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We analyze the first measurement of 7. production, performed by the LHCb Collaboration, in
the nonrelativistic-QCD (NRQCD) factorization framework at next-to-leading order (NLO) in the
strong-coupling constant «s and the relative velocity v of the bound quarks including the feeddown
from h. mesons. Converting the long-distance matrix elements (LDMESs) extracted by various groups
from J/4 yield and polarization data to the 7. case using heavy-quark spin symmetry, we find that
the resulting NLO NRQCD predictions greatly overshoot the LHCb data, while the color-singlet

model provides an excellent description.

PACS numbers: 12.38.Bx, 12.39.St, 13.85.Ni, 14.40.Pq

Despite concerted experimental and theoretical efforts
ever since the discovery of the J/¢ meson in the Novem-
ber revolution of 1974 (The Nobel Prize in Physics 1976),
the genuine mechanism underlying the production and
decay of heavy quarkonia, which are QCD bound states
of a heavy quark Q = ¢, b and its antiparticle Q, has re-
mained mysterious. The effective quantum field theory of
nonrelativistic QCD (NRQCD) [1] endowed with an ap-
propriate factorization theorem [2] arguably constitutes
the most probable candidate theory at the present time.
This implies a separation of process-dependent short-
distance coefficients (SDCs), to be calculated perturba-
tively as expansions in the strong-coupling constant ag,
from supposedly universal long-distance matrix elements
(LDMES), to be extracted from experiment. The relative
importance of the latter is subject to velocity scaling rules
[3], which predict each of the LDMES to scale with a def-
inite power of the heavy-quark velocity v. In this way,
the theoretical predictions are organized as double ex-
pansions in ag and v. A crucial feature of this formalism
is that the QQ pair can at short distances be produced in
any Fock state n = 2S+1L§l} with definite spin S, orbital
angular momentum L, total angular momentum J, and

color multiplicity @ = 1,8. In this way, it complements
the color-singlet (CS) model (CSM), which only includes

the very 25+1L9] state of the physical quarkonium, and
thus cures a severe conceptual shortcoming of the latter,
namely the existence of uncanceled infrared (IR) singu-
larities beyond L = 0. However, the CSM does provide
IR-finite NLO predictions for S-wave charmonia, such as
the n. and J/v¢ mesons considered here.

Despite its theoretical rigor, NRQCD factorization has
reached the crossroads in the J/1 case. While a global fit
[4] to the J/4 yields measured in hadroproduction, pho-
toproduction, v scattering, and eTe™ annihilation suc-
cessfully pins down the leading color-octet (CO) LDMEs,
(©77% (155, (07 (3, and (©7/¢(3P)), in com-
pliance with the velocity scaling rules, the resulting pre-
dictions for J/v polarization in hadroproduction are in

striking disagreement with measurements at the Fermilab
Tevatron and the CERN LHC [5]. Vice versa, fits to data

on J/v yield and polarization in hadroproduction work
reasonably well [6-8], but hopelessly fail in comparisons
to the world’s data from other than hadronic collisions
[9], with transverse momenta up to pr = 10 GeV.

Very recently, the LHCb Collaboration measured, for
the first time, the prompt 7. yield, via n. — pp de-
cays [10]. The data were taken at center-of-mass en-
ergies /s = 7 and 8 TeV in the forward rapidity range
2.0 < y < 4.5 in bins of pp. This provides a tantalizing
new opportunity to further test NRQCD factorization
and, hopefully, to also shed light on the J/1 polarization
puzzle, the more so as the 7. meson is the spin-singlet
partner of the J/v¢ meson, which implies that the LDMEs
of the two are related by heavy-quark spin symmetry
(HQSS), one of the pillars of NRQCD factorization. The
dominant feeddown contribution is due to the radiative
decay h. — n.y. The leading CS and CO Fock states
of direct 7, (he) production are 1S at O(v3) and 1S,
35{8], and 1P1[8] at O(v7) (1P1[1] and 15([)8] at O(v®)).

So far, only incomplete LO calculations were carried
out for direct 7. production, excluding the 18([)8} contri-
bution [11]. For the reasons explained above, it is an
urgent matter of general interest to provide a full-fledged
NRQCD analysis of prompt 7. hadroproduction, at NLO
both in as and v, and this is the very purpose of this
Letter. From the J/1 case, where such systematic inves-
tigations already exist [4, 6-8], we know (i) that O(«y)
corrections may be sizable, especially in the 3Pu[,8] chan-
nels, (ii) that O(v?) corrections may be non-negligible
[12, 13], and (iii) that feeddown contributions to prompt
production may be substantial, reaching 20-30% in the
XeJ case [7, 14, 15].

We work in the collinear parton model of QCD imple-
mented in the fixed-flavor-number scheme with ny = 3
quark flavors active in the colliding protons, which are
represented by parton density functions (PDFs) evalu-
ated at factorization scale py. At NLO in NRQCD, the



relevant partonic cross sections are given by

Aoy ompt = > (O (n))
HZIS([)I] 115([)8] 735&8] 71[.)1[8]
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where do“[" are the Born SDCs including their O(a)
corrections, daf}g[n] contain their O(v?) corrections, and
(Q"(n)) with @ = O,P and h = ., h. are the appro-
priate LDMEs. We approximately account for the mass
difference between the 7. and h. mesons by substituting
pr — prMhp, /My, in the h. SDCs. The definitions of the
O and P operators for S-wave states and the O opera-
tor for the P-wave states may be found in Refs. [2, 13].
Analogously, we define the P operators of the relevant
P-wave states as

Pr(p) = (<5D7) Tl an.)

bt (-%E) <-%T)>>2 Y+ He,,

PreCr") =1 (-5D7) vlal,on.)
st (—%3) (—;BYXJFH.C.. 2)

The HQSS relationships between the 7. and J/¢ (h. and

Xc0) LDMEs, which are exact through O(v?), read [2]:
@ (s sy = 5@l sy
(@ (i) = (7 (')
<an(1p[8])> _ 3<QJ/11;(3P[8])>
(@ (P /1S5 = 3(@x*ri ). (3)

At O(ay), <(’)(15’01/8])> turn out to be proportional
to (1/euy — 1/em)(OCPI™)), where the poles in e =
2 — d/2, with d being the space-time dimension in di-
mensional regularization, are of ultraviolet (UV) or IR
origin. After appropriate MS operator renormalization,
the renormalized free-quark LDMEs pertaining to the
NRQCD matching procedure for calculating the SDCs
are given to O(as) by

(O (5 0) = (O (5o — 2] (477 o
("5 ) = (O (5o — 2] (477 o
x — L (or(py), (1)
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where py and u, are the NRQCD and QCD renormal-
ization scales, respectively, and (O"(n))o are the tree-
level LDMEs. The IR poles in Eq. (4) match otherwise
uncanceled IR poles produced by the real radiative cor-
rections to the P-wave SDCs. The u) dependences of
the renormalized LDMEs are then determined by solving
,uAd%«?h(n»o = 0 [16]. We do not need to consider
NLO corrections to P-wave LDMEs, since they are pro-
portional to operators beyond O(v?).

We calculate the O(a) and O(v?) corrections to the
SDCs using the techniques developed in Refs. [13, 17, 18].

The O(as) corrections to 1P1[1] state hadroproduction
have only recently been calculated in Ref. [19]. We can
reproduce the results therein within the uncertainties ex-
pected from the phase-space-slicing method. We can
trace the only significant difference to the variation of
about its default value, which was executed in Ref. [19]
only in the SDCs, where it is induced via Eq. (4), but
not in the LDMEs. The O(ay) corrections to the 15’([31]
and 1P SDCs as well as the O(v?) corrections to the
1S([Jl], 1Pl[l], and 1P1[8] SDCs are calculated here for the
first time.

In our numerical analysis, we adopt the values m,, =
2983.6 GeV, my, = 3525.38 GeV, and Br(h. — n.y) =
51% from Ref. [20], take the charm-quark mass, which
we renormalize according to the on-shell scheme, to be
m. = 1.5 GeV, and use the one-loop (two-loop) formula
for a" f)(ur) with ny = 4 at LO (NLO). As for the pro-
ton PDFs, we use the CTEQG6L1 (CTEQ6M) set [21] at
LO (NLO), which comes with an asymptotic scale pa-
rameter of Ag%D = 215 MeV (326 MeV). Our default
scale choices are py = m. and p, = py = myp with

T = \/p% +4m? being the charmonium’s transverse
mass. We in turn adopt two approaches to determine
the 7. and h, LDMEs. In the first one, we obtain them
via Eq. (3) from the J/v and x.o LDME sets determined
at NLO, but ignoring relativistic corrections, by four dif-
ferent groups [4, 6-8] from different selections of J/1 and
Xco production data (see Table I). In those cases where
no x.s or CS J/¢¥ LDMEs are available, we omit the cor-
responding contributions. The observation that direct
7. production almost exclusively proceeds via the 3S£8]
channel will provide a retroactive justification for that.

In Fig. 1, we analyze the O(as) and O(v?) correc-
tions to the contributing SDCs for unit LDMEs. We
note that the O(as) corrections turn the 1P[1] SDC neg-
ative, a feature familiar, for example, from the 3P[8] SDC

of direct J/¢ hadroproduction [18]. However, the 1P1[8]
SDC stays positive also after including the O(as) correc-
tions. As for the O(v?) corrections, we observe that the
ratios R(n) = daig[n]
of pr and of order unity for all n, except for 1le, which
confirms that the relativistic corrections are actually of
relative order O(v?).

In Fig. 2, the LHCDb data [10] are compared with the

m?2/ daf\ﬁ% are almost independent
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FIG. 1: Ratios K(n) = dolfﬁ%] /daiac[)n] measuring the O(as) corrections to the SDCs as functions of p¢ (left panel). Ratios

R(n) = dorig["]mz/dalfﬁ%

measuring the O(v?) corrections to the SDCs as functions of p¢ (right panel). The results for

n = 1P1m refer to h. production and are evaluated at p}TLC = p°mp, /my,. The results for n = 15'([)8] in h. production are not

shown, but may be obtained from those in 7. production by rescaling as for n = 1le. Red color (minus sign in the legend)

indicates negative values.

NRQCD and CSM default predictions including O(«y)
but excluding O(v?) corrections, evaluated with the four
LDME sets in Table I. The error bands shown there are
obtained by adding three theoretical errors in quadra-
ture. The first is due to unknown corrections beyond
O(as), which are estimated by varying px, iy, and py by
a factor of two up and down relative to their default val-
ues. The second one is due to the fit errors in the LDMEs
specified in Table I. The third one is due to the lack of
knowledge of the values of (P"(n)) and the O(v?) cor-
rections to the HQSS relations (3). Both effects are esti-
mated by evaluating Eq. (1) with (P"(n)) = ém2(O"(n))
and varying ¢ in the range —0.5 < & < 0.5, so that £ is
of order v? ~ 0.23 as obtained from potential model cal-
culations [22].

In Fig. 2, the default NRQCD predictions are also bro-
ken down to the individual Fock state contributions. Ev-
idently, the h. feeddown contribution is negligible owing
to the small P/l and 1SI¥ SDCs, a feature that could
not be anticipated without explicit calculation, the more
so as the x.; feeddown contribution to prompt J/1 pro-
duction is quite significant. The most striking feature is,
however, that the CSM, which is basically made up just

by the 15’,[31} contribution, yields an almost perfect descrip-

tion of the LHCDb data, leaving practically no room for

CO contributions. While the 1S([)8] and 1P1[8] contributions
comply with this condition for all four J/¢¥» LDME sets

considered, the latter dictate a very sizable 3S£8] contri-
bution, which overshoots the LHCb data by up to about
one order of magnitude. Even the LDME set that de-
scribes the LHCD data best, namely the one of Ref. [4],
yields an unacceptable x?/d.o.f. value of 257/7 with re-
spect to the default NRQCD predictions. If we take the
lower borders of the respective error bands in Fig. 2 as a
reference, then x?/d.o.f. comes down to 36.7/7, which is
still very poor.

In our second approach, we determine the 7. and h.
LDMEs without recourse to the J/v¢ and x.; LDMEs, by
directly fitting the LHCb data under certain simplifying
assumptions. First, we neglect the h. feeddown contribu-
tions by appealing to their dramatic suppression in Fig. 2.
Second, we neglect the 1S5 and P*! contributions to di-
rect 1. production because of the O(v*) suppression of
their LDMEs relative to the IS([J” one, which is not com-
pensated by an inverse hierarchy in the respective SDCs.

In fact, the 18([)8] SDCs are only of the same order as the

IS([J” ones, while the 1P1[8] ones are even smaller. We are
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FIG. 2: The LHCb [10] measurements of do/dpr for prompt 1. hadroproduction at /s = 7 TeV (upper panel) and 8 TeV
(lower panel) are compared with the default predictions of NRQCD (solid lines) and the CSM (dot-dashed lines) at NLO, but
without relativistic corrections, evaluated with the four LDME sets in Table I. The theoretical errors as explained in the text
are indicated by the yellow and blue bands, respectively. For comparison, also the default contributions due to the individual
Fock states are shown. Red color (minus sign in the legend) indicates negative values.

then left with the 15([)1] and 3S£8] contributions to direct 7.
production. As in Table I, we include O(ay) corrections,
but neglect O(v?) corrections. Our fitting procedure is as

follows. We first determine (O" (15([;])) from the 7. — vy
partial decay width [23], and then use it as input to fit

(One (3S£8])> to the LHCDb data. We are entitled to do so,
since the difference between the CS LDMEs for produc-
tion and decay are of O(v?) [2]. In our determination
of <(977c(1s([)”)>, we set a = 1/137 and a;s(2m.) = 0.26,
and adopt the values I';, = (32.3 £ 1.0) MeV and
Br(n. — v7) (1.57 £ 0.12) x 10~* from Ref. [20].
We thus obtain (07 (1S[)) = (0.24 £ 0.02) GeV?, in
reasonable agreement with the values of its HQSS coun-
terpart (O7/Y(38)) in Table I, and (07 (3s/*)) =
(3.3 4 2.3) x 1073 GeV?, yielding an excellent descrip-
tion of the LHCb data, with x?/d.o.f. 1.4/6. By
HQSS, this provides an independent determination of
<(’)J/¢(1S([JS])> = (O"e (3S£8})>. Observing that this value
falls short of the lowest value in Table I, namely the one
from Ref. [4], by 6.47 standard deviations, we recover the
striking disagreement encountered in our first approach.
Such a low value of (O7/Y(1SE)) is in conflict with the
ideas behind the high-pr fits in Refs. [6, 8], which suggest

a large (07/ IZ’(15'([)8]» value to render the 1S([Jg] contribu-
tions dominant in high-pr J/4¢ hadroproduction and to
explain both the J/v yield and polarization observed ex-
perimentally. However, unlike the J/v case, the theoret-
ical prediction of direct 7. hadroproduction is well under

control. In fact, there are no large NLO corrections in
neither the CS or CO channels, and the A, feeddown con-
tributions are also small.

To summarize, we calculated, for the first time, the
O(as) corrections to the 15([;] and 1P1[8] SDCs as well as
the O(v2) corrections to the I, 1PN and 1Pl SDCs.
Using the . LDMEs derived via HQSS from up-to-date
J/v¢ LDMEs [4, 6-8], we demonstrated that the CS con-
tribution alone can nicely describe the new LHCb data
on prompt 7. hadroproduction [10], while the full NLO
NRQCD predictions yield unacceptably large x?/d.o.f.
values, of 5.24 and above. On the other hand, the CO
contribution is almost exclusively exhausted by the 3S£8]
channel, and the h. feeddown contribution is negligi-

bly small. This allowed us to directly fit (O (35]))

to the LHCb data after determining ((9776(18([)1]» from
I'(ne — vv), both in NRQCD through O(as). Conver-

sion to <(’)J/w(1sés])> via HQSS yielded a value that un-
dershoots the expectation from the velocity scaling rules
by about one order of magnitude and the respective re-
sults from the NLO NRQCD fits to J/% production data
currently on the market [4, 6-8] by at least 6.47 stan-
dard deviations. Taking for granted that the LHCD re-
sults [10] and the HQSS relations (3) can be trusted and
observing that the kinematic region probed falls into mid-
pr range, where neither large logarithms In(p%/m?) nor
factorization breaking terms are expected, we are led to
conclude that either the universality of the LDMEs is in
question or that another important ingredient to current



NLO NRQCD analyses has so far been overlooked.

We are grateful to Sergey Barsuk and Maksym Tek-
lishyn for providing us with detailed information about
the LHCD data [10]. This work was supported in part by
BMBF Grant No. 05 HT6GUA.

Note added: After submission, an alternative NRQCD
analysis, at NLO in «g, of prompt 7. hadroproduction
was reported [24], which finds the LHCb 7, data [10] to
be consistent with a 2010 set of J/¢» CO LDMEs [25]
fitted to J/v yield data from CDF, in combination with

5

an upper bound on ((9"/1”(15’([38])>. We wish to point out
that this does not solve the notorious J/1 polarization
puzzle. In fact, this LDME set drives the polarization
variable Ay in the helicity frame to a positive value of
approximately 0.4 at large pr and central y values (see
first panel of Fig. 8 in [26] and second panel of Fig. 2 in
Ref. [24]), in disagreement with the Tevatron and LHC
measurements.
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