
FLASH. 
Free-Electron Laser 

in Hamburg 
Operation of FLASH 

FLASH – Free-Electron Laser User Facility at DESY 

Siegfried Schreiber, DESY 
for the FLASH team 

 
SPIE Optics + Optoelectronics 

Advances in X-ray Free-Electron 
Lasers Instrumentation 

Prague, 13-16 April, 2015 



Siegfried Schreiber | SPIE Optics + Optoelectronics 2015 | April-16, 2015 

FLASH. 
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DESY accelerators in operation 
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FLASH. 
Free-Electron Laser 

in Hamburg 
FLASH Layout 

>  TESLA type superconducting 
accelerating modules 1.3 GHz 

> FLASH1 fixed gap undulators 
> Total magnetic length ~ 27 m 

>  3rd harmonic sc module 3.9 GHz 

> Normal conducting 1.3 GHz RF gun 
> Ce2Te cathode  
> Two  Nd:YLF based ps photocathode lasers 

>  FLASH1 Experimental Hall 

> Extraction to FLASH2 

315 m 

5 MeV 150 MeV 1250 MeV 

Bunch Compressors 

450 MeV 

Accelerating Structures RF Stations 

Lasers 
RF Gun 

Soft X-ray 
Undulators sFLASH 

FEL Experiments 

Photon 
Diagnostics 

Beam Dump 

THz FLASH1 

>  FLASH2 Experimental Hall >  Variable gap undulator 
>  Total magnetic length ~ 30 m 
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User operation 
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FLASH. 
Free-Electron Laser 

in Hamburg 
FLASH1 Parameters 2014 / 2015 

> more than 200 publications on photon science at FLASH,  
many in high impact journals 

FEL Radiation Parameters 2014/2015 

Wavelength range (fundamental)           4.2 – 52 nm  
Average single pulse energy                     10 – 500 µJ 
Pulse duration (FWHM)          < 50 – 200 fs  
Peak power (from av.)                                 1 – 3 GW 
Pulses per second                                      10 – 5000 
Spectral width (FWHM)                               0.7 - 2 %  
Photons per pulse                                    1011 – 1013  
Average Brilliance                                    1017 – 1021  B* 
Peak Brilliance                                         1029 – 1031  B* 

 
* photons/s/mrad2/mm2/0.1%bw 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Beamtime Distribution and Bunch Pattern 

Requested Pulse Pattern 3rd period 4th period 

Single bunch 47% 47% 

Multi-bunch 53% 53% 35% >200 b. 

Bunch spacing 1 MHz 30% 

200 kHz 43% 

other 27% 40, 100, 250, 500 kHz 
Requested FEL pulse duration 

< 50 fs fwhh 28% 42% 56% multi-bunch 
50 -100 fs 54% 33% 64% single 

not critical 18% 26% 83% max. energy 

Shutdown/ 
commissioning 

25% 

FEL and Accelerator 
studies 34%  FEL User run 

35%  

Scheduled 
maintenance 

6 % 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Water window experiments 

> Two examples of user experiment with 4.2 nm and 4.3 nm in the  
water window 
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FLASH. 
Free-Electron Laser 

in Hamburg 
SASE with high average power 

> 5000 SASE pulses/sec to experiments 

average power up to 600 mW  
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FLASH. 
Free-Electron Laser 

in Hamburg 
Experiments with THz radiation 

> FLASH is also a unique THz source 
worldwide 

> Multibunch operation: many 
thousand pulses per second possible 

> Perfect synchronization 

> more than 100 µJ per pulse obtained 

2 x Diamond windows 
70% transmission each 
50% transmission combined 

Pyro-detector 

> Several experiments use THz together with X-ray pulses 
and also optical laser for pump probe experiments 

> THz is also used for ‘streak’ experiments 

Time (integrated over pulse train) 
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65 µJ/pulse 
λFEL= 20.7 nm 

λTHz= 160 µm 

60 bunches @ 100kHz 

THz Undulator 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Tailored FEL pulses 

> Experiments require various photon pulse lengths 

> From short <30 fs rms  …..  to long > 200 fs rms 

 

Electron Bunch length measured with our transverse deflecting cavity LOLA  
(rms resolution dt = 5…10 fs, dE/E = 1.4 10-4) 

> Note: as a rough estimate, photon pulses are ~2 times shorter 



Siegfried Schreiber | SPIE Optics + Optoelectronics 2015 | April-16, 2015 

FLASH. 
Free-Electron Laser 

in Hamburg 

RF Gun 



Siegfried Schreiber | SPIE Optics + Optoelectronics 2015 | April-16, 2015 

FLASH. 
Free-Electron Laser 

in Hamburg 
Electron Source 

RF Gun 

Laser beam 
line 

Booster 
Module 
(ACC1) 

Cryo-
Feedbox 

Photocathode 
System 

Linearizer 
Module 

(ACC39) 
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FLASH. 
Free-Electron Laser 

in Hamburg 

Gun body with 
water cooling 

Solenoid 
Bz_peak ~ 0.17 – 0.2 T 

Bucking coil 

Photo 
cathode 
(Cs2Te) 

Coaxial RF 
coupler 

Laser 
262 nm, length 

6.3 ps rms 

Electron bunch   
0 – 5 nC, 5 MeV 

Mirror in 
vacuum 

RF Gun (duty cycle 1:100) 

> 1.3 GHz copper cavity,  
1 ½ cell 

 RF peak power 5 MW 
RF pulse length up to 850 µs  
rep.rate 10 Hz 

 Av. RF power up to 50 kW 

 Cs2Te photocathode 

 UV burst-mode laser 

> Electron beam parameters: 

 Charge 0…5 nC, bunch length ~2 mm rms 

 Emittance <1.5 mm mrad @ 1 nC 

 Trains of thousands of bunches/sec 
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FLASH. 
Free-Electron Laser 

in Hamburg 
RF Gun’s operated at FLASH since 2004 

2004 

2009 

1/2010 

6/2010 
9/2011 

6/2012 

Gun2:     5 Hz, 3.5 MW, 350 µs, 5 kW, 680 GJ 
Window: G29 

Gun4.2: 10 Hz, 3.9 MW, 400 µs, 15 kW, 1200 GJ 

Window break down; → G67 
Window break down; → G29 

Window: Gxx 

Gun4.1:  10 Hz, 4 MW, 550 µs, 21 kW, 930 GJ 

3/2013 
Window: G29 
Gun3.1:  10 Hz, 5 MW, 550 µs, 27 kW, 1200 GJ 

Gun2 breakdown 

Gun4.2 breakdown 5/2012 

Window: Thales 5 
4/2014 Window leak; →  G64 

Integrated  
RF-power 

Gun 2 

Gun 4.2 

Gun 4.1 

Gun 3.1 

No breakdown events or other trips since 8-Jun-2014 

Note: maximum accepted trip rate by RF gun: <2 trips per week 
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FLASH. 
Free-Electron Laser 

in Hamburg 
RF Gun Temperature Stability 

> RF gun has no tuning paddles 

> Tuning to 1.3 GHz with its temperature 

 sensor in the iris separating full/half cell  

> Stability measured: dT = 0.015 dgC rms (315 Hz; ~0.1 dg in RF phase) 

> Measured RF phase stability <0.08 dg rms 

> Work is ongoing to improve the stability further 

Blue points: RF Gun temperature over 2.5 hours  
(1 bit jump = 0.02 K) 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Example for sensitivity of water temperature  

pressure rises by 90 mbar 

Temperature rises by 0.1 K 

RF Gun water 
circuit pressure 

change 

dE/E (SASE) 
= -30% 

dT = 0.1 K 

dP = 0.1 bar 

SASE drops by 35 µJ from 100 µJ 
110 min 
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FLASH. 
Free-Electron Laser 

in Hamburg 
RF Gun Low Level RF 

> New: based on MTCA.4 standard 

> System identification performed 
 Model found and controller designed 

 large loop latency compared to system 
bandwidth ~1.4 µs 

> Runs smooth and stable 

> Includes learning feedforward 

 
Feedback gain currently not sufficient 
to achieve a phase stability of  
dφ < 0.01 dg 

 

> Additional protection mechanism 
 amplitude limiter, fast switch off 

Regulation 
performance 
(rms) 

Intra 
pulse 
(flattop ) 

Pulse to pulse 
(960 consecutive 
pulses) 

Amplitude dA/A (%) 0.008 0.008 

Phase dφ (dg) 0.007 0.076 

Goal: < 0.01% in amplitude and < 0.01 dg (rms) in phase 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Cs2Te Cathodes 

> High initial quantum efficiency   ~10 … 15  % 

> Excellent lifetime  > 1 year at FLASH  

> Preparation systems at LASA, Milano and DESY, 
Hamburg 

 UHV transport boxes 

> Requires UV laser 275 … 250 nm 

 

Laser 

e- -beam 

Mo plug 

Thin film of Cs2Te on 
Mo plug 

16 mm 

5 mm 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Cathode Lifetime 

> Cathode 618.3: in use 21-Nov-2013 to 4-Feb-2015:    439 days 

> Total charge extracted: 3.2 C 

CW measurement after 
production 

In Gun 
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Cathode 618.3 

leak ~10-8 mbar l/s in RF window  

Vacuum 10-10 … 10-9 mbar 

QE=5% → Laser pulse energy = 0.1 µJ for 1 nC 
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FLASH. 
Free-Electron Laser 

in Hamburg 
QE map 

8-Jan-2015 23-Jan-2014 4-Jul-2014 

QE=3.5% QE=1.5% QE=2.6% 

> Cathode 618.3  

> Faster QE degradation where the laser hits 

> Rest of cathode degrades slower 

> Not clear, if QE actually recovered in the center, looks like “yes” 
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Free-Electron Laser 

in Hamburg 

Photocathode 
Laser 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Photoinjector Lasers 

> 2 fully diode pumped Nd:YLF lasers 
 Compared to previous flashlamp pumped lasers: 

 Significant improvement in stability and reliability 

 Up to 50 µJ per pulse (UV) 

 Longitudinal gaussian shape 

> Burst mode for long pulse trains (10 Hz) 

> Number of pulses and pulse distance adjustable 
1 MHz, 200 kHz, 100 kHz, …,  

> 3 MHz option @ 5 Hz 

30 μs 

27 MHz oscillator 

Pulse Train 

1 MHz 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Photoinjector Lasers 

> 2 fully diode pumped Nd:YLF lasers 
 Compared to previous flashlamp pumped lasers: 

 Significant improvement in stability and reliability 

 Up to 50 µJ per pulse (UV) 

 Longitudinal gaussian shape 

> Burst mode for long pulse trains (10 Hz) 

> Number of pulses and pulse distance adjustable 
1 MHz, 200 kHz, 100 kHz, …,  

> 3 MHz option @ 5 Hz 

30 μs 

27 MHz oscillator 

Pulse Train 

1 MHz 

800 μs 

3 MHz Pulse Train 

Laser 

Charge 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Photoinjector Lasers 

> 2 fully diode pumped Nd:YLF lasers 
 Compared to previous flashlamp pumped lasers: 

 Significant improvement in stability and reliability 

 Up to 50 µJ per pulse (UV) 

 Longitudinal gaussian shape 

> Burst mode for long pulse trains (10 Hz) 

> Number of pulses and pulse distance adjustable 
1 MHz, 200 kHz, 100 kHz, …,  

> 3 MHz option @ 5 Hz 

30 μs 

27 MHz oscillator 

Pulse Train 

1 MHz 

800 μs 

3 MHz Pulse Train 

Laser 

Charge 

3rd laser in test phase 
Feature:  
variable pulse length 0.8 … 2 ps 
for very low charge injection 
→ single spike lasing 



Siegfried Schreiber | SPIE Optics + Optoelectronics 2015 | April-16, 2015 

FLASH. 
Free-Electron Laser 

in Hamburg 
Charge Stability 

This example: 
- Stability single bunch: 0.36 % rms 
- Stability av. over train: 0.19 % rms 
200 kHz pulse train with 125 bunches, 10 Hz 

> Jitter at normal working point  0.3 ... 0.5 % rms 

> Slow charge feedback to compensate drifts  
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FLASH. 
Free-Electron Laser 

in Hamburg 
Laser Pulse Duration 

> Only transverse shaping: overfilled hard edge aperture imaged on 
cathode 

> no longitudinal shaping 

> Gaussian shape, σL(from fit) = 6.3 +/- 0.1 ps (Laser 2, UV) 

UV Laser Pulse duration (FESCA 200) 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Arrival Time Stability and Synchronization 

> Phase stability is achieved with a 1.3 GHz EOM (active mode-locking) 

> Long term mode-lock stabilization with slow feedback (Piezo acting on 
oscillator length, mainly against air pressure) 

> Optical X-correlation against ultra-stable fiber laser of the FLASH 
synchronization system 

 Measured arrival time jitter 60 - 80 fs rms 

 Slow feedback acting on 1.3 GHz phase to compensate drifts 

200 fs (57 fs rms) 

24 hours 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Reliability Laser System 

> Pump diode lasers are in continuous operation since their installation 
~40,000 h up to now (1 ms, 10 Hz) 

> Pump diodes of oscillator are in continuous operation for more than 
50,000 hours (4.5 ms, 10 Hz) 

> No failures of pump diodes up to now 

> The whole laser system is remarkably robust and needs only little 
maintenance 

> Total downtime of FLASH contributed to the laser system: 0.2 % 

Laser: 0.09 %, Beamline: 0.09%, Controls: 0.03% 
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FLASH. 
Free-Electron Laser 

in Hamburg 

Super- 
conducting 

Acceleration 
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FLASH. 
Free-Electron Laser 

in Hamburg 
FLASH uses TESLA technology 
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FLASH. 
Free-Electron Laser 

in Hamburg 
FLASH uses TESLA technology 

Pure Niobium superconducting cavities  
9-cells, 1.3 GHz 

Burst mode: acceleration for 800 μs at 10 Hz 

Efficient acceleration due to high Q ~ 1010 

Energy gain ~25 MV/m 

1 m 
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FLASH. 
Free-Electron Laser 

in Hamburg 
FLASH uses TESLA technology 
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FLASH. 
Free-Electron Laser 

in Hamburg 
FLASH tunnel with superconducting modules 
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FLASH. 
Free-Electron Laser 

in Hamburg 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Klystrons 

> Thales 5 MW and 10 MW multi-beam klystron (TH1801) 
 Driven by 117 kV rectangular RF pulses (1.5 ms duration) at 10 Hz 

 Gain 48.2 dB, efficiency 65 %, average RF power 150 kW 
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FLASH. 
Free-Electron Laser 

in Hamburg 
FLASH Energy Reach 

> 7 TESLA type accelerating modules installed plus one 3rd harmonic module 

> Electron beam energy of 1.25 GeV possible → water window 

> 7 RF stations (four 5 MW, two 10 MW Thales klystrons, one 3.9 GHz) 

 Module 7 is the 1st XFEL-prototype  
with excellent performance 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Average Module Gradients 

> Performance of cavities at FLASH in average 84% of the expectation 
from vertical test results – no degradation since installation observed 
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Free-Electron Laser 

in Hamburg 

Cryogenics 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Cryogenics 

> Cryogenic supply absolutely reliable 

 large cryo overhead: ~1 kW available 

 usually, only about half the capacity is used 

> Downtime due to cryogenics issues  ~0.2% 

> Since 2002, FLASH has seen 6 cool-downs and 5 warm-ups 

> Average cool-down/warm-up time:  ~10 days each 

 Module Location in  out cool downs warm ups 
1* ACC2 2002 6 5 
2* ACC1 2004 2009 2 2 
3* ACC3 2004 2007 1 1 

3*** ACC1 2009 3 2 
4 ACC4 2004 5 4 
5 ACC5 2004 6 5 CMTB Test 
6 ACC6 2007 5 4 CMTB Test 
7 ACC3 2007 5 4 CMTB Test 

PXFEL1 ACC7 2009 4 3 CMTB Test 
39 ACC39 2009 3 3 CMTB Test 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Cavity Quenches 

> Cavities do not trip, but may quench (LLRF control issues) 

> Cavity quenches do not necessarily lead to downtime but to instabilities 

> He-pressure changes are measured with a large latency and are usually 
observed too late to prevent instabilities 

     → Software quench detection 

 

Example of a quench 
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Free-Electron Laser 

in Hamburg 

Low Level RF 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Low Level RF System (MTCA.4 since Aug-2013) 

> Take advantage of superconducting 
accelerating technology  
 Burst mode – long bunch trains @ 10 Hz 

Feed forward table architecture 

LLRF RF controller schematics 
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500 µs 

> Feedback to keep gradient flat along pulse train 

> Beam loading compensation 

> Beam based corrections, learning feed forward 

> Exception handling 
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FLASH. 
Free-Electron Laser 

in Hamburg 

Stability (rms) @ 9 MHz ACC1 ACC39 ACC23 ACC45 ACC67 
Ampl. intra pulse (10-4) 0.7 2.7 0.5 0.8 0.7 
Ampl. pulse to pulse (10-4) 0.2 0.5 0.1 0.09 0.2 
Phase intra pulse (dg) 0.01 0.02 0.007 0.01 0.009 
Phase pulse to pulse (dg) 0.003 0.01 0.002 0.002 0.003 

RF Stability measurements (in-loop regulation) 

Goal achieved: < 0.01% in amplitude and < 0.01 dg in phase 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Arrival time jitter 

> Dominated by RF amplitude jitter 1st module before 1st compressor 
(R56=0.18 m) 

> With the new MCTA.4 based system improved from 70 fs to <40 fs rms 

> Remaining long term drifts in RF amplitude and phase mainly due to 
humidity changes in MTCA crates:  

> active compensation (DCM) is being tested in one module now 

40 fs 

30 fs (rms) 

1 Week 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Slow Feedbacks 

> Slow “longitudinal” feedbacks to compensate drifts are essential for a 
stable running 

Charge FB 
Monitor: Toroid 
Actuator: attenuator laser 
beamline (half wave plate) 

Energy FB 
Monitor: Orbit around 
dispersive section + dipole 
current 
Actuator: RF amplitude of last 
modules 

Compression FB’s 
Monitor: diffraction radiation with pyro-
electric detectors 
Actuator: RF phase of nearby module 

Beam arrival FBs 
Monitor: beam arrival time monitor X-
correlated to Synchronization Laser 
Actuator: RF amplitude of nearby 
modull 

ACC1 39 ACC23 ACC45 ACC67 

Charge Monitor 

Q 

Energy 

A A 

Compression Monitor Compression Monitor 

φ φ A A 

Arrival Time Arrival Time 
φ 

GUN 

LASER 

SynchLaser 

Laser Arrival time FB 
Monitor: Optical Cross-Correlator to 
Synchronization Laser 
Actuator: RF phase laser oscillator 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Slow Feedbacks on “physical quantities” 

> Advanced mode: regulate on physical quantities 

> Include compression properties like pulse length and chirp 

> Feedback on a combination of ACC1 and ACC39 (third harmonic 
linearizer module) 

Compression FB 
Actuator: Chirp in E-phi space 

Beam arrival FBs 
Actuator: Sum voltage ACC1 and ACC39 

ACC1 39 ACC23 ACC45 ACC67 

Charge Monitor 

Q 

Energy 

A A 

Compression Monitor Compression Monitor 

φ φ A A 

Arrival Time Arrival Time 
φ 

GUN 

LASER 

SynchLaser 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Example SASE for 1 experiment in 1 week 

> Simultaneous operation of FLASH2 for commissioning 

> SASE Delivery: 96%, tuning 2%, down: 2% 

> 11.5 nm, 1 bunch, 0.18 nC, apertures 3 mm 

 
SASE pulse energy GMD-T 

6.75 days 

e- bunch charge 

50 μJ 
20 µJ 
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FLASH. 
Free-Electron Laser 

in Hamburg 
Summary 

> FLASH is a user facility since 2005 

> Growing demand of user experiments lead to constant upgrades of the 
facility 

> With a beam energy of 1.25 GeV, FLASH reaches the water window with 
its fundamental 4.1 nm 

> Stable operation of accelerating modules 

 Low level RF: excellent stability, upgraded to MTCA.4 

 Cryogenics: perfect! 

> No degradation of superconducting cavities during operation at FLASH 

> RF Gun: issue with limited life time of the gun and the RF window 

> Cathode, laser systems: satisfactory 

> Slow feedbacks essential to compensate drifts for stable user operation 

> FLASH2 simultaneous operation → talk by K. Honkavaara 
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