons. (c)
Effective mass distribution in the intermediate 1,,4 validation region, in the off-Z, OSSF category.
(d) Distribution of the transverse mass of the missing transverse momentum and the muon not
associated with the Z-boson candidate in the intermediate-muon validation region. Signal contam-
ination from doubly charged Higgs bosons and excited leptons in all validation regions is negligible.
The lower panel shows the ratio of data to the expected SM backgrounds in each bin. The last bin
in all figures includes overflows.

are measured as a function of the candidate pt and 7 in samples of data that are enriched
in non-prompt and fake leptons. Corrections for the contributions from prompt leptons in
the background-enriched samples are taken from simulation.

The background estimates and lepton modelling are tested in several validation re-
gions. The m,,q modelling and background estimation are tested in a region enriched in
Z — TT — UThad €vents. This region is constructed by placing requirements on the invari-
ant mass of the muon and 7y,,4 pair, on the angles between the muon, m,,q and missing
transverse momentum, and on the muon and E%‘iss transverse mass. These requirements
were optimized to suppress the contribution from W — upv + jets events. The mhaq pr
distribution in this validation region is shown in figure 1(a).
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Region Prompt Fake Total Expected Observed
Z = TlepThad 16400 £ 800 2900 £ 700 19300 + 1100 18323
tt: o0 130 + 40 230 £ 60 360 £ 70 375
tt: {Thad 37+ 3 1700 £ 400 1700 £ 400 1469
Intermediate electron 130 £ 70 53 £ 17 180 £ 80 207
Intermediate muon 13 £ 2 26 £ 8 39 £ 8 43
Intermediate tau, on-Z 74+ 7 19000 4+ 5000 19000 £ 5000 17361
Intermediate tau, off-Z, OSSF 11 £2 1160 £ 290 1170 4 290 1155
Intermediate tau, off-Z, no-OSSF 21 £+ 3 320 £+ 80 340 + 80 340

Table 2. Expected and observed event yields for all validation regions. The expected contributions
from signal processes such as excited leptons or doubly charged Higgs bosons are negligible in all
validation regions.

A validation region rich in ¢t events is defined to test the estimates of the reducible
background. Events in this region have exactly two identified lepton candidates with the
same charge (but any flavour combination), at least one b-tag, and Hglf’ts < 500 GeV. This
sample is estimated to be primarily composed of lepton+jets tt events. The same-sign
requirement suppresses events where both W bosons decay leptonically, and enhances the
contributions from events where one lepton candidate originates from semileptonic b-decay.
The upper limit on H%?ts of 500 GeV reduces potential contamination from hypothesized
signals. An example of the E%liss distribution in the ¢t region enriched in reducible back-
grounds from the same-sign electrons and/or muons is shown in figure 1(b).

Additional validation regions that test the estimation of reducible backgrounds lepton
identification criteria tighter than those used in the background-enriched samples but looser
than and orthogonal to those used in the signal regions. This set of identification criteria is
referred to as the “intermediate” selection, and leptons satisfying the intermediate selection
are referred to as intermediately identified leptons, or simply intermediate leptons. The
reweighting factors are remeasured for the intermediate selection and used in the validation
region. Events are selected as in the analysis, with the intermediate selection used for a
single lepton flavour. For intermediate electrons and muons, only events in the on-Z channel
are considered, and intermediate leptons are required to have a flavour different from that
of the OSSF pair forming the Z boson candidate. For intermediate taus, all channels
are considered. An example of the meg distribution for the intermediate tau selection is
shown in figure 1(c). For the intermediate muon validation region, the transverse mass
distribution for intermediate muons combined with EX* is shown in figure 1(d).

Good agreement between the expected and observed event yields is seen in all validation
regions. A summary of expected and observed event yields for all validation regions is shown
in table 2.
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Source Uncertainty [%]

Luminosity 2.8

Trigger efficiency 1
Lepton momentum scale/resolution 1
Lepton identification 2
Jet energy resolution 2
Jet energy scale 5
b-tagging efficiency 5
Emiss gcale /resolution 4
tt + V cross section 30
WZ/ZZ cross section 7
WZ/ZZ shape 20-50
Charge misidentification 8
Non-prompt and fake 7paq 25
Non-prompt and fake e/u 40

Table 3. Typical systematic uncertainties from various sources, in signal regions where the uncer-
tainty is relevant. The uncertainties on the backgrounds are presented as the percent uncertainty
on the total background estimate.

7 Systematic uncertainties

The backgrounds modelled with simulated samples have systematic uncertainties related
to the trigger, selection efficiency, momentum scale and resolution, E%iss, and luminosity.
These uncertainties, when evaluated as fractions of the total background estimate, are
usually small, and are summarized in table 3. Predictions from simulations are normalized
to the integrated luminosity collected in 2012. The uncertainty on the luminosity is 2.8%
and is obtained following the same methodology as that detailed in ref. [66].

Uncertainties on the cross sections of SM processes modelled by simulation are also
considered. The normalization of the tt4+W and tt+ Z backgrounds have an uncertainty of
30% based on PDF and scale variations [56, 57]. The SHERPA predictions [49] of the WZ
and ZZ processes are cross-checked with next-to-leading-order predictions from VBFNLO.
Scale uncertainties are evaluated by varying the factorization and renormalization scales
up and down by a factor of two, and range from 3.5% for the inclusive prediction to 6.6%
for events with at least one additional parton. PDF uncertainties are evaluated by taking
the envelope of predictions from all PDF error sets for CT10-NLO, MSTW2008-NLO, and
NNPDF-2.3-NLO, and are between 3% and 4%.

An additional uncertainty on the SHERPA predictions is applied to cover possible mis-
modelling of events with significant jet activity. This shape uncertainty is evaluated us-
ing LOOPSIM+VBFNLO [67], which makes “beyond-NLO” predictions (denoted aNLO) for
high-pr observables, and is based on the study presented in ref. [68]. Predictions of ngets
and meg at ANLO are compared with those from SHERPA in a phase space similar to that
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used in this analysis. Good agreement between SHERPA and the nNLO predictions is ob-
served across the full range of HjTGtS and meg. The uncertainty on the nNLO prediction
is evaluated by changing the renormalization and factorization scales used in the nNLO
calculation by factors of two. These uncertainties increase linearly with event activity with
a slope of (50‘7E>)><(1T—Igf9tS [TeV]) and are applied to the SHERPA predictions. A study of
Z+jets events at /s =7 TeV [69] shows good agreement of SHERPA predictions with data
in events with significant transverse activity, showing deviations of data from predictions
within the uncertainties used here.

The estimates of the reducible background carry large uncertainties from several
sources. These uncertainties are determined in dedicated studies using a combination
of simulation and data. They account for potential biases in the methods used to extract
the reweighting factors, and for the dependency of the reweighting factors on the event
topology. The electron reweighting factors have uncertainties that range from 24% to 30%
as a function of the electron pr, while for muons the uncertainties range from 25% to 50%.
For the estimates of fake 7,,q candidates, the pp-dependent uncertainty on the reweight-
ing factors is approximately 25%. In signal regions where the relaxed samples are poorly
populated, statistical uncertainties on the estimates of the reducible background become
significant, especially in regions with high Efrniss or Hgl?ts requirements.

The relative uncertainty on the correction factors for electron charge-flip modelling in
simulation is estimated to be 40%, resulting in a maximum uncertainty on the total back-
ground yield in any signal region of 11%. Studies of simulated data show that the majority
of charge-flip electrons are due to bremmstrahlung photons that interact with detector
material and convert to an electron-positron pair, yielding an energetic secondary lepton
with the opposite sign of the prompt lepton. As this is the same process by which prompt
photons mimic prompt leptons, the same 40% uncertainty is assigned to the modelling of
prompt photons reconstructed as electrons.

In all signal regions, the dominant systematic uncertainty is either the uncertainty on
the reducible background or the shape uncertainty on the diboson samples. In 2e/u+ >
1Thaq channels, the uncertainty on the reducible background always dominates. In >
3e/u channels, the W Z theory uncertainties dominate in most regions except in the no-
OSSF categories, where the uncertainties on the reducible background are dominant. The
uncertainties on ¢t + V are large in regions requiring two b-tagged jets. The uncertainties
on the trigger, selection efficiency, momentum scale and resolution, and E%iss are always
subdominant.

8 Results

Expected and observed event yields for the most inclusive signal regions are summarized
in table 4. Results of the search in all signal regions are summarized in figure 2, which
shows the deviation of the observed event yields from the expected yields, divided by the
total uncertainty on the expected yield, for all signal regions. The total uncertainty on
the expected yield includes statistical uncertainties on the background estimate as well as
the systematic uncertainties discussed in the previous section. There are no signal regions
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Channel Prompt Fake Total Expected Observed
off-Z, no-OSSF

> 3e/u 13 + 2 18+ 5 30 £ 5 36

2e/u+ > 17 26 + 3 180 + 40 200 + 40 208
oft-Z, OSSF

> 3e/u 206 + 23 33+9 239 + 25 221

2e/pu+ > 171 15 + 2 630 + 170 640 4+ 170 622
on-Z

> 3e/u 2900 £ 340 180 £ 40 3080 £ 350 2985

2¢e/u+ > 17 141 £ 13 10300 4+ 2800 10400 + 2800 9703

Table 4. Expected and observed event yields for the most inclusive signal regions.

in which the observed event yield exceeds the expected yield by more than three times
the uncertainty on the expectation, and only one region in which the observed event yield
is lower than expected by more than three times the uncertainty, i.e. the > 3e/u, off-Z
no-OSSF category, with Hgfets < 150 GeV and ER > 100 GeV. The smallest p-value is
0.05, which corresponds to a 1.7¢ deviation, and is observed in the meg > 1000 GeV region
in the 2e/u+ > 1maq, on-Z channel. Examples of kinematic distributions for all channels
and categories are shown in figure 3.

Since the data are in good agreement with SM predictions, the observed event yields
are used to constrain contributions from new phenomena. The 95% confidence level (CL)
upper limits on the number of events from non-SM sources (Ngs) are calculated using the
modified Frequentist C'Ls prescription [70]. All statistical and systematic uncertainties on
estimated backgrounds are incorporated into the limit-setting procedure, with correlations
taken into account where appropriate. The Ngs limits are then converted into limits on
the “visible cross section” (o§) using the relationship o§i® = Nos/ [ Ldt, where [ Ldt is
the integrated luminosity of the data sample.

Figure 4 shows the resulting observed limits, along with the median expected limits
with +10 and 4+20 uncertainties. Table 5 shows the expected and observed limits for the

most inclusive signal regions.

9 DModel testing

The model-independent exclusion limits presented in section 8 can be re-interpreted in the
scope of any model of new phenomena predicting final states with three or more leptons.
This section provides a prescription for such re-interpretations. In order to convert the agés
limits into upper limits on the cross section in a specific model, the fiducial acceptance (.A)
must be known. The efficiency to select signal events within the fiducial volume (fiducial
efficiency, or egq) is also needed. The 95% CL upper limit on the cross section ogs is then
given by '

V1S

g
og5 = — B (9.1)
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Data / Bkg Events / 100 GeV Data / Bkg Events / 100 GeV

Events / 200 GeV

Data / Bkg

Figure 3. Sample results for all categories: (a)
oft-Z, no-OSSF, (c¢) > 3e/pu, oft-Z, OSSF, (d) 2¢/u+ > 1mhaq, off-Z, OSSF, (e) > 3e/p, on-Z and
(f) 2e/u+ > 17had, on-Z. A predicted signal of excited tau neutrinos is overlaid to illustrate the
sensitivity of the different signal regions; the compositeness scale A of this signal scenario is 4 TeV.
The lower panel shows the ratio of data to the expected SM backgrounds in each bin. The last bin
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Channel Expected +1lo0 +20 Observed
[{b] [fb]  [fb] [£b]
off-Z, no-OSSF

> 3e/p 0.82 T35 o3 0.89

2¢/pu+ > 11 4.2 e el 4.3
off-Z, OSSF

> e/ 30 Tty My 25

2 /pu+ > 17 144 33 182 14.0
on-Z

> 3e/p 33 -l 31

2¢/pu+ > 11 220 e e 207

Table 5. Expected and observed limits on o3 for inclusive signal regions, along with confidence
intervals of one and two standard deviations on the expected limits.

Both A and egq are determined using simulated events at the particle level, i.e. using all
particles after the parton shower and hadronization with mean lifetimes longer than 101! s,
Event selection proceeds as described in section 3, with minor modifications detailed below.
The acceptance is determined by selecting trilepton events, categorizing them, applying the
signal region requirements, and dividing the resulting event yield by the signal yield before
any selection. The fiducial efficiency is then determined using parameterized efficiencies
provided below. Events should be generated without pileup — the effects of pileup are
small, and are handled in the parameterized efficiencies.

Electron and muons are selected using the same |n| requirements described in section 3,
but with a lower pt requirement of 10 GeV. Electrons or muons from tau decays must satisfy
the same requirements as prompt leptons. The tau four-momentum at the particle level is
defined using only the visible decay products, which include all particles except neutrinos.
Hadronically decaying taus are required to have p%is > 15 GeV and |n¥¥¥| < 2.5.

Generated electrons and muons are required to be isolated. A track isolation energy at
the particle level corresponding to piTsf’track, denoted pirfﬁ?true, is defined as the scalar sum of
transverse momenta of charged particles within a cone of AR = 0.3 around the lepton axis.
Particles used in the sum are included after hadronization and must have pp > 1 GeV. A
fiducial isolation energy corresponding to EiTS,Ocap denoted EiTSf’true, is defined as the sum of
all particles inside the annulus 0.1 < AR < 0.3 around the lepton axis. Neutrinos and other

stable, weakly interacting particles produced in models of new phenomena are excluded

from both pif‘?true and Eifficrue; muons are excluded from Eiff’true. Electrons and muons must
satisfy piqsw?true/ pr < 0.15 and EiTS?true/ pr < 0.15.

A simulated sample of W Z events is used to extract the per-lepton efficiencies €¢y. Gen-
erated leptons are matched to reconstructed lepton candidates that satisfy the selection
criteria defined in section 3 by requiring their AR separation be less than 0.1 for prompt
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pT Prompt e Prompt p T—e T U Thad
[GeV] [n| > 0.1 In| < 0.1 [n| >0.1 |n <0.1
10-15 0.0256 4+ 0.0003 0.0224 +0.0002 0.0071 £ 0.0003 0.0086 £ 0.0006
1520 0.5224+0.005 0.8394+0.008 0.402+0.015 0.409+0.029 0.6240.04 0.66+0.19 0.0311+ 0.0021
20-25 0.607+0.005 0.887+0.007 0.478£0.017 0.444+0.04 0.66+£0.06 0.124+0.04 0.148£0.012
25-30 0.654+0.005 0.910£0.007 0.490£0.016 0.554+0.04 0.68+£0.05 0.13+0.03 0.229+0.018
30-40 0.708 £0.004 0.919+0.005 0.4924+0.011 0.63+0.04 0.71+£0.04 0.53+0.13 0.217£0.013
40-50  0.737+£0.005 0.923£0.005 0.499+0.012 0.624+0.05 0.74+£0.06 0.28+0.11 0.292+0.025
50-60 0.761+£0.005 0.925+£0.006 0.527£0.016 0.624+0.06 0.71+£0.07 0.50+0.20 0.245+0.026
60-80 0.784+£0.005 0.925+£0.006 0.512+0.013 0.644+0.07 0.78£0.08 0.254+0.13 0.307 £0.032
80-100 0.815+£0.008 0.922+£0.008 0.530=£0.020 0.724+0.13 0.65+£0.10 0.50+0.25 0.227£0.033
100-200 0.835+£0.008 0.918 £0.008 0.528 £0.018 0.624+0.11 0.75+£0.13 0.33+0.19 0.284+0.04
200-400 0.851+£0.021 0.884+0.022 0.46540.041
400-600  0.844+0.10 0.83+0.10 0.174+0.07
> 600 0.90+0.26

Table 6. The fiducial efficiency for electrons, muons, and taus in different pr ranges (egqa(pr))-
For electrons and muons from tau decays, the pr is that of the electron or muon, not the tau. The
uncertainties shown reflect the statistical uncertainties of the simulated samples only.

electrons and muons, and less than 0.2 for taus. Reconstructed electrons and muons origi-
nating from true tau decays are also required to be within AR of 0.2 of the true lepton from
the tau decay. The per-lepton fiducial efficiency, €y, is defined as the ratio of the number
of reconstructed leptons satisfying all selection criteria to the number of generated leptons
within acceptance. Separate values of ¢, are measured for each lepton flavour, and ¢, is
determined separately for leptons from tau decays. The effects of the trigger requirements
are folded into the per-lepton efficiencies; for SM W Z events with both bosons on-shell,
the trigger efficiency is over 95% when all offline selection criteria are applied.

The efficiencies as functions of pt are shown in table 6, and efficiencies as functions
of |n| for electrons and taus are shown in table 7. For empty bins, the value from the
preceding filled bin is the suggested central value. For electrons and taus, the final per-
lepton efficiency is given as e, = €(pr) - €(n)/(€), where (¢) is the inclusive efficiency of the
full sample, and is 0.66 for prompt electrons, 0.39 for electrons from tau decays, and 0.26
for hadronically decaying taus. The n dependence of the muon efficiencies is treated by
separate pr efficiency measurements for muons with |n| < 0.1 and those with |n| > 0.1.

Table 6 includes entries to cover cases where leptons with true pr below the nominal
pr threshold of 15 (20) GeV for electrons and muons (taus) are reconstructed with pt above
threshold. These efficiencies are typically small, but are needed for proper modelling of
events with low-pt leptons.

The resulting per-lepton efficiencies are then combined to yield a selection efficiency
for a given event satisfying the fiducial acceptance criteria. For events with exactly three
leptons, the total efficiency for the event is the product of the individual lepton efficiencies.
For events with more than three leptons, the additional leptons in order of descending pt
only contribute to the total efficiency when a lepton with higher pr is not selected, leading
to terms such as €j€e2e4(1 —€3), where €; denotes the fiducial efficiency for the ith pr-ordered
lepton. The method can be extended to cover the number of leptons expected in the model
under consideration.
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Il Prompt e T e Thad
0.0-0.1 0.650 £ 0.006 0.55 £ 0.06 0.166 £+ 0.017
0.1-0.5 0.714 £ 0.004 0.500 & 0.026 0.150 + 0.009
0.5-1.0 0.722 £0.004 0.513 £ 0.026 0.188 £ 0.010
1.0-1.5 0.689 4+ 0.004 0.421 + 0.026 0.175 + 0.010
1.5-2.0 0.635 = 0.004 0.470 £+ 0.030 0.142 + 0.009
2.0-2.5 0.615 & 0.004 0.433 + 0.032 0.109 & 0.008

Table 7. The fiducial efficiency for electrons and taus in different 7 ranges (eaq(n)). For electrons
from tau decays, the 7 is that of the electron, not the tau. The uncertainties shown reflect the
statistical uncertainties of the simulated samples only.

Jets at the particle level are reconstructed from all stable particles, excluding muons
and neutrinos, with the anti-k; algorithm using a radius parameter R = 0.4. Overlaps
between jets and leptons are removed as described in section 3. E%ﬁss is defined as the
magnitude of the vector sum of the transverse momenta of all neutrinos and any stable,
non-interacting particles produced in models of new phenomena. The kinematic variables
used to define signal regions are defined as in section 3.

Predictions of both the rates and kinematic properties of doubly charged Higgs and
excited-lepton events, when made with the method described above, agree well with the
same quantities after detector simulation. Uncertainties, based on the level of agreement
seen across the studied models, are estimated at 10% for the > 3e/u channels, and 20%
for the 2e/u+ > 1mhaq channels. When calculating limits on specific models, these uncer-
tainties must be applied to the estimated signal yields after selection to take into account
the limited precision of the fiducial efficiency approach.

10 Interpretation

The results of the model-independent search are interpreted in the context of two specific
models of new phenomena: a model with pair-produced doubly charged Higgs bosons, and
a model with excited, non-elementary leptons.

Doubly charged Higgs bosons can be either pair-produced or produced in association
with a singly charged state. In this paper, the H¥* are assumed to be pair-produced,
with decays to charged leptons. One feature of most models with H** is the presence
of lepton-flavour-violating terms, leading to decays such as H** — e*p® in addition to
H** — eFfet or H** — pFpu*. Decays to electrons and/or muons have been probed at
Vs = 8TeV in ref. [71], while decays to all flavours of leptons are probed at /s =7 TeV

— etrE

in ref. [72]. In this paper, only the lepton-flavour-violating decays H** and
H** — F7+ are considered.

The visible cross-section limits presented above are used to constrain this model. The
oft-Z, OSSF category provides the largest acceptance for the lepton-flavour-violating de-
cays; contributions from the remaining categories are small and have a negligible impact

on the sensitivity. The signal regions based on H%?pmns provide the best expected sen-
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H** mass and decay mode
100 GeV 300 GeV 500 GeV
Channel er Wt er ur er uT
o [fb] Combined 5.55 0.396
A >3e/p 0.144+0.01 0.15£0.01 |0.354+0.01 0.38+0.02]0.39£0.02 0.4540.02
2e/p+ > 1mhaq| 0.33£0.01  0.36£0.01 |0.48+0.02 0.49+0.02|0.49£0.02 0.47+0.02
>3e/p 0.244+0.02 0.26+£0.02 |0.364+0.02 0.37+0.01{0.40+0.02 0.37+0.01
i 2e/p+ > 1mThaq| 0.21£0.01  0.24£0.01 |0.2940.01 0.31+£0.01|/0.32£0.01 0.31+0.01
A% eay > 3e/u 0.03440.002 0.039£0.003|0.124+0.01 0.1440.01]0.16£0.01 0.1740.01
2e/p+ > 1mhaq |0.071£0.003 0.087£0.004|0.14+0.01 0.15+£0.01|/0.15+£0.01 0.14+0.01
Ree. A x ¢ > 3e/u 0.0344+0.004 0.046 £0.005|0.124+0.01 0.1240.01]0.13£0.01 0.1440.01
2e/p+ > 1mhaq [ 0.062 £ 0.006 0.08340.007|0.14+0.01 0.16+0.01|0.16£0.01 0.18+0.01
> 3e/p 53117 iy | 50155 6Ty | 2787 235G
Exp. Limit [fb]|2e/pu+ > 17haa| 5473 38715 2.6705 2.4103 1.3705 11795
Combined 42738 3411 26703 26750 12493 11493
>3e/p 32 32 3.2 4.2 1.7 1.5
Obs. Limit [fb]|2e/u+ > 1maq 51 36 2.4 2.2 1.2 1.0
Combined 28 24 2.4 1.9 0.8 0.7

Table 8. Theoretical cross section and the acceptances, efficiencies and 95% CL upper limits on the
cross section for pair-produced H** decaying to e* 7+ and pu*7%. Rec. A x € represents the fraction
of signal events passing all analysis cuts after detector-level simulation and event reconstruction.

sitivity, followed by limits based on pﬁlmin; here only limits based on H}Fptons are used.

For H** masses up to 200 GeV, the signal region defined by H}l?ptons > 200 GeV is used;
for higher masses the requirement is H}FP o5 > 500 GeV. Finally, both the > 3e/u and
2e/pu+ > 1mhaq channels are used to maximize the total acceptance.

Table 8 summarizes the expected acceptance, efficiency, and cross-section limit for
The > 3e/p and 2e/pu+ > 1mhaq
channels have comparable sensitivity for high masses, and are therefore combined when

several mass values, channels, and decay scenarios.

setting the final limits to improve the overall constraint on this model. The H** can couple
preferentially to left-handed (Hfi) or right-handed (Hf,fi) leptons, with the production
cross section for the right-handed coupling scenario being roughly half that for the left-
handed coupling scenario. The acceptance and efficiency are the same for both couplings.
The final limits on H** — e*r® and H** — p*7* for both scenarios are shown in
figure 5. In both cases, a branching ratio of 100% is assumed for the chosen decay. For
H** — e*7% the expected mass limit for left-handed couplings is 350450 GeV, with an
observed limit of 400 GeV. For H** — ;%% the expected mass limit for left-handed
couplings is 37012218 GeV, with an observed limit at 400 GeV. The expected (observed) limit
on H** — y*7% from the 7TeV ATLAS analysis [33] is 229 (237) GeV, which only uses
the > 3e/u channel. The corresponding observed limits from the 7 TeV CMS analysis [72]

are 293 GeV for H¥* — e*r* and 300 GeV for H¥* — ptr+,
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Figure 5. Observed and expected 95% upper limits on the cross section times branching ratio
for H** decaying to (a) e*7* and (b) p*7%. Separate mass constraints are extracted for H*+
coupling to left- and right-handed fermions from the intersections with the predicted cross sections
shown by the dotted and solid red curves.

Composite fermion models often imply the existence of excited-lepton states [25]. Ex-
cited leptons are either pair-produced, produced in association with another excited lepton
of a different flavour, or produced in association with a SM lepton [6, 7]. The production
is mediated either by gauge bosons (gauge-mediated, GM) or by auxiliary, massive fields
that can be approximated as a four-fermion contact interaction (CI) vertex. The scales of
the CI and GM processes are assumed to be identical and called A, while the masses of
the excited leptons are referred to as my«. The CI process dominates the production and
decay of excited leptons for my«/A > 0.3, while for lower values the GM process becomes
important. Additionally, the parameters fs, f and f’, corresponding to the SU(3), SU(2)
and U(1) couplings of the model respectively, can be chosen arbitrarily and dictate the
dynamics of the model. For this study, all coupling parameters are set to unity, as used in
ref. [25]. This specific choice of f = f’ forbids the radiative decays of excited neutrinos.

Searches for excited electrons and muons have been performed using a similar bench-
mark model by CMS [73], at /s = 7 TeV, and by ATLAS [74], with 13fb~! at \/s = 8 TeV..
The most stringent lower limits on my+ from these searches are at 2.2 TeV for A = mys«.
Lower limits on the mass of excited leptons were set by the L3 experiment. These limits,
which are independent of A, range from 91 GeV to 102 GeV, with limits on excited taus
and excited tau neutrinos being somewhat weaker than those for other flavours [75].

The decay products for each excited neutrino are a neutrino (or charged lepton) of the
same generation and a Z (W) boson, or a fermion pair. Similarly, excited charged leptons
can decay into a charged lepton (or neutrino) of the same generation and a v/Z (or W)
boson, or into a fermion pair. For excited neutrinos, only the pair production of two excited
neutrinos v*7* is taken into account; single production of excited neutrinos producing final
states with three or more leptons is suppressed and its contribution is negligible. For the
excited charged leptons, both single and pair production of excited states are taken into
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account.

The upper limits on the visible cross section can be used to constrain my+ and A. In
all cases, the signal region with the best expected sensitivity is used to constrain each
scenario. In the cases where the excited charged lepton or neutrino masses are large,
the decay products typically carry a large amount of momentum. This leads to signal
events with large H%?ptons. Additionally, in this regime, the GM decay through Z bosons is
disfavoured compared to the CI decay. Consequently, for such scenarios, the off-Z channel
provides better sensitivity due to lower background rates.

The production of excited electrons, excited muons, and excited electron and muon
neutrinos is constrained using the > 3e/pu, off-Z, OSSF region requiring H;?ptons > 800 GeV
(HlTeptonS > 500 GeV) for masses above (below) 600 GeV. Excited tau neutrinos with high
values of my« /A are constrained using the > 3e/u, off-Z, OSSF region requiring meg >
1.5 TeV. The only excited tau neutrino decays that preferentially produce final states with
taus are the GM decays via a W boson, which become significant at lower values of my-/A.
For such cases, the 2e/u+ > 17,4, off-Z, no-OSSF region requiring p%lmin > 100 GeV
is used.

For excited taus, the > 3e/u, off-Z, OSSF region requiring meg > 1.5 TeV is used
for masses above 1TeV. For masses between 500 GeV and 1TeV, the > 3e/u, off-Z, OSSF
regions requiring meg > 1 TeV is used. For masses below 500 GeV, where the GM decay
through Z bosons again becomes significant, the 2e/u+ > 17,9, on-Z region requiring
pémm > 100 GeV is most sensitive.

Table 9 summarizes the expected acceptance and efficiency for several flavours, mass
values and A values for the most sensitive signal region. Figure 6 shows the excluded
regions of the mass parameter and the scale A for all lepton flavours extracted from the
expected and observed upper limits on the visible cross section. Exclusion regions are also
shown for the case where excited leptons are only produced via the CI process.

For low A-values, a broad range of masses up to 2 TeV can be excluded, while for higher
A-values, only low masses are excluded. In the low-mass region, v; — £ + W is the main
decay mode for excited neutrinos, while £* — ¢ 4 v is the main decay mode for charged
leptons. Therefore, pair-produced v and v}, have the highest acceptance due to their final
states with at least three leptons, and thus they have the most stringent limits.

The production cross section of pair-produced excited leptons via the GM process is
independent of A, which leads to improved sensitivity at low excited-lepton masses. The
low efficiency for reconstructing tau leptons leads to a relatively small gain in sensitivity
for v} from GM production.

For v (v},), the expected A-independent mass limit is 210 + 25GeV (225 + 25 GeV),
with an observed limit of 230 GeV (250 GeV). For masses higher than 300 GeV, the limits
for these two particles follow approximately a line of: A + 8.3 x my; = 14500 GeV. The
most stringent upper limits on the mass of the excited leptons are found when my = A.
In this case, the resulting limits are 3.0 TeV for excited electrons and muons, 2.5 TeV for
excited taus, and 1.6 TeV for every excited-neutrino flavour.
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e 7 A €6d A X €xq Rec. Ax ¢ Limit
[GeV]| [fb] [{b]
A=4TeV
vivy| 500 127| 0.036+£0.001 |0.63£0.07| 0.023£0.003 | 0.023+0.001 | 6.5
vivr| 1500(0.562| 0.0414+0.001 |0.66+0.07| 0.027+£0.003 | 0.027+0.001 | 5.6
v,v,| 500 127| 0.036+0.001 |0.51+£0.06| 0.018+0.003 | 0.022+£0.001 | 6.8
vy | 150010.562 | 0.039£0.001 |0.52+0.06| 0.020£0.004 | 0.025+0.001 | 6.0
viv¥| 500| 127]0.0022 =+ 0.0003|0.43 +0.05|0.0009 £ 0.0003|0.0010 +0.0002 | 150
vivi| 1500(0.562| 0.014+0.001 |0.52£0.06| 0.007£0.002 | 0.008+0.001 | 19
T*7* | 500| 127]0.0011+£0.0002|0.40£0.04|0.0004 £ 0.0001 | 0.0002 £ 0.0001 | 750
7*7*| 1500(0.562| 0.027+0.001 [0.29+0.03| 0.008+0.002 | 0.006+0.001 | 25
T*7 | 500 276/0.001240.0002|0.47 £ 0.05|0.0006 £ 0.0002 [0.0007 + 0.0002| 210
7*7 | 1500| 1.41| 0.0324+0.001 |0.48+0.05| 0.015+£0.002 | 0.0154+0.001 | 10
A =10 TeV

vivy| 500( 3.24| 0.044£0.001 |0.61£0.07| 0.027£0.004 | 0.030+0.001 | 5.0
vivr| 1500(0.015| 0.088+0.002 |0.66+0.07| 0.058 £0.007 | 0.056+0.002 | 2.7
v, | 500| 3.24| 0.041£0.001 |0.54+0.06| 0.022+0.003 | 0.028+£0.001 | 5.4
v,y | 150010.015| 0.084£0.002 |0.5040.05| 0.042+£0.006 | 0.052+0.002 | 2.9
vivr| 500| 3.24/0.0020 % 0.0006|0.19 £ 0.02|0.0004 £ 0.0002 [ 0.0005 = 0.0001 | 300
vivi| 1500(0.015] 0.012+0.002 |0.36 £0.04]0.0043 £ 0.0008 |0.0045 £+ 0.0004| 33
T*7* | 500| 3.24]0.0002+ 0.0001 |0.33 £0.04|0.0001 £ 0.0001 |0.0001 £ 0.0001 | 1500
7*7*| 1500]0.015|0.0070 +0.0001 | 0.17 +0.02|0.0012 £+ 0.0007 | 0.0022 + 0.0003 | 68
7*7 | 500| 3.81/0.0003 4+ 0.0001|0.53 + 0.06 |0.0002 + 0.0002 [ 0.0002 + 0.0002 | 750
7*7 | 1500{0.022| 0.0124+0.001 |0.48+0.05|0.0056 £ 0.0015 |[0.0048 +0.0004 | 31

Table 9. Cross section, acceptances, efficiencies, and 95% CL upper limits on the cross section
for various excited-lepton flavours and mass values using the > 3e/u, off-Z, OSSF region requiring
HIEP™™ > 800 GeV. The observed limit is equal to the expected limit in this signal region. Rec.
A X € represents the fraction of signal events passing all analysis cuts after detector-level simulation
and event reconstruction.
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Figure 6. Observed and expected 95% CL limits on the mass parameter and the compositeness
scale A for excited leptons. The region under the curve is excluded by this analysis, the blue region
is excluded by LEP, and the gray region represents my~ > A and is unphysical. The red line shows
the limits taking only CI production into account.
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11 Conclusion

A search for anomalous production of events with at least three charged leptons is been
presented, using 20.3fb~! of pp collisions at /s = 8 TeV recorded by the ATLAS detector
at the CERN Large Hadron Collider. Data distributions are compared to SM predictions in
a variety of observables and final states, designed to probe a large range of BSM scenarios.
Good agreement between the data and SM predictions is observed. Model-independent
exclusion limits on visible cross sections are derived, and a prescription to re-interpret such
limits for any model is presented. Additionally, limits are set on specific models predicting
doubly charged Higgs bosons and excited leptons. Doubly charged Higgs bosons coupling
to left-handed fermions and decaying exclusively to eT or ur pairs are constrained to have
mass above 400 GeV at 95% confidence level. For excited leptons, the mass constraints
depend on the compositeness scale, with the strongest mass constraints reached where the
mass of the excited state and the compositeness scale are the same; the lower limits on the
mass extend to 3.0 TeV for excited electrons and excited muons, 2.5 TeV for excited taus,
and 1.6 TeV for every excited-neutrino flavour.
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A Yields and cross-section limits

Expected and observed event yields for all signal regions are provided in tables 10-17.

HEPO™ > 154 V(V) VV (V) Reducible Total Observed
> 3e/u, off-Z, no-OSSF
200 GeV 20+ 06 1.6+ 04 214+ 1.1 57+ 1.4 6
500 GeéV  0.13 £ 0.06  0.09 + 0.03 0t 37 0227F 37
800 GeV  0.06 & 0.04 0+ g0 0t 97 0.067* 3% 0
2e/pu+ > 171, off-Z, no-OSSF
200 GeV 1.2+ 04 234+ 05 194+ 6 22+ 6 14
500 GeV  0.01 + 0.01 0.03+0.01 0.32+8% 0367+ 33 0
800 GeV 0+t 3% 001+001 011F857% o0127F37 0
> 3e/u, off-Z, OSSF
200 GeV 75+ 23 63+ 8 9+ 4 784+ 9 56

500 GeV  0.34 +£ 0.12 3.3+ 0.5 0t 87 37+ 09
800 GeV  0.01 & 0.01 0.54 & 0.12 or 87" o057+ 9
2e/u+ > 17, oft-Z, OSSF

[S1EN]
(=

200 GeV 0.64 + 021 44+ 06 68+ 20 73+ 20 67

500 GV 0.06 = 0.03 0.17+£0.04 1.1+ 09 1.3+ 0.9 0

800 GeV 0+ goos 0+ g 0t §7 0t §”" 0
> 3e/u, on-Z

200 GeV 234+ 7 410+ 50 18+ 8 450+ 50 387

500 GV 0.82 4+ 0.25 109+ 23 067F 9% 123+ 24 12

800 GeV  0.05 + 0.03 0.92+023 0101370 1.1+ 07 3

2e/u+ > 11, on-Z
200 GeV 1.1+ 0.4 207+ 27 160+ 50 180 &+ 50 148
500 GeV  0.02 £ 0.01 0.82+023 124+ 09 20+ 1.0 3
800 GeV 01998 0,04 4 0.02 0t 9™ 0.047t97 0

Table 10. Expected and observed event yields for the H% Ptons gional regions.
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P> 4V (V) VvV (V) Reducible Total Observed
> 3e/u, off-Z, no-OSSF
50 GeV  0.83 + 027 0.45+0.13 028 F379 1.6+ 08

100 GeV  0.09 £ 0.04 0.03 & 0.01 0t 37 0.127F 3% 0
150 GeV  0.06 £ 0.04 ot g0 0t 97 0.067F 3% 0
2e/pu+ > 171, off-Z, no-OSSF
50 GeV 043 £ 0.15 0.62+0.13 50+ 1.9 6.1+ 1.9 5
100 GV 0.01 + 0.01  0.03F 393 o011 %871 015 L 72 0
150 GeV 0+995 0014000 0117737 o012+97} 0
> 3e/u, off-Z, OSSF
50 GeV 3.7+ 1.1 271+ 34 18+ 1.0 33+ 4 25
100 GeV  0.17 + 0.07 1.73 £ 0.25 0t 97 1.9+ 07 2
150 GeV  0.01 & 0.01 0.24 + 0.05 0t 37 0257F 3% 0

2e/u+ > 17, oft-Z, OSSF

50 GeV 0334+ 011 1.724+025 15+ 5 184+ 5 23
100 GeV 0+t993 0144006 0127372 0261 572 0
150 GeV 0F §008 0+ 903 0t 97 0ot §” 0

> 3e/u, on-Z

50 GeV 874+ 26 168+ 19 6.3+ 3.1 183+ 19 163
100 GeV 054 + 0.17 96+ 1.6 0227192 104+ 1.7 16
150 GeV  0.05 £ 0.02 0.88 &+ 0.21 0r 87" 09+ 07 4

2e/p+ > 17, on-Z

50 GeV 0314+ 011 80+ 1.2 54+ 18 62+ 18 45
100 GeV 0.0l + 0.0l 053+0.22 087 3% 1.3+ 0.9 0
150 GeV 071993 009+007 0161372 o0.257* 973 0

Table 11. Expected and observed event yields for the minimum pff signal regions.

b-tags >  #t+ V (V) VvV (V) Reducible Total Observed
> 3e/u, off-Z, no-OSSF
53+ 1.7 0374012 11.1+33 17+ 4 19
2 224+ 0.7 0F 9%  292+10 44+12 5
2e/u+ > 171, off-Z, no-OSSF
31+ 1.0 09+ 04 91+ 24 95+ 24 98
2 134+ 05 005+003 29+ 8 30+ 8 34
> 3e/p, off-Z, OSSF
13+ 4 1144 20 15+ 5 39+ 7 34
2 55+ 1.8 0324017 27+21 85+28 9
2¢/u+ > 17, off-Z, OSSF
1094+ 035 0.88+028 74+ 21 76+ 21 65
2 038+£019 005F 808 17+ 5 17+ 5 12
> 3e/p, on-Z
1 51+ 16 144+ 23 41+ 11 235+ 32 237
2 234+ 8 80+ 21 46+15 36+ 8 27
2e/u+ > 11, on-Z
290+ 09 88+ 1.7 398+ 11 410+ 11 409
2 134+ 04 0264017 33+ 9 34+ 9 21

Table 12. Expected and observed event yields for the b-tag signal regions.
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meg > tt+V (V) VV(V) Reducible Total Observed
> 3e/p, off-Z, no-OSSF

600 GeV 1.7+ 06 040+£0.13 12+ 08 344 1.0

1000 GeV  0.44 + 0.16  0.01 £ 893 020+ 3% 07+ 07 1
1500 GV 0.07 = 992 0% 9% 008T88 016F 970

2e/u+ > 17, off-Z, no-OSSF

600 GeV 14+ 05 123+032 17+ 5 19+ 5 22
1000 GeV  0.26 + 0.22  0.07 £ 0.05 224+ 1.1 26+ 1.1

1500 GeV  0.03 & 0.02 0.01 £0.01 01797 o020+ 923 1

> 3e/u, oft-Z, OSSF
600 GeV 6.7+ 2.1 134+ 29 37+25 24+ 4 17
1000 GeV 1.1+ 04 21+ 08 21T 21 534 23 1
1500 GeV  0.08 & 0.08 028 +0.15 05 92 08+ 99 0
2¢/p+ > 17, oft-Z, OSSF
600 GeV 059 + 0.19 087 +0.30 17+ 5 18+ 5 19
1000 GV 0.17 £ 0.06 0.12+0.10 18+ 1.0 21+ 1.0 2
1500 GeV o+ 9008 of 90 ot §7 ot §7 0
> 3e/u, on-Z
600 GeV 26+ 8 1264 29 924+ 35 161+ 31 147
1000 GeV 46+ 15 21+ 8 11+ 10 27+ 8 27
1500 GeV  0.48 + 0.17 32+ 1.9 0t 3% 37+ 20 2
2e/u+ > 11, on-Z

600 GeV 14+ 05 87+ 21 65+ 19 754 19 65
1000 GeV  0.26 & 0.09 1.5+ 0.6 36+ 1.4 53+ 16 11
1500 GeV  0.02 & 0.02 0.31£021 00897 04t 97 1

Table 13. Expected and observed event yields for the inclusive meg signal regions.
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meg > tE+ V(V) VvV (V) Reducible Total Observed
> 3e/p, off-Z, no-OSSF
Inclusive 1.7+ 0.6 090+£024 40+ 1.5 6.6+ 1.6 8
600 GeV  0.71 + 0.27 0.25+0.06 0.8+ 0.8 1.7+ 08 2
1000 GeV  0.24 + 0.15 0.01 £0.00 015372 04 7F 7 1
1200 GeV  0.14 & 0.09 0.01 £0.00 0.15+9379 029+ 39 0
2e/u+ > 17, off-Z, no-OSSF
Inclusive 1.3+ 04 20+ 04 29+ 8 32+ 8 28
600 GeV  0.81 + 0.29 0.66 +0.19 80+ 25 95+ 25 9
1000 GV 0.16 7 929 0.06+£0.05 14+ 09 1.6+ 0.9 2
1200 GeV  0.10 £ 005 001+ 353 04t 9% o057+ 33 2
> 3e/u, oft-Z, OSSF
Inclusive 4.6 £ 1.4 122+ 19 36+ 1.4 204+ 2.8 16
600 GeV 28+ 09 474+ 1.1 08+ 08 824 17 7
1000 GeV 047 + 0.17 1.2+ 04 016+ 374 1.8+ 0.9 1
1200 GeV  0.18 £ 0.09 0.39+0.19 016+ 97 0.7+ 0.7 1
2e/u+ > 17, oft-Z, OSSF
Inclusive 0.54 + 0.18 147 +£031 14+ 4 16+ 4 17
600 GeV 0.34 + 0.13 044 +0.17 48+ 1.8 56+ 1.8 5
1000 GeV  0.15 £+ 0.07 0.07F 898 067F 03 08+ 0.8 2
1200 GeV 0t 396 o007t 398 017372 024197 2
> 3e/p, on-Z
Inclusive 14+ 4 148+ 19 57+ 1.9 167 £ 20 123
600 GeV 87+ 27 414+ 9 13+£09 51+ 10 39
1000 GV 25+ 08 9.1+ 3.2 0F 9% 116+ 35 12
1200 GeV  1.01 + 0.33 4.0+ 1.8 0F5% 50+ 20 4
2e/p+ > 17, on-Z

Inclusive 1.01 &+ 0.32 121+ 1.7 138 + 41 269 £ 4.5 24
600 GeV 0.62 + 021 414+ 1.0 35+ 14 824 17 9
1000 GV 0.16 = 0.06 1.2+ 04 041 3% 1.7+ 09 0
1200 G&V  0.07 + 0.03 053 +0.27 0337974 09+ 08 0

Table 14. Expected and observed event yields for the high- ERS m.g signal regions.

meg >+ V(V) VvV (V) Reducible Total Observed
> 3e/p, on-Z
Inclusive 11.24+ 3.5 174+ 23 9.0+ 2.7 1944+ 24 164
600 GeV 55+ 1.7 224+ 6 09409 28+ 6 29
1200 GV  0.33+0.12 25+ 13 0167937 3.0+ 1.5 2
2e/pu+ > 11, on-Z
Inclusive 0.38 £0.13 224+ 09 51+ 17 54+ 17 46
600 GV 0.10 £ 0.06 0.12 & 0.08 544 22 56+ 2.2 8
1200 GeV  0.01 £ 0.01 0.04 £0.04 0221353 o027+ 97 0

Table 15. Expected and observed event yields for the high-m'Y, meg signal regions.
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Exss > 4 V(V) VvV (V) Reducible Total Observed
> 3e/pu, off-Z, no-OSSF
Inclusive 3.7+ 12 085 +026 7.1+ 22 11.7+ 25 18
100 GeV 1.2+ 04 024+006 26+ 1.1 40+ 1.2 8
200 GeV  0.18 & 0.07 0.01 £0.01 03437 057+ 97 0
300 GeV  0.12 £ 0.07 0f 9% 015t 872 028F 0% 0
2e/u+ > 17, off-Z, no-OSSF
Inclusive 2.7+ 08 37+ 07 71+ 19 77+ 19 83
100 GeV 1.1+ 04 1184029 19+ 5 21+ 5 24
200 GV 0.044+ 004 01671 318 1.7+ 09 1.9+ 1.0 2
300 GeV  0.01 & 0.01 0.05+0.03 025133 0317+ 973 0
> 3e/u, off-Z, OSSF
Inclusive 11.7+ 35 32+ 6 12+ 4 56+ 8 53
100GeV 36+ 1.1 50+ 1.2 194+ 1.0 105+ 1.9 8
200 GV 0.41 + 0.17 0.86+024 021+95 15+ 08 2
300 GeV  0.04 © 807 0.28 +0.12 0t 97 0337+ 979 0
2e/u+ > 17, off-Z, OSSF
Inclusive 1.07+ 035 24+ 06 95+ 26 98+ 26 83
100 GeV  0.39 & 0.13 0.63 £0.21 10.1 + 3.2 11.1 + 3.2 9
200 GV 0.03 £ 0.02 020+011 035+37% 06t §3 1
300 GeV 0+993 002t 993 0t9™ 0.027F 97} 0
> 3e/u, on-Z
Inclusive 52+ 16 391+ 70 40+ 10 480+ 7 446
100 GeV 13+ 4 57+ 12 274+ 12 734+ 13 53
200GeV 17+ 05 96+ 26 05F §F 118+ 28 13
300 GV 0.24 + 0.09 23+ 0.8 0+9% 26+ 1.1 1
2e/u+ > 11, on-Z

Inclusive 3.0+ 09 26+ 5 640 + 180 670 £ 180 554
100 GeV 093+ 030 53+ 1.3 81+ 25 143+ 2.9 17
200 GeV  0.13%F 914 124 04 04T 95 1.7+ 09

300 GeV  0.02 £+ 0.01 0.35 £ 0.16 0t 3" 04t 37 1

Table 16. Expected and observed event yields for the high—Hﬂfts, Emiss gignal regions.
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ERis > 41 1 V(V) VV (V) Reducible Total Observed
> 3e/pu, off-Z, no-OSSF

Inclusive 1.9+ 0.6 6.1+ 1.2 104+ 29 184+ 3.3 18
100 GeV 053 £ 0.22 0.664+0.19 14+ 08 26+ 0.9 0
200 GeV 01993 008 +0.03 ot 97 .08t 98 0
300 GeV 0139 001+ 0.01 ot 97 o001t 98 0
2e/u+ > 17, off-Z, no-OSSF
Inclusive 0.63 + 0.24 19.1+ 25 105+ 25 125+ 25 125
100 GV 025 + 0.12 0854023 97+ 30 108+ 3.0 4
200 GeV 07+ 50 002+001 006+ 355 008 Jit 0
300 GeV 0+ go0s 0o+ 903 or ™ ot g™ 0

> 3e/u, off-Z, OSSF
Inclusive 3.1+ 1.0 159 + 18 21 £+ 6 183+ 19 168

100 GeV 095+ 034 72+ 10 184 1.0 99+ 14 8
200 GV 0.06 £ 0.06 0.71+0.16 009+ 279 09+ 0.7
300 GeV  0.05 T 397 0.11 + 0.06 0otf 96 016t 970 0

2e/u+ > 17, oft-Z, OSSF
Inclusive 0.41 £ 0.15 106 £ 1.2 530 £ 150 540 £ 150 539

100 GeV  0.16 £ 0.08 084 +020 42+ 15 52+ 1.5 8
200 GeV 0+ 89 0.06+0.05 ot $™ o006F §%t 0
300 GeV 0+ go0s 0o+ g0 of ™ ot g™ 0
> 3e/u, on-Z
Inclusive 8.4+ 29 2450+ 290 142+ 35 2600+ 290 2539
100 GeV 1.2+ 04 90+ 9 30+ 1.3 94+ 9 70
200 GeV  0.05 + 002 62+ 07 0047+ 579 6.3+ 1.0 3
300 GeV  0.01 + 0.01  1.23 + 0.26 0or 39 1.2+ 0.7 0

2e/u+ > 11, on-Z
Inclusive 0.58 £ 0.23 112 & 10 9600 4 2600 9800 + 2600 9149

100 GV 0.08 £ 0.04 68+ 1.0 57+ 20 126+ 22 7
200 GeV 0902 724018 04t 9% 11+ 08 0
300 GeV 0+ 3998 .20 4 0.10 ot 97 o020t 9I 0

Table 17. Expected and observed event yields for the 10W—H¥ s Emiss gignal regions.
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HP"  Fypected +10 +20  Observed po  Significance
[GeV] [fb] [fb]  [fb] [fb] [o]
> 3e/u, no-OSSF
> 200 034 toE 09 034 046 0.1
> 500  0.22 Q0T 04 022 047 0.1
> 800  0.14 Y00 FHO 014 050 0.0
2e/pu+ > 1mhad, no-OSSF
> 200  0.60 )3 F8% 041 050 0.0
> 500 015  foor Foor 014 0.50 0.0
> 800  0.15  to8Y 000 014 0.50 0.0
> 3e/u, OSSF
> 200 1.2 s AR 0.70  0.50 0.0
> 500 026 o0 4010 018 0.50 0.0
> 800 0.6 O fH4s 015 0.50 0.0
2e/pu+ > 1mhaq, OSSF
> 200 18 fe A2 1.68  0.50 0.0
> 500 0.6 0% oML 014 0.50 0.0
> 800 016  t98 t00r 014 0.50 0.0
> 3e/u, on-Z
> 200 4.9 HE 0 3.58  0.50 0.0
> 500 047 )% f83 047 050 0.0
> 800 027  FPOr fHO 030 015 1.1
2e/pu+ > 1mhaq, on-Z
> 200 37 ot 314 0.50 0.0
> 500 024 80 008 029  0.30 0.5
> 800 015  toor 80T 016 0.50 0.0

Table 18. Expected and observed limits, and corresponding p-values and significances (in standard
deviations), for signal regions based on cuts on HAP™ ™,

Expected limits with confidence intervals of one and two standard deviations, observed
limits, and one-sided p-values with corresponding significance in units of o are provided in
tables 18-25.
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£, min

P Expected +1lo0 +20 Observed pg  Significance
[GeV] [fb] [fb]  [fb] [£b] [o]
> 3e/u, no-OSSF
0.04 0.09
> 50 025  fgo1 Toos 029 0.10 1.3
0.02 0.09
> 100 013  foos fooo 015 050 0.0
0.01 0.07
> 150 014 o foos 0.14  0.50 0.0
2e/pu+ > 1mhaq, no-OSSF
0.13 0.31
> 50 034 oo fois 0.31 0.50 0.0
0.00 0.07
> 100 015 oo foos 014 0.50 0.0
0.00 0.07
> 150 015 o) Toos 014 050 0.0
0.30 0.68
> 50 070  tgsg foss 050 050 0.0
0.08 0.13
> 100  0.21 toor Toos 020 049 0.0
0.04 0.12
> 150 014 Toos Toos 0.13  0.50 0.0
2e/pu+ > 1mhaq, OSSF
0.20 0.43
> 50 071 oo fos 0.86  0.21 0.8
0.01 0.08
> 100  0.15 ool Toos 0.16  0.50 0.0
0.00 0.0
> 150 0.6 00 T 0.16  0.50 0.0
> 3e/u, on-Z
> 50 2.3 e Mt 1.77 050 0.0
. 4
> 100 044 P P55 069 0.09 1.4
0.06 0.28
> 150  0.31 ol toes 0.30  0.48 0.1
2e/p+ > 17had, on-Z
> 50 1.3 st 105  0.50 0.0
0.07 0.13
> 100 016  T9oT tois 016 0.50 0.0
0.00 0.08
> 150 015 Too) Toos 0.15  0.50 0.0

Table 19. Expected and observed limits, and corresponding p-values and significances (in standard

.. . . £.mi
deviations), for signal regions based on cuts on pp™"
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b tags Expected +lo 420 Observed py  Significance
[£b] [fb]  [fb] [{b] (7]
> 3e/u, no-OSSF

0.23 0.41

> 059  Tois Toos 0.64  0.35 0.4
0.09 0.21

> 2 030  fgl o 032 040 0.3

2e/pu+ > 17haq, no-OSSF

> 2.4 oL e 244 045 0.1
0.35 0.72

> 2 096 P52 T0is 1.07 035 0.4

> 3e/u, OSSF

. .7

> 092 5 I 086 050 0.0
0.18 0.28

> 2 0.45 o fode 047  0.45 0.1
2e/pu+ > 1mhaq, OSSF
0.6 1.2

> 1.8 o s 1.57  0.50 0.0
0.22 0.39

> 2 0.55 Toae Tose 0.43 0.50 0.0

> 3e/u, on-Z

> 3.9 a1t 3.91 049 0.0
0.33 0.73

> 2 089 5 ol 0.70  0.50 0.0
2e/pu+ > 1Thaq, on-Z

> 1 94 25 42 9.38  0.50 0.0
0.30 0.68

> 2 079 o5y o 0.66  0.50 0.0

Table 20. Expected and observed limits, and corresponding p-values and significances (in standard
deviations), for signal regions based on cuts on the number of b-tagged jets.
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Meft Expected +1lo +20 Observed pg  Significance
[GeV] [£b] [fb]  [fb] [{b] (7]
> 3e/u, no-OSSF
0.04 0.09
> 600 027 oo ol 025 050 0.0
0.06 0.12
> 1000 018 o5 Tooi 0.19  0.37 0.3
0.01 0.07
> 1500  0.15 toor foor 0.15  0.50 0.0
2e/pu+ > 1Thaq, no-OSSF
0.20 0.41
> 600 068 oI foas 0.77  0.34 0.4
0.05 0.10
> 1000 024 9 oo 022  0.50 0.0
0.06 0.11
> 1500  0.18 ot oo 020 0.26 0.6
> 3e/u, OSSF
0.21 0.41
> 600  0.65 s oo 0.49  0.50 0.0
> 1000 025 fges g% 016 0.50 0.0
0.05 0.12
> 1500  0.15 toor toor 0.14  0.50 0.0
2e/pu+ > 1mhaq, OSSF
0.21 0.40
> 600 066  fois fozg 069 0.44 0.1
0.06 0.11
> 1000 023 008 Toos 022  0.50 0.0
0.00 0.05
> 1500  0.15 o0 oo 0.15  0.50 0.0
> 3e/u, on-Z
> 600 3.2 e 2l 2.93  0.50 0.0
0.20 0.75
> 1000 090 99 0 0.91 0.48 0.0
0.04 0.09
> 1500 026  Toor ol 022 050 0.0
2¢/p+ > 1maq, on-Z
> 600 1.7 e 12 149  0.50 0.0
0.14 0.32
> 1000  0.38 to.ogi e 0.64  0.05 1.7
> 1500 018  MGOY fPg3 020 0.29 0.5

Table 21. Expected and observed limits, and corresponding p-values and significances (in standard
deviations), for signal regions based on cuts on mef.
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Mot Expected 4+lo 420 Observed pg  Significance
[GeV] [£b] [fb]  [fb] [£b] [o]
> 3e/u, no-OSSF
> 0 037 55 % 041 034 0.4
> 600 0.22 ooy Toos 0.24 0.44 0.2
> 1200 015 R0 AT 015 0.50 0.0
2e/p+ > 17Thaq, no-OSSF
> 0 0.87 oo tg;gg 0.77 0.50 0.0
> 600 0.43 ror o ol 0.42 0.50 0.0
> 1200 021 99T L2 027 017 1.0
> 3e/u, OSSF
> 0 057 P 5. 048 050 0.0
> 600 039 Mt 035 050 0.0
. 12
> 1200 0.18 o0 toea 0.19 0.40 0.2
2e/u+ > 17haq, OSSF
> 0 0.60 toaz o 000 0.62 0.45 0.1
> 600 0.34 e o 0.32 0.50 0.0
> 1200 025 00Tt 028 0.6 1.0
> 3e/p, on-Z
> 0 2.0 s 1.21 0.50 0.0
> 600 1.1 s 12 0.84  0.50 0.0
> 1200 029  g9s 09T 027 050 0.0
26/N+ > 17_hada on-Z
> 0 069 03 03 060 050 0.0
> 600 039 4T 0¥ 042 042 0.2
> 1200 0.16 o0 o4 0.14 0.50 0.0

Table 22. Expected and observed limits, and corresponding p-values and significances (in standard
deviations), for signal regions based on cuts on meg. All signal regions above have an additional

requirement of Er‘fliss > 100 GeV.

Meft Expected +1lo0 420 Observed pg  Significance
[GeV] [{b] [fb]  [fb] [{b] [o]
> 3e/p, on-Z
> 0 2.5 e Y 1.83 0.50 0.0
> 600 0.84 ros oot 0.86 0.46 0.1
> 1200 026 905 002 022 050 0.0
26/M+ > 17—hada on-Z
> 0 145  H R 131 050 0.0
.14 .
> 600 039 fgog 9T 048 025 0.7
> 1200 0.15 ool oS 0.15 0.50 0.0

Table 23. Expected and observed limits, and corresponding p-values and significances (in standard
deviations), for signal regions based on cuts on meg. All signal regions above have an additional

requirement of m%V > 100 GeV.
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E%ﬁss Expected +1o0 +20 Observed pg  Significance
[GeV] [£b] [fb]  [fb] [fb] [o]
> 3e/u, no-OSSF
> 0 050  t9E 002 077 0.09 1.3
> 100 028 oLt 029  0.08 1.4
> 200 015 00 f5E 015 050 0.0
> 300 015  tor 08y 014 050 0.0
2e/pu+ > 1mhaq, no-OSSF
> 0 2.0 e e 2.00  0.40 0.3
> 100 073 to0 o 081 036 0.4
> 200 022 0T f52 023 048 0.0
> 300 015 907 Toos 014 0.50 0.0
> 3e/u, OSSF
> 0 1.2 Y 111 0.50 0.0
> 100 042 998 09 035 050 0.0
> 200 021 0% 042 024 037 0.3
> 300 016 00 T4 015 0.50 0.0
2e/pu+ > 1mhaq, OSSF
> 0 2.2 T 1.88 050 0.0
> 100 046 995 t9% 041 050 0.0
> 200 019  f90r A8l 019 037 0.3
> 300 0.4 Y00 FS 013 050 0.0
> 3e/u, on-Z
> 0 72 22 HT 6.38  0.50 0.0
> 100 1.3 195+l 0.96  0.50 0.0
> 200 051  t9E 400 055 0 041 0.2
> 300 023  P9T e 018 050 0.0
2e/pu+ > 1Thaq, on-Z
> 0 124  *t33 68 10.66  0.50 0.0
> 100 053 0 F8A 064 030 0.5
> 200 024 Q0 fHY 029 0.25 0.7
> 300 022 oo 042 023 048 0.0

Table 24. Expected and observed limits, and corresponding p-values and significances (in standard
deviations), for signal regions based on cuts on EXS. All signal regions above have an additional
requirement of H " > 150 GeV.
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E%ﬁss Expected +1lo0 +20 Observed pg  Significance
[GeV] [£b] [fb]  [fb] [fb] [o]
> 3e/u, no-OSSF
> 0 058 9T OOl 056 0.50 0.0
> 100 021 FOT T0eE 015 0.50 0.0
> 200 0.6 Yo 5 015 050 0.0
> 300 014 P00 0L 014 050 0.0
2e/pu+ > 17haq, no-OSSF
> 0 2.5 s T 2.48  0.50 0.0
> 100 038 O3t 022 050 0.0
> 200 014  FO80 *O006 014 050 0.0
> 300 015 000 F8S 014 050 0.0
> 3e/u, OSSF
> 0 2.2 e 1.80  0.50 0.0
> 100 039  to6 4081 034 0.50 0.0
> 200 018  t90S f8dr 019 045 0.1
> 300 014  fo8r tO0S 015 050 0.0
2€/M—|— > 1Thad, OSSF
> 0 124t 08 1232 0.50 0.0
> 100 036  toi tod2 043 018 0.9
> 200 015  toor t088 0.4 0.50 0.0
> 300 013 oL t08 013 0.50 0.0
> 3e/p, on-Z
> 0 26 2o 24.77 050 0.0
> 100 12 s Al 0.69  0.50 0.0
> 200 031 fggy o 020 0.50 0.0
> 300 019 R M 014 050 0.0
2e/pu+ > 1mhaq, on-Z

> 0 205 P TI% 19436 0.50 0.0
> 100 040 T f5¥ 020 050 0.0
> 200 0.7 908 Foed 014 0.50 0.0
> 300 014  tOHY toE9 013 0.50 0.0

Table 25. Expected and observed limits, and corresponding p-values and significances (in standard
deviations), for signal regions based on cuts on EMiss. All signal regions above have an additional
requirement of Hy" < 150 GeV.
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