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Abstract—Imaging controlled molecules with ultrashort x-
ray pulses from free-electron lasers enables the recording of
“molecular movies”, i.e., snapshots of molecules at work, with
spatial (picometer) and temporal (femtosecond) atomic resolution.

Hard-x-ray free-electron lasers (FELs) provide
femtosecond-duration pulses of x-rays with unprecedented
brilliance [1], [2]. These enable the study of ultrafast
chemical dynamics of isolated molecules in the gas phase
using diffractive-imaging methods [3]–[7]. We exploit various
imaging approaches to understand the intrinsic molecular
structure and function, which is at the very heart of the
chemical and molecular sciences.

Experiments that allow for the creation of structurally pure
samples and, subsequently, for the investigation of their intrin-
sic molecular dynamics and chemical function have developed
tremendously over the last few decades, although “there’s
plenty of room at the bottom” – for better control as well as
for further applications. We detail the use of inhomogeneous
electric fields for the manipulation of neutral molecules in
the gas-phase, i.e., for the separation of complex molecules
according to size, structural isomer, and quantum state [8]–
[12]. These quantum-state-selected samples allow for very
strong degrees of alignment and orientation [9], [13]–[17].
The produced ensembles of structurally sorted and fixed-in-
space molecules are well-suited for imaging experiments, as
the availability of many identical molecules in the camera’s
frame of reference allows for direct, experimental averaging
of the recorded signal until it is above noise.

We have performed a number of imaging experiments at
the Linac Coherent Light Source (LCLS) at SLAC [2] and
the Free-Electron Laser in Hamburg (FLASH) at DESY [18].
These include the direct x-ray-diffractive imaging of aligned
isolated gas-phase molecules [19], [20] and photoelectron-
holography approaches, which are implemented as imaging
of molecular-frame photoelectron angular distributions (MF-
PAD) [21]–[23]. In these first benchmark imaging experiments,
we have exploited cold molecular beams from state-of-the-
art pulsed valves. These beams were further purified using
the electric deflector [24], which spatially disperses the beam
according to the molecules’ quantum states and separates
the molecules from the atomic seed gas. The quantum-state
selected samples were laser aligned or mixed-field oriented
using nanosecond-pulsed Nd:YAG lasers or stretched pulses
from amplified Ti:Sapphire laser systems. The latter allows to
generate strong alignment and orientation at full FEL repetition
rates [15], [25].

Here, we report on two approaches to image these con-

Fig. 1. Sketch of the experimental setup for the atomically-resolved imaging
of controlled isolated gas-phase molecules [19].

trolled samples: first, we observe the wide-angle scattering pat-
terns from these molecules. The images recorded on pixelated
detectors are the incoherent sums of the coherent-diffractive-
imaging (CDI) patterns of the (identical) isolated gas-phase
molecules [6], [19], [20]. For the controlled samples employed,
this corresponds to a single-molecule pattern with an enhanced
signal-to-noise ratio. Alternatively, we have observed the
MFPADs following photoionization of these samples. These
MFPADs show holographic structures due to the interference
of the direct and the scattered parts of the outgoing-electron
wave. Especially in the case of core excitations above an
absorption edge, e.g., F(1s) photoionization, this hologram
provides chemical sensitivity for probing of the local structure
around the ionized atom [21]–[23]. These experiments will
be compared to modern imaging experiments utilizing table-
top laser systems, such as MFPAD measurements follow-
ing strong-field ionization [26], [27], laser-induced electron
diffraction [28], or high-harmonic spectroscopy [29].

Moreover, coincidence ion imaging under similar condi-
tions allows to investigate the ultrafast electronic dynamics of
x-ray photoionized dissociating molecules [30], [31].

We summarize current experiments and analyze the feasi-
bility of atomically resolved imaging of ultrafast molecular dy-
namics. Based on experience from these first experiments, de-
sign criteria and experimental approaches for x-ray diffractive
imaging of isolated gas-phase molecules are discussed [32].
We propose that these experiments can be performed as
secondary, parasitic experiments, upstream of and in-line with
more x-ray-intensity demanding primary experiments.
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