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The free electron laser (FEL) amplifier is implemented in x-ray FEL facilities to generate short

wavelength radiation. The problem of an efficiency increase of an FEL amplifier is now of great practical

importance. The technique of undulator tapering in the postsaturation regime is used at the existing x-ray

FELs LCLS, SACLA and FERMI, and is planned for use at FLASH, European XFEL, Swiss FEL, and

PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and

industrial applications. In this paper we perform a detailed analysis of the tapering strategies for high power

seeded FEL amplifiers. Analysis of the radiation properties from the modulated electron beam and

application of similarity techniques allows us to derive the universal law of the undulator tapering.
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I. INTRODUCTION

Effective energy exchange between the electron beam

moving in an undulator and electromagnetic wave happens

when the resonance condition takes place. In this case

electromagnetic wave advances electron beam by one

radiation wavelength while electron beam passes one

undulator period. When the amplification process enters

the nonlinear stage, the energy losses by electrons become

pronounced which leads to the violation of the resonance

condition and to the saturation of the amplification process.

Application of the undulator tapering [1] allows a further

increase of the conversion efficiency. An idea is to adjust

undulator parameters (field or period) according to the

electron energy loss such that the resonance condition is

preserved.

It is generally accepted that in the framework of the one-

dimensional theory an optimum law of the undulator

tapering should be quadratic [2–9]. A similar physical

situation occurs in the FEL amplifier with a waveguide [2].

In this case radiation is confined within the waveguide.

Parameters of FEL amplifiers operating in the infrared,

visible, and x-ray wavelength ranges are such that these

devices are described in the framework of three-dimensional

theory with an “open” electron beam, i.e., physical case of

diffraction in a free space. In this case the diffraction of

radiation is an essential physical effect influencing optimi-

zation of the tapering process. Discussions and studies on

the optimum law of the undulator tapering in the three-

dimensional case have been in progress for more than

20 years. Our previous studies were mainly driven by

occasional calculations of perspective FEL systems for high

power scientific (for instance, FEL based γγ collider) and

industrial applications (for instance, for isotope separation,

and lithography [10–12]). Their parameter range corre-

sponded to the limit of a thin electron beam (small value

of the diffraction parameter). In this case linear undulator

tapering works well from almost the very beginning [6].

A comprehensive study devoted to the global optimization

of a tapered FEL amplifier with open electron beam has

been presented in [4]. It has been shown that: (i) the tapering

law should be linear for the case of thin electron beam,

(ii) optimum tapering at the initial stage should follow

quadratic dependence, and (iii) tapering should start approx-

imately two field gain lengths before saturation. A new wave

of interest in the undulator tapering came with the develop-

ment of x-ray free electron lasers [13–20]. Undulator

tapering has been successfully demonstrated at long wave-

length FEL amplifiers [2,21], and is routinely used at x-ray

FEL facilities LCLS and SACLA [16,17]. Practical calcu-

lations of specific systems yielded in several empirical laws

using different polynomial dependencies (see [22,23] and

references therein).

In this paper we perform a comprehensive analysis of

the problem of the undulator tapering in the presence of

diffraction effects. We found that the key element for under-

standing the physics of the undulator tapering is given by the

model of modulated electron beam. Then we perform global

analysis of the parameter space of a seeded FEL amplifier

and derive the universal law of the undulator tapering.

II. BASIC RELATIONS

We consider an axisymmetric model of the electron

beam. It is assumed that the transverse distribution function

of the electron beam is Gaussian, so rms transverse size of

matched beam is σ ¼ ffiffiffiffiffi

ϵβ
p

, where ϵ is rms beam emittance

and β is focusing beta function. An important feature of the

parameter space of short wavelength FELs is that the space
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charge field does not influence significantly the amplifica-

tion process, and in the framework of the three-dimensional

theory the operation of the FEL amplifier is described by the

following parameters: the diffraction parameterB, the energy
spread parameter Λ̂

2

T, the betatron motion parameter k̂β and
detuning parameter Ĉ [9,24]:

B ¼ 2Γσ2ω=c; Ĉ ¼ C=Γ;

k̂β ¼ 1=ðβΓÞ; Λ̂
2

T ¼ ðσE=EÞ2=ρ2; ð1Þ

where Γ ¼ ½Iω2θ2sA
2
JJ=ðIAc2γ2zγÞ�1=2 is the gain parameter,

ρ ¼ cγ2zΓ=ω is the efficiency parameter, and C ¼ 2π=λw −

ω=ð2cγ2zÞ is the detuning of the electron with the nominal

energy E0. Note that the efficiency parameter ρ entering

equations of three-dimensional theory relates to the one-

dimensional parameter ρ1D as ρ1D ¼ ρ=B1=3 [9,25]. The

following notations are used here: I is the beam current,

ω ¼ 2πc=λ is the frequency of the electromagnetic wave,

θs ¼ K=γ, K is the rms undulator parameter, γ−2z ¼
γ−2 þ θ2s , kw ¼ 2π=λw is the undulator wave number,

IA ¼ 17 kA is the Alfven current, AJJ ¼ 1 for helical

undulator and AJJ¼J0½K2=2ð1þK2Þ�−J1½K2=2ð1þK2Þ�
for planar undulator. J0 and J1 are the Bessel functions of the
first kind. The energy spread is assumed to be Gaussian with

rms deviation σE.

In the following we consider the case of negligibly small

values of the betatron motion parameter k̂β and the energy

spread parameter Λ̂
2

T (i.e., the case of “cold” electron

beam). Under these assumptions the operation of the

FEL amplifier is described by the diffraction parameter

B and the detuning parameter Ĉ.
Equations describing the motion of the particles in the

ponderomotive potential well of the electromagnetic wave

and the undulator become simple when written down in

the normalized form (see, e.g., [9]):

dΨ

dẑ
¼ Ĉþ P̂;

dP̂

dẑ
¼ U cosðϕU þΨÞ; ð2Þ

where P̂ ¼ ðE − E0Þ=ðρE0Þ, ẑ ¼ Γz, and U and ϕU are the

amplitude and the phase of the effective potential.

Deviation of the electron energy is small in the exponential

stage of amplification, P̂ ≪ 1, and the process of the beam

bunching in phase Ψ lasts for a long distance, ẑ ≫ 1. The

situation changes drastically when the amplification proc-

ess enters the nonlinear stage and deviation of the electron

energy P̂ approaches to the unity. The phase change on a

scale of Δẑ≃ 1 becomes fast, particles start to slip fast in

phase Ψ which leads to the reduction of the electron beam

modulation, and the growth of the radiation power is

saturated.

Field gain length ReΛ=Γ and reduced saturation effi-

ciency η̂sat ¼ Wsat=ðρWbeamÞ of the FEL amplifier tuned to

exact resonance Ĉ ¼ 0 are the functions of the diffraction

parameter B and are plotted in Fig. 1. HereWbeam ¼ E0I=e
is the electron beam power. These quantities scale asymp-

totically as B−1=3 [9] which gives us a hint for derivation of

one more general dependence. Indeed, we normalize the

radiation power to the saturation power, and undulator

length to the field gain length. Then we find that the

radiation power before saturation exhibits similar behavior

for all values of the diffraction parameter B > 1 (see the

right plot in Fig. 1).

Undulator tapering [1], i.e., adjustment of the detuning

according to the energy loss of electrons, ĈðẑÞ ¼ −P̂ðẑÞ,
allows to keep synchronism of trapped electrons with

electromagnetic wave. Energy losses of trapped electrons

grow proportionally to the detuning. Energy of the particles

which are not trapped in the regime of coherent deceleration

remains approximately the same as that at the moment when

particles leave the stability region. Finally, two fractions of

electrons are formed which are well separated in energy,

and the average energy loss is hP̂ðẑÞi≃ hP̂trapðẑÞiNtrap=Ntot.

FIG. 1. Operation of the FEL amplifier with untapered undulator. Left plot: FEL field gain ReΛ=Γ (black curve) and FEL efficiency at

the saturation ηsat ¼ Wsat=ðρWbeamÞ (blue curve) versus the diffraction parameter B. Right plot: Evolution of the radiation power along

the undulator. Black, red, green curves correspond to the value of the diffraction parameter B ¼ 1, 10, and 40.
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Thus, for large values of jhP̂ðẑÞij ≫ 1, the ratio of jhP̂ðẑÞij=
ĈðẑÞ ¼ η̂=ĈðẑÞ approaches asymptotically the value of the

trapping factor of the particles captured in the regime of

coherent deceleration ktrap ¼ Ntrap=Ntot.

A. Radiation of modulated electron beam

During the amplification process the electron beam is

modulated periodically at the resonance wavelength. This

modulation grows exponentially in the high gain linear

regime, reaching a value about the unity near the saturation

point. Application of undulator tapering allows to preserve

beam bunching at a long distance. Thus, it is useful to

remember the properties of the radiation of the modulated

electron beam. Electron beam current Iðz; tÞ ¼ I0½1þ
ain cosωðz=vz − tÞ� is modulated with amplitude ain.
Radiation power of the modulated beam is given by [26]

W ¼ 2π2I2
0
a2inσ

2

cλλu

K2A2
JJ

1þ K2
fð~zÞ~z;

fð~zÞ ¼ arctan ð~z=2Þ þ ~z−1 ln

�

4

~z2 þ 4

�

: ð3Þ

In the right-hand side of expression (3) we explicitly

isolated z dependence of the radiation power with function

fð~zÞ of argument ~z ¼ 1=N, where N ¼ kσ2=z is Fresnel

number, and k ¼ 2π=λ is wave number. A plot of the

function fð~zÞ is shown in Fig. 2. Asymptotes of the

function fð~zÞ are

fð~zÞ → π=2 for ~z ≫ 1 ðN ≪ 1Þ;
fð~zÞ ¼ ~z=4 for ~z ≪ 1 ðN ≫ 1Þ ð4Þ

for thin and wide electron beam asymptote, respectively.

Expression (3) is a crucial element for understanding the

optimum law of the undulator tapering. Indeed, in the deep

tapering regime some fraction of the particles is trapped

in the regime of coherent deceleration. Thus, the beam

modulation is fixed, and the radiation power W should

follow the expression (3), and the detuning (undulator

tapering) should follow the energy loss by particles,

C ∝ W. One can easily find that both asymptotes (of wide

and thin electron beam) discussed in the introductory

section are well described by this expression. The asymp-

tote of a wide electron beam corresponds to large values of

Fresnel number N, and it follows from (3) that the radiation

power scales quadratically with the undulator length,

W ∝ z2. The asymptote of a thin electron beam corresponds

to small values of the Fresnel number N, and the radiation

power grows linearly with the undulator length, W ∝ z.
Undulator tapering should adjust detuning according to the

energy loss by electrons, and we find that the tapering law

should be quadratic for the case of wide electron beam,

C ∝ W ∝ z2, and linear for the case of thin electron

beam, C ∝ W ∝ z.
The asymptote of the wide electron beam works rea-

sonably well for the values of the Fresnel number N ≳ 1.

The asymptote of the thin electron beam converges pretty

slowly, and reasonable accuracy is achieved for very small

values of the Fresnel number, N ≲ 0.01. To get the feeling

about practical numbers, let us consider two working points

of LCLS x-ray FEL operating at the radiation wavelength

of 0.15 and 1.5 nm [16,27]. The transverse size of the

electron beam is about 25 μm in both cases. The wide beam

asymptote is applicable up to z≃ zwb ≃ 26 m for wave-

length 0.15 nm, and z≃ zwb ≃ 2.6 m for operation at

1.5 nm wavelength. Here we see general feature illustrating

shortening with the radiation wavelength of the applicabil-

ity region of the wide beam asymptote. The thin beam

asymptote becomes applicable at LCLS for z≳ 2500 m

(for wavelength 0.15 nm) and 260 m (for wavelength

1.5 nm). Note, that for both practical examples the limit of

thin electron beam is achieved only for very long undulator,

and exact formula (3) should be used for calculation of the

radiation power for undulator length z > zwb.

III. GLOBAL OPTIMIZATION OF THE

UNDULATOR TAPERING

Now we turn to the problem of finding a general law of

the optimum undulator tapering. First, we solve this

problem using the approach of straightforward global

optimization with three-dimensional, time-dependent

FEL simulation code FAST [28]. The target of the

optimization is to find the maximum of the output power

at the undulator length after ten field gain lengths. We

divide the undulator into many pieces and change detuning

of all pieces independently. We apply adiabatic (smooth)

tapering, i.e., we prevent jumps of the detuning on the

boundary of the sections. The number of sections is

controlled to be large enough to provide the result which

is independent on the number of sections. Then we choose

the tapering law CðB; zÞ corresponding to the maximum
FIG. 2. Function fðzÞ entering Eq. (3). The dashed line shows

the asymptote (4) for small values of z, fð~zÞ ¼ ~z=4.
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power at the exit of the whole undulator. This global

optimization procedure has been performed in the practi-

cally important range of diffraction parameters from B ¼ 1

to B ¼ 40. Results of this global optimization are summa-

rized in Fig. 3. Solid curves show the profiles of

the optimized radiation power, and dashed curves show

the profiles of the optimum detuning. It has been shown

in the previous section that the ratio of the normalized

radiation power to the normalized detuning gives us the

value of the trapping efficiency of the electrons in the

regime of coherent deceleration, Ktrap ¼ η̂=Ĉ. The trapping
efficiency is the function of the diffraction parameter B and

is plotted in Fig. 4. We find that the optimum trapping

factor approaches values of 0.8 for B ¼ 1, and falls down to

0.45 for B ¼ 40. It is worth noticing that for B≳ 5 it scales

roughly as B−1=3, similar to other FEL characteristics like

field gain length and saturation efficiency.

IV. UNIVERSAL TAPERING LAW

It follows from the global optimization that in the whole

parameter range the undulator tapering starts from the value

of Δz≃ 2Lg before saturation. This result is in good

qualitative agreement with intuitive analysis of the evolu-

tion of the radiation power in the beginning of the nonlinear

regime (see Fig. 1). The losses of the electron energy follow

identical parametric dependence on the gain Lg for all

values of the diffraction parameter B. Visible losses of the
electron energy start to occur approximately about two field

gain lengths before saturation. The next observations come

from the analysis of the beam modulation. The first

observation is that the beam modulation at the initial stage

of the nonlinear regime follows similar behavior for all

diffraction parameters (see Fig. 5). This gives a hint that

initial capture of the particles is performed in a similar way

in the whole parameter range. The second observation is

that the beam modulation after trapping of the electrons in

the coherent deceleration process remains approximately

constant along the undulator. This gives us the main hint

which we discussed in the previous section. That is,

excluding the transition stage of the trapping process,

we deal with the radiation of the modulated electron beam

(3). The main essence of our study is to apply parametrical

dependence like (3) to fit an optimum detuning pattern in

Fig. 3 such that the condition of the optimum tapering is

preserved:

Ĉ ¼ αtapðẑ − ẑ0Þ
�

arctan

�

1

2N

�

þ N ln

�

4N2

4N2 þ 1

��

; ð5Þ

with Fresnel number N fitted by N ¼ βtap=ðẑ − ẑ0Þ. Thus,
we try to fit optimum detuning with three parameters: z0,
αtap and βtap. Here undulator length is normalized to the

gain parameter, ẑ ¼ Γz. One parameter of this fit, start of

FIG. 5. Evolution along the undulator of the squared value of

the bunching factor for the FEL amplifier with global undulator

tapering. Color codes: black, red, green curves correspond to the

value of the diffraction parameter B ¼ 1, 10, and 40.

FIG. 3. Evolution along the undulator of the reduced radiation

power η̂ ¼ W=ðρWbeamÞ (solid curves) and of the detuning

parameter Ĉ ¼ C=Γ (dashed curves) for the FEL amplifier with

global optimization of the undulator tapering. Color codes: black,

red, green curves correspond to the value of diffraction parameter

B ¼ 1, 10, and 40.

FIG. 4. The trapping efficiency Ktrap for the globally optimized

undulator (black curve) and the fitting coefficient α−1tap of the

global optimization entering Eq. (5) (red curve).
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the undulator tapering z0 is fixed by the global optimization

procedure, z0 ¼ zsat − 2Lg. Another parameter of the prob-

lem, βtap, is rather well approximated with the linear

dependency on diffraction parameter, βtap ¼ 8.5 × B. The
remaining parameter, αtap, is plotted in Fig. 4. It is a slow

varying function of the diffraction parameter B, and scales

approximately to B1=3 as all other important FEL param-

eters discussed above. Thus, application of similarity

techniques gives us an elegant way for the general para-

metrical fit. The accuracy of this fit is pretty good giving the

results for optimum detuning which are close to the global

optimum. We illustrate with Fig. 6 tapering law (5) for the

specific value of the diffraction parameter B ¼ 10. Curves

in black color are the normalized power and the detuning

parameter derived from the global optimization. The red

dashed curve is detuning Ĉ given by (5) with αtap ¼ 3.6

(see Fig. 4), and βtap ¼ 85 (according to relation βtap ¼
8.5 × B). The solid curve in red color is the normalized

FEL efficiency simulated with the detuning pattern (5). We

see a good agreement of the fit with the global optimiza-

tion. The same situation occurs in the whole range of the

traced values of the diffraction parameter B. Such a good

agreement is not surprising since fitting is based on very

clean parametric dependencies, and numerical simulations

just provided relevant numerical factors.

A. Rational fit

Analysis of the expression (5) shows that it has quadratic

dependence in z for small values of z (limit of the wide

electron beam), and linear dependence in z for large values
of z (limit of the thin electron beam). It is natural to try a fit

with a rational function which satisfies both asymptotes.

The simplest rational fit is

Ĉ ¼ aðẑ − ẑ0Þ2
1þ bðẑ − ẑ0Þ

: ð6Þ

The coefficients a and b are the functions of the diffraction

parameter B, and are plotted in Fig. 7. The start of the

undulator tapering is set to the value z0 ¼ zsat − 2Lg

suggested by the global optimization procedure. Analysis

of the plots presented in Fig. 6 shows that the fit of the

tapering law with the rational function also works well.

B. Trapping process

We finish our paper with the illustration of the trapping

process. The trapping efficiency Ktrap ¼ P̂=Ĉ falls down

with the diffraction parameter B (see Fig. 4). This is a

natural consequence of the diffraction effects discussed in

earlier publications (see, e.g., Ref. [9], Chapter 4). Indeed,

FEL radiation is not a plane wave. The transverse distri-

bution of the radiation field (FEL radiation mode [9,29])

depends on the value of the diffraction parameter B, and the

FIG. 6. Evolution along the undulator of the reduced radiation

power η̂ ¼ W=ðρWbeamÞ (solid curves) and of the detuning

parameter Ĉ ¼ C=Γ (dashed curves). Color codes: black—FEL

with global optimization of undulator tapering; red—fit with the

formula (5); green—fit with the rational function (6). Here the

value of the diffraction parameter is B ¼ 10.

FIG. 7. Coefficients a (black line) and b (red line) of the

rational fit of the tapering law (6).

FIG. 8. Field amplitude of the FEL radiation mode in the high

gain linear regime. Black, red, and green colors correspond to the

value of the diffraction parameter B ¼ 1, 10, and 40, respectively.

The dashed line shows the profile of the beam current density

exp½−r2=ð2σ2Þ�.
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field gradient (or, amplitude of ponderomotive well) across

the electron beam is more pronounced for larger values of

the diffraction parameter B (see Fig. 8). In the latter case we

obtain a situation when electrons located in the core of the

electron beam are already fully bunched while electrons at

the edge of the beam are not bunched yet [see phase space

plot (a) in Fig. 9]. As a result, the number of electrons with

similar positions on the energy-phase plane falls down with

the growth of the diffraction parameter, as well as the

trapping efficiency in the regime of coherent deceleration.

The trapping process is illustrated with the phase space

plots presented in Fig. 9 for the value of the diffraction

parameter B ¼ 10. Different color codes (black to blue)

correspond to different locations of the particles across the

beam (from the beam core to the edge). We see that the

particles in the core of the beam (black points) are trapped

most effectively. Nearly all particles located at the edge of

the electron beam (blue points) leave the stability region

very soon. The trapping process lasts for a several field gain

lengths when the trapped particles become isolated in the

FIG. 9. Phase space distribution of electrons (left column) and population of electrons in energy (right column) at different stages of

the trapping process. Color codes correspond to different locations of the particles in the beam (black—core of the beam; blue—edge of

the beam). Here diffraction parameter is B ¼ 10. Plots labeled by (a), (b), (c), and (d) correspond to ðz − zsatÞ=Lg ¼ −1.2, 2.5, 3.9 and

5.3, respectively (see Fig. 6).
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trapped energy band for which the undulator tapering is

optimized further. For the specific value of the diffraction

parameter B ¼ 10 the trapping process is not finished even

at three field gain lengths after saturation, and nontrapped

particles continue to populate the low energy tail of the

energy distribution (see the right column of Fig. 9). There

was an interesting experimental observation at LCLS that

energy distribution of nontrapped particles is not uniform,

but represent a kind of energy bands [30–32]. Graphs

presented in Fig. 9 give a hint on the origin of energy bands

which are formed by nontrapped particles. This is the

consequence of nonlinear dynamics of electrons leaving the

region of stability. Note that a similar effect can be seen in

the early one-dimensional studies [7,8].

V. DISCUSSION

In this paper we derived the general law (5) for the

optimum undulator tapering in the presence of diffraction

effects. The case of the cold electron has been considered.

This allowed us to isolate diffraction effects in the most

clear form. It has been found that the optimum tapering law

is the function of the only diffraction parameter B. Fit of the
tapering law with the rational function (6) requires fulfill-

ment of two asymptotes of the tapering law: quadratic at the

initial stage (wide beam asymptote), and linear for very

long tapering section (thin beam asymptote). It is essen-

tially simple, and can be very convenient for optimization

of practical systems. The tapering law is described by

simple analytical expressions with two fitting coefficients.

Extension of this approach to a more complicated model

(including energy spread and emittance) is pretty much

straightforward and will result in corrections to the fitting

coefficients without changing the general law given by (5).
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