The Higgs Program at the International Linear Collider.

on behalf of the ILC Physics and Detector Study

Claude-Fabienne Dürig

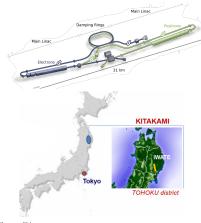
DESY Hamburg, Germany

EPS-HEP Vienna, July 22-29 2015

Introduction

- discovery of Higgs-like boson at LHC is milestone in history of particles physics
- ➤ main task: identify boson and its connection to the SM → last particle of SM?
 - \rightarrow first particle beyond the SM?
- goal: model-independent reconstruction of EWSB sector through precision measurements
 - > investigate mass-coupling relation
 - > any deviation clear indication of BSM
- > ILC is ideally situated to give a full understanding of new boson, whatever nature it is
- > needed: comprehensive program of model-independent and direct Higgs boson measurements

 $m_{H},~g_{HZZ},~g_{HWW},~g_{Hb\bar{b}},~g_{Hgg},~g_{H\gamma\gamma},~g_{H\tau\tau},~g_{Hc\bar{c}},~g_{Ht\bar{t}},~g_{H\mu\,\mu},~g_{HHH},~\Gamma_{H}^{tot},~\Gamma_{invis}$



Chip Brock, Snowmass 2013

The International Linear Collider

- ► energy range: $\sqrt{s} = 250 \text{ GeV} 500 \text{ GeV}$, upgradeable to 1 TeV
- ightharpoonup about 31 km site length for $\sqrt{s} = 500 \text{ GeV}$
- ightharpoonup polarised beams (pprox 80% for e^- and pprox 30% 60% for e^+)

Japan shows great interest to host ILC

MEXT (Japans Ministry for Education, Culture, Sports, Science and Technology)

established expert committee to investigate issues raised by Science Council of Japan

- physics
- costs
- international sharing, ...

MEXT process is heading towards interim report

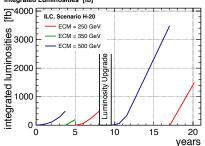
ILC Operating Scenario

ILC Parameters Joint Working Group, arXiv:1506.07830v1 [hep-ex]

 studied impact of running scenarios on physics output

optimise

- Higgs precision measurements
- > top physics
- > new physics searches
- ➤ studied for running time of 20 years
 → then possible 1TeV upgrade
- > energy stages between (250 500) GeV

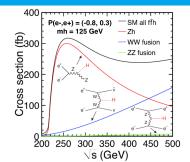

preferred scenario full program

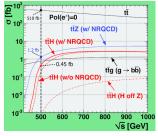
2000 fb⁻¹ at 250GeV 200 fb⁻¹ at 350GeV 4000 fb⁻¹ at 500GeV

actual running scenario will depend on physics results of LHC and early ILC

Stage	ILC500			ILC500 LumiUP		
\sqrt{s} [GeV]	500	350	250	500	350	250
\mathcal{L} [fb $^{ ext{-}1}$]	500	200	500	3500	-	1500
time [a]	3.7	1.3	3.1	7.5	-	3.1

Integrated Luminosities [fb]




Single Higgs Production Processes

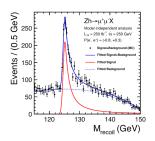
LCC Physics Working Group, arXiv:1506.05992v2 [hep-ex]

each running energy offers

- independent set of variables
- various production processes
- $\sqrt{s} > 250 \text{ GeV}$
 - ➤ Higgs-strahlung dominant production process
 - \blacktriangleright beneficial for measuring σ_{ZH} and m_H
- $\sqrt{s} > 350 \text{ GeV}$
 - ➤ tt-production threshold (not in this talk)
 - WW-fusion process of similar size as ZH
 - sensitivity to g_{HZZ} and g_{HWW}
- $\sqrt{s} \geq 500 \text{ GeV}$
 - ightharpoonup process $e^+e^- o t\bar{t}H$ accessible
 - \rightarrow probe top-Yukawa coupling g $_{
 m Htt}$

Higgs production in Z Recoil: $m_H \rightarrow \sigma_{ZH} \rightarrow g_{HZZ}$

LCC Physics Working Group, arXiv:1506.05992v2 [hep-ex]


How do we measure couplings?
$$\frac{N}{\mathcal{L}} = \sigma_i \cdot BR(H \to XX) = \sigma_i \cdot \frac{\Gamma(H \to XX)}{\Gamma_{tot}^H} \propto \frac{g_i^2 \cdot g_{HXX}^2}{\Gamma_{tot}^H}$$

We need σ and Γ_{tot}^H to convert branching ratios into couplings!

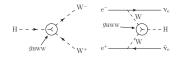
$$e^+e^- \longrightarrow ZH$$

reconstruct recoil mass against Z boson $M_{ros}^2 = (p_{o^+o^-} - p_7)^2$

No Higgs reconstruction required!

- precise m_H measurement
- model-independent measurement of σ_{7H}
 - \rightarrow direct extraction of g_{H77} ($\sigma_{ZH} \propto g_{H77}^2$)
- independent of Higgs decay
- ➤ observe H → invisible/exotic
 - → absolute measurement of BRs
- \rightarrow implies absolute measurement of Γ_{tot}^{H} in model-independent way
- fix overall scale of couplings

expected ILC precision


	ILC500	ILC500 LumiUP
Δm_H	25 MeV	15 MeV
$\Delta g_{HZZ}/g_{HZZ}$	0.58 %	0.31 %

Total Width Γ_{H} and $\mathsf{g}_{\mathsf{HWW}}$ through WW-fusion

LCC Physics Working Group, arXiv:1506.05992v2 [hep-ex]

ILC provides model-independent measurement of Γ^{H}_{tot}

- ightharpoonup need σ and $\Gamma^{\mathsf{H}}_{\mathsf{tot}} o$ convert BRs into couplings
- ightharpoonup need $\Gamma^{\mathsf{H}}_{\mathsf{tot}} o \mathsf{determine}$ absolute sizes of Higgs couplings
- $ightharpoonup \Gamma_{tot}^{H}$ is too narrow to be measured directly
- ightharpoonup WW-fusion: $e^+e^-
 ightarrow
 u ar{
 u} H$ with $H
 ightarrow b ar{b}$

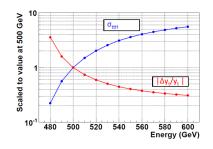
- $\begin{array}{ll} \text{ relation: } & \Gamma(\mathsf{H} \to \mathsf{WW}) \propto \mathsf{g}^2_{\mathsf{HWW}} \propto \sigma_{\mathsf{Y}\bar{\mathsf{Y}}\mathsf{H}} \\ & \Gamma^\mathsf{H}_{\mathsf{tot}} = \frac{\Gamma(\mathsf{H} \to \mathsf{WW})}{\mathsf{BR}(\mathsf{H} \to \mathsf{WW})} \propto \frac{\sigma_{\mathsf{Y}\bar{\mathsf{Y}}\mathsf{H}}}{\mathsf{BR}(\mathsf{H} \to \mathsf{WW})} \end{array}$
- $\begin{array}{l} \blacktriangleright \text{ measure } H \to b\bar{b}/WW \text{ in ZH to remove} \\ \text{model-dependence} \quad \underbrace{\epsilon_{HWW}^2}_{\epsilon_{HZZ}} \sim \frac{\sigma_{\nu\bar{\nu}H} \cdot \text{BR}(H \to XX)}{\sigma_{ZH} \cdot \text{BR}(H \to XX)} \end{array}$

- ➤ g_{HWW} linked to g_{HZZ} through $SU(2) \times U(1)$ → represents test of SU(2)
- ▶ model-independent measurement of Γ_H → absolute normalisation of couplings

expected ILC precision

	ILC500	ILC500 LumiUP
$\Delta\Gamma_{H}$	3.8 %	1.8 %
$\Delta \rm g_{HWW}/g_{HWW}$	0.81 %	0.42 %

Top-Yukawa Coupling at 500 GeV


ILC Parameters Joint Working Group, arXiv:1506.07830v1 [hep-ex]

- top quark heaviest particle in SM
 - couples most strongly to Higgs sector
 - ➤ g_{Htt} could contain special effects
 - > should be measured model-independently
- > at ILC directly accessible through

$$e^+e^-
ightarrow t \bar{t} H$$
 (with $H
ightarrow b \bar{b}$)

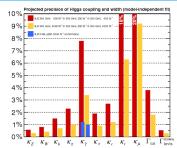
- \triangleright enhanced cross section at $\sqrt{s} = 500 \text{ GeV}$
 - ightharpoonup need full energy ightharpoonup close to production threshold
- ightharpoonup at $\sqrt{s} = 550$ GeV better precision on g_{Hrt}
 - > by factor 4 enhanced cross section
 - > main backgrounds decrease

$\Delta { m g}_{ m Htt}/{ m g}_{ m Htt}$	ILC500	ILC500 LumiUP
500 GeV	18 %	6.3 %
550 GeV	~ 9 %	~ 3 %

increasing \sqrt{s} by 10%, precision improves by factor two for same integrated luminosity

Precision on Higgs Couplings

LCC Physics Working Group, arXiv:1506.05992v2 [hep-ex]


- production processes (ZH, ννΗ, ttH)
- staged running program

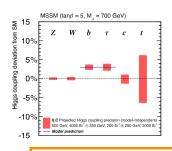
$$500$$
GeV with 500 fb⁻¹ (4000 fb⁻¹) 350 GeV with 200 fb⁻¹ (-) 250 GeV with 500 fb⁻¹ (1500 fb⁻¹)

direct and independent measurements

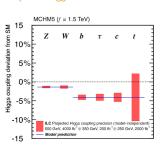
$$\sigma({\rm ZH})$$
 , $\sigma\times{\rm BR}({\rm H}\to{\rm XX})$

- \blacktriangleright couplings and $\Gamma^{\rm H}_{\rm tot}$ via model-independent global fit
 - ➤ most couplings reach precision of < 1 %
 - \blacktriangleright running at 550GeV improves Δg_{Htt} to 3 %
 - ➤ completely model-independent analysis
 → key: recoil mass measurement

parameter	ILC500	ILC500 LumiUP
$\Gamma(tot)$	3.8 %	1.8 %
g(HZZ)	0.58 %	0.31 %
g(HWW)	0.81 %	0.42 %
g(Hbb)	1.5 %	0.7 %
g(Hcc)	2.7 %	1.2 %
g(Hgg)	2.3 %	1.0 %
g(Ηττ)	1.9 %	0.9 %
$g(H\gamma\gamma)$ (w/ LHC)	7.8 % (1.2 %)	3.4 % (1.0 %)
g(Hμμ)	20 %	9.2 %
g(Htt)	18 %	6.3 %



Precision Matters

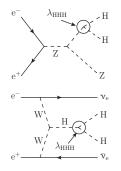

LCC Physics Working Group, arXiv:1506.05992v2 [hep-ex]

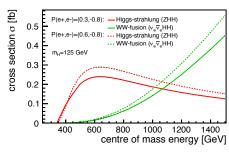
- precision matters: detect deviations due to extended Higgs sectors
- ➤ for new physics searches important to get couplings precision into 1% range
- ➤ largest deviations typically 5%-10% (BSM model dependent)
- > BSM models have different patterns of deviation from predicted couplings

Supersymmetry

Composite Higgs

Higgs couplings give proof wether Higgs is fundamental scalar or composite of more fundamental constituents




Higgs Self-Coupling Measurement at the ILC

precise measurement of SM Higgs potential via Higgs self-coupling

$$\mathsf{V}(\eta_\mathsf{H}) = rac{1}{2}\mathsf{m}_\mathsf{H}^2\eta_\mathsf{H}^2 + rac{\lambda\mathsf{v}\eta_\mathsf{H}^3}{4} + rac{1}{4}\lambda\eta_\mathsf{H}^4$$

- ightharpoonup existence of HHH coupling ightarrow direct evidence of vacuum condensation
- > one must observe double Higgs production
- > very challenging measurement
 - ightarrow small production cross section, i.e. $\sigma({
 m ZHH}) \approx 0.2 {
 m fb}$ at 500GeV
 - \rightarrow many jets in final state
 - ightarrow interference terms due to irreducible diagrams

Higgs Self-Coupling Measurement at the ILC

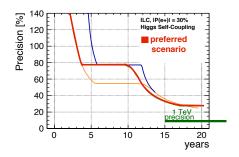
ILC Parameters Joint Working Group, arXiv:1506.07830v1 [hep-ex]

Existing full simulation analyses $\label{eq:mh} \text{for } m_H = 125 \text{ GeV}$

@ 500 GeV

- ZHH→Z(bb)(bb)
- > ZHH→Z(bb)(WW)

@ 1 TeV


- > ννΗΗ →νν(bb)(bb)
- $\triangleright \nu\nu HH \rightarrow \nu\nu (bb)(WW)$

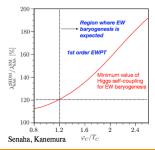
studies are ongoing

potential improvement in analyses

- > kinematic fitting
- > jet-clustering
- > matrix element method
- etc...

relative improvement of 20% expected

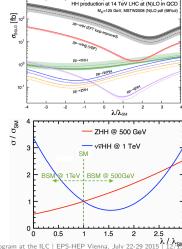
before luminosity upgrade precision of 77 % on Higgs self-coupling


after full ILC program precision of 27% can be achieved

possible energy upgrade to 1 TeV could improve precision to 10% or better

Sensitivity of Higgs self-coupling λ in BSM

- \triangleright electroweak baryogenesis (THDM) large deviation expected in λ ($\lambda \ge 1.2 \cdot \lambda_{SM}$)
- > such physics scenario difficult to be observed at LHC
- ➤ at ILC possible at 500 GeV with ZHH



example: $\lambda = 2 \cdot \lambda_{SM}$

- \succ σ_{ZHH} enhanced by 60%
- $ightharpoonup \Delta \lambda/\lambda$ improved by factor of 2

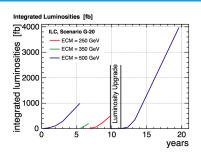
estimated physics outcome

- $\triangleright \lambda$ can be measured to 14% precision
- > 7σ discovery
- > more than 3σ deviation from SM

Summary

- ➤ Higgs discovery → need precision measurements of properties important
 - \rightarrow EWSB sector
 - ightarrow door to new physics
- > ILC is state of the art precision machine to investigate EWSB
 - → direct and model-independent measurements
 - → Higgs couplings reach required precision at 1% level
 - \rightarrow offers model-independent determination of Γ_{tot} to 1.8% precision
- ightarrow $\sqrt{s} \geq$ 500GeV necessary for Δg_{Htt} <3.0% and Higgs self-coupling $\Delta \lambda <$ 10%
 - \rightarrow if electroweak baryogenesis $\lambda < 14\%$ already at 500GeV
- recoil mass technique is key to model-independent analysis
 - \rightarrow precise and direct measurement of $\Delta\sigma_{\text{ZH}} < 2.5\%$ and $\Delta m_{\text{H}} = 15 \text{MeV}$
 - \rightarrow Higgs decay to invisible/exotic \rightarrow absolute branching ratios
 - ightarrow model-independently normalise Higgs couplings and $\Gamma_{
 m tot}$
- > political development: Japanese government started reviews on ILC project

BACKUP SLIDES


Summary Table - Input Precisions to Higgs Coupling Fit

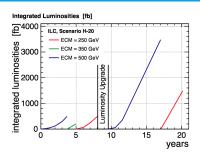
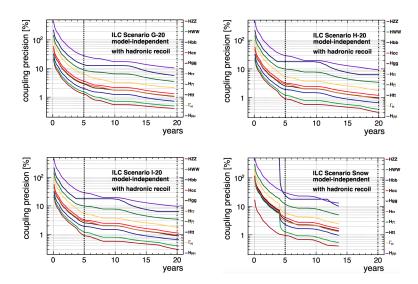

$\int \mathcal{L} dt$ at \sqrt{s}	250 fb ⁻¹ at 250 GeV 330 fb ⁻¹ at 350 GeV				$500 {\rm fb^{-1}} {\rm at} 500 {\rm GeV}$		
$P(e^-,e^+)$			(-80%	(h,+30%)			
production	Zh	$v\bar{v}h$	Zh	$v\bar{v}h$	Zh	νν̄h	tīh
$\Delta\sigma/\sigma$	[39] 2.0%	-	[10,40] 1.6%	-	3.0	-	-
BR(invis.) [41]	< 0.9%	-	< 1.2%	-	< 2.4%	-	-
decay			$\Delta(\sigma \cdot BB)$	$R)/(\sigma \cdot BR)$			
$h ightarrow bar{b}$	1.2%	10.5%	1.3%	1.3%	1.8%	0.7%	28%
$h ightarrow c ar{c}$	8.3%	-	9.9%	13%	13%	6.2%	-
$h \rightarrow gg$	7.0%	-	7.3%	8.6%	11%	4.1%	-
$h o WW^*$	6.4%	-	6.8%	5.0%	9.2%	2.4%	-
$h ightarrow au^+ au^-$	[42] 3.2%	-	[43] 3.5%	19%	5.4%	9.0%	-
$h o ZZ^*$	19%	-	22%	17%	25%	8.2%	-
$h o \gamma\gamma$	34%	-	34%	[44] 39%	34%	[44] 19%	-
$h \to \mu^+ \mu^-$ [45]	72%	-	76%	140%	88%	72%	-

Table 13: Expected accuracies for cross section and cross section times branching ratio measurements for the 125 GeV Higgs boson as provided as input to the coupling fit. All values obtained from full detector simulation studies at the given reference values of energy, integrated luminosity and polarisation. For invisible decays of the Higgs, the number quoted is the 95% confidence upper limit on the branching ratio.

Running Scenarios



Running Scenarios

Running Scenarios

	Stage	500		500 LumiUP			
Scenario	\sqrt{s} [GeV]	500	350	250	500	350	250
G-20	$\int \mathcal{L} dt [fb^{-1}]$	1000	200	500	4000	-	-
	time [years]	5.5	1.3	3.1	8.3	-	-
H-20	$\int \mathcal{L} dt [fb^{-1}]$	500	200	500	3500	-	1500
	time [years]	3.7	1.3	3.1	7.5	-	3.1
I-20	$\int \mathcal{L} dt [\text{fb}^{-1}]$	500	200	500	3500	1500	-
	time [years]	3.7	1.3	3.1	7.5	3.4	-

		∫£dt	[fb ⁻¹]	
\sqrt{s}	G-20	H-20	I-20	Snow
250 GeV	500	2000	500	1150
350 GeV	200	200	1700	200
500 GeV	5000	4000	4000	1600

Table 1: Proposed total target integrated luminosities for $\sqrt{s} = 250$, 350, 500 GeV , based on 20 "real-time" years of ILC operation under scenarios G-20, H-20 and I-20. The total integrated luminosities assumed for Snowmass are listed for comparison based on 13.7 "real-time" years.

	total run time before			
	Lumi upgrade	potential TeV upgrade		
Scenario	[years]	[years]		
G-20	9.8	19.7		
H-20	8.1	20.2		
I-20	8.1	20.4		
Snow	7.1	13.7		

Table 5: Cumulative running times for the four scenarios, including ramp-up and installation of upgrades. Not included: calibration and physics runs at Z pole and WW-threshold or scanning of new physics thresholds.

Measured Parameters

σ_{ZH}

$$\sigma_{ZH} \times BR(H \to invisible)$$

$$\sigma_{ZH} \times BR(H \to VV), \sigma_{\nu} \times BR(H \to VV)$$

$$\sigma_{ZH} \times BR(H \to bb/cc), \sigma_{\nu} \times BR(H \to bb/cc)$$

$$\sigma_{ZH} \times BR(H \to \tau\tau/\mu\mu), \sigma_{\nu} \times BR(H \to \tau\tau/\mu\mu)$$

$$\sigma_{ZH} \times BR(H \to \gamma\gamma/gg), \sigma_{\nu} \times BR(H \to \gamma\gamma/gg)$$

$$\sigma_{ttH} \times BR(H \to bb)$$

$$\sigma_{ZHH} \times BR^2(H \to bb), \sigma_{\nu\nu HH} \times BR^2(H \to bb)$$

Global fit - Model-Independent Results

- > staged running and various production processes provide many independent measurements $Y_i = \sigma \times BR(H \to XX)$, with error ΔY_i
- ightharpoonup predicted values of measurements Y_i' can always be parametrized by couplings $g_{HZZ},\,g_{HWW},\,g_{Htt}$ and Γ_H
- \triangleright additional recoil mass measurement provide absolute cross section measurement of σ_{ZH} , independent of Higgs decay mode, all modes at ILC
- \succ combined all measurements to extract 9 couplings (hzz, hww, hbb, hcc, hgg, h $\tau\tau$, h $\mu\mu$, htt, h $\gamma\gamma$) and width Γ_H
- ightharpoonup model-independent global fit by constructing χ^2

$$\chi^2 = \sum_{i=1}^{i=N} (\frac{Y_i - Y_i'}{\Delta Y_i})^2$$

> estimated uncertainties from the ILC for a model-independent fit to the Higgs couplings in which all Higgs couplings, including couplings to invisible and exotic modes are separately taken as free parameters

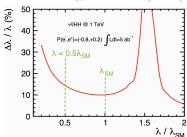
Sensitivity of Higgs self-coupling λ in BSM

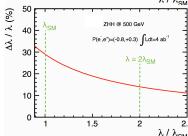
BSM scenario: improved accuracy expected (i.e. electroweak baryogenesis: $\lambda > \lambda_{\rm SM}$)

 $\lambda < \lambda_{\text{SM}}
ightarrow
u
u \text{HH at 1 TeV}$

example: $\lambda = 0.5 \cdot \lambda_{\text{SM}}$

 $\lambda > \lambda_{\mathsf{SM}} o \mathsf{ZHH}$ at 500 GeV


example: $\lambda = 2 \cdot \lambda_{SM}$


- \triangleright σ_{ZHH} enhanced by 60%
- ightharpoonup sensitivity factor reduced (1.73 ightharpoonup 1.08)
- $\triangleright \Delta \lambda / \lambda$ improved by factor of 2

both cases:

- \triangleright λ can be measured to 14% precision
- > 7σ discovery
- more than 3σ deviation from SM

extrapolated measurement accuracy of current λ_{SM} measurement (J. Tian)

Higgs Self-Coupling Analyses at ILC

Existing DBD full simulation analyses

studies performed with low-p_T $\gamma\gamma \rightarrow$ hadrons beam background without low-p_T $\gamma\gamma \rightarrow$ hadrons beam background

@ 500 GeV

- ightharpoonup ZHHightharpoonupZ(bb)(bb) for m_H = 125 GeV
- ightharpoonup ZHHightharpoonupZ(bb)(WW) for m_H = 125 GeV

@ 1 TeV

- $\blacktriangleright \nu \nu HH \rightarrow \!\! \nu \nu (bb)(bb)$ for $m_H=125~\text{GeV}$
- $\triangleright \nu \nu HH \rightarrow \nu \nu (bb)(WW)$ for $m_H = 125$ GeV

ILC white paper: Higgs self-coupling projections

(full simulation w/ $m_H=120$ GeV, extrapolated to $m_H=125$ GeV)

		5	00 GeV		500 GeV+1 TeV		
Sc	enario	Α	В	С	Α	В	С
Ва	seline	104%	83%	66%	26%	21%	17%
Lu	ımiUP				16%		

500 GeV: 500 (1600)fb⁻¹ P(e⁺e⁻): 1 TeV: 1000 (2500)fb⁻¹ P(e⁺e⁻):

 $P(e^+e^-)=(0.3,-0.8)$

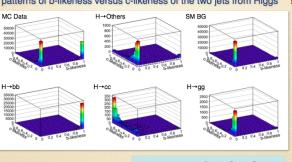
 $P(e^+e^-)=(0.2,-0.8)$

Scenario A: HH → bbbb ✔


Scenario B: adding HH → bbWW ✓, expect

20% relative improvement

Scenario C: analysis improvement (jet-clustering, kinematic fit, flavor tagging, matrix element method, etc.), expect 20% relative improvement (ongoing)


Higgs to bb, cc, gg (slide: Dr. Junping Tian, ICHEP 2014)

b-vertices and c-vertices can be well reconstructed and separated @ ILC

$$e^+ + e^- \rightarrow ZH \rightarrow f\bar{f}(jj)$$

patterns of b-likeness versus c-likeness of the two jets from Higgs

flavor tagging by LCFIPlus T.Suehara T.Tanabe

Template Fitting

$$\sigma_{ZH} \cdot {
m Br}(H o b ar{b}) \propto g_{HZZ}^2 g_{Hbb}^2 / \Gamma_H \ \sigma_{ZH} \cdot {
m Br}(H o c ar{c}) \propto g_{HZZ}^2 g_{Hcc}^2 / \Gamma_H$$

$$\sigma_{ZH} \cdot {
m Br}(H o gg) \propto g_{HZZ}^2 g_{Hgg}^2 / \Gamma_H$$