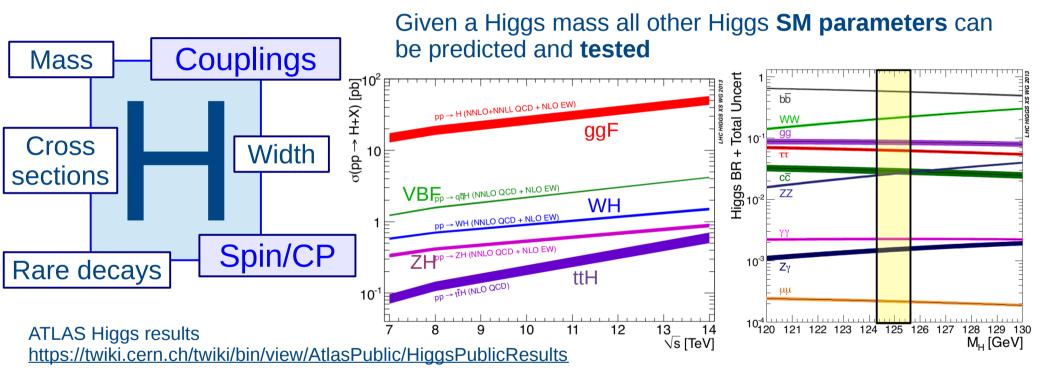


Measurements of the properties of the Higgs boson using the ATLAS detector

Marco Filipuzzi

on behalf of the ATLAS collaboration

17th Lomonosov Conference on Elementary Particle Physics


Moscow, 24.08.2015

Higgs in Run1

Exciting Run1 at LHC: Higgs discovery → Higgs properties

ATLAS full \sqrt{s} = 7 TeV (4.7fb⁻¹) and \sqrt{s} = 8 TeV (20.3fb⁻¹) dataset available since early 2013 \rightarrow reconstruction, analysis improved and better understanding of systematics \rightarrow final **combinations**

Spin/CP

Combination of bosonic decay channels:

arXiv:1506.05669

- H → 77* → 41
- *H* → *WW** → *eνμν*
- H → yy

Models under test:

- Spin 0, Spin 2 (Spin 1 is excluded from H → yy evidence)
- BSM CP-even, CP-odd, CP-mixing (W/Z channels)

Approach of the analysis: Effective Field Theory (**EFT**) → general effective Lagrangian with coefficients to accommodate different hypotheses:

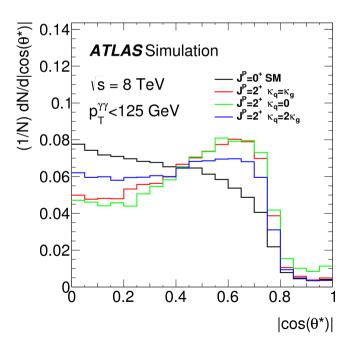
- fixed spin parity test
- CP mixing

 Λ ~1TeV → EFT assumed valid up to p_T[×] < 300 GeV

Spin-0: example for
$$H \rightarrow ZZ^* \rightarrow 4l$$

$$\alpha: \text{ mixing angle } \Lambda: \text{ cut-off scale}$$

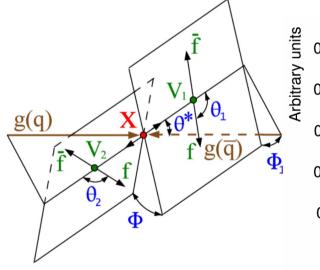
$$L_0^Z = [\cos \bigcirc \kappa_{SM}] \frac{1}{2} g_{HZZ} Z_\mu Z^\mu] - \frac{1}{4} \frac{1}{\Lambda} [\cos \bigcirc \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \sin \bigcirc \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}]] X_0$$

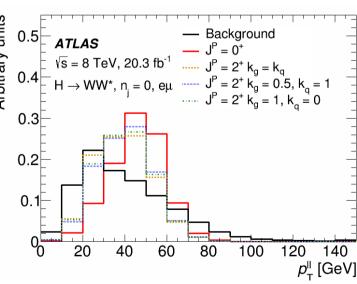

SM coupling BSM CP-even coupling BSM CP-odd coupling

Spin/CP observables

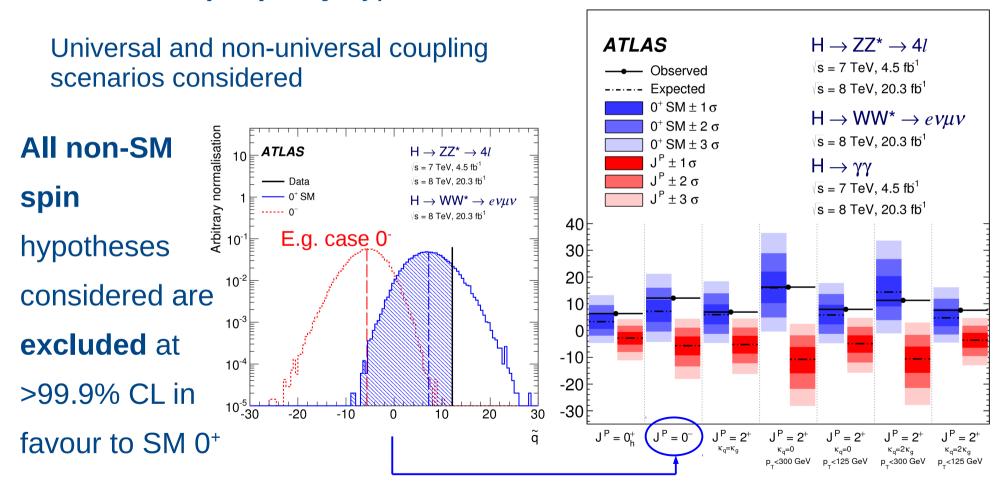
Exploit each channel information (topology, kinematic model differences, ...):

$$H \rightarrow \gamma \gamma$$

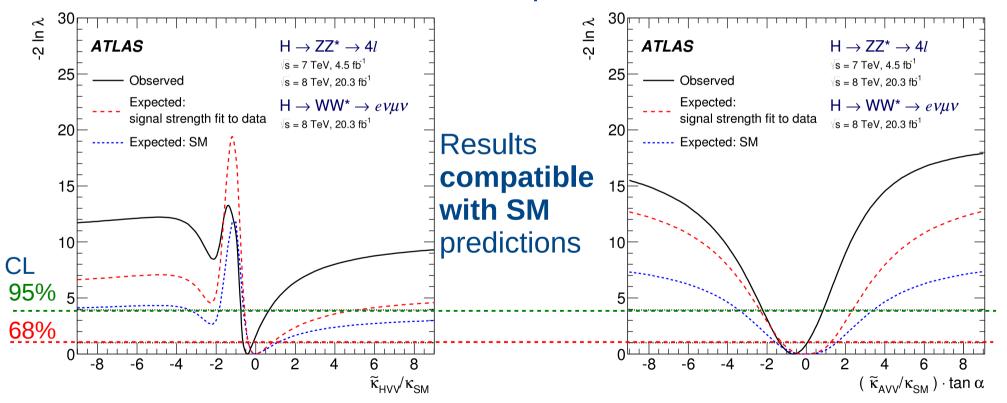

Categories using decay angle in Collins-Soper frame $(cos\theta^*)$ and p_T



Full kinematic information available: matrix-element-based discriminant


BDT with spin/CP sensitive variables: m_{\parallel} , p_{τ}^{\parallel} , $\Delta \Phi_{\parallel}$ and m_{τ}

Spin/CP results


Test fixed spin/parity hypotheses alternative to SM 0⁺

CP mixing

BSM hypothesis scenario: observed resonance is a **mixture** of SM spin-0 state and a **BSM spin-0 CP-even** or **CP-odd** state

Use $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ to measure the ratios:

Signal strengths/Couplings

Combination of the following analysis:

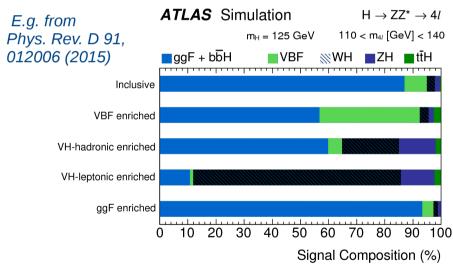
11 ----

arXiv:1507.04548

• $H \rightarrow Z\gamma$ • $H \rightarrow \mu\mu$

ttH

H* → ZZ/WW


- *H* → *ZZ**
- H → WW*

- H → bb
- *H* → *TT*

Measurements:

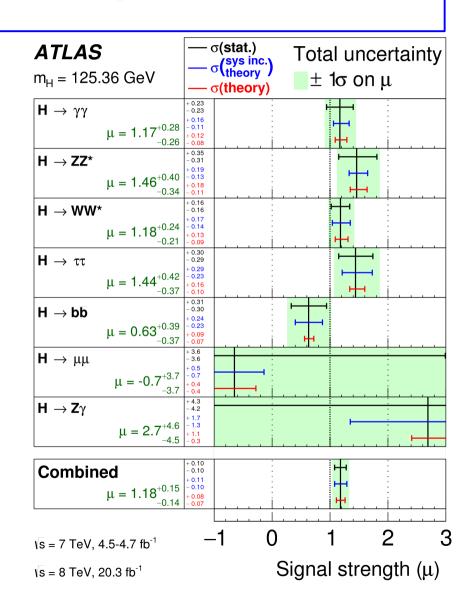
• Signal strength
$$\mu = \frac{\sigma \cdot BR}{(\sigma \cdot BR)_{SM}}$$

- Production modes
- Decay channels
- Coupling strength for several benchmark models

Approach of the analysis: **exclusive categories** to maximize sensitivity of different production modes, **global fit** to take into account contaminations inside categories and uncertainty correlations between different channels

Signal strength

Fix the Higgs mass to the ATLAS combined value value of 125.36 GeV


Combination imposing same signal strength in all channels

Best fit value:

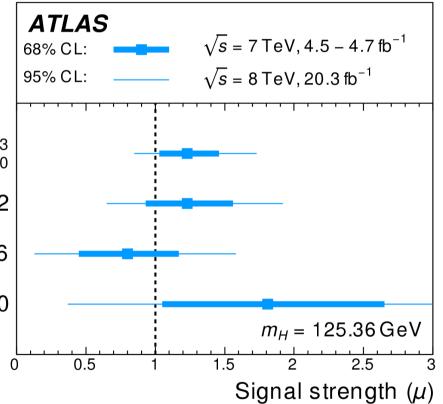
$$\mu = 1.18^{+0.15}$$
-0.14

= 1.18
$$\pm$$
 0.10 (stat)
 \pm 0.07 (syst)
 \pm 0.07 (theo)

Consistent with SM (p-value of 18%)

Production signal strengths

Combination: **global fit** with individual signal strengths for main **production modes** as free


parameters (assuming SM branching ratios)

$$\mu_{ggF} = 1.23^{+0.23}_{-0.20}$$

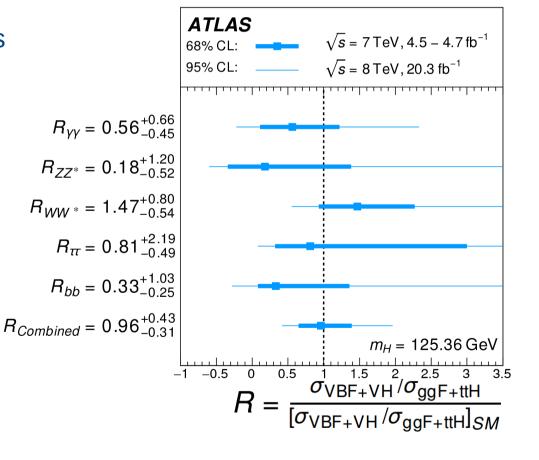
$$\mu_{VBF} = 1.23 \pm 0.32$$

$$\mu_{VH} = 0.80 \pm 0.36$$

$$\mu_{ttH} = 1.81 \pm 0.80$$

Results in **agreement with SM**

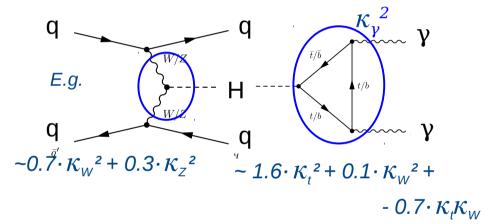
Ratio of production cross sections


Ratio of cross sections:

- result independent of assumptions on inclusive cross section and BRs
- many systematic uncertainties cancel

Measured **significance** (in standard deviations) per **production** mode:

- ggF: > 5
- WH: ~2.1
- VBF: ~4.3
- ZH: ~0.9
- ttH: ~2.5
 - VH: ~2.6


Boson Fermion mediated processes

Couplings studies

Framework \rightarrow (LO) tree-level-motivated framework + assumptions: measure coupling strength scale factors κ_j relative to SM (SM: κ_j =1)

Combination of the different production modes and decay possibilities

Benchmark models depending on the number of assumptions and constraints used to test couplings for:

- Fermions versus vectors (bosons)
- Symmetry between up- and down-type fermions
- Quarks versus leptons
- BSM contributions in loops and decays
- Generic models (all couplings as free parameters)

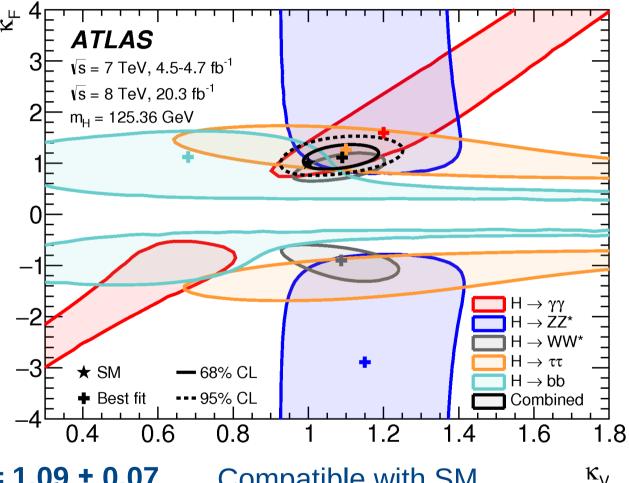
Fermion vs vector couplings

Probe coupling strength to fermions and bosons

Assumptions:

- no BSM in loops
- no BSM in decays
- universal coupling for fermions and bosons

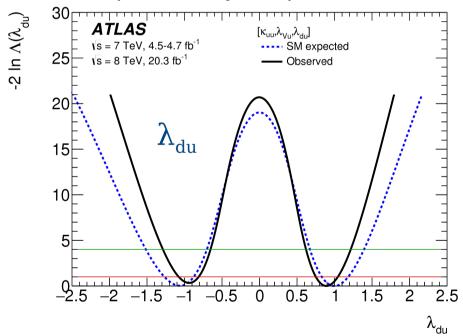
$$\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu$$


$$\kappa_{V} = \kappa_{W} = \kappa_{Z}$$

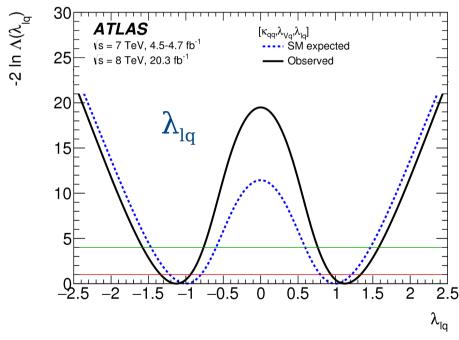
Best Fit:

$$\kappa_F = 1.11 \pm 0.16$$

Compatible with SM


Fermion couplings

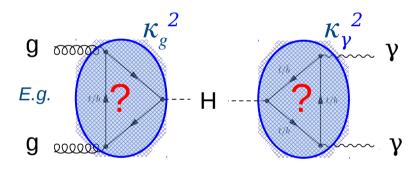
Test relations within the fermion coupling sector using ratios:


- up-down fermion symmetry
- lepton-quark symmetry

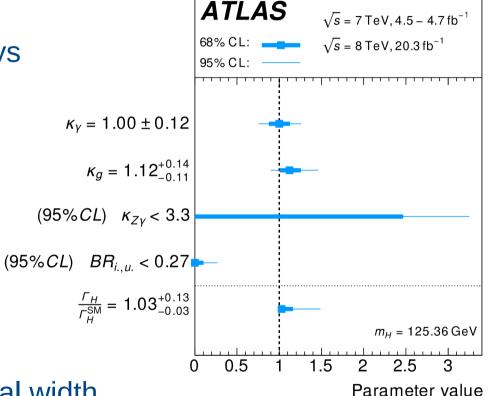
$$\lambda_{\rm du} = \kappa_d / \kappa_u$$

Assumptions: only SM particles in vertex loops, vector boson couplings unified

Coupling with **down-type** fermions found with significance of 4.5σ


Coupling with **leptons** found with significance of 4.4σ

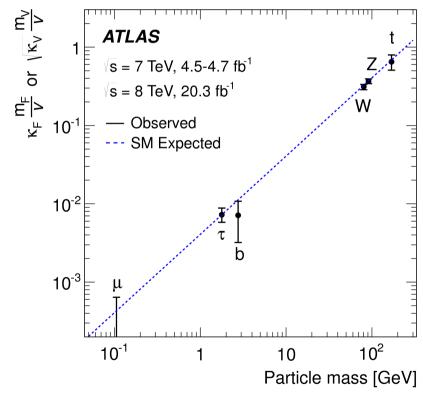
BSM in loops and decays


Test contributions of **non-SM**

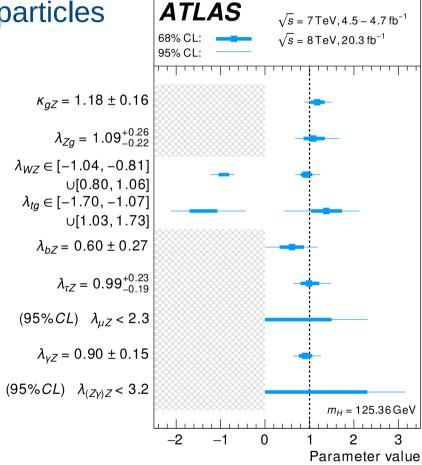
particles in vertex loops and decays

through effective scale factors

$$\kappa_W = \kappa_Z = \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu = 1$$



Allow contributions to the Higgs total width


SM hypothesis compatibility with best-fit point is 74%

Testing generic models

Generic model → all couplings for SM particles are free parameters

Assumption: no new particle in loops or decays

Most general: no assumption on loops and decays → only coupling ratios can be measured

Summary

Presented **Run1 ATLAS** measurements of the **Higgs** boson using $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV:

- Spin/CP combination of $H \rightarrow ZZ^* \rightarrow 4l$, $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ and $H \rightarrow \gamma\gamma$ analysis
 - Spin: all non-SM hypothesis considered are excluded at more than 99.9% CL
 - CP: distributions compatible with SM and limits set for BSM tensor couplings
- Signal strength/coupling combination of $H \rightarrow yy$, ZZ^* , WW^* , Zy, bb, $\tau\tau$ and $\mu\mu$, ttH associated production (and off-shell coupling strength with the Higgs boson)
 - Combined yield relative to SM is $\mu = 1.18 \pm 0.10$ (stat) ± 0.07 (syst) $^{+0.08}$ -0.07 (theo)
 - Production modes: gluon fusion confirmed (significance exceeding 5σ), strong evidence for VBF (4.3 σ significance)
 - Wide range of benchmark coupling models tested and limits set for non-SM
 - Looking forward to the new data coming!! Stay tuned!!

Backup

SM Higgs production and decay

SM predictions of the Higgs boson (125.36 GeV) production cross sections and decay branching ratios and their uncertainties (*Handbook of LHC Higgs Cross Sections: 3. Higgs Properties (2013)*)

Production	Cross section [pb]		,	Decay channel	Branching ratio [%]
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$		$H \to b \overline{b}$	57.1 ± 1.9
$\overline{\mathrm{ggF}}$	15.0 ± 1.6	19.2 ± 2.0	•	$H \to WW^*$	22.0 ± 0.9
VBF	1.22 ± 0.03	1.57 ± 0.04		H o gg	8.53 ± 0.85
WH	0.573 ± 0.016	0.698 ± 0.018		$H \to \tau \tau$	6.26 ± 0.35
ZH	0.332 ± 0.013	0.412 ± 0.013		$H \to c\bar{c}$	2.88 ± 0.35
bbH	0.155 ± 0.021	0.202 ± 0.028		$H o ZZ^*$	2.73 ± 0.11
ttH	0.086 ± 0.009	0.128 ± 0.014		$H \to \gamma \gamma$	0.228 ± 0.011
tH	0.012 ± 0.001	0.018 ± 0.001		$H o Z \gamma$	0.157 ± 0.014
Total	17.4 ± 1.6	22.3 ± 2.0	•	$H \to \mu\mu$	0.022 ± 0.001

Spin-2 framework

Parametrized in couplings to fermions and vector bosons.

$$\mathcal{L}_{2} = -\frac{1}{\Lambda} \left[\sum_{V} \kappa_{V} \mathcal{T}_{\mu\nu}^{V} X^{\mu\nu} + \sum_{f} \kappa_{f} \mathcal{T}_{\mu\nu}^{f} X^{\mu\nu} \right]$$

Production dominated by QCD \rightarrow only including QCD production from quarks and gluons: $\kappa_{\rm q}$, $\kappa_{\rm g}$

Values of spi	n-2 quark and gluon couplings	p_{T}^{X} selections (GeV)		
$\kappa_q = \kappa_g$	Universal couplings	_	_	
$\kappa_q = 0$	Low light-quark fraction	< 300	< 125	
$\kappa_q = 2\kappa_g$	Low gluon fraction	< 300	< 125	

EFT lagrangian allows for more complex processes with emission of one or more additional partons

Spin results: tables

Expected and observed p-values for different spin-parity hypothesis

Tested Hypothesis	$p_{\mathrm{exp},\mu=1}^{\mathrm{alt}}$	$p_{\mathrm{exp},\mu=\hat{\mu}}^{\mathrm{alt}}$	$p_{ m obs}^{ m SM}$	$p_{ m obs}^{ m alt}$	Obs. $\mathrm{CL_s}$ (%)
0_{h}^{+}	$2.5 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	0.85	$7.1 \cdot 10^{-5}$	$4.7 \cdot 10^{-2}$
0	$1.8 \cdot 10^{-3}$	$1.3 \cdot 10^{-4}$	0.88	$< 3.1 \cdot 10^{-5}$	$< 2.6 \cdot 10^{-2}$
$2^+(\kappa_q = \kappa_g)$	$4.3 \cdot 10^{-3}$	$2.9 \cdot 10^{-4}$	0.61	$4.3 \cdot 10^{-5}$	$1.1 \cdot 10^{-2}$
$2^{+}(\kappa_{q} = 0; p_{T} < 300 GeV)$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.52	$< 3.1 \cdot 10^{-5}$	$< 6.5 \cdot 10^{-3}$
$2^{+}(\kappa_{q} = 0; p_{T} < 125 GeV)$	$3.4\cdot10^{-3}$	$3.9 \cdot 10^{-4}$	0.71	$4.3 \cdot 10^{-5}$	$1.5 \cdot 10^{-2}$
$2^{+}(\kappa_{q} = 2\kappa_{g}; \ p_{\rm T} < 300 GeV)$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.28	$< 3.1 \cdot 10^{-5}$	$<4.3\cdot10^{-3}$
$2^{+}(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125 GeV)$	$7.8 \cdot 10^{-3}$	$1.2 \cdot 10^{-3}$	0.80	$7.3 \cdot 10^{-5}$	$3.7 \cdot 10^{-2}$

Expected and observed best-fit values for CP mixing parameters

Coupling ratio	Best-fit value	95% CL Excl	usion Regions	
Combined	Observed	Expected	Observed	
$ ilde{\kappa}_{HVV}/\kappa_{ m SM}$	-0.48	$(-\infty, -0.55] \bigcup [4.80, \infty)$	$(-\infty, -0.73] \bigcup [0.63, \infty)$	
$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM}) \cdot \tan \alpha$	-0.68	$(-\infty, -2.33] \bigcup [2.30, \infty)$	$(-\infty, -2.18] \bigcup [0.83, \infty)$	

Production mode categories

Overview of the categories of the individual analysis included in the combination

Analysis		 Signal	ſ ſ dŧ	$[fb^{-1}]$
Categorisation or final states	Strength μ	Significance [s.d.]	$\frac{\int \mathcal{Z} dt}{7 \text{ TeV}}$	8 TeV
$H \to \gamma \gamma $ [12]	1.17 ± 0.27	5.2 (4.6)	4.5	20.3
ttH: leptonic, hadronic	1.1. ± 0.2.	3.2 (1.3)	√	2 0.0 ✓
VH : one-lepton, dilepton, $E_{\rm T}^{\rm miss}$, h	adronic		· ✓	✓
VBF: tight, loose			✓	✓
ggF: 4 p_{Tt} categories			\checkmark	\checkmark
$H \to ZZ^* \to 4\ell$ [13]	$1.44^{+0.40}_{-0.33}$	8.1 (6.2)	4.5	20.3
$_{ m VBF}$,	\checkmark	\checkmark
VH: hadronic, leptonic			\checkmark	\checkmark
$_{ m ggF}$			✓	✓
$H \to WW^*$ [14,15]	$1.16^{+0.24}_{-0.21}$	6.5 (5.9)	4.5	20.3
ggF: (0-jet, 1-jet) \otimes ($ee + \mu\mu$, $e\mu$)			\checkmark	\checkmark
ggF: ≥ 2 -jet and $e\mu$				\checkmark
$VBF: \geq 2\text{-jet} \otimes (ee + \mu\mu, e\mu)$			\checkmark	\checkmark
VH: opposite-charge dilepton, three	ee-lepton, four-lepto	on	\checkmark	\checkmark
VH: same-charge dilepton				✓
H o au au [17]	$1.43^{+0.43}_{-0.37}$	4.5 (3.4)	4.5	20.3
Boosted: $\tau_{\text{lep}}\tau_{\text{lep}}, \tau_{\text{lep}}\tau_{\text{had}}, \tau_{\text{had}}\tau_{\text{had}}$			\checkmark	\checkmark
VBF: $\tau_{\text{lep}}\tau_{\text{lep}}$, $\tau_{\text{lep}}\tau_{\text{had}}$, $\tau_{\text{had}}\tau_{\text{had}}$			✓	√
$VH \to Vb\bar{b}$ [18]	0.52 ± 0.40	1.4(2.6)	4.7	20.3
$0\ell \ (ZH \to \nu \nu b\bar{b})$: $N_{\rm jet} = 2, 3, N_{\rm btag}$	$=1,2, p_{\mathrm{T}}^{V} \in 100\text{-}12$	20 and > 120 GeV	\checkmark	\checkmark
$1\ell \ (WH \to \ell \nu b\bar{b})$: $N_{\rm jet} = 2, 3, \ N_{\rm btag}$	\checkmark	\checkmark		
$2\ell \ (ZH \to \ell\ell b\bar{b}): \ N_{\rm jet} = 2, 3, \ N_{\rm btag}$	$=1, 2, p_{ m T}^{V} < { m and} >$	$120 \mathrm{GeV}$	\checkmark	✓
		95% CL limit		
$H \to Z\gamma$ [19]		$\mu < 11 \ (9)$	4.5	20.3
10 categories based on $\Delta \eta_{Z\gamma}$ and p	Tt.		√	√
$H \to \mu\mu$ [20]	• 444	$\mu < 7.0 \ (7.2)$	4.5	20.3
VBF and 6 other categories based	on η_{μ} and p_{T}^{μ}		<u>√</u>	<u>√</u>
ttH production [21,22,23]		1 2 4 (2 2)	4.5	20.3
$H \to bb$: single-lepton, dilepton	1.1.11.11	$\mu < 3.4 (2.2)$		√
$ttH \rightarrow$ multileptons: categories on I	epton multiplicity	$\mu < 4.7 (2.4)$,	√
$H \to \gamma \gamma$: leptonic, hadronic		$\mu < 6.7 (4.9)$	√	√
Off-shell H^* production [24]		$\mu < 5.1 - 8.6 (6.7 - 11.0)$		20.3
$H^* o ZZ o 4\ell$				√
$H^* o ZZ o 2\ell 2 u$				√
$\underbrace{H^* \to WW \to e\nu\mu\nu}_{}$				√

From signal strength to cross section

Tabled results for measured signal strengths (and cross section), assuming SM values for Higgs decay BRs

Production	Signal strength μ at $m_H=125.36~{\rm GeV}$			
process	$\sqrt{s} = 8 \text{ TeV}$		Combined $\sqrt{s} = 7$ and 8 TeV	
ggF	$1.23^{+0.25}_{-0.21}$	$\begin{bmatrix} +0.16 & +0.10 & +0.16 \\ -0.16 & -0.08 & -0.11 \end{bmatrix}$	$1.23^{+0.23}_{-0.20}$	$\begin{bmatrix} +0.14 & +0.09 & +0.16 \\ -0.14 & -0.08 & -0.12 \end{bmatrix}$
VBF	$1.55_{-0.35}^{+0.39}$	$\begin{bmatrix} +0.32 & +0.17 & +0.13 \\ -0.31 & -0.13 & -0.11 \end{bmatrix}$	1.23 ± 0.32	$\begin{bmatrix} +0.28 & +0.13 & +0.11 \\ -0.27 & -0.12 & -0.09 \end{bmatrix}$
VH	0.93 ± 0.39	$\begin{bmatrix} +0.37 & +0.20 & +0.12 \\ -0.33 & -0.18 & -0.06 \end{bmatrix}$	0.80 ± 0.36	$\begin{bmatrix} +0.31 & +0.17 & +0.10 \\ -0.30 & -0.17 & -0.05 \end{bmatrix}$
ttH	1.62 ± 0.78	$\begin{bmatrix} +0.51 & +0.58 & +0.28 \\ -0.50 & -0.54 & -0.10 \end{bmatrix}$	1.81 ± 0.80	$\begin{bmatrix} +0.52 & +0.58 & +0.31 \\ -0.50 & -0.55 & -0.12 \end{bmatrix}$

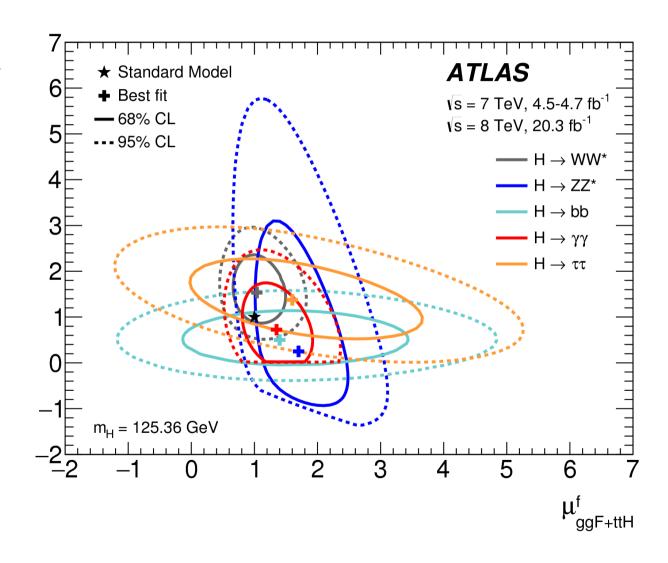
Production process	Cross section [pb] at $\sqrt{s} = 8 \text{ TeV}$
ggF	$23.9 \pm 3.6 \begin{bmatrix} +3.1 & +1.9 & +1.0 \\ -3.1 & -1.6 & -1.0 \end{bmatrix}$
VBF	$2.43 \pm 0.58 \begin{bmatrix} +0.50 & +0.27 & +0.19 \\ -0.49 & -0.20 & -0.16 \end{bmatrix}$
VH	1.03 ± 0.53 $\begin{bmatrix} +0.37 & +0.22 & +0.13 \\ -0.36 & -0.20 & -0.06 \end{bmatrix}$
ttH	$0.24 \pm 0.11 \begin{bmatrix} +0.07 & +0.08 & +0.01 \\ -0.07 & -0.08 & -0.01 \end{bmatrix}$

From signal strength to cross section

Best-fit value for combined signal strength

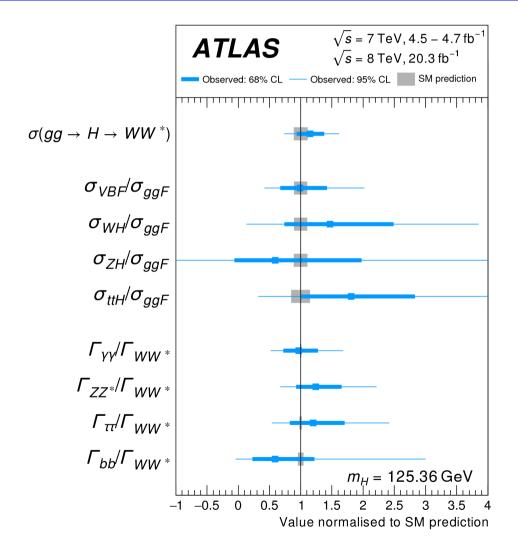
$$\mu(7 \, \text{TeV}) = 0.75^{+0.32}_{-0.29} = 0.75^{+0.28}_{-0.26} (\text{stat.})^{+0.13}_{-0.11} (\text{syst.})^{+0.08}_{-0.05} (\text{theo.}), \text{ and}$$

$$\mu(8 \, \text{TeV}) = 1.28^{+0.17}_{-0.15} = 1.28 \pm 0.11 (\text{stat.})^{+0.08}_{-0.07} (\text{syst.})^{+0.10}_{-0.08} (\text{theo.})$$

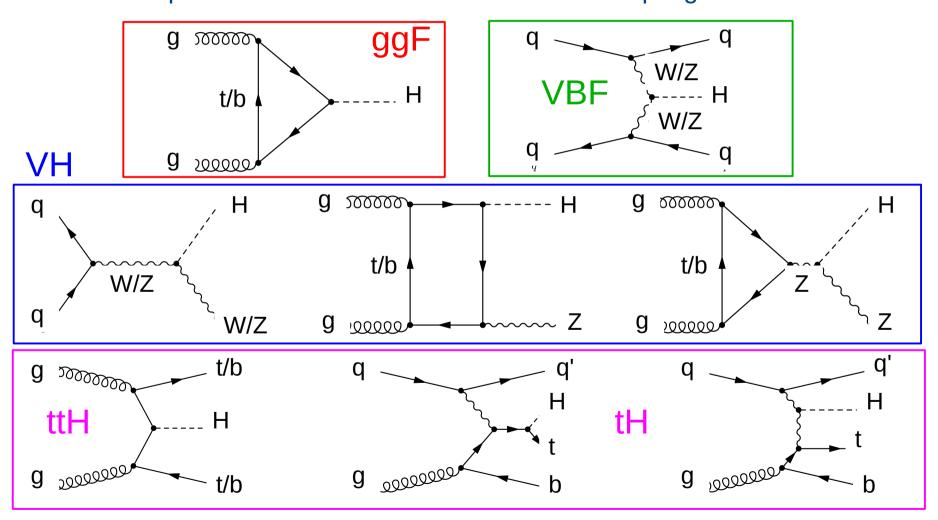

The signal strength measurements are extrapolated to total cross section measurements for each production process that summed result in the total Higgs boson production cross section:

$$\sigma_H(7 \text{ TeV}) = 22.1^{+7.4}_{-6.0} \text{ pb} = 22.1^{+6.7}_{-5.3} (\text{stat.})^{+2.7}_{-2.3} (\text{syst.})^{+1.9}_{-1.4} (\text{theo.}) \text{ pb, and}$$

$$\sigma_H(8 \text{ TeV}) = 27.7 \pm 3.7 \text{ pb} = 27.7 \pm 3.0 (\text{stat.})^{+2.0}_{-1.7} (\text{syst.})^{+1.2}_{-0.9} (\text{theo.}) \text{ pb,}$$


Fermion vs boson coupling

SM values are assumed for the relative contribution between ggF and ttH and between VBF and VH production


Ratio of cross sections and of partial decay width

gg → H → WW* cross section and ratios of cross sections and partial decay widths relative to their SM values

Couplings: production modes

The 8 different production modes considered in the coupling measurement

κ -framework

Production	Loops	Interference	Expression	in fundamental coupling-strength scale factors
$\sigma(ggF)$	✓	b-t	$\kappa_g^2 \sim$	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma({ m VBF})$	-	-	\sim	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	-	-	\sim	κ_W^2
$\sigma(q\bar{q} o ZH)$	-	-	\sim	κ_Z^2
$\sigma(gg o ZH)$	\checkmark	$Z\!\!-\!\!t$	$\kappa_{ggZH}^2 \sim$	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(bbH)$	-	-	\sim	κ_b^2
$\sigma(ttH)$	-	-	\sim	κ_t^2
$\sigma(gb \to WtH)$	-	W $-t$	\sim	$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qb \to tHq')$	-	W $-t$	\sim	$3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
Partial decay width				
$\Gamma_{bar{b}}$	-	-	\sim	κ_b^2
Γ_{WW}	-	-	\sim	κ_W^2
Γ_{ZZ}	-	-	\sim	κ_Z^2 κ_T^2
$\Gamma_{ au au}$	-	-	\sim	$\kappa_{ au}^2$
$\Gamma_{\mu\mu}$	-	-	\sim	κ_{μ}^{2}
	\checkmark	W $-t$	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma_{Z\gamma}$	\checkmark	W $-t$	$\kappa_{Z\gamma}^2 \sim$	$1.12 \cdot \kappa_W^2 + 0.00035 \cdot \kappa_t^2 - 0.12 \cdot \kappa_W \kappa_t$
Total decay width			•	
		W +		$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 +$
Γ_H	\checkmark	W-t $b-t$	$\kappa_H^2 \sim$	$0.06 \cdot \kappa_{\tau}^{2} + 0.03 \cdot \kappa_{Z}^{2} + 0.03 \cdot \kappa_{c}^{2} +$
		o - v		$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 + 0.00022 \cdot \kappa_{\mu}^2$