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We study Yangian-invariant deformations of scattering amplitudes in 4dN ¼ 4 super Yang-Mills theory
and 3d N ¼ 6 Aharony-Bergman-Jafferis-Maldacena (ABJM) theory. In particular, we obtain the
deformed Graßmannian integral for 4d N ¼ 4 supersymmetric Yang-Mills theory, both in momentum
and momentum-twistor space. For 3d ABJM theory, we initiate the study of deformed scattering
amplitudes. We investigate general deformations of on-shell diagrams, and find the deformed Graßmannian
integral for this theory. We furthermore introduce the algebraic R-matrix construction of deformed Yangian
invariants for ABJM theory.
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I. INTRODUCTION

Recently it has become clear that the physics of scatter-
ing amplitudes contains a plethora of interesting math-
ematical structures and unexpected symmetries.1 The prime
examples for investigating these phenomena are N ¼ 4
super Yang-Mills andN ¼ 6 super Chern-Simons (ABJM)
[2] theory in four and three dimensions, respectively.
Both of these theories are believed to be equivalent to
an AdS/CFT-dual string theory, and both are believed to be
completely integrable in the planar limit.
In the context of scattering amplitudes, integrability is

realized as a Yangian symmetry acting on the external legs
of the supersymmetric amplitude [3]. Equivalently, the
Yangian can be formulated as the combination of super-
conformal and dual superconformal symmetry, where—at
least in four dimensions—the latter arises from the duality
between amplitudes and Wilson loops. The Yangian sym-
metry is highly restrictive and, when combinedwith locality,
completely fixes the tree-level scattering matrix [4,5].
Lately, it has been noticed that the tree-level S-matrix of

N ¼ 4 SYM theory can be identified with the maximally
length-changing contributions of the dilatation operator of
the same theory [6]. The simplest example of this map is the
four-point amplitude, which serves as an integral kernel for
the celebrated one-loop dilatation operator alias a super
spin-chain Hamiltonian. Like the spin-chain Hamiltonian,
the four-point scattering amplitude can be obtained from an

R-matrix which depends on a spectral parameter z [7,8].
Remarkably, this implies the existence of a deformation of
the tree-level four-point amplitude in the parameter z.
Importantly, this deformation is still Yangian invariant.
In fact, it is necessary to consider a corresponding defor-
mation of the Yangian generators known as the evaluation
representation. This representation is more general than the
previously considered representation and thus allows for
more general invariant functions of the kinematical scatter-
ing data. Interestingly, if the evaluation parameters are all
real, the deformed Yangian generators preserve the positive
Graßmannian.
It turns out that such deformed invariants also exist

for higher multiplicities. The most natural approaches to
construct these invariants are closely related to the on-shell
methods of Arkani-Hamed et al. (see e.g. [9]). In four
dimensions, in particular a diagrammatic approach has
been studied [7,8,10], as well as an R-matrix construction
of Yangian invariants, similar in spirit to the algebraic
Bethe ansatz [11–13].
As these invariants are functions of the external data on

which the S-matrix is defined, a natural question is how they
are related to the scattering amplitudes. Preliminary attempts
to relate these invariants to the Britto-Cachazo-Feng-Witten
(BCFW) [14] building blocks of scattering amplitudes via
a uniform set of deformation parameters, however, appear
to break down when going beyond six points and the
maximally-helicity-violating (MHV) level [10]. More pre-
cisely, attempts to simultaneously deform all contributing
BCFW terms in a consistent fashion have failed so far.
To circumvent the above difficulties, instead of

deforming the individual BCFW contributions, one might
consider embedding the BCFW terms into a parent integral
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with some unspecified contour, and which depends on the
deformation parameters. As one turns off the deformation,
we are allowed to choose the contour such that the integral
reduces to the individual BCFW terms. In this way, as the
deformation parameters are introduced at the level of
the parent integral, there is a priori no inconsistency.
Luckily such an integral already exists in the form of
the Graßmannian integral [15], and the first task is to
introduce deformations such that Yangian invariance is
preserved.
In the present paper, we study deformed scattering

amplitudes in four-dimensional N ¼ 4 super Yang-Mills
theory, and in three-dimensional N ¼ 6 super Chern-
Simons theory (ABJM). The purpose of this work is the
following:

(i) 4d: We present a deformed and Yangian-invariant
Graßmannian integral and discuss its role for further
investigations of amplitude deformations. We review
and summarize the recent progress on deformed
scattering amplitudes in N ¼ 4 SYM theory in a
compact form and highlight the connections among
different approaches.

(ii) 3d: In four dimensions, the deformation parameters
are to some extent associated with central charges
or deformed helicities of the external particles. The
ospð6j4Þ algebra of ABJM theory does not contain a
central charge and the considered three-dimensional
particles do not carry helicity degrees of freedom.
Thus it is interesting to ask whether or not integrable
deformations for ABJM theory exist as well. Indeed,
we find that the four-point amplitude allows for
a one-parameter deformation which is invariant
under the evaluation representation of the Yangian
algebra Y½ospð6j4Þ�. This deformed four-point ver-
tex furnishes the building block for invariants with
higher multiplicities, which we construct along
the lines of the on-shell diagram methods of [9,16].
We then propose a deformation of the orthogonal
Graßmannian integral introduced in [17] and show
that it is consistent with the previous investigations.
Finally, we also introduce an algebraic R-matrix
construction of deformed Yangian invariants for the
three-dimensional theory.

This paper is organized as follows. In Sec. II we review
the construction of deformed Yangian invariants in
N ¼ 4 SYM theory: In particular, we present the deformed
Graßmannian integral in Sec. II B, whose Yangian invari-
ance follows from the on-shell diagram formalism dis-
cussed in Sec. II A or the direct proof in Appendix B. We
also obtain the deformed momentum-twistor version of the
Graßmannian. The study of deformed scattering amplitudes
in three-dimensional ABJM theory is initiated in Sec. III:
We demonstrate Yangian invariance of the deformed four-
point amplitude in Sec. III A. We then propose a deformed
orthogonal Graßmannian integral and show its Yangian

symmetry in Sec. III C. We explain how to build deformed
Yangian-invariant on-shell diagrams in Sec. III B, and
introduce an algebraic R-matrix construction of these
invariants in Sec. III D. Finally, we comment on differences
and similarities between the four- and three-dimensional
case and point out interesting directions for the future
in Sec. IV.

II. INTEGRABLE DEFORMATIONS IN
N ¼ 4 SYM THEORY

Recently, it has been found that on-shell diagrams allow
for interesting deformations that maintain the complete
Yangian invariance [7,8,10]. Here, we will briefly summa-
rize these ideas in preparation for the ABJM case below,
and comment on a number of features of the deformations.
The Yangian level-one generators generically take the

form2

Ĵa ¼ fabc
Xn
i;j¼1
i<j

Jb
iJ

c
j þ

Xn
i¼1

uiJa
i ; ð2:1Þ

where Ja
i are the local level-zero generators acting on the

leg i, and fabc are the structure constants of the level-zero
algebra. The evaluation parameters ui are set to zero in
the undeformed case. For the superconformal symmetry
algebra psuð2; 2j4Þ in twistor variables,3 the level-zero and
level-one generators take the form [3]

JA
B ¼

Xn
i¼1

JA
i B; JA

i B ¼ ZA
i

∂
∂ZB

i

− ðtraceÞ; ð2:2Þ

ĴA
B ¼

X
i<j

ð−1ÞC½JA
i CJ

C
jB

− ði↔jÞ� þ
X
i

uiJ
A
i B; ð2:3Þ

whereA, B are fundamental suð2; 2j4Þ indices. The central
charge operators read

Ci ¼ −ZC
i

∂
∂ZC

i

: ð2:4Þ

A. Deformed on-shell diagrams

Every on-shell diagram is either a BCFW term of a tree
amplitude or loop integrand, or a leading singularity of a
loop amplitude [9]. In the following, we review the known
integrable deformations of general on-shell diagrams.

2More about Yangian symmetry in the present context can be
found in [3,18,19]. For general introductions, see [20].

3For a definition of the twistor variables Zi, see [21]. In (2, 2)
signature, ZA

i ¼ ð ~μ _α
i ; ~λ

_α
i jηAi Þ, where ~μi is the Fourier transform of

the momentum spinor λi. Here, p
μ
i ¼ σμα _αλ

α
i
~λ _αi , and the anticom-

muting spinor ηAi , with A ¼ 1;…; 4, parametrizes the N ¼ 4
on-shell superfield [22].
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1. Three-vertices

The basic building blocks for the deformed on-shell diagrams are the three-point vertices

(2.5)

where

C∘ ¼ ð 1 α2 α3 Þ; C• ¼
�
1 0 α1

0 1 α2

�
; ð2:6Þ

and ZA
i are twistor variables that parametrize the external

states. Unlike the undeformed vertices (with ai ¼ 0), these
vertices have nonvanishing eigenvalues ci under the action
of the “local” central charges (2.4), where

Â∘
3∶ c1 ¼ a2 þ a3 ≡ a1; c2 ¼ −a2; c3 ¼ −a3;

Â•
3∶ c1 ¼ a1; c2 ¼ a2; c3 ¼ −a1 − a2 ≡ −a3:

ð2:7Þ

They are invariant under the Yangian with evaluation
parameters ui, where [10]4

Â∘
3∶ c1 ¼ u3 − u2; c2 ¼ u1 − u3; c3 ¼ u2 − u1;

Â•
3∶ c1 ¼ u2 − u3; c2 ¼ u3 − u1; c3 ¼ u1 − u2:

ð2:8Þ

Converting the twistors back to spinor-helicity variables,
the three-vertices evaluate to the deformed amplitudes

Â∘
3 ¼

δ4ðPÞδ4ð ~QÞ
½12�1þa3 ½23�1−a2−a3 ½31�1þa2

;

Â•
3 ¼

δ4ðPÞδ8ðQÞ
h12i1−a1−a2h23i1þa1h31i1þa2

: ð2:9Þ

Here, ½ij�≡ ε _α _β
~λ _αi ~λ

_β
j , hiji≡ εαβλ

α
i λ

β
j , P≡P

n
i¼1 λi ~λi,

Q≡P
n
i¼1 λiηi, and ~Q≡ ð½12�η3 þ ½23�η1 þ ½31�η2Þ.

2. Gluing

All bigger on-shell diagrams Y can be built by iterating
two gluing operations: Taking products,

ðY1;Y2Þ ↦ Y1Y2; ð2:10Þ

and fusing lines,

YðZ1;…;Zn;ZI;ZJÞ

↦
Z

d3j4ZIYðZ1;…;Zn;ZI;ZJÞjZJ¼Z−
I
; ð2:11Þ

where Z−
I is the twistor of line I with inverse momentum.

Yangian invariance is preserved under both of these
operations. In addition to the twistor, each external line
of a deformed diagram carries two labels: A central charge
ci and an evaluation parameter ui. When fusing lines of
deformed diagrams, Yangian invariance requires that [10]

cI ¼ −cJ; uI ¼ uJ: ð2:12Þ
Successively applying these two operations generates all
Yangian-invariant deformed on-shell diagrams. Combining
(2.12) with the invariance conditions (2.8) for the three-
vertices, one finds that the external central charges ci and
the evaluation parameters ui of any invariant diagram must
obey [10]

uþi ¼ u−σðiÞ; ð2:13Þ

where

u�i ≡ ui � ci; ð2:14Þ
and σ is the permutation associated to the diagram. The
permutation is obtained as follows: Starting at the external
line i, follow a path through the diagram, turning left/right
at each white/black vertex. The external line at the end of
the path will be σðiÞ.5

3. General deformed diagrams

Every deformed on-shell diagram can be written as

Ŷð1;…; nÞ ¼
Z YnF−1

j¼1

dαj

α
1þaj
j

δ4kj4kðC · ZÞ; ð2:15Þ

4An overall shift of all evaluation parameters ui is generated by
the level-zero symmetry and is thus trivial; hence, all relevant
parameters are captured by the differences of consecutive
evaluation parameters.

5While every on-shell diagram has a unique permutation
associated to it, the converse is only true for “reduced” diagrams.
See [9] for more details.
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where nF is the number of faces of the diagram, αj are a
minimal number of edge variables,6 and C is the matrix
constructed from the edge variables by “boundary meas-
urement” as explained in [9]. The gluing conditions (2.12)
together with the identifications (2.7) for the three-vertices
imply that the deformation parameter aj in the exponent of
an edge variable αj equals the central charge on the
respective line up to a sign:

ci ¼ �ai: ð2:16Þ

Here the sign is plus/minus if the arrow on the line points in
the same/opposite direction as the permutation path.
The constraints (2.13) impose n conditions on the 2n

central charges and evaluation parameters; hence, it is clear
that every diagram admits n − 1 independent nontrivial
deformation parameters (an additional parameter is the
trivial uniform shift of all ui).

4. R-matrix construction

Alternatively, (deformed) on-shell amplitudes can be
constructed by acting with a chain of R-matrices on a
suitable “vacuum state,” where the action of the R-matrices
exactly corresponds to the insertion of a (deformed) BCFW
bridge [11,12]. Each R-matrix/BCFW bridge contributes an
adjacent transposition σi to the (decorated) permutation σ
associated with the final diagram. Following the procedure
of [9], we can associate a canonical decomposition into
transpositions σi,

σ ¼ σl…σ1: ð2:17Þ

The deformed amplitude (2.15) can then be written as

Ŷð~uÞ ¼ RσlðalÞ…Rσ1ða1Þδ4kj4kðCvac · ZÞ: ð2:18Þ

Here Cvac is a suitable “vacuum matrix,” which is a k × n
matrix with k unit columns and ðn − kÞ zero columns. For
example, for n ¼ 6, k ¼ 3, a valid choice is

Cvac ¼

0
B@

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

1
CA: ð2:19Þ

The operator Rσ¼ðijÞ is defined by [11]

Rσ¼ðijÞðaÞfðZÞ ¼
Z

dα
α1þa fðZÞ

����
Zi→ZiþαZj

: ð2:20Þ

This R-operator can be identified with (an integral kernel
for) an R-matrix; the shift of Z in the definition is nothing
but the BCFW shift. We can prove (2.18) by induction with
respect to the number of BCFW bridges.
This algebraic formulation is another way of demon-

strating the Yangian invariance of the amplitude (at the
level of on-shell diagrams), and the integrable structures
behind it. In Sec. III D we provide a similar discussion for
the ABJM theory.

B. Deformed Graßmannian integral

In this section we present the deformed Graßmannian
integral7 for N ¼ 4 SYM theory as a special case of the
above on-shell diagrams. Being embedded into the on-shell-
diagram formalism already implies the Yangian symmetry
of the deformed integral. We additionally demonstrate the
Yangian invariance of theGraßmannian integral explicitly in
Appendix B.

1. The Graßmannian integral

A special class of diagrams are the “top cells” [15].
These are diagrams of maximal dimension (maximal
number of integration variables). Their name stems from
the fact that all lower-dimensional on-shell diagrams are
realized as (iterated) boundaries of top-cell diagrams. They
can be classified by the number n of external lines and the
helicity

k ¼ 2nb þ nw − ni; ð2:21Þ
where nb=w is the number of black/white vertices, and ni is
the number of internal lines. For each n and k, there is a
unique top-cell diagram. It is the reduced diagram with the
maximal number of faces, nF ¼ kðn − kÞ þ 1. Every boun-
dary measurement on the top-cell diagram equals a gauge-
fixed version of the Graßmannian integral of [15],

Gn;kðZ1;…;ZnÞ¼
Z

dk·nC
jGLðkÞj

1

M1þb1
1 …M1þbn

n
δ4kj4kðC ·ZÞ;

ð2:22Þ

where Mi ¼ ji;…; iþ k − 1j is the ith minor of C. The
integrand is invariant under C ↦ GLðkÞ · C, and jGLðkÞj
is the volume of the gauge group. The permutation
associated to the top cell simply is a k-fold cyclic shift,
σ∶ f1;…;ng↦ fn−kþ1;…;n;1;…;n−kg. Noting that
ci ¼ −ðbi−kþ1 þ � � � þ biÞ, the invariance conditions
(2.13) imply

bi ¼
1

2
ðu−i − u−i−1Þ ¼

1

2
ðuþi−k − uþi−k−1Þ; ð2:23Þ

6The edge variables are essentially BCFW shift parameters.
Fixing a GL(1)-gauge redundancy at each vertex, their number
can always be reduced to nF − 1.

7Note that the deformed Graßmannian formula as well as its
momentum-twistor version discussed below, were independently
obtained in [34].
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and hence
P

ibi ¼ 0, which ensures GLðkÞ invariance. The
Yangian invariance of (2.22), with the parameters set to
(2.23), can also be shown by directly acting with the
Yangian generators, see Appendix B.

2. Singularities and residues

In the undeformed case, lower-dimensional on-shell
diagrams are obtained from the top cell (2.22) by localizing
some of the integrations on residues. The n-point, helicity k
top-cell diagram is defined in terms of kðn − kÞ integra-
tions, of which 2n − 4 can be performed trivially, using the
bosonic delta functions. Iteratively localizing all remaining
integrations on a suitable combination of residues gives the
tree-level amplitudeAn;k. In terms of edge variables, taking
a residue amounts to setting one edge variable to zero, and
the residue is given by the on-shell diagram with the
corresponding edge removed. Hence tree-level amplitudes
are given by summing a certain set of on-shell diagrams.
In the presence of generic deformations, the integrations

can no longer be performed on residues. From the perspec-
tive of the gauge-fixed integral (2.15), one possibility to
proceed is to just evaluate the integral on the same contour as
in the undeformed case. This requires us to set the defor-
mation parameters aj to zero on the respective edge
variables, as otherwise the contour would not be closed,
due to branch cuts. In this case, the result of the integration is
a sum over the same set of on-shell diagrams as in the
undeformed case, where now each diagram is deformed.
However, setting some of the parameters aj to zero reduces
the space of deformation moduli. In fact, it was noted in [10]
that for generic tree amplitudes, the constraints imposed by
this procedure rule out all deformations. In other words, the
integral can only be localized by residues on a standard tree
contour when all moduli aj are set to zero. Setting the
exponent of an edge variable α to unity and localizing the
integration by residue on α ¼ 0 amounts to “undoing” a
deformed BCFW bridge (R-matrix insertion). The defor-
mation parameters of the diagram obtained in this way from
the top cell will by construction satisfy (2.13) for σ being the
k-fold cyclic shift of the top cell; but they will also satisfy
(2.13) for all intermediate permutations σ0 that lead from σ to
the permutation of the final diagram. Therefore, localizing
the Graßmannian integral generates only a subspace of all
admitted deformations for all lower-dimensional diagrams.
Another perspective on the incompatibility of BCFW

and deformations is provided by the Graßmannian integral
in its original, un-gauge-fixed form (2.22). In the unde-
formed case, the tree-level amplitudes are given by the
residues as the integral localizes on the zeros of the minors.
Thus an amplitude is identified with the locus of zeros for a
collection of minors. To further admit this localization, the
exponents of these minors should be undeformed. As
the number of BCFW terms increases, eventually this
collection of minors covers the whole set, and thus no
deformation is allowed. Indeed from [15], we see that in the

seven-point NMHV case, the collection of minors involved
in the localization covers six of them, and since the sum of
bi’s must vanish, there are no admissible deformations left.
An alternative and perhaps more promising treatment for

the deformed Graßmannian integral (2.22) would be to
leave the deformation parameters generic and to evaluate
the integral by other means on an appropriate contour. We
will comment on this idea in Sec. IV below.

3. Note on positivity

There exists a remarkable relation between on-
shell diagrams and the positroid stratification of the
Graßmannian [9]. The positroid stratification is the classi-
fication of all distinct linear dependencies of consecutive
columns in the C-matrix, and it turns out that there is a one-
to-one correspondence between inequivalent on-shell dia-
grams and inequivalent cells in the stratification. An
interesting property that can be associated with these
cells is that there exist parametrizations such that all non-
vanishing minors are positive. It has been noted that the
Yangian generators generate diffeomorphisms that act on the
Graßmannian in such a way that positivity is preserved [9].
One may ask if the deformed Yangian generators can still be
understood as positivity-preserving diffeomorphism. This is
indeed the case: The level-one generators are deformed by
terms uiZi∂=∂Zi, which,when acting on the delta functions
δ4kj4kðC · ZÞ, translate into ui

P
aCai∂=∂Cai, which is

nothing but a little group scaling that simply rescales the
ith column of the matrix C. Thus, as long as all evaluation
parameters ui are real, positivity of the cell is preserved.

C. Relation to deformed momentum-twistor invariants

Everything that has been stated above for on-shell
diagrams in twistor variables Z is equally true for on-shell
diagrams in momentum-twistor variablesW: Replacing Zi
with Wi in the expressions (2.15),(2.5),(2.11),(2.22), the
resulting momentum-twistor diagrams are invariant under
the momentum-twistor Yangian8 with generators [23]

Îa ¼ fabc
Xn
i;j¼1
i<j

Ib
iI

c
j þ

Xn
i¼1

viIa
i ; ð2:25Þ

IA
B ¼

Xn
i¼1

IA
i B; IA

i B ¼ WA
i

∂
∂WB

i

− ðtraceÞ;

Ci ¼ WC
i

∂
∂WC

i
: ð2:26Þ

8Here, Wi ≡ ðλαi ; μ _α
i jχIi Þ, with

μ _α
i ≡ εαβy _αα

i λβi ; χi ≡ εαβθ
α
i λ

β
i ; ð2:24Þ

where the dual coordinates (yi; θi) are defined through
yi − yiþ1 ¼ pi and θi − θiþ1 ¼ λiηi.
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On the other hand, in the undeformed case it is known that
for any invariant YðWÞ of the momentum-twistor Yangian,
the expression

δ4ðPÞδ8ðQÞ
h12ih23i…hn1iYðWÞ; ð2:27Þ

when transformed to twistor variables Z, is an invariant of
the twistor-variable Yangian, and vice versa [23,24].9 It
turns out that a similar statement holds in the deformed
case. This can be seen as follows: An explicit procedure for
reducing any on-shell twistor diagram to a corresponding
momentum-twistor diagram is given in Sec. 8.3 of [9]. The
deformation only affects the integration measure, and hence
the reduction procedure applies in exactly the same way to
the deformed diagrams. Under the reduction, the minors of
the matrixC transform to minors of the reduced matrix ~C as

detCjði;…;iþk−1Þ ¼ hi; iþ1ihiþ1; iþ2i…
× hiþk−2; iþk−1idet ~Cjðiþ1;…;iþk−2Þ:

ð2:28Þ

Hence the only modification in the deformed case is a
deformation of the MHV tree prefactor in (2.27). In
particular, for the deformed top cell (2.22), one finds

Ĝn;kðZÞ !Z→W δ4ðPÞδ8ðQÞ
h12i1þðu−

1
−u−n−kþ2

Þ=2…hn1i1þðu−n−u−n−kþ1
Þ=2

× Ĝn;k−2ðWÞ; ð2:29Þ

Ĝn;kðWÞ≡
Z

dk·n ~C
jGLðkÞj

1

~M1þbn
1

~M1þb1
2 … ~M1þbn−1

n

δ4kj4kð ~C ·WÞ;

ð2:30Þ
where the ~Mi are the minors of the reduced matrix ~C. At the
same time, we know that the momentum-twistor top cell
Ĝn;k−2ðWÞ by itself is invariant under the deformed
momentum-twistor Yangian (2.26),(2.25) once we identify

b̂i ≡ bi−1 ¼
1

2
ðv−i − v−i−1Þ; v−i ¼ vi − cduali ; ð2:31Þ

according to (2.23). Here, cduali ¼ ci−1 are the eigenvalues
of Ĝn;k−2ðWÞ under the local central charges Ci in (2.26). It
follows that the deformed Graßmannian integral is invari-
ant, both under the deformed original-twistor Yangian
(2.3),(2.2) and the deformed momentum-twistor Yangian
(2.25),(2.26), once one identifies

u−i − u−i−1 ¼ v−iþ1 − v−i ; ð2:32Þ

where the prefactor in (2.29) has to be taken into account
in the invariance statement. The relation (2.29) between
invariants of the twistor Yangian and the momentum-
twistor Yangian generalizes to all deformed on-shell
diagrams that can be obtained from the deformed
Graßmannian formula by localization on residues as
explained above:

Ŷn;kðZÞ !Z→W δ4ðPÞδ8ðQÞ
h12i1þðu−

1
−u−n−kþ2

Þ=2…hn1i1þðu−n−u−n−kþ1
Þ=2

× Ŷn;k−2ðWÞ: ð2:33Þ

Here the parameters u−i now satisfy additional constraints
imposed by setting the appropriate moduli bi to zero for the
purpose of localizing the integrations. It would be interest-
ing to understand whether the equivalence (2.33) extends
also to deformed diagrams that cannot be obtained by
localizing the top cell, i.e. whose deformation parameters
u−i are unconstrained. Also, it would be interesting to check
whether the deformed Yangians (2.3),(2.2) and (2.25),
(2.26) still map to each other as in the undeformed case.

D. Examples

Let us summarize the construction of invariant deformed
diagrams, and close the discussion of N ¼ 4 SYM defor-
mations by commenting on some interesting examples,
including curious deformations for MHV amplitudes as
well as an explicit exposition of the deformed six-point
NMHV Graßmannian integral.

1. Summary of construction

Working out the admissible deformations for any given
single diagram works as follows [10]. First pick a perfect
orientation and a set of ðnF − 1Þ edge variables. The
candidate invariant then is (2.15), and the invariance
constraints on the external central charges c1;…;n, evalu-
ation parameters u1;…;n, and edge variable parameters
a1;…;nF−1 are the following: For each left-right path10 from
site i to site j, set uþi ¼ u−j , which also must equal the
internal parameter uint � cint on each labeled edge along
the path. Here the sign depends on the direction of the edge,
and the internal central charge cint equals the edge
parameter al on that edge, as follows from (2.7).
For diagrams that appear in BCFW decompositions of

tree-level amplitudes, the number of integrations ðnF − 1Þ
equals the number ð2n − 4Þ of bosonic delta functions. In
this case, the expression for the diagram in terms of spinor-
helicity variables can be worked out by solving the delta-
function constraints for the edge variables, taking into9The underlying reason is that the Yangian of the ordinary

superconformal algebra with generators (2.2),(2.3) and the
Yangian of the dual superconformal algebra with generators
(2.25),(2.26) in fact can be mapped to each other [3,23].

10Turn left at each white vertex ( ¯MHV), turn right at each black
vertex (MHV).
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account the resulting Jacobi factor. In the case of MHV tree
amplitudes (which are single top-cell diagrams), the minors
ðijÞ of the matrix C equal the spinor brackets hiji, and the
edge variables are given in terms of these minors by the
function bridgeToMinors of the Mathematica package
given in [25]. Comparing the measure ðα1…α2n−4Þ−1 to
the Parke-Taylor MHV denominator, one can directly infer
the Jacobi factor from the delta functions and write down
the deformed amplitude.

2. MHV amplitudes

For MHV amplitudes, the explicit deformations can be
worked out and analyzed using [25] as explained above.
Let us briefly discuss these deformations (see also [8]).
For odd multiplicities, all ci can be expressed in terms of

the ui, which remain free. The ci among themselves only
satisfy the single equation

P
n
i¼1 ci ¼ 0. When all u are set

to zero, no deformation remains. Conversely, there is no
deformation with all ci ¼ 0.
For even multiplicities, invariance requires that the sums

of even/odd ci vanish separately:

Xn
i¼1
i odd

ci ¼ 0;
Xn
i¼2
i even

ci ¼ 0: ð2:34Þ

These cases admit a one-parameter family of solutions
where all ci vanish, namely

ðu1;…; unÞ ¼ ðz;−z;…; z;−zÞ; ð2:35Þ

in this case the deformed amplitudes take the form

AMHV
n ðzÞ ¼ AMHV

n

�h12ih34i…hn − 1ni
h23ih45i…hn1i

�
z
: ð2:36Þ

Note that cyclic shifts of these deformations amount to
flipping the sign of z, such that the deformed amplitude is
invariant under two-site cyclic shifts.
When n ¼ ð6mod 4Þ, still all ci can be expressed in

terms of the ui, which remain unconstrained; and there is
no deformation where all ui vanish. However when
n ¼ ð4mod 4Þ, then not only do the ci need to satisfy
(2.34), but also the even and odd ui need to satisfy separate
equations:

Xn
i¼1
i odd

ð−1Þði−1Þ=2ui ¼ 0;
Xn
i¼2
i even

ð−1Þi=2ui ¼ 0: ð2:37Þ

As a consequence, not all ci can be expressed in terms of ui,
and in addition to the solutions (2.35), there is a two-
parameter family of solutions with all ui ¼ 0, namely

ðc1;…; cnÞ ¼ ðco; ce;−co;−ce;…; co; ce;−co;−ceÞ:
ð2:38Þ

These deformations take the form

AMHV
n ðcþ; c−Þ ¼ AMHV

n

�h12ih56i…hn − 3; n − 2i
h34ih78i…hn − 1; ni

�
cþ

×

� h45ih89i…hn1i
h23ih67i…hn − 2; n − 1i

�
c−

;

ð2:39Þ

where c� ≡ ðco � ceÞ=2. Note that this implies that MHV
amplitudes with n ¼ ð4mod 4Þ allow for a deformation
without deforming the Yangian generators.

3. General cells

The different types of deformations for MHVamplitudes
discussed above can be understood as follows: For a given
n-point diagram with associated permutation σ, let Pσ be
the finest partition of f1;…; ng such that σ only permutes
labels within individual parts of the partition. Summing up
the invariance conditions (2.13) for each part of the
partition results in the constraints

0 ¼
X
j∈p

cj for all p ∈ Pσ; ð2:40Þ

where p denotes any single part of Pσ. For parts with
an even number of elements one finds the further
conditions

0 ¼
X
j∈p

ð−1ÞipðjÞuj for all p ∈ Pσ with jpjeven;

ð2:41Þ

where ipðjÞ denotes the position of j in p, i.e. the sign
alternates. For p with jpj odd, one cannot sum the
invariance relations in a way that all cj drop out.
For MHV amplitudes, the permutation is a shift by two

sites. When n is odd, the corresponding partition is trivial,
and there are no nontrivial constraints solely among u’s or
c’s. When n is even, the partition simply consists of a part
that contains only odd sites and a part that contains only
even sites; hence the ci will satisfy the relations (2.34). The
relations (2.37) solely among u’s will only hold when
n ¼ ð4mod 4Þ, in which case each of the two parts contains
an even number of elements. This kind of analysis
straightforwardly generalizes to all top-cell diagrams.
The most extreme examples of partitions arise when the

permutation satisfies σðiÞ ¼ j ⇔ σðjÞ ¼ i. In this case,
each part of the partition has only two elements, and the
invariance conditions simply become ci ¼ −cj, ui ¼ uj for
each p ¼ fi; jg. The simplest example of this type is given
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by the four-point amplitude. As will become clear in
Sec. III B, this case is relevant for ABJM theory [16,26].

4. Remark

Curiously, one type of deformationwas alreadymentioned
in the literature long before the idea of general invariance-
preserving deformations was proposed in [7,8]: Section 6 of
[27] discusses the possibility of deformations with non-
vanishing central charges ci. In particular, a specific defor-
mation of the six-point NMHV top cell was identified, which
has alternating exponents on the minors in the Graßmannian

integral. This specific deformation is not compatible with a
conventional BCFW decomposition though.

5. Six-point NMHV integral

In the NMHV case (k ¼ 3), the momentum-twistor-
space Graßmannian is Gð1; nÞ. For n ¼ 6, after gauge
fixing the GL(1) and using the bosonic delta functions
to localize four of the integrations, one obtains a one-
dimensional integral. The deformed momentum-twistor
integral then takes the form

Ĝ6;1ðWÞ ¼
Z

dc
δ4ðχ1 þ

P
5
i¼2 a

�
i ðc − c�i Þχi þ cχ6Þ

ðc − c�2Þ1þb2ðc − c�3Þ1þb3ðc − c�4Þ1þb4ðc − c�5Þ1þb5c1þb6
Q

5
i¼2ða�i Þ1þbi

; ð2:42Þ

where Wi ¼ ðWi; χiÞ and

c�2 ¼ −
h3451i
h3456i ; c�3 ¼ −

h4512i
h4562i ;

c�4 ¼ −
h5123i
h5623i ; c�5 ¼ −

h1234i
h6234i ;

a�2 ¼ þh3456i
h2345i ; a�3 ¼ þh4562i

h2345i ;

a�4 ¼ þh5623i
h2345i ; a�5 ¼ þh6234i

h2345i ; ð2:43Þ

with h1234i≡ ϵABCDWA
1W

B
2W

C
3W

D
4 .

III. INTEGRABLE DEFORMATIONS IN
ABJM THEORY

In this section we initiate the investigation of integrable
deformations of scattering amplitudes in ABJM theory.
Leading singularities of the N ¼ 6 superconformal Chern-
Simons matter theory, also known as ABJM theory, are
invariant under the undeformed ospð6j4Þ Yangian algebra.
These leading singularities are equivalent to the residues of
an integral formula: An integral over the space of k null
planes in a 2k-dimensional space, whose integration con-
tour localizes on the zeros of consecutive minors of the
respective ðk × 2kÞ matrix.11 Tree-level amplitudes again
are given by linear combinations of these leading singu-
larities in which all unphysical poles cancel.
At four points, there is only one leading singularity and

thus, without loss of generality, we will consider the most
general possible deformation of the four-point amplitude

that is consistent with the level-zero generators, i.e. the
ospð6j4Þ superconformal symmetry. The deformation will
generically break the invariance under the original level-
one generators. However, symmetry is preserved if we
deform the level-one generators appropriately, that is if we
use the evaluation representation of the Yangian with
nonvanishing evaluation parameters.
The resulting four-point deformation will serve as a

template from which we construct a deformation of the
orthogonal Graßmannian integral and the corresponding
deformed symmetry generators. It will also serve as the
fundamental building block for constructing more general
deformed Yangian invariants, which are deformations of
the residues of the undeformed Graßmannian integral.

A. Deformed four-point amplitude

Super-Poincaré invariance requires the four-point ampli-
tude to be proportional to the (super)momentum conserving
delta functions. Dilatation invariance constrains the pro-
portionality function to be a degree −2 polynomial of
hiji.12 We thus make the following natural ansatz for the
deformed four-point amplitude13:

11Conformal three-dimensional Chern-Simons matter theories
have nontrivial S-matrix elements for even multiplicity only. This
is because only the matter fields carry physical degrees of
freedom and dimensional analysis forbids cubic couplings among
the matter fields.

12Here, hiji≡ εαβλ
α
i λ

β
j , where the spinors λi parametrize the

three-dimensional massless momenta as pμ
i ¼ σμαβλ

α
i λ

β
i for sym-

metric matrices σμ.
13There are two superfields in ABJM theory that take the

form [18]

ΦðΛÞ ¼ ϕ4ðλÞ þ ηAψAðλÞ þ
1

2
εABCη

AηBϕCðλÞ

þ 1

6
εABCη

AηBηCψ4ðλÞ; ð3:1Þ
Φ̄ðΛÞ ¼ ψ̄4ðλÞ þ ηAϕ̄AðλÞ þ

1

2
εABCη

AηBψ̄CðλÞ

þ 1

6
εABCη

AηBηCϕ̄4ðλÞ: ð3:2Þ

Here Φ is bosonic while Φ̄ is fermionic.
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A4ðΦ̄1;Φ2; Φ̄3;Φ4Þðz0Þ ¼
δ3ðPÞδ6ðQÞ

h12i1þz0 h23i1−z0

≡ δ3ðPÞδ6ðQÞfðλÞ: ð3:3Þ

Following [18], it is straightforward to see that this
is invariant under the superconformal boost (level-zero)
generators, and thus under the full ospð6j4Þ level-zero
symmetry algebra.

1. Invariance under the level-one momentum
generator

For Yangian invariance, we only need to show the
invariance under the level-one momentum generator;
invariance under all other level-one generators then follows
from the commutation relations and the level-zero invari-
ance. The level-one momentum generator in the evaluation
representation takes the form [18]

P̂αβ ¼
X

1≤j<k≤n

1

2
½ðLðα

jγ þ δðαγ DjÞPγβÞ
k −QðαA

j QβÞ
k A − ðj↔kÞ� þ

X
k

ukP
αβ
k : ð3:4Þ

The single-site generators are given in Appendix A. Using the transformation properties of the delta functions, the
symmetry equation simplifies to14

P̂αβA4ðz0Þ ¼ δ3ðPÞδ6ðQÞ
� X

1≤j<k≤4

�
1

2
Pγðβ

k

�
λαÞj ∂jγ þ

1

2
δαÞγ

�
fðλÞ − ðj↔kÞ

�
þ
X4
k¼1

ukP
αβ
k fðλÞ

�
: ð3:5Þ

We know from [18] that the undeformed amplitude is invariant under P̂juk¼0, and thus only the terms proportional

to z0 remain when acting with P̂juk¼0 on the deformed amplitude. These terms are generated when the bosonic
derivatives act on the denominator of A4ðz0Þ. We can collect the terms from the first term in the square bracket as
follows:

Uαδ
k ≡Xk−1

j¼1

λαj∂δ
jfðλÞ ¼

8>>>>>>>>><
>>>>>>>>>:

0þ � � � ; k ¼ 1;

−z0 λ
α
1
λδ
2

h12i fðλÞ þ � � � ; k ¼ 2;�
−z0 λ

½α
1
λδ�
2

h12i þ z0 λ
α
2
λδ
3

h23i

�
fðλÞ þ � � � ; k ¼ 3;

�
−z0 λ

½α
1
λδ�
2

h12i þ z0 λ
½α
2
λδ�
3

h23i

�
fðλÞ þ � � � ; k ¼ 4:

ð3:6Þ

Here we only display the terms proportional to z0 since the rest is known to cancel in the undeformed limit. Evaluating
the symmetric and antisymmetric contributions from Uαδ

k separately, we find15

1

2

X4
k¼1

Pγβ
k εγδU

ðαδÞ
k þ ðα↔βÞ ¼ þz0½Pαβ

2 −Pαβ
3 �fðλÞ; 1

2

X4
k¼1

Pγβ
k εγδU

½αδ�
k þ ðα↔βÞ ¼ −z0½Pαβ

2 þPαβ
3 �fðλÞ: ð3:7Þ

Repeating the analysis for the term with ðj↔kÞ in (3.5), we find (we relabel the summation indices)

Ūαδ
k ≡ X4

j¼kþ1

λαj∂δ
jfðλÞ ¼

8>>><
>>>:

z0
�

λα
2
λδ
1

h12i þ
λ½α
2
λδ�
3

h23i

�
fðλÞ þ � � � ; k ¼ 1;

−z0 λ
α
3
λδ
2

h23i fðλÞ þ � � � ; k ¼ 2;

0þ � � � ; k ¼ 3; 4;

ð3:8Þ

and thus

15We use that εγδεαδ ¼ −δαγ and λ½αj λ
β�
k ¼ −εαβhjki, where we define ε12 ¼ 1 ¼ −ε12.

14Here we use the notation XðαβÞ ¼ Xαβ þ Xβα and X½αβ� ¼ Xαβ − Xβα.
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−
1

2

X4
k¼1

Pγβ
k εγδŪ

ðαδÞ
k þðα↔βÞ ¼þz0½−Pαβ

1 þPαβ
2 �fðλÞ; −

1

2

X4
k¼1

Pγβ
k εγδŪ

½αδ�
k þðα↔βÞ ¼−z0½þPαβ

1 þPαβ
2 �fðλÞ: ð3:9Þ

Combining the results from (3.7),(3.9), we finally arrive at

P̂αβA4ðz0Þ ¼ δ3ðPÞδ6ðQÞ
�
Pαβ

1 ðu1 − z0Þ þPαβ
2 u2 þPαβ

3 ðu3 − z0Þ þPαβ
4 u4

�
fðλÞ: ð3:10Þ

Hence, requiring this expression to be proportional to the
total momentum acting on the deformed amplitude (i.e. to
vanish), we find the following constraints on the parameters
following from invariance under the level-one momentum
generator:

u1 − z0 ¼ u2 ¼ u3 − z0 ¼ u4 ¼ const: ð3:11Þ

Alternatively, these constraints can be expressed as

uk − uk−1 ¼ ð−1Þk−1z0; k ¼ 1;…; 4: ð3:12Þ
In conclusion, the deformed four-point amplitude in (3.3) is
invariant under the evaluation representation of the Yangian
generators of Y½ospð6j4Þ�, provided that the level-one
generators are deformed as in (3.4) with the parameters
ui related to z0 via (3.12).
Note that the deformation (3.3) changes the weight of

A4ðΦ̄;Φ; Φ̄;ΦÞ under expðiπλi · ∂=∂λiÞ for i ¼ 1; 3, but
not for i ¼ 2; 4. That is, the deformation deforms the phase
of the fermionic legs, but preserves the phase of the bosonic
legs. For further comments on this, see the discussion
around (3.49) below.
In the next two sections we will discuss deformed

invariants at higher multiplicities. First we will construct
bigger deformed on-shell diagrams by gluing four-point
vertices. Next we show the invariance of the deformed
Graßmannian integral explicitly.

B. Gluing invariants

All ABJM on-shell diagrams can be constructed by
iteratively gluing four-point vertices together [9,16]. Along
the lines of the four-dimensional case [10] reviewed in
Sec. II A above, the gluing procedure can be split into two
steps that need to be iterated: Taking products of diagrams,
and fusing lines. In the following we will show that the
gluing procedure indeed preserves the Yangian invariance
also in the deformed case, provided that the deformation
parameters are identified appropriately. For showing invari-
ance, we will use the completely general form (2.1) of the
n-point Yangian level-one generators.

1. Products

Given two diagrams Y1ð1;…; mÞ and Y2ðmþ 1;…; nÞ
that are invariant under the m-point and ðn −mÞ-point

Yangian algebras with evaluation parameters fu1;…; umg
and fumþ1;…; ung, the product

Y0ð1;…; nÞ ¼ Y1ð1;…; mÞY2ðmþ 1;…; nÞ ð3:13Þ

is invariant under the n-point Yangian algebra with evalu-
ation parameters fu1;…; ung:

ĴaY0 ¼ ðĴaY1ÞY2þY1ðĴaY2ÞþfabcðJaY1ÞðJbY2Þ¼0:

ð3:14Þ

2. Fusion

From any invariant ðnþ 2Þ-point diagram Yð1;…; n;
nþ 1; nþ 2Þ, one can construct an n-point diagram by
fusing two adjacent external lines,

Y0ð1;…; nÞ ¼
Z

d2j3Λd2j3Λ0δ2j3ðΛ − iΛ0Þ

× Yð1;…; n;Λ;Λ0Þ: ð3:15Þ

Here we will use the kinematical variables ΛA ¼ ðλα; ηAÞ
with α ¼ 1; 2 and A ¼ 1; 2; 3.16 The diagram Y0 will be
invariant under the n-point Yangian algebra with evaluation
parameters fu1;…; ung provided that

unþ1 ¼ unþ2: ð3:16Þ

Both the level-zero and the level-one invariance of Y0 can
be shown straightforwardly, using the ðnþ 2Þ-point invari-
ance of Y and the fact that

Z
d2j3Λd2j3Λ0δ2j3ðΛ − iΛ0ÞðJa

Λ þJa
Λ0 ÞfðΛ;Λ0Þ ¼ 0

ð3:17Þ

for any function f. The latter can be verified directly with
the explicit ospð6j4Þ generators given in Appendix A.
Using the invariance of Y, the action of the level-one
generator on Y0 can be written as

16Some care needs to be taken in the definition of the on-shell
integration over d2j3Λ, see e.g. [28]. Throughout this work, such
integrations will always be localized on delta functions.
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Ĵa
1…nY0ð1;…; nÞ ¼ −fabc

Z
d2j3Λd2j3Λ0δ2j3ðΛ − iΛ0Þ

×

�Xn
i¼1

Jb
i ðJc

Λ þJc
Λ0 Þ þJb

ΛJ
c
Λ0

�

× Yð1;…; n;Λ;Λ0Þ: ð3:18Þ

The first term in the parentheses vanishes due to (3.17).
Again using (3.17), the second term can be rewritten as
Jb

ΛJ
c
Λ ≃ 1

2
½Jb

Λ;J
c
Λ� ¼ 1

2
fbcdJd. Hence, this term is pro-

portional to fabcfbcd, which vanishes for ospð6j4Þ, as it

does for psuð2; 2j4Þ, since the dual Coxeter number
is zero.
The above procedure of taking products and fusing lines

allows us to fuse two legs from different diagrams, or two
legs sitting on the same diagram. Note, however, that the
two fused legs have to correspond to different multiplets,
i.e. to fields Φ and Φ̄, and that they must be adjacent.

3. Four-vertex

We have seen above that the deformed Yangian-invariant
four-vertex reads17

(3.19)

where the Yangian evaluation parameters ui;j;k;l need to
satisfy

ui ¼ uk; uj ¼ ul; z0 ¼ ui − uj: ð3:20Þ

All bigger deformed on-shell diagrams can be constructed
from this four-vertex by applying the invariance-preserving
operations described above. For this purpose, it is most
useful to write the vertex (3.19) in a gauge-fixed integral
form18

A4ðzÞ ¼
Z

dθ
sinðθÞ1þz δ

4j6ðCðθÞ · ΛÞ; ð3:21Þ

where the C-matrix CðθÞ is given by [16]

CðθÞ ¼
�
1 0 i sin θ i cos θ

0 1 −i cos θ i sin θ

�
: ð3:22Þ

It is easy to see that z ¼ −z0 for this choice of C-matrix. In
general, the relative sign between z and z0 depends on
which columns of CðθÞ are set to unit vectors. Therefore, as
we build up a general on-shell diagram, we need to keep
track of which columns of CðθÞ are set to unity. A
convenient way of keeping track is to decorate the
lines connected to each vertex with two incoming and
two outgoing arrows, where the former indicates that
these columns form the unit matrix. We will only consider
the cases where the two incoming arrows are adjacent,

which leads to a constraint on z included in the following
figure:

(3.23)

The sign of z is determined by the following rule: Start with
a line associated with the parameter uj and compare its
arrow to the clockwise neighboring line associated with uk.
If both arrows have the same orientation with respect to the
vertex, then z ¼ uk − uj; if the arrows have opposite
orientations, then z ¼ uj − uk. As we will see further
below, the lines in (3.23) will be identified with the rapidity
lines of integrable models, and the parameters ui with
rapidity parameters.

4. General deformed diagrams

Any reduced 2k-point on-shell diagram of ABJM theory
can be drawn as k straight lines that intersect,19 where each
intersection is a four-point on-shell vertex. Turning on the
deformations, there is one deformation modulus zi for each
four-vertex, where i labels the vertices in the respective
diagram. For the larger diagrams, the invariance conditions
(3.23) for each four-vertex, and the invariance conditions
(3.16) from fusing lines must be respected. It immediately
follows that for every invariant 2k-point diagram, there
remains exactly one evaluation parameter for each of the k
straight lines, as the evaluation parameters ui on glued lines
need to be identified. For example for the following
diagram we have

18The domain of integration has to be chosen such that the
delta functions localize the integral on a single point. For real
kinematics in Minkowski space, a valid choice for the integration
domain is ½0; πÞ.

17The last equality follows from hiji ¼ �hkli, hjki ¼ �hlii
(with aligned signs) due to momentum conservation.

19For reduced diagrams, any two lines intersect at most once.
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Each vertex deformation modulus zi is in turn determined
to be the difference of the evaluation parameters on the
lines that pass through the vertex according to (3.23). As an
example, the zi’s in Fig. 1 are given by

z1 ¼ u2 − u1; z2 ¼ u3 − u1; z3 ¼ u4 − u1;

z4 ¼ u3 − u2; z5 ¼ u4 − u2; z6 ¼ u4 − u3:

ð3:24Þ

For generic diagrams, the conditions (3.23) not only
determine the vertex moduli, but also induce constraints
among them: For each closed loop,

P
ið�ziÞ ¼ 0, where i

enumerates the vertices along the loop, and where the sign
depends on the relative directions of arrows along the loop
at the respective vertex.
In summary, every 2k-point diagram admits a ðk − 1Þ-

parameter family of deformations, where the ðk − 1Þ
parameters are given by the evaluation parameters u1…k
on the k lines, modulo a trivial overall shift of all ui’s.
As described in [16], the vertex (3.21) provides “canoni-

cal coordinates,” which means that gluing multiple such
vertices produces no Jacobian from combining the delta

functions; that is a general (deformed) diagram constructed
in this way takes the simple form

YðΛÞ ¼
Z

dθ1
sinðθ1Þ1þz1

…
dθl

sinðθlÞ1þzl
δ2kj3kðCðθiÞ · ΛÞ;

ð3:25Þ

where the orthogonal matrix CðθiÞ can be read off
algorithmically from the diagram.

5. Deformed triangle move

Undeformed on-shell diagrams are invariant under tri-
angle moves, which take one line past the intersection of
two other lines [9,16]. The triangle move amounts to a
change of integration variables in the Graßmannian integral
that preserves the canonical form (3.25) in the undeformed
case. Not surprisingly, this remains true without modifi-
cations in the deformed case:

(3.26)

The triangle equality holds regardless of the orientations of the three lines, as long as the orientations are the same on
both sides of the equation. Note that this result is consistent with the invariance constraints (3.23). In fact, it is not a
coincidence that this diagrammatic equation looks very much like the Yang-Baxter equation, as will become more clear in
Sec. III D below.

FIG. 1. An example of a deformed on-shell diagram with the
invariance constraints given by (3.24).
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6. Invariance and permutations

Due to the triangle equality (3.26), every (deformed)
reduced diagram is uniquely specified by a permutation σ
that simply interchanges pairs of external legs. In other
words, σ is composed of pairwise commuting transposi-
tions, and σ2 equals the identity permutation. The invari-
ance equations for the evaluation parameters then take the
rather trivial form

ui ¼ uσðiÞ: ð3:27Þ
In order to identify the vertex deformation moduli zi, one
needs to decorate the 2k-point diagram with arrows such
that each line [connecting legs i and σðiÞ] carries a definite
orientation. Then k columns of the C-matrix form the
identity matrix, and each four-vertex is of the form (3.23),
such that the zi can be read off.

7. Deformed BCFW decomposition

Tree-level amplitudes in ABJM theory can be decom-
posed into a sum of BCFW terms [29], where each term is
an on-shell diagram [16]. An interesting question is
whether higher-point tree-level amplitudes can be consis-
tently deformed by deforming each diagram in the sum,
using the same evaluation parameters for each diagram.
The six-point amplitude consists of a single triangle-shaped
diagram as in (3.26), and thus allows for a two-parameter
family of deformations. The diagrams for the eight- and
ten-point amplitudes are given explicitly in [16]. The eight-
point tree-level amplitude consists of two terms, in which
the lines connect the eight points as f½15�½27�½36�½48�g,
f½14�½26�½37�½58�g. Hence it allows for a one-parameter
deformation in terms of u1−u2, where u1 ¼ u4 ¼ u5 ¼ u8,
and u2 ¼ u3 ¼ u6 ¼ u7. The ten-point amplitude consists
of the five terms:

f½14�½27�½39�½58�½6; 10�g; f½14�½26�½38�½59�½7; 10�g;
f½16�½29�½37�½4; 10�½58�g;
f½17�½29�½36�½48�½5; 10�g; f½15�½28�½36�½49�½7; 10�g:

ð3:28Þ
Combining the resulting invariance constraints enforces that
all evaluation parameters must be equal, and hence there is
no nontrivial deformation at ten points. In fact, the ð2pþ 4Þ-
point tree-level amplitude consists of ð2pÞ!=ðp!ðpþ 1Þ!Þ
diagrams [16]. Since each diagram implies a different set of
constraints, the number of constraints at higher points by far
outweighs the number of parameters, and hence a consistent
deformation of the BCFW decomposition beyond eight
points cannot be expected.

8. Branches

Similar to the N ¼ 4 SYM case, every ABJM on-shell
diagram is an integral over a cell in the orthogonal

Graßmannian [9,16]. Every cell in the orthogonal
Graßmannian in fact consists of two distinct branches.
The two branches can be distinguished by the ratios of non-
overlapping minors

Mj=Mjþk ¼ ∓1: ð3:29Þ

In gluing on-shell diagrams, this subtlety is reflected in the
matrix CðθÞ of the four-point vertex (3.21), where

OG2;�∶ CðθÞ ¼
�
1 0 �i sin θ �i cos θ

0 1 −i cos θ i sin θ

�
: ð3:30Þ

Note that these two C-matrices are not related by any
coordinate transformation. While it may appear that there
are 2nv distinct branches for a given on-shell diagram with
nv vertices, most of them are related by coordinate trans-
formations, leaving only two distinct branches. Denoting
the branches at each vertex by a sign, the branch of the final
C-matrix is simply the product of all signs of the individual
vertices. Since each branch is individually Yangian invari-
ant, we restrict ourselves to diagrams built from the positive
branch of the four-vertex. Generalizing to include the other
branch is straightforward.

C. Deformed orthogonal Graßmannian

In this section we consider integrable deformations of the
orthogonal Graßmannian integral of ABJM theory. As in
four dimensions, the deformation under consideration is
again a modification of the power of the minors, which are
the only admissible deformations that maintain GLðkÞ
invariance. We will first map the deformation parameters
of the four-point Graßmannian to that of the four-point
amplitude. Then we will show that for general multiplic-
ities, the deformed Graßmannian is invariant under Yangian
symmetry, provided that the deformation parameters obey a
set of constraints that are a generalization of the four-point
constraints (3.12).

1. Proposal for the deformed Graßmannian

We consider the following deformation of the orthogonal
Graßmannian integral:

G2kðbiÞ ¼
Z

dk×2kC
jGLðkÞj

δkðkþ1Þ=2ðC · CTÞδ2kj3kðC · ΛÞQ
k
i¼1M

1þbi
i

:

ð3:31Þ

The undeformed integral was originally proposed in [17].
Here C · CT ≡P

iCaiCbi is a k × k-symmetric matrix
whose vanishing implies that the Graßmannian matrix C
consists of k n-dimensional null vectors. We will denote the
orthogonal Graßmannian G(k; 2k) as OGk. For the integral
to be GLðkÞ invariant, the deformation parameters bi must
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satisfy the relation
P

k
i¼1 bi ¼ 0. When all bi vanish, this

reduces to the formula given in [17].

2. Relation to the four-point amplitude

For the simplest case of k ¼ 2, the relation between z0 in
(3.3) and b1 in (3.31) can be deduced by simply using the
bosonic delta functions to localize the Graßmannian
integration variables. More precisely, let us begin with
the following integral, where we already used that b1 þ
b2 ¼ 0 in (3.31):

G4ðb1;−b1Þ ¼
Z

d2×4C
jGLð2Þj

δ3ðC · CTÞδ4j6ðC · ΛÞ
M1þb1

1 M1−b1
2

: ð3:32Þ

We work with the gauge

C ¼
�
1 0 C13 C14

0 1 C23 C24

�
; ð3:33Þ

and the momentum delta function δ4ðC · λÞ gives [29]

δ4ðC · λÞ ¼ 1

h34i2
Y
r;s

δ4ðCr;s − C�
r;sÞ;

�
C�
13 C�

14

C�
23 C�

24

�
¼ −

1

h34i
� h14i h31i
h24i h32i

�
: ð3:34Þ

Substituting the solutions into (3.32), we find the following
deformed amplitude:

A4ðb1Þ ¼
δ3ðPÞδ6ðQÞ

h12i1þb1h23i1−b1 : ð3:35Þ

Setting b1 ¼ z0, we see that the above deformation of the
Graßmannian indeed induces the same deformed four-point
amplitude as in (3.3).

3. Relation to deformed on-shell diagrams

For higher multiplicities, we first note that the deforma-
tion of the Graßmannian integral can be obtained from
the deformed on-shell diagrams simply by considering the
top-cell diagram. The 2k-point top cell has dimension
kðk − 1Þ=2. All 2k-point diagrams consist of k lines, and
each four-vertex contributes one integration variable.
Hence, in the top-cell diagram, each of the k lines has
to cross each other line exactly once. Modulo triangle
moves, this diagram is unique. A canonical representative is
sketched in Fig. 2. Iteratively building up the top cell by
gluing four-vertices (3.21), the top-cell integral will take
the form (3.25), with l ¼ kðk − 1Þ=2. Comparing that form
to the deformed Graßmannian integral formula (3.31), one
could in principle read off the relation between bi and zi,
and in turn express bi in terms of the Yangian evaluation
parameters ui.

In four dimensions, we saw that the invariance con-
ditions for the top cell directly lead to the simple relation
(2.23) between the exponents bi and the parameters u�i ,
which are the natural deformation moduli from the on-shell
diagram perspective. The relation followed from a direct
identification of the central charges ci in terms of the
exponents bi.
However, the symmetry algebra ospð6j4Þ of ABJM

theory does not admit a central extension, and thus there
are no central charges that could be deformed.20 Hence,
the relation between the exponents bi and the evaluation
parameters ui apparently cannot be deduced directly.
Below, we will therefore derive the invariance relations
by directly acting with the Yangian generators on the
deformed Graßmannian integral.

4. Yangian invariance of the deformed Graßmannian

For the four-point example, we have deduced that the
relation between the deformation parameter of the
Graßmannian integral and the evaluation parameters is
given by (3.12), with b1 ¼ z0. We now proceed to derive the
general n-point relations.
For compactness we present the level-zero and level-one

generators in Λ-space. For the invariance under the level-
zero algebra, note that the level-zero generators take the
form

ΛA
i Λ

B
i ; ΛA

i
∂

∂ΛB
i

;
∂

∂ΛA
i

∂
∂ΛB

i

: ð3:36Þ

The invariance follows, respectively, from the momentum
conservation, delta-function constraint δ2kj3kðC · ΛÞ, and
the orthogonality of C [17].

FIG. 2. The ABJM top-cell diagram.

20More concretely, the scattering amplitudes and the Graßman-
nian integral for ABJM are not eigenstates of the local scaling
operators Λi · ∂=∂Λi; see also the discussion around (3.49) below.
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The undeformed level-one generators ĴAB with two
upper indices of the same statistics (Pab and RAB) can be
written as [18]

ĴðAB� ¼
�X

l<i

−
X
i<l

��
ð−1ÞjCjΛðA

l
∂

∂ΛC
l

ΛC
iΛ

B�
i þΛðA

i ΛB�
i

2

�
;

ð3:37Þ

where the indices ðA; B� are understood to be (anti-)
symmetrized if A and B denote indices of spð4Þ
[suð3Þ]. Here we will simply consider the case where
they have the same statistics, since invariance under
all other generators follows from the ospð6j4Þ algebra.21

We first rewrite ðPl<i −
P

i<lÞ ¼ 2
P

l<i −
P

i;l þ
P

i¼l.

Then for ĴðAB�, this amounts to

ĴðAB� ≃
�
2

�X
l<i

ΛðA
l ΛB�

i Λ
C
i

∂
∂ΛC

l

þ ΛðA
i ΛB�

i

2

�

þ
X
i

ΛðA
i ΛB�

i Λ
C
i

∂
∂ΛC

i

�
; ð3:38Þ

up to terms proportional to level-zero generators. As the
invariance of the undeformed orthogonal Graßmannian was
not proved in the literature, we provide the details in
Appendix C. The crucial step in the proof, as pointed
out for the four-dimensional case in [23], is to realize
that ΛC

l ∂=∂ΛC
i acts only on the delta functions and can be

converted into a rotation generator acting on the
Graßmannian variables:

ΛC
i

∂
∂ΛC

l

⟶Ol
i ≡X

a

Cal
∂

∂Cai
: ð3:39Þ

Using integration by parts, the linear operator then acts on
the integration measure. This operator simply replaces
column i of the matrix C by column l, that is Ol

iMp ¼
Mi→l

p , if p ≤ i ≤ pþ k − 1 and l < p, while its action
vanishes otherwise. As we demonstrate in Appendix C, it
is straightforward to show that

X
l<i

ΛA
i Λ

B
l Ol

iMp ¼
Xp−1
l¼1

ΛB
l Λ

A
l Mp: ð3:40Þ

In other words, the minors transform covariantly under the
operator Ol

i. Note that one must be careful as the integral
formula has aGLðkÞ symmetry and iswell defined only after
gauge fixing. Thus, to prove the invariance of the integral,
one should either introduce a gauge-fixing function, on

which Oi
l acts, or directly work with the gauge-fixed

integral.
For consistency, we will proceed with the gauge-fixed

integral with the columns 1 through k of the matrix C set to
the unit matrix:

0
BBB@

1 � � � 0 C1;kþ1 � � � C1;2k

0 � � � 0 ..
. ..

. ..
.

0 � � � 1 Ckþ1;2k � � � Ck;2k

1
CCCA: ð3:41Þ

We see that for k ≤ i the operator Ol
i is defined simply

by replacing Cai → Cal or Cai → δal. However, for i < k
the operator requires careful treatment. For the four-
dimensional case, this situation was discussed in detail
in [23], where it was shown that for i ≤ k, Ol

i should
be replaced by N i

l ≡P
2k
r¼kþ1 Clr

∂
∂Cir

, which is nothing
but a GLðkÞ-rotation on the rows of the unfixed part Cai

of the gauge-fixed C-matrix. Thus
P

i<lN i
lMp ¼ 0 for

k < p ≤ 2k, whilst N i
lMp ¼ −Ml→i

p for p ≤ k.
Collecting these results, and noting that since the

undeformed Graßmannian integral vanishes under ĴðAB�,
we can focus solely on the extra terms that are generated
due to the additional exponents bi of the measure. These
additional terms are given by

ĴðAB�G2kðbiÞ ¼ G2kðbiÞ
X2k
j¼1

� Xk
l¼jþ1

2bl − b0j

�
ΛðA
j ΛB�

j ;

ð3:42Þ

where b0j is defined as

�Xk
a¼1

Caj
∂

∂Caj

�
1Q

k
i¼1MiðCÞbi

¼ b0j
1Q

k
i¼1MiðCÞbi

:

ð3:43Þ

Note that unlike in N ¼ 4 SYM theory, the eigenvalue b0j
does not correspond to a central charge. We will further
comment on this point below. In terms of the exponents bi,
the eigenvalue b0j expands to

−b0j ¼
�
b1 þ � � � þ bj j ≤ k
bj−kþ1 þ � � � þ bk j ≥ k: ð3:44Þ

To retain Yangian invariance, it is necessary to deform the
level-one generators by

ĴðAB� → ĴðAB� þ
X2k
j¼1

ujΛ
ðA
j ΛB�

j ; ð3:45Þ

where, for general n ¼ 2k, the relation between the
deformation parameters is given by

21The level-one generators Ĵ transform in the adjoint repre-
sentation of the level-zero algebra.
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Xk
l¼jþ1

2bl þ u−j ¼ constant: ð3:46Þ

Here, we define u−j ¼ uj − b0j, and the constant must be
independent of j. This implies

1

2
ðu−j − u−j−1Þ ¼

�
bj for j ≤ k
0 for j > k:

ð3:47Þ

Using (3.44), these conditions can be rewritten as

uj ¼ ujþk; bj ¼ uj − uj−1; 1 ≤ j ≤ k: ð3:48Þ

In particular, this reproduces (3.27) for the permutation σ
of the top cell, which is just a cyclic shift by k sites. Note
that (3.46),(3.47) closely resemble the constraints (B8),
(2.23) of the four-dimensional case. For four points, we
have b1 ¼ 1

2
ðu−1 − u−4 Þ and b2 ¼ 1

2
ðu−2 − u−1 Þ, which, com-

bined with b1þb2¼0, implies u4 ¼ u2 and b1 ¼ u1 − u2,
in agreement with (3.12).

5. Little group and fermion number

In our discussion of the invariance of the deformed
Graßmannian integral, we encountered the scaling operator
fj ¼ ΛC

j∂=∂ΛC
j , which acts on the external scattering data as

fj ¼ λαj
∂
∂λαj þ ηAj

∂
∂ηAi : ð3:49Þ

This operator generates the three-dimensional little group
Z2: The exponentiated operator

F j ≡ exp ðiπfjÞ ð3:50Þ

commutes with the whole ospð6j4Þ algebra, and the
amplitude transforms according to

F jAð1̄23̄…2kÞ ¼ ð−1ÞjAð1̄23̄…2kÞ: ð3:51Þ

As pointed out in [18], this equation looks similar to the
local central charge constraint in N ¼ 4 SYM theory. The
group-like operator F j measures the fermion number, i.e.
whether the external leg j is a bosonic or fermionic
superfield Φ or Φ̄, respectively.
An obvious question is how the deformed invariants

behave under the operator F j. For the deformed four-point
amplitude (3.3) the answer is simple and similar to the
central charge constraint in four dimensions: While the
local invariance under F j is broken (only for the fermionic
legs though), the global constraint given by

Q
jF jA4 ¼ A4

is preserved. Here we consider the product of F j due to the
group-like structure of the operator F as opposed to f.
Note that the superfield in N ¼ 4 SYM theory has a

similar inconspicuous symmetry under the operator

F 4d
j ¼ exp iπ

�
λαj

∂
∂λαj þ λ̄ _αj

∂
∂λ̄ _αj þ ηAj

∂
∂ηAj

�
∶

F 4d
j An ¼ þAn: ð3:52Þ

This corresponds to the fact that Φð−ΛÞ ¼ ΦðΛÞ, i.e. to the
statement that the total number of spinors in all terms of
the bosonic superfield is even, or even more simple: the
bosonic superfield is bosonic. Note that F 4d

j is not
generated by the central charge Ci. The breaking of the
local fermion number operators F j and F 4d

j in three and
four dimensions, respectively, demonstrates the anyonic
character of the above deformations.

6. The cells of the deformed Graßmannian and BCFW

The integral in (3.31) is a kðk − 1Þ=2-dimensional
integral representing the top cell, and it is invariant under
the deformed Yangian. Here the evaluation parameters ui
of the level-one generators are constrained by (3.48).
The bosonic delta function δ2kðC · λÞ imposes ð2k−3Þ
constraints, and thus the top cell has dimension
ðk − 2Þðk − 3Þ=2. If some of the deformation parameters
are turned off, then one can localize the top cell by residues
on poles in the respective minor to obtain lower-
dimensional cells, and thus obtain deformed descendant
invariants. However, this does not yield the most general
deformations of the lower-dimensional cells. As shown in
Sec. III B, one can instead directly transform the lower-
dimensional cells (on-shell diagrams), which leads to
further deformations that do not form boundaries of the
deformed top cell.
We can reconsider the question of consistent deforma-

tions for the BCFW terms of tree amplitudes from the
perspective of the Graßmannian integral. Similar to the
four-dimensional case, consistent deformations are only
possible if the tree contour involves residues on fewer than
ðk − 1Þ minors. As soon as the tree contour includes poles
from ðk − 1Þ or all k minors, all exponents bi need to be set
to zero and no deformation remains. For six points, the
amplitude is the top cell, and thus there is a consistent two-
parameter deformation. For eight points, the BCFW terms
are given by the sum of residues for M1 and M3, and thus
only a one-parameter deformation remains. For ten points,
as discussed in [16], the five BCFW terms are given by the
zeros of

f4; 5; 1g; f5; 1; 2g; f3; 4; 5g; f2; 3; 4g;
f1; 2; 3g; ð3:53Þ

where fi; j; kg indicates the collection of minors that are
necessary to localize the three-dimensional integral. As one
can see, all five minors are involved in the localization, and
no consistent deformation remains. It is to be expected that
there will be no BCFW-preserving deformation for any
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amplitude beyond eight points. These results are consistent
with the on-shell diagram analysis in Sec. III B above.

D. R-matrix construction for ABJM

In Sec. III B above, we have verified the invariance of the
deformed four-point amplitude A4ðzÞ under the evaluation
representation of the Yangian generators, and have obtained
higher-point diagrams by successive gluing of the funda-
mental four-point invariant. In this section, we will identify
A4ðzÞ with an integral kernel for the R-matrix RjkðzÞ of an
integrable model, where z represents the spectral parameter.

1. R-Matrix

Let us define the action of the operator RjkðzÞ on a
function fðΛÞ by22

ðRjkðzÞ∘fÞð…;Λj;Λk;…Þ

≡
Z

dΛ♯dΛ♭A4ðzÞðΛj;Λk; iΛ♯; iΛ♭Þfð…;Λ♭;Λ♯;…Þ:
ð3:54Þ

An important property of this operator RjkðzÞ is that it
preserves the Yangian invariance when applied to a
Yangian-invariant function. To show this, first note that
the expression (3.54) can be rewritten as

ðRjkðzÞ∘fÞð…;Λj;Λk;…Þ

¼
Z

d2j3Λ♯d2j3Λ♭d2j3Λ♮d2j3Λ⋄δ2j3ðΛ♮−iΛ♯Þδ2j3ðΛ⋄−iΛ♭Þ

×A4ðzÞðΛj;Λk;Λ♮;Λ⋄Þfð…;Λ♭;Λ♯;…Þ: ð3:55Þ
The expression (3.55) is a combination of the Yangian-
preserving operations discussed in Sec. III B: We first take
the product of two Yangian invariants, A4ðΛj;Λk;Λ♮;Λ⋄Þ
and fðΛ♭;Λ♯Þ, and then glue these objects by using the
two delta-function identifications Λ♮ ¼ iΛ♯ and Λ⋄ ¼ iΛ♭.
This implies that RjkðzÞ as defined in (3.54) preserves the
Yangian invariance. Recall that A4ðzÞðΛj;Λk;Λ♮;Λ⋄Þ is
invariant under the Yangian with evaluation parameters
that satisfyuj ¼ u♮,uk ¼ u⋄, and z ¼ �ðuj − ukÞ according
to (3.23). In addition, the gluing conditions (3.16) require
u♮ ¼ u♯ and u⋄ ¼ u♭. Hence the action of Rjk permutes the
evaluation parameters uj and uk: If fð…;Λj;Λk;…Þ is
Yangian invariant with ~u ¼ ð…; uj; uk;…Þ, then ðRjk∘fÞ×
ð…;Λj;Λk;…Þ is invariant with ~u ¼ ð…; uk; uj;…Þ. In
other words, we have

½Ja; RjkðzÞ� ¼ 0;

Ĵað…; uj; uk;…ÞRjkðzÞ ¼ RjkðzÞĴað…; uk; uj;…Þ;
ð3:56Þ

when acting on Yangian-invariant functions. Here the
number of legs in the definition of the generators Ja and
Ĵa [cf. (2.1)] depends on the number of legs of the invariant
acted on. However, since all other terms commute trivially,
the Yangian generators Ja and Ĵa in (3.56) reduce to the
two-site Yangian generators with evaluation parameters
ðuj; ukÞ. Note that invariance is only preserved when Rjk

acts on adjacent legs of the invariant f.
For later purposes, let us simplify the definition of the

R-matrix. Plugging in the definition of the four-point
amplitude in (3.21), we obtain

ðRjkðzÞ∘fÞðΛj;ΛkÞ

¼
Z

dθ
sinðθÞ1þz

Z
d2j3Λ♯d2j3Λ♭δ

4j6ðCðθÞ

× ðΛj;Λk; iΛ♯; iΛ♭ÞÞfðΛ♭;Λ♯Þ; ð3:57Þ

where the matrix CðθÞ is defined as in (3.22). We can
trivially solve the delta-function constraint for Λ♯;Λ♭,
giving rise to

ðRjkðzÞ∘fÞðΛÞ
≡

Z
dθ

sinðθÞ1þz fðΛÞjΛj → þ sinðθÞΛk þ cosðθÞΛj;
Λk → − cosðθÞΛk þ sinðθÞΛj

:

ð3:58Þ
2. RLL relation

The discussion in the previous sections can be nicely
reformulated in the language of integrable models. To
explain this, let us first define the L-operator LiðuÞ by

LiðuÞ≡ u1þ
X
a

Ja
i ea; ð3:59Þ

where Ja
i are the level-zero generators for the representa-

tion of the particle i, and ea denotes the generators of the
fundamental representation. Let us also define the mono-
dromy operator by

Tðu0; ~uÞ≡L1

�
u0−

1

2
u1
	
L2

�
u0−

1

2
u2
	
…L2k

�
u0−

1

2
u2k

	
:

ð3:60Þ

By standard procedure,23 expanding the monodromy yields
the Yangian generators:

22Since OG2 has two branches, we correspondingly have two
different R-matrices R�ðzÞ. In the following we concentrate on
one of the branches, say RþðzÞ. Note that the actual undeformed
4-point amplitude is a linear combination of two contributions
from two kinematical branches R�ðzÞ, each contribution being
separately Yangian-invariant (see, however, the comments on the
discussion of the collinear anomaly in Sec. IV). 23See e.g. [30].
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Tðu0; ~uÞ ¼
X2k
n¼0

u2k−n0 Jðn−1Þð~uÞ; ð3:61Þ

where JðnÞð~uÞ is (up to additive constants and combina-
tions of lower-level generators) the level-n generator with
evaluation parameters ~u, namely24

Jð−1Þ ¼ 1; Jð0Þð~uÞ ¼ Jaea;

Jð1Þð~uÞ ¼ 1

2

�
Ĵaea þJaeaJbeb − αJaea þ

1

2

X
i<j

uiuj1

�
:

ð3:62Þ

Here, the constant α stems from the single-site relation

Ja
i eaJ

b
i eb ¼ αJa

i ea: ð3:63Þ

This relation is representation-dependent, but holds for the
fundamental representation. It ensures that the Yangian
generators obey the Serre relations [18,31]. Now we can
use (3.61) to encode (3.56) into the RLL relation

Rijðuj − uiÞLi

�
u0 −

1

2
ui

�
Lj

�
u0 −

1

2
uj

�

¼ Li

�
u0 −

1

2
uj

�
Lj

�
u0 −

1

2
ui

�
Rijðuj − uiÞ; ð3:64Þ

see Fig. 3. This equation is the so-called RLL relation,
which is one version of the Yang-Baxter relation often
found in integrable models [32]. As we have seen, this
relation encodes the fact that RijðzÞ preserves the Yangian
invariance. The relation (3.64) holds when the operators act
in the space of Yangian-invariant functions; this will be
sufficient for the construction of Yangian invariants in the
later part of this section.25

3. Yang-Baxter Equation

The relation (3.64) means that the R-operator is the
intertwiner for the tensor product of representations of
Y½ospð6j4Þ�. In particular, consistency with the associa-
tivity of the tensor product is guaranteed by the Yang-
Baxter relation:

Rijðw − vÞRjlðw − uÞRijðv − uÞ
¼ Rjlðv − uÞRijðw − uÞRjlðw − vÞ: ð3:65Þ

For our R-matrix (3.58), this can be shown to hold by direct
computation: The θ-rotation in (3.58) is a rotation in the
ðΛi;ΛjÞ-plane, and both sides of (3.65) give rise to a
parametrization of the rotation group in terms of Euler
angles,which are thus related by a coordinate transformation.
One can verify explicitly that the product of measure factors
in the integrals is kept invariant by the transformation.
This result shows that the R-operator (3.58) gives the

R-matrix for a representation of Y½ospð6j4Þ�. It can be
written in the Graßmannian integral form, a fact which we
have not found in the literature. It would be nice to compare
our expression for the R-matrix with the known expressions
in the literature.

4. Yangian invariants

Having understood the four-vertex, the next task is to
understand the more complicated on-shell diagrams
obtained by fusing lines. In the language of R-matrices,
this can be reformulated as the statement that higher-point
invariants are obtained by iterated action with the R-matrix
on vacuum delta functions. This is similar to the N ¼ 4
case [see the discussion around (2.18)].26

FIG. 3. The graphical representation of the RLL relation. The R-matrix is associated with an intersection of two undotted lines, while
the L-matrix with that of an undotted line and a dotted line. The spectral parameters are associated with the particle lines, which will be
identified with the rapidity lines of integrable models.

24Recall the constraint
P

iui ¼ 0.
25We thank Carlo Meneghelli for helpful comments on the

relation between (3.64) and (3.56).

26The connection to Yangians and integrable models is more
direct for ABJM theory than for the N ¼ 4 theory. For ABJM
theory, the R-matrix (3.54) coming from the BCFW shift directly
gives the R-matrix for (a representation of) the Yangian. By
contrast the operator coming from the BCFW shift in N ¼ 4
SYM is the 3-point amplitude, while the R-matrix for the Yangian
corresponds to a 4-point amplitude, which is obtained by
combining four BCFW operators.
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To explain this, let us start with an on-shell diagram, i.e.
a set of k lines connecting 2k points on a circle, such that no
three lines intersect at the same point. By following each
line, we obtain a permutation σ of order two, σ2 ¼ 1. That
is, σ decomposes into k commuting transpositions of two
elements: σ ¼ σk…σ1, with each σj ¼ ½aj; bj�. Just as the
diagram itself, also the permutation is kept invariant under
triangle moves. While every diagram has a unique asso-
ciated permutation, the converse is only true for reduced
diagrams. Every permutation of order two uniquely spec-
ifies a reduced diagram (modulo triangle moves), but the
same permutation is associated to an infinite number of
inequivalent unreduced diagrams.27

Now, every on-shell diagram can be obtained from a k-
line diagram without any four-vertex (a “vacuum diagram”)
by a sequence of BCFW bridges [9,16]. Let us first restrict
to reduced diagrams, which are uniquely specified by their
permutation. Starting from the “vacuum permutation”28

σvac ¼ ½12�½34�…½2k − 1; 2k�; ð3:66Þ
we can arrive at any other permutation σ (representing a
reduced on-shell diagram) by a sequence of BCFW
bridges: Each BCFW bridge lets two adjacent legs inter-
sect, and thus conjugates the associated permutation by a
transposition. Hence

σ ¼ σRσvacσ
−1
R ; σR ¼ ½il; jl�…½i1; j1�; ð3:67Þ

with each ½im; jm� being a transposition of two adjacent
elements.
Let us translate this into the language of integrable

models. With the vacuum permutation σvac we associate an
amplitude which is given by a product of delta functions

Ω2k ≡
Yk
j¼1

δ2j3ðΛ2j−1 þ iΛ2jÞ: ð3:68Þ

Next, each BCFW bridge is represented by the R-matrix
acting on the two respective lines, as we have already seen.
This means that a general Yangian invariant, corresponding
to a general reduced on-shell diagram described by σ, can
be obtained by acting with a chain of R-matrices on the
vacuum amplitude:

Yσðz1;…; zlÞ ¼ RσRð~zÞΩ2k ¼ Ril;jlðzlÞ…Ri1;j1ðz1ÞΩ2k;

ð3:69Þ
where the sequence of transpositions σR ¼ ½il; jl�…½i1; j1�
is defined by (3.67).

For a given permutation σ (of order two), both the choice
of σR and its decomposition into adjacent transpositions are
not unique. Two permutations σR, σR0 lead to the same
permutation σ if and only if σR0 ¼ σRσ

0, where σ0 is in the
centralizer CðσvacÞ. Hence the distinct permutations σ are in
one-to-one correspondence with the elements of the coset
Sn=CðσvacÞ. The ambiguity in the decomposition of σR into
adjacent transpositions is due to the permutation group
relation

½i; iþ 1�½iþ 1; iþ 2�½i; iþ 1�
¼ ½iþ 1; iþ 2�½i; iþ 1�½iþ 1; iþ 2�: ð3:70Þ

In terms of invariants (3.69), this identity amounts to the
triangle move alias Yang-Baxter equation (3.65). Also the
ambiguity in the choice of σR is due to this relation, in this
case applied to the full permutation σ. Hence, for a given
permutation σ, the invariant (3.69) is independent of the
choice and decomposition of σR.
To summarize: For every reduced on-shell diagram, there

is a decomposition of the associated permutation into
adjacent transpositions that encodes the chain of R-matrices
that need to act on the appropriate vacuum to reconstruct
the diagram. Even though the decomposition into trans-
positions is ambiguous, the invariant is unique.
Unreduced on-shell diagrams are not uniquely specified

by their associated permutation. Nevertheless, they are
constructed just as reduced diagrams, by successively
applying BCFW bridges. Hence also unreduced diagrams
can be written as a chain of R-matrices that act on a vacuum
amplitude,

Y½il;jl�;…;½i1;j1�ðz1;…; zlÞ ¼ Ril;jlðzlÞ…Ri1;j1ðz1ÞΩ2k:

ð3:71Þ

Here, the sequence of transpositions ½il; jl�;…; ½i1; j1� is
sufficient to define the diagram, even though the resulting
permutation σ ¼ ½il; jl�…½i1; j1� is not.
Our claim here is that (3.69),(3.71) are indeed Yangian

invariant if the spectral parameters zi are constrained to
obey the relation (3.23), that is

zm ¼ �ðujm − uimÞ: ð3:72Þ

Since the overall shift of ui is irrelevant, only ðk − 1Þ of
these parameters are independent.

5. Yangian invariance

Let us prove the Yangian invariance of (3.69). Note that
the invariance already follows from the fact that the action
of an R-matrix is equivalent to gluing an invariant four-
vertex to another invariant (Sec. III B). The purpose of this
section is to recast the argument in a form closer to standard
integrable models.

27Among all the diagrams associated to a given permutation,
the reduced diagram is the one that has minimal degree (number
of integration variables).

28The choice of vacuum is not unique, but one can restrict to
this particular choice [16].
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Since the monodromy operator is the generating function of the Yangian generators, Yangian invariance is equivalent to
the statement that (3.69) is an eigenfunction of the monodromy operator:

Tðu0; ~uÞYσð~zÞ ¼
Y2k
i¼1

�
u0 −

1

2
ui

�
Yσð~zÞ: ð3:73Þ

where u0 is arbitrary and ~u are fixed to be the evaluation parameters of the Yangian representation. On the left-
hand side we can express Tðu0; ~uÞ as a product of the L-operators, and then, due to (3.72), commute with the R-matrices
with the help of the RLL relation (3.64):

L1

�
u0 −

1

2
u1

�
…L2k

�
u0 −

1

2
u2k

�
Rabð~zÞ ¼ Rabð~zÞL1

�
u0 −

1

2
u½ab�ð1Þ

�
…L2k

�
u0 −

1

2
u½ab�ð2kÞ

�
ð3:74Þ

for any transposition ½ab� of two adjacent elements.29 By induction we obtain (see Fig. 4 for a graphical representation)

Tðu0; ~uÞYσð~zÞ ¼ Tðu0; ~uÞRσRð~zÞΩ2k

¼ L1

�
u0 −

1

2
u1

�
…L2k

�
u0 −

1

2
u2k

�
RσRð~zÞΩ2k

¼ RσRð~zÞL1

�
u0 −

1

2
uσRð1Þ

�
…L2k

�
u0 −

1

2
uσRð2kÞ

�
Ω2k: ð3:75Þ

Recalling the definition (3.68) of Ω2k, this becomes

Tðu0; ~uÞYσð~zÞ ¼ RσRð~zÞ
Yk
j¼1

L2j−1

�
u0 −

1

2
uσRð2j−1Þ

�
L2j

�
u0 −

1

2
uσRð2jÞ

�
δ2j3ðΛ2j−1 þ iΛ2jÞ: ð3:76Þ

After some algebra, and using the relation (3.63), each factor in the product takes the form

LiðuÞLjðvÞδ2j3ðΛi þ iΛjÞ ¼
�
uvþ ðuJa

j þ vJa
i Þea þ

1

2
JaeaJbeb −

1

2
αJaea þ

1

2
Ja

iJ
b
j fab

cec

�
δ2j3ðΛi þ iΛjÞ; ð3:77Þ

where Ja ¼ Ja
i þJa

j are the two-site level-zero generators. Now the third and fourth term in the bracket vanish by (3.17),
and the last term vanishes due to the argument below (3.18): It is proportional to the dual Coxeter number, which is zero for
ospð6j4Þ. Finally, the vanishing of the second term requires u ¼ v. Hence, (3.76) equals (3.73) if and only if

FIG. 4. Graphical proof of the Yangian invariance, c.f. (3.75). Using the RLL relations of Figure 3 multiple times, we can commute the
product of L-operators (gray dots) through the product of R-matrices (black dots) when acting on the vacuum (3.68) (half circles). In the
above example we have k ¼ 2, i.e. 2k ¼ 4 external points, and the Yangian invariant (3.69) contains six R-matrices. The “…” represent
additional lines that can be added in general.

29Note that this argument does not work for the transposition ½2k; 1�, since the RLL relation does not apply in this case. However, one
can always choose σR such that it does not act on the first and last legs (for any permutation σ). Hence at first sight, (3.75) only applies
for such σR. However, different choices of σR are related to each other by triangle moves, and we know that triangle moves preserve
diagrams, and hence also preserve Yangian invariance. Therefore, RσRΩ2k is invariant for all σR. In fact, from the on-shell diagram point
of view, the choice of first and last leg in the definition (3.60) of the monodromy matrix is arbitrary, and thus the invariance discussion
should not depend upon this choice. Indeed one can show that the Yangian algebra is invariant under cyclic rotations of the chain of
L-operators in (3.60) (for algebras with vanishing dual Coxeter number).
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uσRð2j−1Þ ¼ uσRð2jÞ; j ¼ 1;…; k: ð3:78Þ

Using (3.67),(3.66), one can easily see that these conditions
are equivalent to the previously derived invariance constraints
(3.27). In conclusion, Yangian invariance of (3.69) is recov-
ered provided that the constraints (3.78) and (3.72) hold.

6. An example

Let us consider as an example the deformation of the six-
point top cell. Like all other on-shell diagrams, it can be
represented as a disk with intersecting lines that end at the
boundary, e.g.

(3.79)

where the second figure illustrates the relation to diagrams of the type shown in Fig. 4. This diagram corresponds to a
permutation σ ¼ ½14�½25�½36�. As described above, we can build such a diagram from a vacuum diagram by applying
successive transpositions:

(3.80)

Above, each transposition labeled by ½ij� corresponds to applying an additional four-point vertex/R-matrix to the previous
diagram. For the permutation, this means

σ ¼ ½34�½23�½45�σvac½45�½23�½34�; σvac ¼ ½12�½34�½56�: ð3:81Þ

The vacuum amplitude (3.68) is simply given by

Ω6 ¼ δ2j3ðΛ1 þ iΛ2Þδ2j3ðΛ3 þ iΛ4Þδ2j3ðΛ5 þ iΛ6Þ: ð3:82Þ
We can then act iteratively with the R-operator (3.58) and the sequence in (3.80) translates into

R34ðz3ÞR23ðz2ÞR45ðz1ÞΩ6: ð3:83Þ

The corresponding orthogonal Graßmannian C-matrix takes the form:

0
B@

1 ic2 is2c3 is2s3 0 0

0 s2 −c2c3 þ ic1s3 −ic1c3 − c2s3 is1 0

0 0 s1s3 −s1c3 −c1 i

1
CA; ð3:84Þ

where sj ¼ sin θj and cj ¼ cos θj. One can verify that this indeed corresponds to the top-cell diagram, as all consecutive
minors are nonvanishing.
As we have seen above, diagrams that are equivalent under triangle moves simply correspond to using a different

sequence of R-matrices that yields the same final permutation. In our example, the triangle move corresponds to the
equivalence between (3.83) and

R61ðz3ÞR23ðz2ÞR45ðz1ÞΩ6: ð3:85Þ

The corresponding matrix parametrizing the orthogonal Graßmannian is given by
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0
B@

−c3 ic2 is2 0 0 s3
0 s2 −c2 ic1 is1 0

−is3 0 0 s1 −c1 ic3

1
CA: ð3:86Þ

Again one can verify that all adjacent minors are non-
vanishing, and hence the top cell is recovered.

IV. DISCUSSION, CONCLUSIONS AND OUTLOOK

In this paper, we have considered integrable deforma-
tions of scattering amplitudes in four-dimensional N ¼ 4
super Yang-Mills theory and three-dimensional ABJM
theory. We found a similar structure of deformed invariants
for both theories, which incorporates the deformed
Graßmannian integrals, the construction of deformed on-
shell diagrams via gluing, as well as the algebraic R-matrix
construction.
Interestingly, while part of the deformation parameters in

four dimensions is associated with the violation of invari-
ance under the local central charge generators of N ¼ 4
SYM theory, there is no such central charge for the three-
dimensional symmetry algebra ospð6j4Þ. Furthermore, the
four-dimensional deformations remind of deformed helic-
ities, but the external particles in ABJM do not carry
helicity charges either. Nevertheless, we demonstrate that
consistent deformations are possible in 3d ABJM theory,
which can be attributed to the introduction of nontrivial
evaluation parameters in the Yangian level-one generators.
A local operator, similar to the central charge generator in
four dimensions, is the Z2 phase of the three-dimensional
little group in ABJM. We have briefly commented on this
fermion number operator at the end of Sec. III B, whose
breaking indicates the anyonic nature of the introduced
deformations. We close with some comments on both
cases, and discuss future directions.
Certainly the most pressing question is whether the

deformations discussed here will be useful for computing
loop amplitudes. Up to now, the deformations might mostly
look like a mathematical curiosity. For instance, the famous
BCFW decomposition cannot be deformed consistently,
not even at tree level [10], cf. Table I.30 Moreover, the
deformed one-loop four-point amplitude in four dimen-
sions generically integrates to zero: Only very special
deformations give a nonvanishing result [10]. Still there
are a few interesting approaches one might want to pursue.
For example, noting that the four-point amplitude is

maximally helicity violating, it is not excluded that suitable
deformations will be useful for computing the ratio
function of [33]. Perhaps most promising is the idea to
give up on a BCFW-like decomposition, and to interpret
the deformed top cell, or equivalently the deformed
Graßmannian integral, as the complete deformed ampli-
tude. The challenge is to find a suitable contour on which
the deformed top cell integrates to a useful function. As
proposed in [34], one could try to require that the integrated
result is meromorphic in the deformation parameters.
Interestingly, irrespective of the contour, the resulting
function will have deformed helicities for the external legs.
This points towards a possible connection with continuous-
spin theories proposed recently [35].
Note that the form of the (deformed) Graßmannian

integrals mainly follows from the symmetry structure of
the underlying gauge theory. This suggests to identify a
similar Graßmannian integral also in other theories, for
instance in two and six dimensions, where much less is
known about scattering amplitudes. In particular, for the
two-dimensional theories with an AdS3 string dual, it
would be interesting to initiate the study of scattering
amplitudes based on the symmetry algebras in analogy to
the steps taken in [18] for three dimensions. Comparison
should then allow us to write down a Graßmannian integral
and to study amplitude-like symmetry invariants. This
could be helpful to make progress on understanding the
gauge-theory duals of these AdS3 string theories.
Importantly, here—as in all previous considerations

of the deformed scattering invariants—we have not

TABLE I. Comparison of the deformation degrees of freedom.
Each Yangian invariant n-leg diagram in four or three dimensions
has n − 1 or n

2
− 1 free parameters, respectively. Scattering

amplitudes on the other hand may be BCFW composed of
several diagrams. Requiring that the external data of all diagrams
contributing to a certain amplitude is the same, this imposes
stronger constraints, which in general result in less degrees of
freedom. In four dimensions the numbers were checked explicitly
up to n ¼ 16. The numbers in ABJM, and at higher n in four
dimensions, result from the naive counting of degrees of freedom
and constraints; for larger n the constraints outweigh the
parameters and no degrees of freedom remain (beyond the
MHV sector in 4d).

Yangian invariant N ¼ 4 SYM theory N ¼ 6 SCS theory

n-leg amplitude MHV;…;MHV

3 2, 2 − − −
4 3 1
5 4, 4 − − −
6 5, 1, 5 2
7 6, 0, 0, 6 − − −
8 7, 0, 0, 0, 7 1
9 8, 0, 0, 0, 0, 8 − − −
n ≥ 10 n − 1; 0;…; 0; n − 1 0

n-leg diagram n − 1 n
2
− 1

30In principle, one could consider deforming each term in the
BCFW decomposition with a different set of central charges ci, as
long as the Yangian evaluation parameters ui remain universal.
Empiric case studies for higher multiplicities (up to n ¼ 18) and
helicities (up to k ¼ 5) suggest that such deformations are
admissible for generic amplitudes. However, while a plethora
of deformation parameters remains unconstrained, the physical
interpretation and the practical use of such deformations remains
unclear.
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considered the exact symmetry generators of
Y½psuð2; 2j4Þ� and Y½ospð6j4Þ�. That is we have ignored
the fact that at collinear momentum configurations the
above symmetry generators do not annihilate the tree-level
S-matrices, but have to be corrected due to the collinear
anomaly [4,28,36,37]. It is known that these collinear
contributions recursively relate amplitudes with different
numbers of external legs to each other and it might be very
enlightening to see whether these relations impose further
constraints on the deformation parameters. In this context,
it is interesting to note that the vacuum (3.68) of the
algebraic R-matrix construction of invariants in ABJM
theory is a product of two-point invariants that might be the
necessary starting point to render the recursive symmetry in
three dimensions exact, cf. the discussion in [28].
As mentioned in Sec. I, the study of deformed

scattering amplitudes in four dimensions was motivated
by the map between the one-loop dilatation operator and
the four-point scattering amplitude of N ¼ 4 SYM theory
[6]. Construction of the amplitude form of the associated
R-matrix then led to the introduction of a (spectral)
deformation parameter [7,8]. In this paper we have
introduced the deformation of scattering amplitudes in
three dimensions. It would be interesting to see how the
dilatation operator of ABJM theory can be constructed
from deformed amplitudes or on-shell diagrams.
It would also be interesting to further explore the

similarities with the integrable structures discussed in the
context of 4d N ¼ 1 quiver gauge theories [38]. Our
discussion of ABJM scattering amplitudes suggests the
existence of a new 3d duality associated with the triangle
move, cf. (3.26).
Another notable question concerns the bonus symmetry

of scattering amplitudes in N ¼ 4 SYM theory found in
[39]. Is this symmetry still preserved and what is its role
for the deformations of four-dimensional scattering ampli-
tudes? Since the generator of this level-one symmetry is
bilocal in both the ordinary and the dual conformal coor-
dinates, and acts as a raising operator for the Yangian levels,
this might also clarify the relation between the Yangian
generators in twistor and momentum-twistor space dis-
cussed in Sec. II C, which remains an interesting open
problem. Finally, studying these issues could shed light on
the existence of a similar symmetry in ABJM theory.
Lastly, an important question is whether we can incor-

porate the above deformations into other approaches like
the amplituhedron of [40]. Studying this question would
be a good opportunity to elucidate the fate of Yangian
symmetry in the amplituhedron. Another recent develop-
ment to use integrability for the computation of scattering
amplitudes is the nonperturbative flux-tube formulation
introduced in [41]. Since the approaches of [40] and [41]
seem to bring many advantages over the previous methods,
combining them with the deformation might be the most
useful step in order to continue to investigate the role of

Yangian symmetry and the impact of integrability for
amplitudes in planar supersymmetric gauge theories.

ACKNOWLEDGMENTS

We are very grateful to Song He for numerous stimu-
lating discussions on the subject of this note and related
topics, and for his initial collaboration. We also thank Nima
Arkani-Hamed, Sangmin Lee, and Carlo Meneghelli for
interesting discussions. The work of T. B. is supported by a
Marie Curie International Outgoing Fellowship within the
7th European Community Framework Programme under
Grant No. PIOF-GA-2011-299865. The work of Y-t. H. is
supported by the National Science Foundation Grant
No. PHY-1314311. The work of F. L. was supported by
a fellowship within the Postdoc-Program of the German
Academic Exchange Service (DAAD). The work of M. Y.
was supported in part by WPI program, MEXT, Japan. He
would also like to thank KITP/UCSB (“New Methods in
Nonperturbative Quantum Field Theory,” NSF PHY11-
25915) for hospitality where part of this work has been
performed.

Note added.—While this manuscript was in preparation, we
found out that the deformed Graßmannian integrals for
N ¼ 4 SYM theory (both in momentum space and in
momentum-twistor space) were independently obtained by
L. Ferro, T. Łukowski, and M. Staudacher [34]. We would
like to thank them for correspondence, and for discussions
during the Strings 2014 conference.

APPENDIX A: EXPLICIT ospð6j4Þ GENERATORS

For reference, here we list the level-zero generators of
the ospð6j4Þ algebra in the singleton representation as
given in [18]:

Lα
β ¼ λα∂β −

1

2
δαβλ

γ∂γ; Pαβ ¼ λαλβ;

D ¼ 1

2
λα∂α þ

1

2
; Kαβ ¼ ∂α∂β;

RAB ¼ ηAηB; RA
B ¼ ηA∂B −

1

2
δAB; RAB ¼ ∂A∂B;

QαA ¼ λαηA; SA
α ¼ ηA∂α;

Qα
A ¼ λα∂A; SαA ¼ ∂α∂A: ðA1Þ

See Appendices F and G of [18] for the construction of the
level-one Yangian generators.

APPENDIX B: YANGIAN INVARIANCE OF THE
4D DEFORMED GRAßMANNIAN INTEGRAL

In this appendix, we check the Yangian invariance of the
deformed Graßmannian formula (2.22). The discussion is
parallel to the case of the ABJM theory discussed in
Sec. III. We only need to prove the invariance under
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level-zero and level-one generators, since all other gen-
erators can be obtained from the commutation relations.
The invariance under the level-zero is unaffected by the

deformation: It simply follows from the fact that the level-
zero generators (2.2) are realized linearly in the twistor
variables Zi, and thus annihilate the delta function
δ4kj4kðC · ZÞ present in the Graßmannian integral.
The invariance under the level-one generator will be

verified below following the methods of [23]. Let us first
rewrite ĴA

B as

ĴA
B ¼

�
2
X
i<j

−
X
i;j

þ
X
i¼j

��
ZA

i
∂

∂ZB
j

ZC
j

∂
∂ZC

i

−ZA
i

∂
∂ZB

i

�

þ
X
i

uiZ
A
i

∂
∂ZB

i

: ðB1Þ

The sum
P

i;j gives a square of the level-zero generator and
acts trivially on the Graßmannian formula. In the sum

P
i¼j

on the other hand, we find the central charge operator Ci ¼
−ZC

i ∂=∂ZC
i (2.4), which yields the following expression

when acting on the Graßmannian integral:

2
X
i<j

�
ZA

i
∂

∂ZB
j

ZC
j

∂
∂ZC

i

−ZA
i

∂
∂ZB

i

�
þ
X
i

ðui−ciÞZA
i

∂
∂ZB

i

:

ðB2Þ

Now the crucial observation is that the operator ZC
j∂=∂ZC

i ,
when acting on the delta functions, can be replaced by a
GLðkÞ-rotation on the rows of the matrix C [23].
To do this properly, we need to fix the GLðkÞ-gauge

ambiguity as31

C ¼

0
BB@

1 � � � 0 C1;kþ1 � � � C1;n

0 � � � 0 ..
. ..

. ..
.

0 � � � 1 Ckþ1;n � � � Ck;n

1
CCA: ðB3Þ

The operator ZC
j∂=∂ZC

i then can be replaced by a GLðkÞ-
rotation on the row of the non-gauge-fixed part of the
matrix C. It then follows that

ĴA
BGk;n ¼

X
b

Z Q
k
a¼1

Q
n
m¼kþ1 dCam

M1þb1
1 …M1þbn

n

× ½NA
b − VA

b þ UA
b �ð∂BδbÞ

Y
a≠b

δa; ðB4Þ

where δa ≡ δ4j4ðZa þ
P

n
l¼kþ1 CalZlÞ,

NA
b ≡ 2

X
i<j

N ijZ
A
i Cbj; VA

b ≡ 2
X
i<j

ZA
i Cbi;

UA
b ≡X

i

u−i Z
A
i Cbi: ðB5Þ

Here, u−i ¼ ui − ci as before, and the operator N ij is a
gauge-fixed version of the operator

P
k
a¼1 Cai∂=∂Caj [23].

We can integrate by parts for the operator N A
b. The

operator annihilates the measure, but acts nontrivially on
the minors MiðCÞ. Generalizing the commutation relations
of [23], we find 0

�
1

M1þb1
1 …M1þbn

n
;NA

b

�
¼ 1

M1þb1
1 …M1þbn

n

X
i<j

ð1þbjÞZA
i Cbi;

ðB6Þ

and therefore

ĴA
BAk;n ¼

Z Q
k
a¼1

Q
n
m¼kþ1 dtam

M1þb1
1 …M1þbn

n

×
X
b

�
2
X
i<j

bjZ
A
i Cbi þ

X
i

u−i Z
A
i Cbi

�
ð∂BδbÞ

×
Y
a≠b

δa: ðB7Þ

Requiring that the coefficient of ZA
i Cbi is a constant, we

thus find the invariance constraints

Xn
j¼iþ1

2bj þ u−i ¼ const ðB8Þ

for all i ¼ 1;…; n, and where the constant is independent
of i. In other words we have

bi ¼
1

2
ðu−i − u−i−1Þ; ðB9Þ

which agrees with the constraints in (2.23).

APPENDIX C: YANGIAN INVARIANCE OF THE
3D GRAßMANNIAN INTEGRAL

In this appendix, we prove the Yangian invariance of the
(undeformed) orthogonal Graßmannian integral:

G2k ¼
Z

dk×2kC
jGLðkÞj

δkðkþ1Þ=2ðC · CTÞδ2kj3kðC · ΛÞQ
k
i¼1 MiðCÞ

: ðC1Þ

To show that the above integral is invariant under the level-
one generator in (3.37), we begin by rewriting again

31For the deformed amplitude it is crucial to fix the GLðkÞ-
ambiguity to obtain correct identification of deformation param-
eters. This contrasts with the case of the undeformed case, where
the formal analysis without fixing the GLðkÞ-ambiguity also
gives the Yangian invariance of the amplitude [23].
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ð−ÞjCjΛðA
l

∂
∂ΛC

l

ΛC
iΛ

B�
i ¼ΛðA

l ΛB�
i Λ

C
i

∂
∂ΛC

l

≡ΛðA
l ΛB�

i Oi
l; ðC2Þ

whereOi
l is simply an GLð2kÞ-rotation on the external data

Λi, and we again can conveniently rewrite the action of the
first term in (3.37) asX

l<i

ðΛðA
l ΛB�

i Oi
l − ΛðA

i ΛB�
l Ol

iÞδ2j3ðC · ΛÞ

¼
X
l<i

ΛðA
l ΛB�

i ðOl
i −Oi

lÞδ2j3ðC · ΛÞ; ðC3Þ

where Oi
l is defined in (3.39), and in obtaining the last line

we have used the fact that the indices of the level-one
generators under consideration are (anti-)symmetrized.
Since the operator in the square bracket is in fact a
Oð2kÞ-rotation, after integration by parts it vanishes when
acting on the Oð2kÞ invariant constraint δðC · CTÞ. Thus the
only contribution we receive after integration by parts is
when the linear operator acts on the minors:

X
l<i

Oi
lMp ¼

Xpþk−1

l¼p

X2k
i¼pþk

Ml→i
p ;

X
l<i

Ol
iMp ¼

Xp−1
l¼1

Xpþk−1

i¼p

Mi→l
p : ðC4Þ

Finally, since on the support of δðC · CTÞ, the matrix C is a
collection of null k-planes in a 2k-dimensional space, one
can define a set of dual k-planes to construct Ĉ such that [17]

Ĉ · ĈT ¼ 0; C · ĈT ¼ Ĉ · CT ¼ Ik×k: ðC5Þ

Note that due to (C5), one can immediately deduce

CT · Ĉþ ĈT · C ¼ I2k×2k: ðC6Þ

This is a useful identity, since we can now rewrite

ΛA
i ¼

X2k
j¼1

ΛA
j

X
a

ðCjaĈia þ ĈjaCiaÞ: ðC7Þ

On the support of δ2j3ðC · ΛÞ, the first term vanishes. Using
this result, with p ≤ k, we find that

X
l<i

ΛðA
i ΛB�

l Oi
lMp¼

X
l<i

X2k
j¼1

ΛðA
i ΛB�

j

X
a

ðĈjaClaÞOi
lMp

¼
X2k
j¼1

X2k
i¼pþk

ΛðA
i ΛB�

j

X
a

Ĉja

Xpþk−1

l¼p

Ml→i
p Cla

¼
X2k
i¼pþk

ΛðA
i ΛB�

i Mp; ðC8Þ

where a k-term Schouten identity was used in the
last line, as well as the completeness relation in (C6).
This leads to the following rewriting of the first
term in (C3):

X
l<i

ΛðA
i ΛB�

l Oi
l 1Q

k
j¼1Mj

¼ −
ðPk

l¼1

P
2k
i¼lþk Λ

ðA
i ΛB�

i ÞQ
k
j¼1 Mj

¼ 1Q
k
j¼1Mj

X
k≤l<i

ΛðA
i ΛB�

i : ðC9Þ

Similarly, we find

X
l<i

ΛðA
i ΛB�

l Ol
iMp ¼

X
l<i

X2k
j¼1

ΛðA
j ΛB�

l

X
a

ĈajCaiOl
iMp

¼
Xp−1
l¼1

X2k
j¼1

ΛðA
j ΛB�

l

X
a

Ĉaj

Xpþk−1

i¼p

CaiMi→l
p

¼
Xp−1
l¼1

ΛðA
l ΛB�

l Mp: ðC10Þ

Hence, for the second term in (C3) we now have

−
X
l<i

ΛðA
i ΛB�

l Ol
i 1Q

k
j¼1Mj

¼ 1Q
k
j¼1Mj

X
l<i≤k

ΛðA
l ΛB�

l : ðC11Þ

Collecting these results, and using the level-zero constraintP
iΛ

A
i Λ

B
i ¼ 0, we find that (C9) and (C11) is exactlywhat is

needed to cancel against the terms of the formΛiΛi in (3.37).
For example, for n ¼ 2k ¼ 4, the ΛiΛi terms in (3.37) are
given by

�X
l<i

−
X
i<l

�
ΛðA
i ΛB�

i

2

¼ 1

2
ð−3ΛðA

1 ΛB�
1 − ΛðA

2 ΛB�
2 þ ΛðA

3 ΛB�
3 þ 3ΛðA

4 ΛB�
4 Þ

¼ −3ΛðA
1 ΛB�

1 − 2ΛðA
2 ΛB�

2 − ΛðA
3 ΛB�

3 : ðC12Þ

On the other hand (C9) and (C11) yield

ð−ΛðA
3 ΛB�

3 − 2ΛðA
4 ΛB�

4 Þ þ ðΛðA
1 ΛB�

1 Þ
¼ 3ΛðA

1 ΛB�
1 þ 2ΛðA

2 ΛB�
2 þ ΛðA

3 ΛB�
3 : ðC13Þ

Indeed the above is what is necessary to cancel (C12).
This completes the proof of the invariance of the orthogonal
Graßmannian integral under the level-one generator
in (3.37).
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