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I. INTRODUCTION

The problem of phase retrieval, namely – the recovery of a

function given the magnitude of its Fourier transform - arises

in various fields of science and engineering, including electron

microscopy, crystallography, astronomy, and optical imaging.

Exploring phase retrieval in optical settings, specifically when

the light originates from a laser, is natural, because optical

detection devices (e.g., ccd cameras, photosensitive films, the

human eye) cannot measure the phase of a light wave. This is

because, generally, optical measurement devices that rely on

converting photons to electrons (current) do not allow direct

recording of the phase: the electromagnetic field oscillates at

rates ∼ 1015 Hz, which no electronic measurement devices can

follow. Indeed, optical measurement / detection systems mea-

sure the photon flux, which is proportional to the magnitude

squared of the field, not the phase. Consequently, measuring

the phase of optical waves (electromagnetic fields oscillating at

1015 Hz and higher) involves additional complexity, typically

by interfering it with another (known) field, in the process of

holography.

Interestingly, electromagnetic fields do have some other

features which make them amenable for algorithmic phase

retrieval: their far-field corresponds to the Fourier transform of

their near-field. More specifically, given a “mask” that super-

imposes some structure (an image) on a quasi-monochromatic

coherent field at some plane in space, the electromagnetic

field structure at a large enough distance from that plane is

given by the Fourier transform of the image multiplied by

a known quadratic phase factor. Thus, measuring the far-

field, magnitude and phase, would facilitate recovery of the

optical image (the wavefield). However, as noted above, the

optical phase cannot be measured directly by an electronic

detector. Here is where algorithmic phase retrieval comes into

play, offering a means for recovering the phase given the

measurement of the magnitude of the optical far-field and

some prior knowledge.

The purpose of this review article is to provide a con-

temporary review of phase retrieval in optical imaging. It

begins with historical background section that also explains

the physical setting, followed by a section on the mathematical

formulation of the problem. The fourth section discusses

existing algorithms, while the fifth section describes various

contemporary applications. The last section discusses addi-

tional physical settings where algorithmic phase retrieval is

important, identifies current challenges and provides a long

term vision. This review article provides a contemporary

overview of phase retrieval in optical imaging, linking the

relevant optical physics to the signal processing methods and

algorithms. Our goal is to describe the current state of the art

in this area, identify challenges, and suggest vision and areas

where signal processing methods can have a large impact on

optical imaging and on the world of imaging at large, with

applications in a variety of fields ranging from biology and

chemistry to physics and engineering.
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Figure 1. Numerical 2D phase retrieval example, adapted from Fienup’s
1978 paper [2]. (a) Test object. (b) Fourier magnitude (c) Reconstruction
results (using HIO - see Fig. 4b for details)

II. HISTORICAL BACKGROUND

Algorithmic phase retrieval offers an alternative means for

recovering the phase structure of optical images, without

requiring sophisticated measuring setups as in holography.

These approaches typically rely on some advanced information

in order to facilitate recovery. Back in 1952, Sayre envisioned,

in the context of crystallography, that the phase information of

a scattered wave may be recovered if the intensity pattern at

and between the Bragg peaks of the diffracted wave is finely

measured [1]. In crystallography, the material structure under

study is periodic (a crystal), hence the far-field information

contains naturally strong peaks reflecting the Fourier transform

of the periodic information. Measuring the fine features in

the Fourier transform enabled the recovery of the phase in

some simple cases. Twenty six years later, in 1978, Fienup

developed algorithms for retrieving phases of 2D images

from their Fourier modulus and constraints such as non-

negativity, and a known support of the image [2] (See Fig.

1). In the early eighties, the idea of phase retrieval created a

flurry of follow up work, partly because those times signified

great hope for realizing an optical computer, of which phase

retrieval was supposed to be a key ingredient. However, in

the 1980s and 1990s, with the understanding that an optical

computer is unrealistic, the interest in algorithmic phase re-

trieval diminished. Towards the end of the millennium, optical

phase retrieval started to come back into contemporary optics

research, with the interest arising from a completely different

direction: the community of researchers experimenting with

X-ray imaging, where new X-ray sources (undulators and

synchrotrons) were developed. The wide-spread interest of this

field was mainly generated by the first experimental recording

and reconstruction of a continuous diffraction pattern (Fourier

magnitude squared) of a non-crystalline (non-periodic) test

object by Miao and collaborators in 1999 [3].

The reasons for the revival of optical phase retrieval, in

1999, were actually quite subtle. One goal of optical imaging

systems is to increase resolution, that is, to image smaller

and smaller features. But, as known since Ernst Abbe’s

work in 1873, the highest attainable resolution in diffraction

imaging (so-called the diffraction limit) is comparable to the

wavelength of the light. For visible light, this diffraction limit

corresponds to fraction of microns. Consequently, features on

the molecular scale cannot be viewed with visible light in

a microscope. One could argue then, why not simply use

electromagnetic waves of a much shorter wavelength, say, in

the hard X-ray regime, where the wavelength is comparable

to atomic resolution? The reason is that lens-like devices and

other optical components in this spectral region suffer from

very large aberrations and are very difficult to make due to fact

that refractive indices of materials in this wavelength regime

are close to one. On the other hand, algorithmic phase retrieval

is of course not limited by the quality of lenses; however it

requires very low noise detectors.

An additional problem is that as resolution is improved (that

is, as voxel elements in the recovered image are smaller in

size), the number of photons per unit area must obviously

increase to provide a reasonable SNR. This means that the

required exposure time to obtain a given signal level must

increase as (1/d)4, with d being the resolution length, assumed

to be larger than atomic scales [4]. This, in turn, creates

another problem: X-ray photons are highly energetic. The

atomic cross section for photoabsorption is usually much

higher than for elastic scattering, meaning that for every

photon that contributes to the diffraction pattern (the mea-

sured Fourier magnitude), a considerable greater number of

photons are absorbed by the sample. This energy dissipates

in the sample first by photoionisation and the breakage of

bonds, followed by a cascade of collisional ionisation by

free electrons and, at longer timescales, a destruction of the

sample due to radiolysis, heating, or even ablation of the

sample. Such radiation damage hinders the ability to recover

the structure of molecules: the measured far-field intensity

(Fourier magnitude) also reflects the structural damages, rather

than providing information about the true molecular structure

[5]. A solution to this problem was suggested by Solem and

Chapline in the 1980’s. They proposed to record images (or

holograms in their case) with pulses that are shorter than the

timescale for the X-ray damage to manifest itself at a particular

resolution. They predicted that picosecond pulses would be

required to image at nanometer length scales [6]. Towards the

late nineties, with the growing promise in constructing X-ray

lasers that generate ultrashort pulses on the femtosecond scale,

it was suggested that such pulses could even outrun damage
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processes at atomic length scales[7]. However, forming a

direct image in this way would still require high quality

optical components (lenses, mirrors) in the X-ray regime,

which do not currently exist. This is because creating lenses

for the hard X-ray wavelength regime requires fabrication at

picometer resolution, much smaller even than the Bohr radius

of atoms. Likewise, while mirrors for X-rays do exist, their

best resolution is on the scale of many nanometers, much

larger than the features one would want to resolve in imaging

of molecules, for example.

The difficulties outlined above in direct X-ray imaging

leave no choice but to use alternative methods to recover

the structure of nanometric samples. Here is where phase

retrieval can make its highest impact. Placing an area detector

far enough from the sample to record the far-field diffraction

intensity (which is approximately proportional to the squared

magnitude of the Fourier transform of the image, if the

coherence length of the X-ray wave is larger than the sample

size [8], [9]), together with appropriate constraints on the

support of the sample, enable the recovery of the image at

nanometric resolution. Indeed, the phase information has been

shown numerically and experimentally to be retrieved in this

fashion in various examples [2], [10], [11], [12], [13], [14].

The combination of X-ray diffraction, oversampling and phase

retrieval has launched the currently very active field called

Coherent Diffraction Imaging or CDI [3]. In CDI, an object is

illuminated with a coherent wave, and the far field diffraction

intensity pattern (corresponding to the Fourier magnitude of

the object) is measured. The problem then is to recover

the object from the measured far-field intensity (See box on

Coherent Diffractive Imaging and Fig. 2 within). Since its first

experimental demonstration, CDI has been applied to image a

wide range of samples using synchrotron radiation [8], [15],

[16], [17], [18], [19], [20], [21], X-ray free electron lasers

(XFELs) [22], [23], [24], [25], [26], high harmonic generation

[27], [28], [29], [30], soft X-ray laser [31], optical laser [32],

and electrons [33], [34], [35]. Several readable reviews on the

development and implementation of phase-retrieval algorithms

for the specific application of CDI were written by Marchesini

[11], Thibault and Elser [36] and Nugent [37]. Presently,

one of the most challenging problems in CDI is towards 3D

structural determination of large protein molecules [7], [38].

There has been ongoing progress towards this goal during the

past decade. In 2006, Chapman et al., demonstrated the CDI

of a test sample using intense ultra-short single pulse from

free electron laser, relying on recording a diffraction pattern

before the sample was destroyed [24]. Recently, the technique

was implemented for high-resolution imaging of isolated sub-

micron objects, such as herpesvirus [39], mimivirus [25] and

aerosol particles such as soot [26].

From a theoretical and algorithm perspective, phase retrieval

is a difficult problem, in many cases lacking a unique solution.

Furthermore, even with the existence of a unique solution,

there is not necessarily a guarantee that it can be found algo-

rithmically. Nevertheless, as reasoned above, phase retrieval

algorithms and applications have benefited from a surge of

research in recent years, in large part due to various new

imaging techniques in optics. This trend has begun impacting

the signal processing community as well – the past few years

have witnessed growing interest within this community in

developing new approaches to phase retrieval by using tools

of modern optimization theory [41], [42]. More recent work

has begun exploring connections between phase retrieval and

structure-based information processing [43], [44], [45], [46],

[47], [48]. For example, it has been shown that, by exploiting

the sparsity of many optical images, one can develop powerful

phase retrieval methods that allow for increased resolution

considerably beyond Abbe’s diffraction limit, resolving fea-

tures smaller than 1/5 of the wavelength [48]. The relationship

between the fields of sparsity and optical imaging has led to

an important generalization of the basic principles of sparsity-

based reconstruction to nonlinear measurement systems [44],

[49], [47], [50], [51], [52], [53], [54], [55], [56]. Here too,

optics played an important role in signal processing: since the

phase retrieval problem is inherently mathematically nonlinear

(i.e., the sought signal is related to the measurements nonlin-

early), employing sparsity-based concepts in phase retrieval

required genuine modifications to the linear sparsity-based

algorithms known from the field of compressed sensing [57].

We believe that this field will grow steadily in the next

few years, with rapid development of coherent X-ray sources

worldwide [58], [59] and more researchers contributing to the

theory, algorithms and practice of nonlinear sparse recovery.

III. MATHEMATICAL FORMULATION

A. Problem Formulation

Consider the discretized 1D real space distribution function

of an object: x ∈ C
N (extension of the formulation to higher

dimensions is trivial). In CDI, for example, this corresponds

to the transmittance function of the object. The fact that x is

in general complex, corresponds physically to the fact that the

electromagnetic field emanating from different points on the
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Coherent Diffractive Imaging (CDI)

In the basic CDI setup (forward scattering), an object is illuminated by a quasi-monochromatic coherent wave, and the diffracted
intensity is measured (Fig. 2). When the object is small and the intensity is measured far away, the measured intensity is
proportional to the magnitude of the Fourier transform of the wave at the object plane, with appropriate spatial scaling.

Figure 2. A forward-scattering CDI setup: A coherent wave diffracts from an object (the sought information), and produces a far-field intensity pattern
corresponding to the magnitude of the Fourier transform of the object.

In optics terms, when the Fresnel number is small (NF = a2

λd
<< 1, where a is a radius confining the object in the object

plane, d is the distance between the object and the measured intensity plane, and λ is the wavelength of the light), the relation
between the measured intensity Iout and the wave at the object plane Ein, is given by [40]:

Iout(x, y) ∝
∣

∣

∣

∣

Êin

(

x

λd
,
y

λd

)∣

∣

∣

∣

2

with Êin = F{Ein}, and F denoting the Fourier transform. Once the far field intensity is measured, the goal is to recover Ein

(which is equivalent to recovering the object) from Iout. This requires solving the phase retrieval problem, which is attempted
using an algorithm such as the ones described in this review paper.

object has not only magnitude but also phase (as is always the

case, for example, when 3D objects are illuminated and light

is reflected from point at different planes). The 1D discrete

Fourier transform (DFT) of x is given by:

X[k] =

N−1
∑

n=0

x[n]e−j2π kn
N , k = 0, 1, ..., N − 1. (1)

The term oversampled DFT used in this paper will refer to an

M point DFT of x ∈ C
N with M > N :

X[k] =

N−1
∑

n=0

x[n]e−j2π kn
M , k = 0, 1, . . . ,M − 1. (2)

Recovery of x from measurement of X can be achieved by

simply applying the inverse-DFT operator. Writing X[k] =

|X[k]| ·ejφ[k], the Fourier phase retrieval problem is to recover

x when only the magnitude of X is measured, i.e. to recover

x[n] given |X[k]|. Since the DFT operator is bijective, this

is equivalent to recovering the phase of X[k], namely, φ[k]

- hence the name phase retrieval. Denote by x̂ the vector x

after padding with N − 1 zeros. The autocorrelation sequence

of x̂ is then defined as:

g[m] =

N
∑

i=max{1,m+1}

x̂ix̂i−m, m = −(N − 1), . . . , N − 1.

(3)

It is well known that the DFT of g[m], denoted by G[k],

satisfies G[k] = |X[k]|2. Thus, the problem of recovering a

signal from its Fourier magnitude is equivalent to the problem

of recovering a signal from the autocorrelation sequence of its

oversampled version.

Continuous phase retrieval can be defined similarly to its

discrete counterpart, as the recovery of a 1D signal f(x) from

its continuous Fourier magnitude:

|F (ν)| =
∣

∣

∣

ˆ

R

f(x) exp(−j2πvx)dx
∣

∣

∣
.

The actual objects of interest, electromagnetic fields, are
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usually described by continuous functions. However, since the

data acquisition is digitized (by CCD camera and alike), and

the processing is done digitally, we shall mostly treat here the

discrete case.

The Fourier phase retrieval problem is as a special case of

the more general phase retrieval problem, where we are given

measurements:

yk = |〈ak,x〉|2, k = 1, . . . ,M, (4)

with ak denoting the measurement vectors. In discrete 1D

Fourier phase retrieval the measurement vectors are given by

ak[n] = e−j2π kn
M . For mathematical analysis, it is often easier

to treat the case where the measurements are random (i.e.

ak are random vectors), as this allows uniqueness guarantees

that are otherwise hard to obtain [60], [41], [53], [61], [62].

Nevertheless, more structured measurements have also been

investigated [63].

Before proceeding to the mathematical methodology, it

is important to highlight the significance of knowing the

Fourier phase. In fact, it is well known that knowledge of

the Fourier phase is crucial in recovering an object from

its Fourier transform [64]. Many times the Fourier phase

contains more information than the Fourier magnitude, as can

be seen in the synthetic example shown in Fig. 3. The figure

shows the result of the following numerical experiment: Two

images (Cameraman and Lenna) are Fourier transformed. The

phases of their transforms are swapped, and subsequently they

are inverse Fourier transformed. It is evident, for this quite

arbitrary example, that the Fourier phase contains a significant

amount of information about the images. In crystallography,

this phenomenon is the source of genuine concern of phase

bias of molecular models (such as used in molecular replace-

ment) in refined structures.

In the remainder of this section we discuss uniqueness of

the phase retrieval problem, i.e. under what conditions is the

solution to the phase problem unique? It is worth noting that,

while the discussion of theoretical uniqueness guarantees is

important and interesting, the lack of such guarantees does

not prevent practical applications from producing excellent

reconstruction results in many settings.

B. Uniqueness

1) Fourier measurements: The recovery of a signal from its

Fourier magnitude alone, in general, does not yield a unique

solution. This section will review the main existing theoretical

results regarding phase-retrieval uniqueness.

First, there are so called trivial ambiguities that are always

present. The following three transformations (or any combi-

nation of them) conserve Fourier magnitude:

1. Global phase shift: x[n] ⇒ x[n] · ejφ0

2. Conjugate inversion: x[n] ⇒ x[−n]

3. Spatial shift: x[n] ⇒ x[n+ n0].

Second, there are non-trivial ambiguities, the situation of

which varies for different problem-dimensions. In the 1D

problem there is no uniqueness – i.e. there are multiple 1D

signals with the same Fourier magnitude. Even if the support

of the signal is bounded within a known range, uniqueness

does not exist [65]. Any pair of 1D signals having the same

autocorrelation function yields the same Fourier magnitude,

as the two are connected by a Fourier transform. Consider

for example the two vectors u = [1 0 − 2 0 − 2]T and

v =[(1 −
√
3) 0 1 0 (1 +

√
3)]T . Both of these vectors have

the same support, and yield the same autocorrelation function

g[m] = [−2, 0, 2, 0, 9, 0, 2, 0,−2]. Therefore, they are indis-

tinguishable by their Fourier magnitude, even though they are

not trivially equivalent.

For higher dimensions (2D and above), Bruck and Sodin

[66], Hayes [67], and Bates [68] have shown that, with

the exception of a set of signals of measure zero, a real

d ≥ 2 dimensional signal with support N = [N1 . . . Nd],

namely x(n1, . . . , nd) = 0 whenever nk < 0 or nk ≥ Nk

for k = 1, . . . , d is uniquely specified by the magnitude

of its continuous Fourier transform, up to the trivial am-

biguities mentioned above. Furthermore, the magnitude of

the oversampled M point DFT sequence of the signal, with

M ≥2N− 1 (where the inequality holds in every dimension),

is sufficient to guarantee uniqueness. The problematic set

of signals that are not uniquely defined by their Fourier

magnitudes are those having a reducible Z transform: denoting

the d dimensional Z transform of x by X(z1, . . . , zd) =
∑

n1
· · ·

∑

nd
x(n1, . . . , nd)z

−n1

1 · · · z−nd

d , X(z) is said to

be reducible if it can be written as X(z) = X1(z)X2(z),

where X1(z) and X2(z) are both polynomials in z with degree

p > 0. It is important to note that in practice, for typical

images, a number of samples smaller than 2N − 1 is many

times sufficient (even M = N can work [69]), however the

exact guarantees relating the number of samples to the type

of images remains an open question.

Additional prior information about the sought signal, other

than its support, can be incorporated, and will naturally

improve the conditioning of the problem. For example, knowl-

edge of the Fourier phase sign (i.e. 1 bit of phase information)
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Figure 3. The importance of Fourier phase. Two images, Cameraman and Lenna, are Fourier transformed. After swapping their phases, they are inverse
Fourier transformed. The result clearly demonstrates the importance of phase information for image recovery.

has been shown [70] to yield uniqueness with some restrictions

on the signal (specifically that the signal is real and its Z

transform has no zeros on the unit circle). A different, popular

type of prior knowledge that has been used recently in various

applications [57], [71], is that the signal x ∈ C
N is sparse

- i.e. contains only a small number k of nonzero elements,

with k ≪ N . The exact locations and values of the nonzero

elements are not known a-priori. In this case, it has been shown

[72] that knowledge of the full autocorrelation sequence of a

1D k sparse real signal x is sufficient in order to uniquely

define x, as long as k 6= 6 and the autocorrelation sequence

is collision free. A vector x is said to have a collision free

autocorrelation sequence if x(i)− x(j) 6= x(k)− x(l), for all

distinct i, j, k, l ∈ {1, . . . N} that are the locations of distinct

nonzero values in x. In addition, under these conditions, only

M Fourier magnitude measurements are sufficient to uniquely

define the autocorrelation sequence and therefore the signal

x, as long as M is prime and M ≥ k2 − k + 1 [73]. An

interesting perspective relating phase retrieval to the Turnpike

problem, namely, reconstructing a set of integers from their

pairwise distances, is presented in [74].Using this approach,

the authors prove uniqueness with high probability, for random

signals having a non-periodic support.

2) General measurements: Considering inner products with

general, non-Fourier (typically - random) measurement vec-

tors, allows simpler derivation of theoretical guarantees. There

have been several theoretical results relating the number and

the nature of the measurements that are required for unique-

ness, mostly dealing with random measurement vectors. The

work of Balan [43] implies that for real signals in R
N , 2N−1

random measurements are needed, provided that they are full-

spark, i.e. that every subset of N measurement vectors spans

R
N [46]. This result was later extended to the complex case

[46], where it is conjectured that 4N − 4 generic measure-

ments, as defined in [46], are sufficient for bijectivity. In terms

of stability, i.e. when the measurements are noisy, it has been

proven [53] that on the order of N log(N) measurements (or

k log(N) measurements in the k sparse case) are sufficient

for stable uniqueness. It was also shown that minimizing the

(nonconvex) least-squares objective:
∑ |y2i −|〈ai,x〉|2|p, with

1 < p ≤ 2, yields the correct solution under these conditions

[53]. For the noiseless case, any k-sparse vector in R
N has

been shown to be uniquely determined by 4k − 1 random

Gaussian intensity measurements with high probability [73].

To study the injectivity of general (i.e. not necessarily

random) measurements, the complement-property has been in-

troduced in [43] for the real case. An extension was presented

in [46] for the complex setting. A set of measurement vectors

{ai}Mi=1 with ai ∈ R
N satisfies the complement property if

for every S ⊆ {1, . . . ,M}, either {ai}i∈S or {ai}i∈SC span

R
N . It has been shown in [43] that the mapping constructed

by yi = |〈ai,x〉|, i = 1, . . . , N is injective if and only if

the measurement set satisfies the complement property. This

poses a lower limit on the number of necessary measurements

M > 2N − 1.

The results reviewed in this section are summarized in Table

I. In addition, there is a large amount of work on phase

retrieval uniqueness under different conditions, e.g. when the

phase is known only approximately [75], or from redundant

masked Fourier measurements [76], [45].
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Table I
PHASE RETRIEVAL - UNIQUENESS

IV. ALGORITHMS

Despite the uniqueness guarantees, no known general solu-

tion method exists to actually find the unknown signal from its

Fourier magnitude given the other constraints. Over the years,

several approaches have been suggested for solving the phase

retrieval problem, with the popular ones being alternating

projection algorithms [77], [2], [78]. In addition, methods

were suggested attempting to solve phase retrieval problems by

using exposures with different masks [76], or images obtained

at different propagation planes [79], [80]. Another method to

obtain additional information is scanning CDI, (also termed

ptychography) [81], [82], [20], which uses several different

illumination patterns to obtain coherent diffraction images.

In this section we survey existing phase retrieval algorithms,

including general algorithms (sub-Section IV-A), and sparsity

based algorithms, i.e. algorithms exploiting prior knowledge

in the form of signal-sparsity (sub-Section IV-B).

A. General algorithms

The general phase retrieval problem we wish to solve can be

formulated as the following least squares problem, or empirical

risk minimization:

min
x

M
∑

k=1

(

yk − |〈ak,x〉|2
)2
, (5)

with y being the measurements and ak being the measurement

vectors defined in (4). In general we can replace the square in

the objective by any power p. Unfortunately, this is a non-

convex problem, and it is not clear how to find a global

minimum even if one exists. In this section we describe several

approaches that have been suggested to deal with this problem,

and types of prior information that can be incorporated into

these methods in order to increase the probability of conver-

gence to the true solution.

1) Alternating projections: The most popular class of phase

retrieval methods is based on alternate projections. These

methods were pioneered by the work of Gerchberg and Saxton

[77], dealing with the closely related problem of recovering a

complex image from magnitude measurements at two different

planes - the real (imaging) plane and Fourier (diffraction)

plane. The original Gerchberg-Saxton (GS) algorithm consists

of iteratively imposing the real-plane and Fourier-plane con-

straints, namely, the measured real-space magnitude |x[n]| and

Fourier magnitude |X[k]|, as illustrated in Fig. 4a. The GS

algorithm is described in Algorithm 1. The recovery error,

defined as Ei =
∑

k

∣

∣

∣
|Zi[k]| − |X[k]|

∣

∣

∣

2

is easily shown to

be monotonically decreasing with i [78]. Despite this fact,

recovery to the true solution is not guaranteed, as the algorithm

can converge to a local minimum.

Extending the GS projection ideas further, Fienup in 1978

[2] suggested a modified version of the GS algorithm, in

which the real-space magnitude constraints may be replaced by

other types of constraints, in addition to consistency with the

measured Fourier magnitude. The real-space constraints may

be for example non-negativity, a known signal support, namely

x[i] = 0 for all i > N0, where N0 is known (or approximately
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Figure 4. (a) Block diagram of the Gerchberg-Saxton algorithm. (b) Block diagram of the Fienup HIO algorithm. The algorithms differ in their fourth
(colored) step.

Algorithm 1 Gerchberg-Saxton (GS)

Input: |x[n]|, |X[k]|, ǫ
|x[n]| - Real space magnitude
|X[k]| - Fourier magnitude
ǫ - Error threshold
Output: z[n] - a vector that conforms with both magnitude
constraints, i.e.: |z[n]| = |x[n]|, and |Z[k]| = |X[k]|, where
Z[k] is the DFT of z[n]

Initialization. Choose initial z0[n] = |x[n]| exp(φ[n]) (e.g.
with a random φ[n]).
General Step (i = 1, 2, . . .):

1) Fourier transform zi[n] to obtain Zi[k]
2) Keep current Fourier phase, but impose Fourier magni-

tude constraint: Z ′
i[k] = |X[k]| · Zi[k]

|Zi[k]|

3) Inverse Fourier transform Z ′
i[k] to obtain z′i[n]

4) Keep current real-space phase, but impose real-space
magnitude constraint: zi+1[n] = |x[n]| · z′

i[n]
|z′

i
[n]|

5) Go to 1

Until Ei =
∑

k

∣

∣

∣
|Zi[k]| − |X[k]|

∣

∣

∣

2

≤ ǫ

known), or both. The basic framework of the Fienup methods

is similar to GS - in fact, the first three steps are identical.

Step 4), however, replaces imposing the real-space magnitude

constraint by applying a correction to the real-space estimate.

Some possible variants to this step were also suggested [78].

Here we describe the one most commonly used, referred to as

the hybrid-input output (HIO) method, which consists of the

following correction step:

4) Obtain zi+1[n] by applying a correction to the real-space

image estimate:

zi+1[n] =







z′i[n], n /∈ γ

zi[n]− βz′i[n], n ∈ γ,
(6)

with β being a small parameter, and γ being the set

of indices for which z′i[n] violates the real-space con-

straints.

The real-space constraint violation may be a support violation

(signal is nonzero where it should be zero), or a non-negativity

violation.

The Fienup algorithm is represented schematically in Fig.

4b. There is no proof that the HIO algorithm converges. It

is also known to be sensitive to the accuracy of the prior

information (e.g. the real-space support needs to be tightly

known, especially in the complex signal case [83]). Nonethe-

less, in practice, the simple HIO based methods are commonly

used in optical phase retrieval applications such as CDI [84],

[85], [86]. Other variants of the correction step include the

Input-Output method, and the Output-Output method [78],

corresponding respectively to

zi+1[n] =







zi[n], n /∈ γ

zi[n]− βz′i[n], n ∈ γ,

zi+1[n] =







z′i[n], n /∈ γ

z′i[n]− βz′i[n], n ∈ γ.

(7)

An important feature of the HIO algorithm is its empirical

ability to avoid local minima and converge to a global mini-

mum for noise-free oversampled diffraction patterns. However,
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when there is high noise present in the diffraction intensity,

HIO suffers from several limitations. First, the algorithm

sometimes becomes stagnant and fails to converge to a global

minimum. Second, a support has to be pre-defined. Third, the

image oscillates as a function of the iteration. Over the years,

various algorithms have been developed to overcome these

limitations, including the combination of HIO and the error-

reduction (ER) algorithm [78], difference map [10], hybrid

projection reflection [12], guided hybrid input-output (GHIO)

[87], relaxed averaged alternating reflectors (RAAR) [13],

noise robust (NR)-HIO [88], and oversampling smoothness

(OSS) [14]. An analysis of iterative phase retrieval algorithms

from a convex optimization perspective can be found in [89].

As an exapmle, the recently proposed OSS algorithm ex-

hibits improved performance over HIO and its variants in many

settings. OSS is based on Fienup iterations, with an added

smoothing Gaussian filter applied to the off-support region in

the real space object in each iteration. Namely, the fourth step

in HIO is replaced by:

z′′[n] =







z′i[n], n /∈ γ

zi[n]− βz′i[n], n ∈ γ,

zi+1[n] =







z′′i [n], n /∈ γ

F{Z ′′
i [k]W [k]}, n ∈ γ,

(8)

where W [k] is a Gaussian function, with its variance decreas-

ing with iterations. A quantitative comparison for a specific

example between OSS and HIO can be found in Section

V-A. For a comparison and numerical investigation of several

alternate projection algorithms see for example [11], [14].

As performance of the Fienup methods is dependent on the

initial points, it is possible and recommended to try several

initializations. In [61], the authors consider a clever method for

initial point selection, and show that for the random Gaussian

measurement case, the resulting iterations yield a solution

arbitrarily close to the true vector.

2) Semi-Definite Programming (SDP) based algorithms:

An alternative recently developed to solve the phase retrieval

problem is based on semidefinite relaxation [90], [49], [42].

The method relies on the observation that (4) describes a

set of quadratic equations, which can be re-written as linear

equations in a higher dimension. Specifically, define the N×N

matrix X = xx∗. The measurements (4) are then linear in X:

yk = |〈ak,x〉|2 = x∗aka
∗
kx = x∗Akx = Tr(AkX), (9)

where Ak = aka
∗
k. Our problem is then to find a matrix X =

xx∗ that satisfies (9). The constraint X = xx∗ is equivalent

to the requirement that X has rank one, and is positive semi-

definite, which we denote by X � 0 . Therefore, finding a

vector x satisfying (4) can be formulated as:

find X

s.t. yk = Tr(AkX), k = 1, . . . ,M,

X � 0,

rank(X) = 1.

(10)

Problem (10) is equivalent to the following rank minimiza-

tion problem:

min rank(X)

s.t. yk = Tr(AkX), k = 1, . . . ,M,

X � 0.

(11)

Unfortunately, rank minimization is a hard combinatorial prob-

lem. However, since the constraints in (11) are convex (in fact

linear), one might try to relax the minimum rank objective,

for example by replacing it with minimization of Tr(X). This

approach is referred to as PhaseLift [42]. Alternatively, one

may use the log-det reweighted rank minimization heuristic

suggested in [91], which is the approach followed in [49],

[41]. In [41] it is shown that PhaseLift yields the true vector

x with large probability, when the measurements are random

Gaussian and M ∼ O(N logN).

The SDP approach requires matrix lifting, namely, replacing

the sought vector with a higher dimensional matrix, followed

by solving a higher dimensional problem. It is therefore, in

principle, more computationally demanding than the alternat-

ing projection approaches, or greedy methods, which will be

discussed in the next section. In addition, in general there is

neither a guarantee that the rank minimization process will

yield a rank-one matrix, nor that the true solution is found,

even if there is a unique solution.

B. Sparsity based algorithms

A specific kind of prior knowledge that can be incorporated

into the phase retrieval problem to help regularize it, is the

fact that the sought real-space object is sparse in some known

representation (See sparse linear problems box). This means

that the object x can be written as:

x = Ψα (12)

with Ψ being a representation matrix (the sparsity basis), and

α being a sparse vector, i.e. a vector containing a small number
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of nonzero coefficients. The simplest example is when the

object is composed of a small number of point sources (in

which case Ψ is the identity matrix). Armed with such prior

knowledge, one can hope to improve the performance of phase

retrieval algorithms, by limiting the search for the true vector

to the set of sparse vectors. There are several different ways

that such knowledge can be incorporated, which are described

in this subsection.

Alternating projections with sparsity prior: The Fienup

algorithm, described in Section IV-A1, allows in principle

incorporation of various types of general knowledge about the

object, including sparsity [44], [92]. The method in [92], for

example, is based on the Fienup iterations, with the first three

steps remaining unchanged. Step 4, is replaced by projection

and thresholding. Assuming an invertible Ψ and a k sparse

vector α such that x = Ψα:

4) Obtain zi+1[n] by projecting z′i[n] onto Ψ, thresholding,

and projecting back. Namely:

a) Calculate αi = Ψ−1z′i

b) Keep only the k largest elements of |ai|, setting

the rest to zero.

c) Set zi+1 = Ψαi.

Similarly to the GS method, the error here can be shown to

be nonincreasing, so that convergence to a local minimum is

guaranteed [92].

Note, that while this method is suggested in [92] for an

orthonormal basis Ψ, it can be easily modified to accommo-

date a non-invertible Ψ. This can be done by replacing parts

(a)+(b) with finding a sparse solution ai to zi = Ψai, using

any sparse solution method [57].

SDP based methods with sparsity prior: SDP based meth-

ods can also be modified to account for prior knowledge of

signal sparsity. The incorporation of sparsity can be performed

in several different ways. The first work to suggest sparsity-

based SDP phase-retrieval came from the domain of optics,

and dealt with partially spatially-incoherent illumination [49].

This work actually considered a theoretical problem of greater

complexity, combining phase retrieval with sub-wavelength

imaging. Experimental results on sub-wavelength CDI can be

found in [48], where the sought signal is an actual optical

image with subwavelength features, and the measured data

corresponds to the Fourier magnitude sampled by a camera at

the focal plane of a microscope lens.

The method suggested in [49], dubbed QCS for Quadratic

Compressed Sensing, is based on adding sparsity constraints

to the rank minimization problem (11). When x is sparse, the

result of the outer product X = xx∗ is a sparse matrix as

well, as shown in Fig. 5. Therefore, one strategy might be

to minimize the l1 norm of the matrix X. Alternatively, it is

possible to exploit further the structure of X, by noticing that

the number of rows in X with a nonzero norm is equal to

the number of non-zero values in x. This means that sparsity

of x also implies a small number of non-zero rows in X.

Consider the vector p containing the l2 norm of the rows

of X, i.e. pj =
(
∑

k |Xjk|2
)

1

2 (note that the l2 norm can

be replaced by any other norm). Since p should be sparse,

one might try to impose a low l1 norm on p, in the spirit

of l1 minimization for the sparse linear problem. This yields

the constraint ||p||1 =
∑

j |pj | =
∑

j

(
∑

k |Xjk|2
)

1

2 ≤ η,

corresponding exactly to a low mixed l1−2 norm constraint

on X [99]. The problem to solve, as cast in [49] is therefore :

min rank(X)

s.t. |Tr(AkX)− yk| ≤ ǫ, k = 1, . . . ,M,

X � 0,
∑

j

(
∑

k |Xjk|2
)

1

2 ≤ η,

(19)

where ǫ is a noise parameter, and η is a sparsity parameter,

enforcing row sparsity of X.

Since finding a rank 1 matrix X satisfying the constraints

is NP hard, the solution to (19) is approximated in ([49])

using the iterative log-det heuristic proposed in [91], with

an additional thresholding step added at each iteration, to

further induce signal sparsity. Once a low rank matrix X̂

that is consistent with the measurements and the sparse priors

is found, the sought vector x is estimated by taking the

best rank 1 approximation of X̂ using the singular value

decomposition (SVD): Decomposing X̂ into X̂ = USVT,

the rank-1 approximation of X̂ is taken as X̂1 = S11U1U1
∗,

where S11 represents the largest singular value, and U1 is the

corresponding column of U.

Similar ideas that add sparse priors to SDP methods have

been later suggested in [50], [100], [60]. In [50], the rank min-

imization objective is relaxed to a convex trace minimization,

with an additional l1 regularization term to induce sparsity.

This formulation yields:

min Tr(X) + λ||X||1
s.t. |Tr(AkX)− yk| ≤ ǫ k = 1, . . . ,M,

X � 0.
(20)

The solution of (20) is shown [50] to be unique in the noiseless
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Sparse Linear Problems

Finding sparse solutions to sets of equations is a topic that has drawn much attention in recent years [93], [94], [57], [71].
Consider the linear system:

y = Ax (13)

with y being a set of M linear measurements, A being an M ×N measurement matrix, and x being the unknown length-N
vector. When the system is underdetermined (i.e. M < N ), there are infinitely many possible solutions x. A key result of the
theory of sparse recovery is that adding the constraint that x is sparse, i.e. contains only a few nonzero entries guarantees a
unique solution to (13), under general conditions for A. One such condition is based on the coherence of A [95]:

||x||0 ≤ 1

2

(

1 +
1

µ

)

(14)

with ||x||0 being the number of nonzero entries in x, and the coherence defined by:

µ = max
i,j

< Ai,Aj >

||Ai|| · ||Aj ||
. (15)

Here, we denote by Ai the ith column of A, and by ||Ai|| its Euclidean norm.
Under (14), one can find the unique solution to (13) by solving

min
x

||x||0 s.t. y = Ax. (16)

Unfortunately, (16) is an NP-hard combinatorial problem. However, many methods have been develop to approximately solve
(16). One class of such methods consists of greedy algorithms such as Orthogonal Matching Pursuit [96]. Another popular
method is based on convex relaxation of the l0 norm to an l1 norm [97], which yields the convex problem:

min
x

||x||1 s.t. y = Ax. (17)

In fact, under the condition (14), it has been shown [95] that the solution to (17) is equal to the solution of (16).
Another important criterion to evaluate the recovery ability in sparse linear problems of the form (13) is the restricted

isometry property (RIP) [98] of A, defined as follows: For an an M ×N matrix A (with M < N ), define δk as the smallest
value such that for every submatrix Ak composed of k columns of A, it holds that

(1− δk)||x||22 ≤ ||Akx||22 ≤ (1 + δk)||x||22, ∀x ∈ R
k. (18)

The RIP is therefore a measure of whether A preserves the energy of any k sparse signal - which is the case if δk is small.
In the context of sparse recovery, it is used to prove uniqueness and noise-robustness results. For example, if A is such that
δ2k <

√
2 − 1, then solving (17) will yield the unique sparse solution to (13). In practice, it is combinatorially difficult to

calculate the RIP of a given matrix. However, certain random matrices can be shown to have ’good RIP’ with high probability.
For example, an M × N iid Gaussian matrix obeys the k-RIP with high probability, for M ∼ O(k log(N/k)) [93]. This is
one of the reasons that random matrices are favorable for sparse sensing.

case (ǫ = 0), under the following condition: ||X̄||0 ≤ 1
2

(

1+ 1
µ
),

where X̄ = x̄x̄∗, with x̄ being the true solution to (4). The

mutual coherence µ is defined by µ = maxi,j
<Bi,Bj>

||Bi||||Bj ||
,

with B being the matrix satisfying y = BXS, where XS

is the vector obtained from stacking the columns of X. The

same work also relates other recovery guarantees to the RIP

criterion.

In [62] it is shown that for ai that are independent, zero-

mean normal vectors, on the order of k2 log n measurements

are sufficient to recover a k-sparse input from measurements

of the form (4), using SDP relaxation. In [100], an algorithm

is suggested to solve the sparse 1D Fourier phase retrieval

problem based on a two-step process, each step cast separately

as an SDP problem: First, the support of x is determined from

its autocorrelation sequence, and then x is determined, given

the support. This algorithm is shown experimentally to recover

k sparse signals from O(k2) measurements.

Greedy methods with sparsity prior: Since the matrix lifting

algorithms involve a dimension increase, they are not ideally

suited for large vectors, where computational cost can become

significant. In addition, they are in general not guaranteed to

converge to a solution. An alternative to the SDP algorithms

is posed by sparsity based greedy algorithms [51], [101], [54].

One algorithm, that is both fast and accurate, is a greedy

method named GESPAR (for GrEedy Sparse PhAse Retrieval)

[54]. GESPAR attempts to solve the least squares sparse

quadratic problem (5). Namely, it seeks a k sparse vector

x consistent with the quadratic measurements y. GESPAR
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Figure 5. Sparse vector outer product yields a sparse matrix

is a fast local search method, based on iteratively updating

signal support, and seeking a vector that corresponds to

the measurements, under the current support constraint. A

local-search method is repeatedly invoked, beginning with an

initial random support set. Then, at each iteration a swap is

performed between a support and an off-support index. Only

two elements are changed in the swap (one in the support and

one in the off-support), following the so-called 2-opt method

[102]. Given the support of the signal, the phase-retrieval

problem is then treated as a non-convex optimization problem,

approximated using the damped Gauss Newton method [103].

See Algorithm 2 for a detailed description of the algorithm.

GESPAR has been shown to yield fast and accurate recovery

results (see Sparse phase retrieval algorithms box and Fig. 6

within), and has been used in several phase-retrieval optics

applications - including CDI of 1D objects [104], efficient

CDI of sparsely temporally varying objects [55], and phase

retrieval via waveguide arrays [56]. A similar method has been

used to solve the combined phase-retrieval and sub-wavelength

imaging problem [48] (See sub-Section V-D).

Algorithm 2 GESPAR - main steps

Input: Ai, yi, τ, ITER.
Ai ∈ R

N×N , i = 1, 2, . . . ,M - symmetric matrices.
yi ∈ R, i = 1, 2, . . . ,M.
τ - threshold parameter.
ITER - Maximum allowed total number of swaps.
Output: x - an optimal (or suboptimal) solution of (5).

Initialization. Set T = 0, j = 0.

1) Generate a random index set S0 (|S0| = s)
2) Invoke the damped Gauss Newton method with support

S0, and obtain an output z0. Set x0 = US0
z0, where

US0
∈ R

N×s is the matrix consisting of the columns
of the identity matrix IN corresponding to the index set
S0

General Step (j = 1, 2, . . .):

3) Update support: Let p be the index from Sj−1 corre-
sponding to the component of xj−1 with the smallest
absolute value. Let q be the index from Sc

j−1 cor-
responding to the component of ∇f(xj−1) with the
highest absolute value, where ∇f(x) is the gradient
of the least-squares objective function from (5), namely
∇f(x) = 4

∑

i(x
∗Aix−yi)Aix . Increase T by 1, and

make a swap between the indices p and q, i.e. set S̃ to
be:

S̃ = (Sj−1\{p}) ∪ {q}.

4) Minimize with given support: Invoke the damped Gauss
Newton method [103] with input S̃ and obtain an output
z̃. Set x̃ = US z̃, where US ∈ R

N×s is the matrix
consisting of the columns of the identity matrix IN
corresponding to the index set S.
If f(x̃) < f(xj−1), then set Sk = S̃,xk = x̃, advance
m and go to 3. If none of the swaps resulted with a
better objective function value, go to 1.

Until f(x) < τ or T > ITER.
The output is the solution x that yielded the minimum value
for the least-squares objective.
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Sparse phase retrieval algorithms - a comparison

We simulate sparse-Fienup [92] and GESPAR [54] for various values of N ∈ [64, 2048], and M = 2N . The recovery probability
vs. sparsity k for different vector lengths is shown in Figs. 6a and 6b. In both cases the recovery probability increases with
N , while GESPAR clearly outperforms the alternating iteration method.
We then simulate the recovery success rate of three sparsity-based phase retrieval algorithms. We choose x as a random vector
of length N = 64. The vector contains uniformly distributed values in the range [−4,−3]∪[3, 4] in k randomly chosen elements.
The M = 128 point DFT of the signal is calculated, and its magnitude-square is taken as y, the vector of measurements.
In order to recover the unknown vector x, three methods are used: A greedy method (GESPAR[54]), an SDP based method
(Algorithm 2, [100]), and an iterative Fienup algorithm with a sparsity constraint ([92]). The Sparse-Fienup algorithm is run
using 100 random initial points, out of which the chosen solution is the one that best matches the measurements. Namely, x̂ is
selected as the s sparse output of the Sparse-Fienup algorithm with the minimal cost f(x) =

∑N
i=1(|Fix|2 − yi)

2 out of the
100 runs. The probability of successful recovery is plotted in Fig. 6c for different sparsity levels k. The success probability is
defined as the ratio of correctly recovered signals x out of 100 simulations. In each simulation both the support and the signal
values are randomly selected. The three algorithms (GESPAR, SDP and Sparse-Fienup) are compared. The results clearly show
that GESPAR outperforms the other methods in terms of probability of successful recovery - over 90% successful recovery up
to k = 15, vs. k = 8 and k = 7 in the other two techniques.
For more extensive comparisons, the reader is referred to [54].

Figure 6. Sparsity-based phase retrieval algorithms, a comparison. (a) Sparse-Fienup recovery probability vs. sparsity k, for various signal length N , and with
M = 2N . (b) GESPAR recovery probability vs. sparsity k, for various signal length N , and with M = 2N . (c) Recovery probability for three algorithms:
sparse-Fienup, SDP, and GESPAR for N = 64, M = 128 [54].
A major advantage of greedy methods over other algorithms (e.g. SDP based) is its low computational cost; GESPAR may
be used to find a sparse solution to the 2D Fourier phase retrieval - or phase retrieval of images. Figure 7 shows a recovery
example of a sparse 195 × 195 pixel image, comprised of s = 15 circles at random locations and random values on a grid
containing 225 points, recovered from its 38, 025 2D-Fourier magnitude measurements, using GESPAR. The dictionary used
in this example contains 225 elements consisting of non-overlapping circles located on a 15 × 15 point Cartesian grid, each
with a 13 pixel diameter. The solution took 80 seconds. Solving the same problem using the sparse Fienup algorithm did not
yield a successful reconstruction, and using the SDP method is not practical due to the large matrix sizes.

Figure 7. 2D Fourier phase retrieval example. (a) True 195 × 195 sparse circle image (s = 15 circles). (b) Measured 2D Fourier magnitude (38, 025
measurements, log scale). (c) True and recovered coefficient vectors, corresponding to circle amplitudes at each of the 225 grid points[54].
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V. APPLICATIONS IN LENSLESS IMAGING

In this section, we present several CDI applications with

connection to the phase retrieval algorithms described in previ-

ous sections. The concept of phase retrieval in optical imaging

arises from the attempt to recover images from experimental

measurements. To this end, it is essential to emphasize that

compared to numerical simulations or signal processing of

digital data, phase retrieval of experimentally obtained patterns

has several additional challenges. First, the far-field intensity

distribution (Fourier magnitude) is corrupted by various types

of noise, such as Poisson noise, detector read-out noise, and

unwanted parasitic scattering from the optics components in

the system. Second, in single-shot experiments, the measured

far-field intensity distribution is usually incomplete, including

a missing center (i.e. the very low spatial frequency informa-

tion cannot be directly recorded by a detector) [84]. Third,

when the far-field intensity distribution is measured by a

detector, each pixel integrates the total number of photons

within the solid angle subtended by the pixel, which is not

exactly equivalent to uniform sampling of the diffraction signal

[105]. Additionally, many experiments are carried out using

incoherent (but bright) sources. Coherence is achieved by

propagating a long distance from the source, but often the

experiment is constrained to be carried out with a partially-

incoherent beam [106]. All of these issues add complications

to algorithmic phase retrieval. However, notwithstanding these

challenges, successful phase retrieval of experimental data in

optical imaging has been widely achieved [107], [15], [34],

[16], [24], [108], [20], [25], [26]. Below, we show several

examples.

A. Quantitative comparison of alternating-projection algo-

rithms

Quantitative comparisons between the OSS, HIO, ER-HIO

and NR-HIO algorithms have been performed using both simu-

lated and experimental data [14]. Figure 8 shows a noise-free

oversampled diffraction pattern (Fourier magnitude squared)

calculated from a simulated biological vesicle (Fig. 8c). High

Poisson noise was then added to the diffraction intensity (Fig.

8b). Figures 8d-g show the final reconstructions by HIO, ER-

HIO, NR-HIO, and OSS, respectively. Visually, OSS produced

the most faithful reconstruction among the four algorithms

(insets in Fig. 8d-g). The recovery error was quantified using

consistency with the measurements:

E =
∑

n

|zr[n]− zm[n]|/
∑

n

|zm[n]| (21)

Figure 8. A quantitative comparison between the HIO, ER-HIO, NR-
HIO, and OSS algorithms. (a) Noise-free oversampled diffraction pattern
calculated from simulated biological vesicle. (b) High Poisson noise added to
the oversampled diffraction pattern. (c) The structure model of the biological
vesicle and its fine features (inset). The final reconstruction of the noisy
diffraction pattern (b) by (d) HIO, (e) ER-HIO, (f) NR-HIO, (g) and OSS
[14].

where zr[n] is the final reconstruction and zm[n] is the model

structure. The value for E of the HIO, ER-HIO, NR-HIO, and

OSS reconstructions is 0.28, 0.24, 0.16 and 0.07, respectively.

Next, the four algorithms were compared using an ex-

perimental diffraction pattern measured from a Schizosac-

charomyces pombe yeast spore cell [14]. The experiment

was conducted on an undulator beamline at a 3rd generation

synchrotron radiation (Spring-8) in Japan. A coherent wave of
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5 keV X-rays was incident on a fixed, unstained S. pombe

yeast spore. An oversampled X-ray diffraction pattern was

acquired by a charge-coupled device detector. Figure 9a shows

the experimental diffraction pattern in which the centro-square

represents the missing low spatial resolution data [86]. By

using a loose support, phase retrieval was performed on

the measured data with the HIO, ER-HIO, NR-HIO, and

OSS algorithms. For each algorithm, five independent trials

were conducted, each consisting of 100 independent runs

with different random initial phase sets. In each trial, the

reconstruction with the smallest error metric RF was chosen

as a final image, where RF is defined as:

RF =
∑

k

∣

∣

∣

∣

|Ze[k]| − ζ|Zr[k]|
∣

∣

∣

∣

/
∑

k

∣

∣Ze[k]
∣

∣. (22)

Here |Ze[k]| is the measured Fourier magnitude, |Zm[k]| is

the recovered Fourier magnitude, and ζ is a scaling factor.

For each algorithm, the mean and average of the five final

images were used to quantify the reconstruction. Figures 9c-j

show the average and variance of five final images obtained by

HIO, ER-HIO [78], NR-HIO [88], and OSS [14], respectively.

The average RF and the consistency of five independent trials

are shown in Fig. 9b. Both visual inspection and quantitative

results indicate that OSS produced the most consistent recon-

structions among all four algorithms.

B. X-ray free electron laser CDI

The majority of imaging experiments at X-ray free-electron

laser sources utilize the method of CDI. The lensless nature

is actually an advantage when dealing with extremely intense

and destructive pulses, where one can only carry out a single

pulse measurement with each object (say, a molecule) before

the object disintegrates. In such cases, often one cannot use

any optical components at all, because any component (e.g.,

a lens) would be severely damaged by the extremely high

flux of (X-ray) photons. CDI solves these problems: it works

without the need for optical components. In this vein, CDI also

facilitates reliable imaging of moving objects. Indeed, in many

experiments the objects move (flow) across the X-ray beam,

for example, when the X-ray laser beam hits a focused aerosol

beam or nano-particles in a liquid jet. In such an experiment,

the particle density is usually adjusted so that the X-ray laser

pulse is more likely to hit a single particle than several. A

particle is hit by chance by a pulse, but this is not known

until the diffraction pattern is read out from the detector, which

is done on every pulse. The stream of data is then analyzed

and sorted to give the single-particle hits, which contain the

meaningful measured data, while all other data is ignored.

There are two generic classes of these “single particle” CDI

experiments: imaging of reproducible particles, and imaging

of unique particles. The first category includes particles such

as viruses. Assuming that these particles are not aligned in

the same direction, the collected data represents diffraction

patterns of a common object, but in random orientations. If the

orientations can be determined then the full three-dimensional

Fourier magnitude of the object can be determined, which in

turn could be phased to give a 3D image. A proof of concept

of this experiment was carried out by Loh et al [109].

An example of the second class of flash diffractive imaging

is imaging airborne soot particles in flight in an aerosol beam

[26]. Several diffraction patterns of soot particles and clusters

of polystyrene spheres (as test objects) are shown in Fig.

10, along with the 2D reconstructions of the objects. The

experiments were carried out at the LCLS, using the CFEL-

ASG Multi-Purpose (CAMP) instrument [110] at the Atomic,

Molecular and Optical Science beam line [111]. Pulses of

about 1012 photons of 1.0 nm wavelength were focused to an

area of 10 µm2. The X-ray detectors (pnCCD panels) were

placed to give a maximum full-period resolution of 13 nm at

their center edges.

In these experiments, the phase retrieval of the patterns was

carried out using the Relaxed Averaged Alternating Reflections

(RAAR) [13] algorithm, and using the Shrinkwrap procedure

[112], which determines and iteratively updates the support

constraint used. The objects were such that it was possible to

apply an additional constraint that the image is real valued.

Strikingly, the X-ray coherent diffraction patterns have very

high contrast. The intensity minima are close to zero. This

has an enormous effect on the ability to recover the phase

of these pattern reliably. This reliability is quantified in the

phase-retrieval transfer function (PRTF) [18], which compares

the magnitude of the complex-valued average of patterns

phased with different starting guesses to the square root of

the measured diffraction pattern. If, at a particular pixel of the

diffraction pattern, the phases are consistently reconstructed,

then the sum over N patterns will give a magnitude N times

higher than the measured magnitude, and so the PRTF will

be unity. If the phases are random, then this sum will tend to

zero. For patterns generated with X-Ray free electron lasers,

this function is often close to unity and is lower primarily

in areas where the signal to noise is low. This limited signal

is what ultimately limits the resolution; an estimate of the
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Figure 9. Phase retrieval of an experimental diffraction pattern from a biological sample. (a) Oversampled X-ray diffraction pattern measured from a S.
pombe yeast spore cell. (b) The average RF and the consistency of five independent trials of phase retrieval using four different algorithms. The average
reconstruction of five independent trials using HIO (c), ER-HIO (d), NR-HOP (e), and OSS (f). The variance of five final images with HIO (g), ER-HIO (h),
NR-HOP (i), and OSS (j). [14]

achieved resolution is given by the white dotted circle on

each pattern in Fig. 10. The reconstructed images are sums of

ten independent reconstructions. These complex-valued sums

have the nice property that the their Fourier spectrum is

effectively modulated by the PRTF and hence any artifacts

due to noise (or even due to forcibly truncating the data to

a lower resolution) is unlikely to show up in the recovered

image.

C. Tabletop short wavelength CDI

To-date, most CDI experiments are carried out in 3rd gen-

eration synchrotron and X-ray free electron lasers. However,

limited access and experimental time hinder the development

and applications of CDI using these methods. Thus, over the

past several years, CDI microscopes that are based on tabletop

sources of coherent extreme UV and soft X-rays are also

being developed [113]. Figure 11 shows the first tabletop CDI

experiment with extreme UV wavelength.

D. Sub-wavelength CDI using sparsity

Prior knowledge of object-sparsity can help regularize the

phase-retrieval problem, as well as compensate for loss of

other kinds of information - in this example - the loss of

high spatial frequencies. As described before, when an object

is illuminated by coherent light of wavelength λ, the far-

field intensity pattern is proportional to the magnitude of the

object’s Fourier transform. In addition, features in the object

that are smaller than ∼ λ/2 are smeared due to the diffraction

limit. Consequently, the intensity measured in the far field

corresponds to y ∝ |LFx|2 where L represents a low pass

filter at cutoff frequency νc = 1/λ, F represents the Fourier

transform, and | · |2 stands for elementwise squared absolute

value.

Figure 12 (adapted from [48]), shows the recovery of

a sparse object containing sub-wavelength features (100nm

holes illuminated by a λ = 532nm laser) from its experimen-

tally measured low pass filtered Fourier magnitude. The prior

knowledge used for recovery is that the object is comprised

of a small number of 100nm diameter circles on a grid,

illuminated by a plane wave. The exact number, locations, and
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Figure 10. Diffraction patterns from single X-ray FEL pulses from particles in flight, and reconstructed images. a–d, Clusters of polystyrene spheres with
radii of 70 nm (a, b) and 44 nm (c, d). e, f, Ellipsoidal nanoparticles. g, A soot particle. h, A salt–soot mixture [26].

Figure 11. First tabletop short-wavelength coherent diffraction imaging. (a) Experimental setup. Coherent extreme UV radiation is generated through the
process of high harmonic generation. A single harmonic order at wavelength 29 nm is selected and focused onto a sample by a pair of multilayer mirrors.
The scattered light is detected by X-ray CCD camera. (b) The original image, used to analyze the performance of the CDI process, obtained with a Scanning
electron Microscope (SEM). The image shows a masked carbon film placed on a 15 µm diameter pinhole. (c) Recorded multi-frame diffraction pattern
(corresponding to Fourier magnitude squared of the object shown in (b)). (d) CDI reconstruction using the HIO algorithm with 214 nm resolution [27].

amplitudes of the circles are not known a-priori. The recovery

is performed using a greedy algorithm that iteratively updates

the support of the object, finds a local minimum and removes

the weakest circle, until convergence [48].

Another type of information loss in CDI, for which the prior

knowledge of object sparsity can be helpful, is low signal

to noise ratio. In non-destructive X-ray CDI measurements,

it is not uncommon for signal acquisition time to be on

the order of tens of seconds [27], [114], [30], in order to

acheive sufficiently high SNR. This poses a severe limitation

on the temporal resolution attainable with such measurements,

restricting the types of dynamical phenomena accessible by

X-ray CDI. Expoilting sparsity in the change that an object

undergoes between subsequent CDI frames has been recently

suggested as a means to overcome high noise values, and

consequently significantly decrease acquisition time [55]. In

other words, the fact that an object is sparsely varying, can

be used as prior information to effectively denoise sequential

Fourier magnitude measurements. In [55], CDI of a sparsely

varying object is formulated as a sparse quadratic optimization

problem, and solved using GESPAR [54]. Numerical simula-

tions suggest a dramatic potential improvement in temporal

resolution: In an example consisting of a 51 × 51 pixel

object with 5 randomly varying pixels between frames, an

improvement of 2 orders of magnitude in acquisition time is

possible [55].



18

Figure 12. Sparsity based sub-wavelength CDI. A 2D object consisting of an arrangement of nano-holes (100nm in diameter) is illuminated by a 532nm
laser, and the Fourier plane magnitude is measured. High spatial frequencies are lost during propagation, because the features (the circles as well as their
separation) are smaller than ∼ λ/2. Using an iterative greedy algorithm, and exploiting the prior knowledge that the object is sparse in a dictionary made of
100nm circles, the phase is retrieved and the object is recovered from its low-pass-filtered Fourier magnitude [48].

VI. OTHER PHYSICAL SETTINGS, BOTTLENECKS, AND

VISION

This review article focused mainly on the simplest physical

setting for phase retrieval in optical imaging (Fig. 2), CDI:

where an unknown 2D optical image is recovered algorith-

mically from a single measurement of its far-field intensity

pattern, given a known image support (or other prior informa-

tion). In terms of signal processing, this problem corresponds

to recovering a 2D object from measurements of its Fourier

magnitude. However, the issue of phase retrieval in optical

imaging, and in a more general sense – in optics, is far broader,

and includes other physical settings which naturally translate

into signal processing problems different than the standard

phase retrieval problem. This section provides a short overview

of those physical settings, defines the various problems in

terms of signal processing, and provides some key references.

We conclude with a discussion on the main challenges and

bottlenecks of phase retrieval in optical imaging, followed by

an outlook for the upcoming years and long term vision.

A. Non-Fourier Measurements

The simplest optical phase retrieval problem assumes that

the measured data corresponds to the Fourier magnitude. In

optical settings, this means that the measurements are taken

in the Fourier domain of the sought image, which physically

means performing the measurements at a plane sufficiently

far away from the image plane (the so-called far-field or the

Fraunhofer regime), or at the focal plane of an ideal lens

[40]. In reality, however, the measurements can be taken at

any plane between the image plane and the far field, which

would yield intensity patterns that are very different than the

Fourier magnitude of the sought signal. This of course implies

that new (or revised) algorithms - beyond those described in

previous sections - must be used, which naturally raises issues

of conditions for uniqueness and convergence. At the same

time, these measurements have some interesting advantages,

which can be used wisely to improve the performance of

phase retrieval. Let us begin by describing the relevant physical

settings.

As stated earlier in this paper, the optical Fourier plane

corresponds to a plane sufficiently far away from where the

object (the sought signal) is positioned. Far away here means

asymptotically at infinite distance from the object plane, or at

the focal plane of a lens. However, the entire propagation-

evolution of electromagnetic waves from any plane to any

other plane (not only from the near field to the far field)

is known: it is fully described by Maxwell’s equations. As

such, one can formulate the problem through a proper transfer
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function (of the electromagnetic wave) that is different than the

Fourier transform. In this context, the most well studied case is

the regime of Fresnel diffraction, where the transfer function

is expressed in an integral form known as Fresnel integral

[40]. This regime occurs naturally at a range of distances

away from the object plane which naturally includes also the

Fraunhofer regime where the transfer function reduces to a

simple Fourier transform. Going beyond the Fresnel regime

is also possible. This means that the (magnitude squared of

the) electromagnetic wave will be measured at some arbitrary

plane away from the object. A more general case arisees

by expressing the scalar transfer function of the light in a

homogeneous medium, at any plane z as:

T (kx, ky, z) = exp
[

− iz
√

k2 − (k2x + k2y)
]

(23)

Here k = ω/c, with ω being the frequency of the light, c

being the speed of light in the medium, and kx, ky describe

the transverse wavenumbers. The field at any arbitrary plane

z, E(x, y, z), is then given by inverse Fourier transforming the

spectral function at that plane F (kx, ky, z), which is related

to the spectrum at the initial plane by:

F (kx, ky, z) = F (kx, ky, z = 0)T (kx, ky, z).

With the transfer function 23, one can now formulate a

new phase retrieval problem, where the measurements are

conducted at some arbitrary plane z, giving |E(x, y, z)|2,

and the sought signal is E(x, y, z = 0). This approach

can be extended to include polarization effects, where the

transfer-function is vectorial, thereby describing the propaga-

tion through Maxwell’s equations with no approximation at

all. The optical far-field - where the measurement corresponds

to the Fourier magnitude of the image at the initial plane,

(i.e., the measurement is proportional to |F (kx, ky, z)|2) - is

obtained for distances z larger than some minimum distance

z0 that depends on the spectral extent of F (kx, ky, z = 0),

and only within a region close enough to the z axis in the

measurement plane.

It is interesting to compare these more general phase

retrieval problems to the generic problem of recovering a

signal from its Fourier magnitude. In terms of algorithmics, the

generic problem is much simpler and was extensively studied

throughout the years, whereas the general case is considerably

more complex and was studied only sporadically. However,

in terms of optics, the measurements in the general case

can provide more information. Namely, in the general case,

measurements of |E(x, y, z)|2 can be taken at multiple planes

(multiple values of z), and each measurement adds more

information on the signal. In contrast, for the generic problem,

once the measurements are taken in the optical far-field, taking

more measurements at further away distances does not add

additional information because all the far field measurements

correspond to the Fourier magnitude (to within some known

scaling of coordinates in the measurement planes). As such,

performing phase retrieval of optical images in the most

general (non-Fourier) case can be beneficial, as it leads to

multiple measurements, possibly relaxing the conditions on

oversampling and/or the advance knowledge on the support in

the image plane.

Historically, these ideas on non-Fourier measurements are

known to the optics community since the early days of optical

phase retrieval [2]. They are currently being used in the

context of improving the convergence of phase retrieval by

taking non-Fourier measurements at several planes [115], [19].

Alternatively, one can take measurements at several different

optical frequencies ω, which would be expressed as different

values of k = ω/c in the general transfer function given above.

In this mutli-frequency context, it is important that the fre-

quencies are well separated, each having a narrow bandwidth,

to conform the high degree of coherence required for CDI.

These ideas are now being pursued by several groups [106],

[29], [116]. Interestingly, the multi-frequency idea also works

in the continuous case of broad bandwidth pulses centered

on a single frequency. In this case, the power spectrum of

the pulse must be known in advance [106], [116], [117]. In

a similar vein, recent work has demonstrated scanning CDI,

where the beam is scanned through overlapping regions on the

sample to allow imaging of extended objects, a method known

as ptychography [118], [119], [20], [120].

More sophisticated physical settings also exist, where the

medium within which the waves are propagating is not ho-

mogeneous in space. Famous examples are photonic crystals,

wherein the refractive index varies periodically in space, in a

known fashion, in one, two or three dimensions. Obviously, in

such settings the transfer function for electromagnetic waves

is fundamentally different from the transfer function in free

space. The phase retrieval problem in such systems, albeit

less commonly known, is no less important. For example,

photonic crystal fibers can in principle be used for imaging in

endoscopy. The measurements in such systems correspond to

the magnitude squared of the field at the measurement plane,

which would be very different than the Fourier magnitude of

the sought image. Still, once the transfer function is known,
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complicated as it may be, the phase retrieval problem is well

defined and can be solved with some modifications to the

algorithms described above. See, for example, pioneering work

on phase retrieval in a photonic crystal fiber [121], and very

recently on sparsity-based phase retrieval and super-resolution

in optical waveguide arrays [56]. In addition to these, the

concept of CDI has also been extended to other schemes, such

as Bragg CDI, suitable to periodic images, to reconstruct the

structure and strain of nano-crystals [122], [123], [124], [125].

B. Phase Retrieval Combining Holographic Methods

As explained in the introduction, optical settings always

suffer from the inability of photodetectors to directly mea-

sure the phase of an electromagnetic wave at frequencies of

THz (terahertz) and higher. Partial solution for this problem

is provided through holography, invented by Denis Gabor

in 1948 [126] and awarded the Nobel Prize in Physics in

1971. Holography involves interfering an electromagnetic field

carrying some image, Eimage, with another electromagnetic

field of the same frequency and a known structure, denoted

as Eref . Typically, the so-called reference wave, Eref , has

a very simply structure, for example, approximately a plane

wave (wave of constant amplitude and phase). The detection

system records |Eimage+Eref |2. Originally, such holographic

recording was done on a photographic plate which is made

from a photosensitive material whose transmission becomes

proportional to the recorded pattern |Eimage + Eref |2. This

photographic plate is called a hologram, wherein the infor-

mation contained in the image wave Eimage is embedded in

transmission function of the hologram. To see the recording,

the wave of the known pattern, Eref , is generated (which

is possible because its structure is simple and fully known)

and made to illuminate the hologram. The magnitude of the

wave transmitted through the illuminated hologram is therefore

proportional to |Eimage + Eref |2 · Eref . One of the terms

is therefore |Eref |2 · Eimage. Since |Eref |2 carries virtually

no information (i.e., it is just a constant), this transmitted

wave reconstructs the image times that constant. This is the

principle of operation of holography. Over the years, it has

been shown that it is almost always beneficial to record not the

actual image but its Fourier spectrum, hence the reconstructed

information is the Fourier transform of the image, and the

image itself is recovered either in the far-field (as explained

in the introduction) or at the focal plane of a lens. This process

is termed Fourier holography [127].

In the context of phase retrieval, holography is used for the

purpose of adding information in the measurement scheme.

Because in most cases the measurements used are Fourier

magnitudes, which physically implies far-field measurements,

the natural inclusion of holographic methods is through

Fourier holography. For example, adding a tiny hole (a delta

function) at a predetermined position in the sample (close to

where the sought image resides) creates an additional wave in

the far field, with a tilted phase (arising from the displacement

between the hole and the sought image). The far field intensity

therefore now corresponds to the absolute value squared of

the sum of the Fourier spectrum of the sought image and

the (known) wave. As such, it introduces additional prior

knowledge, which can be used for increased resolution of

the algorithmic recovery or for relaxing the constraints on

the prior knowledge on the support. These ideas have been

exploited successfully using X-rays and electrons by several

groups [128], [129], [130].

C. Challenges, Bottlenecks and Vision

The current challenges can be briefly defined in a single

sentence: higher resolution, ability to recover more complex

objects, improved robustness to noise, and real-time operation.

The very reason phase retrieval in optical imaging has become

so important is owing to the vision to be able one day to image

complex biological molecules directly, track their structural

evolution as it evolves in time, and even view the dynamics

of the electronic wave functions bonding atoms together. The

reasoning is obvious: to understand biology at the molecular

level, to decipher the secrets of how their atomic constituents

bond together and how they interact with other molecules.

The current state of the art is far from those goals: imaging

resolution is not yet at the atomic (sub-nanometer) level, and -

at nanometric resolution - imaging cannot handle objects that

are bounded by a support that is extremely large compared

to the resolution. In terms of being able to perform real-time

experiments, state of the art measurements have demonstrated

extremely short optical pulses: tens of attoseconds (10−18

seconds - on the order of the passage of a photon through

a distance comparable to the size of an atom). Pioneering

experiments have even started to probe the dynamics of

electrons in molecules and tunneling processes on these time

scales. But, as of today, none of these ultrafast methods

was applied to imaging of even a simple molecule, let alone

complex biological structures.

Clearly, the underlying physics and engineering pose great

challenges to meet these goals. Generating coherent radiation
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in the hard X-ray regime is still a major obstacle, often

requiring very large enterprises such as the X-ray sources at

the SLAC National Accelerator Laboratory. These facilities

around the world are continuously improving their photon flux

at shorter wavelengths, thereby constantly improving imaging

resolution. The fundamental limits on the coherent X-ray flux

possible with current methods (such as synchrotrons, XFELs

[58], [59], and the process of high harmonics generation [131])

are not even known. But the steady improvement does give

hope for imaging at the atomic level in the near future. Taking

the CDI techniques to the regime of attosecond science is an

important challenge. These pulses are extremely short, hence

their bandwidth is huge, so the coherent diffraction pattern

is a superposition of their Fourier contents, which requires

new algorithmic methods. As described above, these issues are

currently being explored by several groups. But the problem

is fundamentally more complicated, because the process of

scattering of light by molecules at these short wavelengths

and ultrashort timescales is not like passing light through a

mask on which an image is imprinted. Rather, many issues

related to light-matter interactions under these conditions are

yet to be understood (e.g., tunneling ionization of atoms by

laser pulses).

Finally, the long term vision must include imaging the

dynamics within complex biological systems at the atomic

level and in real time. But such systems are extremely complex

to handle, in terms of details on many spatial and temporal

scales simultaneously, in terms of the statistical nature and

huge redundancy in the physical processes taking place within

such complexes simultaneously, and even in terms of the

quantum mechanics governing the dynamics at those scales.

This is where the signal processing community can make

a large impact, by devising new and original methods for

recovering the information from experimental measurements.

Clearly, the algorithms will have to be tailored to the specific

physical settings.
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