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The goal of this note is to show that the Riemann-Hilbert problem to find multivalued analytic
functions with SL(2, C)-valued monodromy on Riemann surfaces of genus zero with n punc-
tures can be solved by taking suitable linear combinations of the conformal blocks of Liouville
theory at ¢ = 1. This implies a similar representation for the isomonodromic tau-function. In
the case n = 4 we thereby get a proof of the relation between tau-functions and conformal
blocks discovered in [GIL]. We briefly discuss a possible application of our results to the
study of relations between certain A/ = 2 supersymmetric gauge theories and conformal field

theory.

1. Introduction

The problem to describe isomonodromic deformations of ordinary differential equations has
attracted a lot of attention in the past. This is due to the existence of a large number of ap-
plications in various areas of mathematics and theoretical physics, as well as the mathematical
beauty and depth of the problem itself.

A first striking relation with quantum field theory was exhibited in a series of papers of Sato,
Miwa and Jimbo which appeared at the end of the 1970’s, see in particular [SMJ79], and
[SMIJ80] for a review. The results include the identification of the isomonodromic tau-functions,
the generating functions for the Hamiltonians of the isomonodromic flows, with certain corre-

lation functions in a quantum field theory of chiral free fermions.

The main result of this paper is another relation between conformal field theory and the
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isomonodromic deformation problem: The tau-functions for isomonodromic deformations of
flat SL(2)-connections on n-punctured spheres coincide with certain linear combinations of the
Liouville conformal blocks at ¢ = 1. This result leads in particular to a proof of the relation
between Liouville conformal blocks and the tau-function of Painlevé VI that was discovered in
[GIL].

We are going to show that our result can be understood as a sort of bosonization of the fermionic
representations of tau-functions. To this aim we are going to show that our construction is
essentially equivalent to a bosonic construction of the so-called twist fields whose insertion
generates a singularity for the fermion field with specified monodromy. In our approach the

twist fields are constructed from the chiral vertex operators of the Virasoro algebra.

Expressing the isomonodromic tau-functions in terms of Liouville conformal blocks appears
to have certain advantages compared to the previously known representations. The famous
formula for the asymptotics of Painlevé VI found by Jimbo [Ji], for example, is an easy con-
sequence. More generally, one may take advantage of the various results known about the
Liouville conformal blocks in order to get detailed information on the isomonodromic tau-
functions. Conversely, one may use this connection to find highly non-trivial new results about
the Liouville conformal blocks at ¢ = 1 [ILT].

As an interesting application we are going to show how the known algebro-geometric solutions
of the Schlesinger system on C ,, [KK] arise from conformal blocks of the Ashkin-Teller critical
model [Za, Z7Z].

In the conclusions we’ll discuss a possible application of our results to the study of N' = 2
supersymmetric gauge theories: They can be used to connect two recently discovered relations
between certain classes of N' = 2, d = 4 supersymmetric gauge theories on the one hand, and

two-dimensional conformal field theories on the other hand.

The paper is organised as follows. In Section 2 we review the basic formulation of the Riemann-
Hilbert problem together with some basic material on the parameterization of monodromy
groups. The following Section 3 collects the necessary background on Liouville conformal
blocks. Our main result is described in Section 4. We define infinite linear combinations of
the Virasoro conformal blocks, and show that the result solves the Riemann-Hilbert problem.
Section 5 describes how to reformulate our results to get a bosonic construction of twist fields
creating singularities for fermion fields with specified monodromy. The following Section 6 de-
scribes two applications: We first rederive Jimbo’s formula for the asymptotics of Painlevé VI
from our results, and show that specializing our construction to Ashkin-Teller conformal blocks
reproduces the algebro-geometric solutions found in [KK]. In the conclusions we indicate inter-
esting directions for future research including the application to supersymmetric gauge theories

mentioned above.



2. The Riemann-Hilbert problem

2.1 Formulation of the Riemann Hilbert problem

The fundamental group m; of Cy,, := P'\ {z1,..., 2,} has n generators 1, ..., X,, subject to
one relation x; o x, 0 --- 0, = 1. Representations* p of 7;(Cy,,) in SL(2, C) are specified
by collections of matrices My, := p(x,) € SL(2,C), k = 1,...,n satisfying M,, - M,y - -- - -
M; = 1 up to overall conjugation with elements of SL(2, C). We will be interested in the cases
where the matrices M, are diagonalizable with fixed eigenvalues =2 The space of all such

representations of 7 (Cp ,,) is then 2(n — 3)-dimensional.

It will be convenient to choose a base-point y, on Cy ,,. The dependence on the choice of v, will
turn out to be inessential. We may then represent the generators ;. by closed paths starting and
ending at yy. The Riemann-Hilbert problem is to find a multivalued analytic matrix function

Y (y) on Cj ,, such that the monodromy along Y is represented as
Y(xey) = Y(y) M, (2.1)
where Y'(x,.y) denotes the analytic continuation of Y'(y) along x.

The solution to this problem is unique up to left multiplication with single valued matrix func-
tions. In order to fix this ambiguity we need to specify the singular behavior of Y (y), leading
to the following refined version of the Riemann-Hilbert problem: Find a matrix function Y (y)

such that the following conditions are satisfied.

ii) Y (y) is a multivalued, analytic and invertible on Cj ,,,

iii) There exist neighborhoods of z;, k = 1,...,n where Y (y) can be represented as
Y(y) = YO@) (y -z, M=, (2.2)

with Y'*) (/) being holomorphic and invertible at y = z; and ju1, . . . , i, € 51(2, C).

If such function Y'(y) exists, it is uniquely determined by the monodromy data p =
(1, s fin)-

The refined Riemann-Hilbert problem naturally arises in the study of rank 2 flat connections on

Co.»- Any flat connection on Cj ,, is gauge equivalent to a holomorphic connection of the form
dy — A(y), with A(y) of the form

" A
Aly) = — (2.3)

)
— Z
1 Y k

“Here understood as anti-homomorphisms p : 71(Cp ,,) — SL(2,C)
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where A,... A, € sl(2,C), >_7_, Ay = 0. One may then consider the fundamental matrix
solution Y (y) of the differential equation

QY(y) = A(y)Y(y), (2.4)

Ay

normalized by Y (yo) = 1. It will automatically satisfy ii) and iii) for certain p, . .., t,, pro-
vided that the eigenvalues +my, of Ay satisfy the condition 2m,, ¢ Z. Any representation p :
m1(Co.n) — SL(2,C) can be realized as monodromy representation of such a Fuchsian system,
which means that a solution to the Riemann-Hilbert problem formulated will generically exist.
The Riemann-Hilbert correspondence between flat connections J, — A(y) and representations
p : m(Co,n) — SL(2,C) allows us to identify the moduli space Mg,:(Cp ) of flat sl(2, C)-
connections on Cj,, with the so-called character variety Hom (7 (Cy ,,), SL(2, C))/SL(2, C).

2.2 Trace coordinates

Useful sets of coordinates for Mg, (Cy ) are given by the trace functions L., := tr p(7y) asso-
ciated to any simple closed curve y on Cj,,. Minimal sets of trace functions that can be used
to parameterize My, (Cp ,,) can be identified using pants decompositions. In order to have uni-
form notations, let us replace the punctures zq, . . ., 2, by little holes obtained by cutting along
non-intersecting simple closed curves 0, surrounding the punctures z;, K = 1,...,n, respec-
tively. A pants decomposition is defined by cutting Cy,, along n — 3 simple closed curves 7,
r=1,...,n— 3 on Cy,. This will decompose Cj,, into a disjoint union of n — 2 three-holed
spheres Cf 5, t = 1,...,n — 2. The collection C = {71, ...,7,—3} of curves will be called the
cut system.

To each curve v, € C let us associate the union of the two three-holed spheres that have -, in
its boundary, a four-holed sphere Cf ,. It will be assumed that the curves v, r =1,...,n — 3
are oriented. The orientation of ~,. allows us to introduce a natural numbering of the boundaries
of Cy ,. We may then consider the curves «; and ~; which encircle the pairs of boundary com-
ponents of Cj , with numbers (1,2) and (2, 3), respectively. The corresponding trace functions
will be denoted as L’ and L;. The collection of pairs of trace functions (L%, L}),r =1,...,n—3

can be used to parameterize M. (Co ).

A closely related set of coordinates for Mg, (Cp,,) is obtained by parameterizing L? and L} in

terms of complex numbers (o, 7,-) as

L, = 2cos2mo, , (2.5a)
(sin(270,))? L, = Cy(0,) ™ + Cy(o,) + C_(0,) e, (2.5b)



where
Ci(o,)=—4 H sinw(o, + s(o] — 03)) sinw (o, + s(oy — a))), (2.62)
s==1
Co(0,) = 2 [ cos 2ma} cos 2mo’y + cos 2ma7 cos 2mo) ] (2.6b)

— 208270, | cos 2ma] cos 2ma’ + cos 2may cos 2moy]

C_(0,) = =4 [ sinw(o, + s(o] + 03)) sinw(a, + (0} + 0})). (2.6¢)

s==1
In order to define 0,7 = 1,...,4 in (2.6) let us note that the boundary of C{]’, 4 with label 7 may
either be a curve ~,» € C, or it must coincide with a curve J; surrounding puncture z;. We will

identify o] = o, in the first case, while o] will be identified with an eigenvalue of 1, otherwise.

The collection of data (o, 7,.), 7 = 1,...,n — 3 will be denoted as (o, 7). We observe that the
coordinates (o, 7) are for n = 4 close relatives of the parameters used in [Ji]. They are also

closely related to the coordinates used in [NRS].

2.3 Isomonodromic deformations and tau-function

Let us briefly recall the well-known relations to the isomonodromic deformation problem.
Given a solution Y (y) to the Riemann-Hilbert problem we may define an associated connection
A(y) as

Aly) = Alylz) = (9,Y () - (Y ()", 2.7)
It follows from (2.2) that
- Ak(Z)
A = ) 2.8
o) = 30T 8)

It is well-known that variations of the positions z, will not change the monodromies of the
connection A(y) provided that the matrix residues A, = Ax(2) satisfy the following equations,

9., Ay = _ZM

22—z A A
e DA = =3 A A]. 2.9)
aAk:yO—Zk[Ak,Al] ]{j;ﬁl 1+k Yo — 21
“ Yo— 2 2k — 2 ’
In the limit ¢y — oo one finds the Schlesinger equations
A, A
0., Ay = — Z M ,
2k~ 2
Al?éil (2.10)
@Ak:[“ J k1.

Rk — Al



The Schlesinger equations define Hamiltonian flows, generated by the Hamiltonians

L 1 2 . tI‘(AkAl)
Hk = 5 resyzzk tI'A (y) = I#Zk ﬁ s (211)

using the Poisson structure

P
y—y'’

(A AW) ) = [ A<y>®1+1®A<y'>], @.12)

where P denotes the permutation matrix. The tau-function 7(z) is defined as the generating

function for the Hamiltonians H,
Hy = 0., log7(z). (2.13)

Integrability of (2.13) is ensured by the Schlesinger equations (2.10).

3. Chiral vertex operators and conformal blocks

Let us introduce the necessary definitions and results on the representation theory of the Vira-

soro algebra which has generators L,,, n € Z and relations

[Ln7 Lm] = (TL - m)Ln+m + (n2 - 1)5n+m,0 . (314)

c
—n
12

Although we will ultimately be interested in the case ¢ = 1, it will be useful to consider more
general values of ¢ in some of our arguments. Highest weight representations V,, are generated

from vectors |a) which satisfy
L,la) =0, n>0, Lyla)=A,|a), (3.15)

where A, = a(Q — «) if ¢ is parameterized as ¢ = 1 + 6Q?. The representations V, can be
decomposed into the so-called energy-eigenspaces

Vo~ PV, (3.16)

HGZEO

defined by the condition Lov = (A, + n)v forall v € VIV,

3.1 Chiral vertex operators

Chiral vertex operators Vg ; (2) can be defined as operators that map Vs, — V3, such that

Ly Vi (2) = Vg, (2) Ln = 2"(20. + Aa(n +1))V55, (2) . (3.17)



We have in particular

Ves (2)81) = N(Ba,a, By) 282072 [| By) + O(z) ], (3.18)

with a normalization factor N ([, «v, 51) that will be specified later. It is well-known that the

conditions (3.17) define 22515 =5s, Vi 5, (2) uniquely in the sense of formal power series in z,

[0 — —Aq n [0 (0] . k k4+n
vﬁzﬁl(’z) = ZAB2 B8 Z < Wﬁzﬁl (n>’ Wﬁzﬁl (n> ’ Vé1) - Vé;_ )' (3.19)

n=—oo

It has furthermore been argued in [T03] that the composition V5% (2)Vj; (w) of such vertex

operators exists for |w/z| < 1, and that matrix elements such as

(o [ Vo (zn-1)V, s,y (znm2) - Vi, () o) (3.20)

are represented by absolutely convergent power series in zy /211, k = 2,...,n — 2.

From each chiral vertex operator Vii! 5 (2) one may generate a family of vertex operators called
descendants of Vi3! 5 (2). The descendants of V! 5 (2) are labelled by the vectors in V,,, and the
descendant corresponding to v € V,, will be denoted as V5 [v](z). The descendants may be

defined by means of the recursion relations

Vlgﬂlﬂaﬂ(z) = Vﬂiﬂl(z), (3.21a)
Vs [L-1v](2) = 0.V s [v](2) (3.21b)
Vs [L—2v](2) =: T(2)Vg 5 [v](2) 1, (3.21c¢)

where the following notation has been used in (3.21c¢):
L T(2)Vea(2) = > 2" L Ve, )(2) + > 2RV V(=) Ly (3.22)
k<—1 k>—1

The recursion relations (3.21) suffice to define Vi 5 [L_,v](z) for all n > 0 thanks to the
Virasoro algebra (3.14).

Using the descendants one may define a trilinear form Cy 3 : Vo, ® Vo, ® V,, — Cas
Co3(vs @ va @ 1) 1= (w3 | Vi, [va](2) [v1 ) - (3.23)

This trilinear form can be identified with the conformal block associated to the three-punctured
sphere Cj 3.
The definition of descendants allows us to introduce another way to compose chiral vertex

operators. We may e.g. consider

Vi, [ Vi, [oa (w = )1 ] (2) (3.24)

301



which is defined a priori as a formal power series in w — z. Quadrilinear forms such as
Coa(a®...Qv) = (vg| VD, [V;;Z [vs](w — 2)va | (2) |01 ), (3.25)

will define absolutely convergent series in w — z for all vy, .. ., v; of finite energy. The quadri-
linear forms Cp 4(v4 ® ... ® v;) can be identified with conformal blocks associated to the four-

punctured sphere Cj 4.

By using the two types of composition of chiral vertex operators introduced above one may con-

struct conformal blocks associated to arbitrary pants decompositions of n-punctured spheres.

3.2 Degenerate fields

Of particular importance for us will be the special case where « = —b/2, assuming that () is
represented as Q = b+ b~!. If furthermore (3 and 3, are related as 35 = 31 F b/2, the vertex
operators s (y) = g, s(y) = Vﬁ_llfb /2,61 (y), s = %1, are well-known to satisfy a differential
equation of the form

Oy, s(y) + 0% T(y)p,,(y) == 0, (3.26)

with normal ordering defined in (3.22). The chiral vertex operators 13, ;(y) are called degener-

ate fields. It follows from (3.26) that matrix elements such as

FlosBlzlyoly) = (an|vs(yo)ts(y) [©), (3.27)
| @> = Vao;n—;(ls—&-s’)%ﬁnfs (Zn_l)vﬁo:bn—;%n—zl(zn_ﬂ T Vﬁoﬁll (Zz)vail,()(zlﬂ 0> ’

will satisfy the partial differential equation Dgpy F = 0, with

1 o A_s 1 9 "i( Doy , 1 0

D = ===+ 2+ — + —
ez b? Oy? (y - 90)2 Y — Yo OYo (y - Zk)2 Y — 2 Oz,

) ,  (3.28)

k=1
together with a similar differential equation for gy. Using this differential equation it may be
shown that F(a; 8] 2| yo |y ), considered as a function of y, can be analytically continued to a

multivalued analytic function on Cy,,.

3.3 Braiding and fusion of degenerate fields

The differential equations (3.26) satisfied by the degenerate fields can be used to get a precise
description of the monodromies of the conformal blocks F( ;52| yo|y) defined in (3.27).
Let us briefly summarize the relevant results. There are three ways to compose a degenerate
field with a generic chiral vertex operator,

(1) V2 vl (2) ¥s(y),

Q3,01 =85

3) vs(W)Vy2 b [02d(2),

ag3—sg,a1

b
az—sg

(2) vOé:s,Oél [¢s (y - Z>U2] (Z> . (3.29)



Figure 1: A sphere with three holes. The arrows indicate our orientation conventions.

The three ways (3.29) to compose these vertex operators correspond to having the degenerate
field 1, (y) located in the vicinity of the boundary components with labels 1, 2 and 3, respec-
tively, referring to Figure 1 for the notations. The conformal blocks defined using the three
compositions (3.29) are single valued and analytic in neighborhoods of the black dots marked
in Figure 1 on the boundaries of the three holes of Cj 3, respectively. We are going to describe
their analytic continuation to the universal cover of C 3. It will be helpful to introduce a sepa-
rate notation for the vertex operator ¢(y) when it is inserted at the antipodal point of the circle
ly| = const,

mi(A —Aa—A )

Vho(y) = Bo(B)vps(e™™y),  Bila) = e 3 kiR (3.30)

The vertex operators ¢} (y) are single-valued in an open neighborhood containing segments of
the negative real axis. One may naturally consider compositions (1)’-(3)’ of the form (3.29), but
with 14(y) replaced by ¢’ (y). Regions on Cj 3 where the compositions (1)’-(3)” define single-
valued analytic conformal blocks are neighbourhoods of the small empty circles in Figure 1.

The main building block for the monodromies will be the following relations,

Ve V2 el (2) = D R VE2al [, (y — 2)v) (2), (3.31a)
so==1
« S b
Vst [02(2) s (y = 3 ERL VR [ (g — 2] (7). (3.31b)
so==1
¢l_51(y) VOzQ s1 a1 Z Fsl 52 aO; o1 — szg[vz](z) wgz(y) (331C)

so==1
The relevant transport matrices are given respectively as
il _ I'(1+ 516205 — Q))I'(s20(Q — 20v5))
2 layea D5+ s1blas — Q/2) — sablay; — Q/2) + szblaw — Q/2))

valid if the vertex operators Vi§: 5 (2) are normalized via (3.18) with N(as, az, a1) = 1.

(3.32)
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Remark 1. Comparing with the Moore-Seiberg formalism let us note that

21] — ag —b/2 — ag —b/2
3[173}2 = F[ai 0‘/1 j|8182 = Fal—slg;ag—SQ% |:a§ C‘f/l j| ? (3.333)
23] — —-b/2 « — —-b/2 «
B = P20 = Pt | 22 22], (3.33b)

F[13} — F|: a3z asg

51,82 T —-b/2 a1 :|8182

o] (3.33c)

b b [
az—s1g;a1—s25 L—b/2 a1

The relevant fusion matrices are related to each other by the symmetries

Flo W, =Fl el . =Fle ohl. (3.34)
together with
Flo: 227 = Floa 2], (3.35)

The definition of the antipodal vertex operators ¢  (y) in (3.30) is related to the elementary
braid relation

[Vo(c);z,ozl (y) Vo?;l,O(Z” 0 > ]O = Qgg,al VOCO;17062 (Z) V;;,O(y” O> ) (336)

with left hand side defined by means of analytic continuation making y encircle z in the anti-
clockwise sense. It is easy to see that the “half-monodromy” used in (3.30) is related to the
composition of analytic continuation (3.36) with a suitable translation. It follows that the braid-
ing phase factor B, () is related to the factors Q23  in (3.36) as B, (o) = QO 2

ag,n —b/2,a

In the normalisation where N (a3, a2, ;) = 1 one may observe that the conformal blocks and
the fusion matrices FV7 are perfectly analytic with respect to the central charge c. We may
in particular take the limit ¢ — 1 without encountering any problem. This is not the case for
the kernel of the integral transformation relating conformal blocks associated to different pants

decompositions.

3.4 Monodromy action on spaces of conformal blocks

Using these ingredients it is straightforward to show that the analytic continuation of the matrix
elements F( «; 5|z | yo |y ) along the closed paths y; can be expressed as a linear combination
of the matrix elements F( a; 8| 2| yo | v ) having parameters (.. that differ from f, by integer
multiples of the parameter b. In order to have a convenient notation let us define the shift
operators Vgr which acts on functions fo the left as

Fla;Blzlyoly) Vi = Flasf—3er|zlmoly), (3.37)

where e, is the vector in C"~3 with components &,..
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3.4.1 Geometrical set-up

It will be useful for us to refine the pants decompositions as follows. On each curve 7y in the
extended cut system C .= {7,---,Y2n_3}, where 7,3, := O for k = 1,... n let us mark
two points, a black one and a white one. On each pair of pants with label ¢ let us introduce
a collection of two non-intersecting arcs [23];, and [13]; that connect marked points on the
boundary components labelled by 1, 2 and 3, respectively. These contours are depicted in
Figure 1.

Let us next note that any generator y, of m;(C),) may be represented as a concatenation 7; o
72 0 - -- o ny of oriented arcs 7),, each contained within a three-holed sphere 05,3. It will not

cause a loss of generality to assume that each arc 7, is of the following two types:

e An arc [ji]; on Cf 4 running from the marked point on boundary component i of trinion
(three punctured sphere) ¢ to the one on boundary component j as depicted in Figure 1,

e Anarc b! connecting the two marked points on boundary component i of 6’573 with positive

orientation”.

We will assume that the point y is located on the boundary circle 9,, of Cy,,. It will be useful

to introduce the notation [j:”]; for the composite arcs (b%)" o [ji];, v € Z.

3.4.2 The algorithm

Using the results from Subsection 3.3 and the definitions from 3.4.1 we may now formulate a
simple algorithm for calculating the result of the analytic continuation F( «; 5|z | yo | ¥ ) along
Xi- We will use the geometrical set-up introduced in Subsection 3.4.1, in particular the decom-
position of the paths x;, into a collection of arcs. Note that the basic building blocks are close
relatives of the moves introduced in (3.31) such as

Vaa Vi 2] (2) = V2, | [0 (2) - VA

_ (23] Vs 512 150
- Z F—82 S1 0437061 |:¢S1< ) 2:| (Z) : Voz;; . (338)

s1==%1

In this way we find that the arcs [ji”]; are represented by the matrices

S F[]Z T ) Ct’/ = S[]z ( ) ) (3393)

[j] - i [54]

where

>The orientation is indicated in Figure 1. The starting point is determined either by the base point or by the
end-point of the previous arc.
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o Fi, is obtained from FU" by replacing ; — f, i = 1,2, 3 and transposition®,

e T!is defined as

(TH, . =90 V,)2%

i/ 8182 S1,—82 (

) (3.39b)

where V; is the shift operator which shifts the variable oy = o as defined in equation
(3.37). The operators V; act to the left in the product of matrices.

e B! is the matrix with elements

(BY)ssy = 04,5, Bs, (v) . (3.39¢)
Arcs b} will be represented by the matrix Bf. If y, is a simple closed curve on Cj,, starting
and ending at y, represented by the ordered concatenation 7; o 12 o - - - 0 i of the arcs defined
above, we will define

My = Ng - Ng_p -+ Ny, (3.40)

where Ny are the 2 x 2-matrices associated to the arcs 7. We may thereby define the sought-for
collection of matrices Mg, kK = 1, ..., n describing the action of monodromies of the degenerate

fields on spaces of conformal blocks.

One should not forget that the resulting monodromy matrix is operator-valued: it is a matrix

which has elements containing the operators V, shifting the parameters [.

4. Solving the Riemann-Hilbert problem

We shall now specialize to ¢ = 1. For that case we shall replace the parameters oy, and 3,
by variables my, and p, giving the conformal dimensions as A,,, = m? and A, = p?, for
k=1,....,nandr =1,...,n — 3, respectively.

4.1 The construction

Let us now consider,

fs’s(m;p | “ | Yo | y) = <mn | ¢—s’(y0)¢s(y) | @s—s’ > ) (441)
| ®€> = 72”::% ,pnfa(z"_l) s ‘/;72?:;71(23> ‘/;77327”1(’22) | my > )

®We are here representing fusion and braid moves by matrix multiplication from the right to be consistent with
(2.1). This differs from the conventions used in [DGOT] where multiplication from the left was used. The matrices
written below are therefore related to those of [DGOT] by transposition.
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where V"' (2) maps V,, to V,, and 15(y) maps V, to V,_/» for all p. We will from now on

p2,p1
assume that the vertex operators V' (z) are normalized by (3.18) with N(ps, p2,p1) being
chosen as
N(ps,p2, 1) = (4.42)

G(1+p3 —p2 —p1)G(1 4+ p1 — p3s — p2)G(1 4+ p2 — p1 — p3)G(1 + ps +p2 + 1)

where G(p) is the Barnes G-function that satisfies G(p + 1) = I'(p)G(p).

Consider the matrix W(y; yo) which has elements

WS/(yo - y)% <mn | (U (yo)ws(y) | @sD—s’ >

\Ils’s 3 = . y 443
where
N
|02(a, 7)) = > J] ™™ 1Ol +1)). (4.43b)
neZN r=1
We have introduced N := n — 3, and the summation is over vectors 77 = (ny,...,ny) in Z".

We claim that W (y; yo) represents the sought-for solution to the Riemann-Hilbert problem.
The proof of this statement is given in the following subsections. At this point we only remark

that the prefactor in (4.43a) ensures the normalization ¥ (yo; o) = 1.

The observations above provide the input needed to apply the reasoning presented in [GIL] to

show that the isomonodromic tau-function is nothing but
T(z) = (m,|6p). (4.44)

Our results for the case n = 4 yield in particular a proof of the relation between the tau function

for Painlevé VI and Virasoro conformal blocks discovered in [GIL].

4.2 Existence of classical monodromies

We may calculate the monodromies by the algorithm formulated in Subsection 3.4.2 with input
data Fs[fl]sz and B,(«) now given by

cos m(pg + Sepj — S1Pi)
sin 27p;

B,(p) = e ™57, (4.45b)

Fuid — s

51,52

: (4.452)

The operator V, may now be represented as V, = €'%, where q; = i->. Let us denote the

a_pt'
resulting operator-valued monodromy matrices by M.,,.
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We may now make a key observation: the monodromy matrices M., have matrix elements that
are rational functions of U, = e*™* and V, which generate a commutative subalgebra of the

algebra of all operators’ acting on the space of conformal blocks.

In order to see that M, depends only on V, rather than (Vt)% let us note that each curve of the
cut system traversed on the way must be crossed a second time before one can return to the
starting point. In a similar way one may see that M., depends on p; only via U; = ¢*™7*: the
elements of the matrices FS[{Z}SZ are linear combinations of the form Ae™P* + Be~™Pt, As the
product of matrices representing M., will always contain an even number of matrices depending

on a given variable py, it follows that M., depends on p, only via e*™*.

But this means that the algebra generated by the matrix elements of M, becomes classical
(commutative) in the limit ¢ — 1! This allows us to diagonalize the operator V, by taking linear
combinations of the form (4.43b). The generalized Fourier-transformation (4.43b) diagonalizes
V, with eigenvalue €™, while €™t will act on ¥, by multiplication. The matrix obtained

from M., by means of the transformation (4.43b) will be denoted M,

4.3 Calculation of monodromies

In order to formulate the rules for the calculation of the monodromy matrices My, let us assume
without loss of generality that the path connecting boundary component d,, to J; passes through
the trinions t1, to, . . ., t, in the given order, each trinion being traversed exactly once. We claim

that we may then calculate the monodromy matrices M, as

My, = o5 - [ClEr O] (B2 [Clrs L O - o, (4.46)

liric] [171] liric] [7191]
where o3 = (§ 9 ) and C’[t;] is defined as

tv t t,v
Cly = Fly - (TB), (4.472)
with matrices F{;, and (TB)Y" defined as

sin 7 (pj, + sap — s1p5)

t —
(F[ji])51,52 = 52 Sin 27Tp§ 9 (4‘.47b)
[(TB)?V]SNQ — 581,—52 iszzx682%ﬁte—7riysz pl ) (4.47¢)

In order to derive these rules let us note that application of the algorithm formulated in Subsec-
tion 3.4.2 will produce monodromy matrices My, of the following form:

My = [ClEvh ] (BE)? - [Cirs L ] (4.48)

liric] [7171 [Fric] * i)

"We mean operators acting on the conformal blocks built from py, 9y,
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The matrices CEZ}’ v € Z, represent the contribution of the segments connecting boundary

component 7 to j in trinion ¢. Recall that CE’.” = - (Bf)”. The matrices Sf;; and (S{;;))~" are

[JZ
explicitly given as

¢ 1 — sinm(ph +p§- —pt— %) sin 7 (ph pj —ph+ ) 0 e 2%
U1 sin 2mp \ —sinw(p} + p 4+ pl — 3) sinw(pl, — pt +pl —3) e2% ()
B 1 —e2% sin m(ph — pz —ph) e —39% gin 7(pl, —l—p] —ph)
"~ sin 2mp); —e3% sin 7 (pj, — Pl + pj) e 3% sin 7 (pj, + p + p})
CREN. sinw(pl, + pt + pl)e 2% —sin7(p Z+p] — pl)e 2
7] sin 27p} \ sin7(pl, — p; +p§)€+%q§ —sin7(pj, — j )€+2ql

In order to calculate the effect of the transformation (4.43b) it is convenient to move the opera-

tors e to the left in (4.48). To this aim let us analyze the dependence of My, on p;, = p* and
the shift operator e'%, where q, = qf;. The dependence on €9 can be made explicit by writing

M, as

-1

Mk _ [Cta72-..t1} . [thfl,l'/afl}_l‘ [BEZ]_VG' M;{ﬂ . (B;ﬁz>ya Cttllflﬂ‘/afl . I:Cta72~~~t1:| 7 (449)

[Ja—1%a—1] [Ja—1%a—1]

where

I ._ [Gta tovy | ctariver1 171 gt tLvy | ctatiVatl] | Gla
ba = [Sta] T Gty Gttt 70 (B )? - [Clptty - Cthiert] - Spe

It is easy to see that the dependence of the matrix Mj, , on e'% is of the form

I — (m;e,a)++ _e_iqa (m a)—l——
e\ el (my ) (my)__ )’

=~

k,a)——

where mj_, is the matrix one would obtain by replacing q, by 0 and F[J il by F[?‘; il from the

very beginning. The extra minus sign is the result of the application of the exchange relation
sin(py, + pj, + pi,)e % = —e % sin7w(p, + pj. + Pin) -

The only matrices in (4.49) to the left of M , containing dependence on the variable p;, are
[Cf;:l’:j]]_l and [B}*]~"*. The matrix elements of both St“ ",y and B} are both anti-periodic
under shifts p, — p, + 1. Moving e*% through the product [Cf]‘?;jl”z.’z:j]]‘l - [Bi#] 7= will for
a > 1 produce an extra sign (—)'™=. This sign is taken into account by means of the factor
i*2a in (4.47¢c). The extra sign (—)'™= should be replaced by (—)"* in the case a = 1. This is

taken into account by means of conjugation with o3 in (4.46).

Calculating the trace functions L}, and L] using the algorithm above shows that the parameters

(o, ) coincide with those introduced in Subsection 2.2. The details are given in Appendix A.
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5. Non-Abelian fermionization

It was shown in the work of Sato, Jimbo and Miwa that the isomonodromic tau-functions can be
represented in terms of free fermion correlators. Our results give a “bosonic” representation for
the isomonodromic tau-functions in terms of Virasoro vertex operators. In this section we will
clarify the relation between these two constructions by showing that our construction is essen-
tially equivalent to a bosonic construction of twist fields creating singularities with nontrivial
monodromy. It seems natural to regard our construction as the bosonization of the fermionic

construction of twist fields presented by Sato, Jimbo and Miwa.

5.1 Fermions from degenerate fields
Let us introduce a free field ¢,

powgo(z) ~ —log(w — 2).

Note furthermore that we have
1

Ay, = T Ay, =1. (5.50)
Construct the fields
U,(z) = G (2),  Uy(z) = e Py (2), (5.51)
These fields have the OPE
U (w)Wy(z) ~ regular, (5.52a)
_ Sos
U (w)Wy(z) ~ ” = ~- (5.52b)

This means that the fields V,(w), ¥s(w) generate a representation of the fermionic vertex op-
erator algebra §§. The action of these fields can be restricted to the spaces F, -, defined as

For= @ FE, A=V, 0 F,. (5.53)

kleiZ
k+IEZ

with F_ being the free boson Fock space with eigenvalue 7 for the zero mode of dy,. Note
that the action of W,(z), W,(z) shifts k + [ by an integer amount. In order to get a label
for inequivalent representations of (5.52) we may restrict 0 and 7 to 0 < R(0) < 1/2 and
0 < R(7) < 1, respectively.

The restriction of ¥,(z), ¥ (2) to F,, has monodromy

\1[8(627”22) — eQﬂ'i(T—SO’) \I[S(Z) : \ils(e%riz) — e—27ri(7'—so) @S(Z) ) (554)
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Other representations of the fermionic vertex operator algebra (5.52) can be defined by taking
linear combinations

= Ca¥y(z),  Du(2) =D (CTHaWu(2), (5.55)

t=%

for any element C' of GL(2). The representation is characterized by the GL(2)-monodromy

e’z Z M ®y(z D (¥'z) = Z(M_l)stci)t(z> ’
t==+ (5.56)
where M = C’~e27”D~C'_ , D :=diag(t — 0,7+ 0).

It seems natural to consider equivalence classes of representations defined by identifying rep-
resentations related by the similarity transformation (5.55). Slightly abusing notations we will
denote the representations characterized by monodromy of the form (5.56) by F, ..

It will be useful to decompose F,, ; as

o, 7 )

For = Fo. ®@FM2, where Fi_ = H Fil, (5.57)
keZ,leiZ
k+IEZ

assuming that e € £Z,. The action of a field ¥ (w), ¥,(w) maps F2 . to F2/? and vice-versa.

5.2 Chiral vertex operators for free fermion representations

Let us then define the vertex operators

Po272; €2,43 (Z) : ‘Fo'lﬂ'l - f’oS’TS ) (558)

03,73 ; 01,71

by defining their action on arbitrary vectors v, € }"y?:{q’h] to be

@‘7277—2 a 52,(]3( ) _ 6217'2@0 § eznqg VUO'Q €2

03,73 ; 01,71 [e14es]+n ; o1—k1— 51( )Ul;

(5.59)
neL

we assume that 73 = 75 + 71, and define [¢] = 0if e € Z, [¢] = 1/2if e € Z + L. The

definition is such that the restriction of ®7272 12 % () to the subspace Fj! | of F;, ;, yields an

operator with image contained in the subspace F El*” of F,, -,. This selection rule expresses

conservation of the quantum number ¢ € %Z2.

The relations (3.31c) combined with the standard braid relations of normal ordered exponentials
imply the following exchange relations between the vertex operators $7272 % () and the

03,73 ; 01,71
fermion fields W, (w),

U, (w + 00) PI2T25 2B (5) = PIaTi cads ( Z\Dt (w £ i0) B*(g3)1,s -

03,73 ;01,71 0'377'370'177'1

(5.60)

03,73 ; 01,71 0'3,7—370'177'1

U ('LU + ZO) Po2T2 5 €2:03 (Z) — PO ,627(13 Z \;[;t w + ZO ((JS)t,s :
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The matrices Btfs(qg) and Bﬁs(qg) are explicitly given as

+ _ tmi i(sog—t i(lez+2i]—e3—2 (13]
B¥(q3)ts = ™™ eFrilsoa=tor) pilleatgl—ca=3)as ol (03,09 — €2,01)

Bi(q3)t,s — e$mﬂ-2 e:l:m(scrg toy) 62([634-2} 63+2)q3 Fis}_t(ag,oé - 62,0'1) ]

(5.61)

The exchange relations (5.60) express the fact that ®7272: 2% (z) is an intertwiner between
the representations F,, -, and F,, ., of the free fermion algebra §. It also follows from these
observations that the vertex operators ®7272 i €29 () represent twist fields: They create states
in which the fermions ¥, (z) have monodromy B~ (g¢3)(B*(g3)) ™! around z.

An important consequence of (5.60) is the fact that matrix elements of compositions of the
vertex operators $7272 i €293 (») guch as

03,73 ;01,71

(G | Poim o (28) P2 [ () [ €5y ) (5.62)
represent conformal blocks for the free fermion algebra §. |ef ) is the product of highest
weight vertors in V__ ® F_. It follows from the conservation of the quantum number e that
such conformal blocks are non-vanishing only if ¢4 = €¢; + €3 + €3 mod 1. Conservation of the

zero mode of ¢ implies furthermore that 74 = 7 + 7 + 73.

The free fermion conformal blocks factorize as

(eonm | Oorm 1o (28) DT 0 (22) [ €5 7y Jew = (5.63)

_ <7_4 | 622'7'3300(23) 621'7'290()(22) | e >0

X Z einq< 04 — €4 ‘ VJZS—_;?: J—[61+62]+n(Z3> Vaof[;fiez]—&-n; o1—€1 (Z2> ‘ 71— & >Li°u '
nez

The factor in the last line was previously identified as the tau-function associated to isomon-
odromic deformations of SL(2)-connections, the free-field conformal block in the second line is

nothing but the multiplier needed to get the tau-functions associated to the GL(2)-connections.

6. Examples

We now look at some of the applications of the above general formalism to the theory of
monodromy preserving deformations. We start by providing a CFT derivation of the Jimbo’s
asymptotic formula [Ji] for the tau function of Painlevé VI equation. Next we show how the
known algebro-geometric solutions of the Schlesinger system on Cj,, [KK] arise from confor-
mal blocks of the Ashkin-Teller critical model [Za, ZZ].
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6.1 Painlevé VI and Jimbo’s formula

Consider the simplest nontrivial case of four punctures. The fundamental group 7 (Cp4) is

isomorphic to free group of rank 3. Let x4, ..., x, be the four loops shown in Figure 2a, then
T1(Coa) = (X1, X2s X3 Xa | X1 0 X2 0 X5 0 Xg = 1) . (6.64)
We denote by M, ..., M, € SL(2,C) the monodromy matrices associated to these loops,

satisfying MyMsM,M; = 1. Conjugacy classes of irreducible representations of 7 (Cp 4) in

SL(2, C) are uniquely specified by seven invariants

Ly, =Tr M}, = 2 cos 2mmy,, k=1,...,4, (6.65a)
LS =Tr MlMQ, Lt =Tr MgMg, Lu =Tr MlMg, (665b)

generating the algebra of invariant polynomial functions on Hom (7 (Cj 4), SL(2, C)). These

traces satisfy the quartic equation

LiLoLsLy+ LL;L,+ L+ L7+ L2+ LI+ L5+ L5+ L35 = (6.66)
— (LyLy 4 LsLy) Ly + (LoLs + LyLy) Ly 4 (LyLs + LyLy) Ly, + 4.

Figure 2: Basis of loops of m1(Cy 4) and the decomposition Cy 4 = 0&3 U C(fg.

The affine algebraic variety defined by (6.66) is the character variety of C 4. For every choice of
mi, ..., my, it defines a cubic surface in C? in the variables L,, L, L,,. If we further fix the trace

function Ly = 2 cos 270, the resulting quadric in L;, L, admits rational parameterization [Ji]

(L2 —4) Ly = Dyis + Dy s~ + Dy, (6.67a)
(L2 —4) L, = Dy s+ Dy _s™' + Dyyp. (6.67b)
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with coefficients given by

Dyo= Ly (L1Ls + LyLy) —2(LiLy + LoLs), (6.68a)

Du,O - Ls (L2L3 —|— L1L4) - 2 (L1L3 + L2L4) y (668b)

D, =16 H sinm (mg F o + emq)sinm (m3 F o + emy) , (6.68¢)
e=+

Dy+ = —D; ™™, (6.68d)

The local coordinates (o, s) parameterize the space of SL(2, C)-representations of 71 (Cj 4) with
fixed local monodromy exponents my, ..., my. Let us connect this pair to the parameters used
in the conformal block representation of the fundamental matrix Y (y).

The Riemann surface Cj4 is glued from two three-holed spheres C'5, C§y as shown in Fig-
ure 2b. The local coordinates (p, 7) associated to this pants decomposition parameterize trace
functions via (2.5)—(2.6) (as well as their counterparts for L,). Comparing these expressions
with (6.67)—(6.68), we find that

sinm (o —my + mg)sinm (o + mg — my)

o=y, 5= — : e (6.69)
sin (0 —my —mg)sinm (0 — mz — my)

Going back to the Schlesinger equations (2.10), note that three regular singularities z1, 23, 24
can be brought to 0, 1 and oo using Mobius transformations. The Schlesinger system then

reduces to Painlevé VI equation

1

= (2(z — 1)¢")? = (6.70)
2mi 2('=C  mi+mi 4+ mi —mi
= det 20— ¢ 2m3 (z—1)¢"—=¢ :
(+mi+mi+mi—mi (z—1)¢ —¢ 2mj

satisfied by the logarithmic derivative of the tau function

((z) =z(2 — 1)(% InT. (6.71)
(22 — 21)(24 — 23)
(23 — 21) (21 — 22)

In the case of C 4, the representation (4.44) of 7(z) as a Fourier transform of the ¢ = 1 Virasoro

Here z = denotes the cross-ratio of the singular points.

conformal block is more explicitly written as

7(z) = Y (ma | Vo (1) Vo2 1, (2) 1) €7 (6.72)

ne”L
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Figure 3: Labeling of pairs of pants for the conformal block B (m |p,p’ | 2).

Assuming without loss of generality that —1 < Rp < 1,

and taking into account the normalization (4.42) of the chiral vertex operators, we deduce the

letting z — 0 in the last formula,

asymptotics

7(2) = Z N (my, ms, p+ n)N(p + n,mg, my )& 2+ =mizms
n=0,%1

L0 (Zzﬂ—m%—méﬂ) , (6.73)

This is equivalent to the famous Jimbo’s asymptotic formula [Ji, Theorem 1.1] expressing the
critical behavior of the Painlevé VI tau function in terms of monodromy data. The relation of
Jimbo parameters to ours is given by (6.69).

6.2 Algebro-geometric solutions of the Schlesinger system

Consider the pants decomposition of Cj 5442 schematically depicted in Figure 3, and denote by
B(m|p,p'|z) the corresponding ¢ = 1 conformal block. Its external legs are combined into
g + 1 pairs. The momenta obtained by fusing different pairs are connected to a “black box”.
Its internal structure is not essential for the final result. However, to fix the notations, we will
choose it in a particular way and parameterize it by g — 2 internal momenta p, ..., p}_».

As explained in Section 4, summation of conformal blocks over integer shifts of momenta gives
an isomonodromic tau function of the Schlesinger system,
()= S Blmlptnp +n'|z)en T (6.74)
nezI n/e€z9-1
The variables p, p/, 7, 7’ provide a set of local coordinates on the (4g — 2)-dimensional space

of monodromy data.

Let us impose a free-field-like conservation constraint on momenta of the unshifted conformal
block at each vertex inside the box. These conditions determine the black box momenta p’ =

P [p] in terms of p. Explicitly,

pilpl = Pialpl + prt1,  pylp] = P
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Also, fork=1,...,g — 1 we define

/ / /
U = Mgy — Ny — N1, ng = n.

Since Barnes G-function vanishes at non-positive integer values of the argument, the form of

the normalization coefficient (4.42) restricts the sum (6.74) to the domain ¢;,...,¢,_; > 0. In
the limit
Tj = —i00, T =00, (6.752)
Tj—FZi:j T — &5, 76 = 0, ji=1,...,9, (6.75b)
this sum further reduces to the values ¢; = ... = {,_; = 0. We thus get a 2g-parameter family
of tau functions
7(2) = Z B(m|p+n,pp+n]|z)e™e. (6.76)
nez9

Notice that at each of ¢ — 1 internal vertices of conformal blocks which appear in (6.76), the
corresponding momenta satisfy the same conservation conditions as in the unshifted case.

1 1
T
the Ashkin-Teller critical model [Za, ZZ]. They can be expressed in terms of certain quantities

Conformal blocks of this form with m = mar = ( ) describe correlation functions of

associated to the hyperelliptic curve Y. of genus ¢ defined by

2g+2

N=1]w-=) (6.77)

k=1
Let us fix the canonical homology basis of a- and b-cycles on X as shown in Figure 4. The

g-dimensional space of holomorphic 1-forms on X is spanned by

y Ty
)\ Y

dwk: ]{?:1,...,9.

The g x g matrices of a- and b-periods

Ak :% dw]', bjk :% dtdj, (678)
ag bk

determine the symmetric period matrix {2 = a~!b of . The hyperelliptic Riemann theta func-

tion with characteristics [ p, ¢] € C?9 is defined as the following series:

Q[p, q] (l‘ | Q) = Z eTUn+p)- Q- (ntp)+2mi(ntp)-(z+q) (6.79)

nez9
Even characteristics | pg, gs | correspond to its non-trivial half-periods and are indexed by parti-
tions S = {{Za,, - -, Za, 1} 12815 - - - » 28,4, } } Of the set of ramification points into two subsets

of equal size.
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Figure 4: Canonical homology basis on 3.

In this notation, the Ashkin-Teller conformal block is given by [Za, ZZ]

ei7rp-Q~p
Bmurl .8/ (0)]2) = GDKE) g (6.80
cosmp.,_ GQ(p’_ + 1)
G(p) = ot = 6.81)
T [Tt G*(pr)
1
g+1 g+1 8
(20 — Za (25, — 2
IC(Z) — ( j<k‘( j — k) ]<k;( B] 61@)) . (6.82)
gk (Zaj - Zﬁk)
Here we denote G(p) = ggtg g The prefactor G(p) comes from our normalization (4.42)

of the chiral vertex operators. Taking into account the recurrence relation G (p+1) =
—7 (sinmp) "' G (p), we see that the sum (6.76) reduces to the theta function series (6.79),
so that

0 p,q](0]Q2
7(z) = const - K(2) [p.4](019) : (6.83)
9[]957(15](0 | Q)
with e27igk = — STk i€k We thus reproduce the 2g-parameter family of tau functions found

cos? pl _ 4

in [KK]. The elliptic case g = 1 corresponds to Picard solutions of Painlevé VI.

At last let us compute the actual monodromy matrices for m = mar applying the rules formu-

lated in Subsection 4.3. Up to overall conjugation, one has

k.1 A(k,..., +1,17=1 ( pk'\2 ~E L A, +1,1
k0 ~[k,..., +1,17=1  pk/\2 ~K',0 ~E,..., +1,1
My = [Cog CPIICEEH T (BY)” g O 9 CR L, (6.85)
with Ctr9l = OB ORHL0 - 090 and k = 2,...,g. The conservation of momenta at the
(23] ~[13] (13]
vertices k, ..., g — 1 implies that all matrices in the product C'*--+9] are lower triangular. This

enables one to explicitly calculate the monodromies in the limit (6.75). Again up to conjugation,
the result is

0 duyt
Mk:<, o ) k=1,...,29+2, (6.86)
w0
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with pi9541 = 2Py, H2g+2 = 1 and
—— 627ri(p§€,2+qk)7 Lok = — 2Py tar) (6.87)

Note in particular that in the chosen basis the products Moy Mo, and Moy Moy, are given by
diagonal matrices, cf [KK, Theorem 3.2].

7. Outlook

To conclude we will discuss some further applications and possible directions of future research

suggested by our results.

7.1 Possible applications to the study of A = 2 supersymmetric gauge theories

Our results appear to have interesting implications for the study of a certain class of 4D N = 2
supersymmetric gauge theories which is nowadays often called class S. The gauge theories
Ge in class S are associated to Riemann surfaces C', possibly with n punctures. The so-called
instanton partition functions [LNS, MNS1, MNS2, N, NO] carry important non-perturbative
information about the physics of such gauge theories, including the complete description of their
low-energy physics via Seiberg-Witten theory [N, NO]. Out of the instanton partition functions
one may form the so-called dual instanton partition functions by means of a generalization of
the Fourier series [N, NO].

It was observed in [N, LMN, NOJ] that the dual instanton partition functions of some supersym-
metric gauge theories from class S have free fermion representations, and therefore represent
tau-functions for certain integrable equations. Considerations of the geometric engineering of
such gauge theories within string theory have led to the suggestion that the dual instanton parti-
tion functions of the gauge theories from class S should be related to the partition functions of
chiral free fermion theories on suitable Riemann surfaces [N, ADKMV, DHSV, DHS]®. More
recently it was proposed in [CNO] that the relevant theory of chiral free fermions is defined on
the Riemann surface C' specifying the gauge theory G.. These relations were called BPS-CFT

correspondence in [CNO].

8The first proposal in this direction was formulated in [N, Section 4.3]. The relations between the topological
vertex and free fermion theories discussed in [ADKMV] imply general relations between topological string parti-
tion functions of toric Calabi-Yau manifolds, tau-functions and theories of free fermions on certain Riemann sur-
faces; possible implications for four-dimensional gauge theories were discussed more explicitly in [DHSV, DHS].
In some of the earlier references cited above, it was proposed that the relevant theory of free fermions is defined
on the Seiberg-Witten curve 3 which for theories of class S is a branched cover of the curve C defining G¢.
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In another important recent development it was found that the instanton partition functions of
these supersymmetric gauge theories are related to the conformal blocks of the Toda conformal
field theories, in the simplest case the Liouville theory [AGT]. The correspondence between

instanton partition functions and Liouville conformal blocks is called the AGT-correspondence.

However, up to now it was not clear how exactly BPS-CFT-correspondence and AGT-
correspondence are related. Our paper provides a basis for understanding these connections
by establishing a direct relation between the conformal field theory of chiral free fermions on a
Riemann sphere with n punctures Cj ,, on the one hand, and the conformal blocks of Liouville
theory at c = 1 on Cj ,, on the other hand. Our result opens the interesting perspective to derive
the ¢ = 1 case of the AGT-correspondence from the BPS-CFT-correspondence. It would suffice
to characterise the relevant O -operators whose determinants should represent the dual instanton
partition function according the BPS-CFT-correspondence more precisely. To this aim it may
be convenient to use the language proposed in [DHS]. The connection between the relevant
determinants of Og-operators and the isomonodromic tau-functions studied in this paper should
then follow from the results of [P]. To complete the derivation of the AGT-correspondence for
¢ = 1 from the BPS-correspondence it will suffice to observe that the Fourier-transformation
appearing in the relation (4.43) between conformal blocks and tau-functions is exactly the trans-

formation from instanton partition functions to the dual instanton partition functions.

7.2 Verlinde loop operators and quantisation of M, (C)

For ¢ # 1 one may use the operator-valued monodromies constructed in Section 3.4 to define the
so-called Verlinde loop operators [AGGTV, DGOT]. These operators generate a representation
of the quantised algebra of algebraic functions on Mg, (C') on the spaces of Virasoro confor-
mal blocks [TV13]. The definition of the Verlinde loop operators given in [AGGTV, DGOT]
can easily be rewritten as deformed traces over products of the operator-valued monodromy
matrices defined in Section 3.4.

In the normalisation for the conformal blocks defined by setting N (f3,, v, 1) = 1 in (3.18) one
may analytically continue both the conformal blocks and the corresponding representation of
the Verlinde loop operators with respect to the parameter ¢ to generic complex values of this
parameter. It is not hard to check that

e the definition of the Verlinde loop operators reduces to taking the ordinary trace of the

matrices My, defined in Section 4.2 atc = 1,

e the algebra generated by the Verlinde loop operators becomes commutative at this value of

the central charge ¢, and
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e the transformation relating Virasoro conformal blocks to tau-functions diagonalizes all
Verlinde loop operators simultaneously with eigenvalues being the trace functions (2.5).

We note that the quantum counterparts of the coordinates (o, 7) that can be defined away from
¢ = 1 [TV13] remain non-commutative when ¢ — 1. However, the algebra of all operators that
can be constructed from the quantised coordinates (o, 7) contains the important sub-algebra
generated by the Verlinde loop operators. The fact that this sub-algebra becomes commutative
for ¢ = 1 leads to the existence of new representations for the quantised algebra of functions
on Mg, (C) related to the usual one by the transformation defined in Section 4.1. This repre-
sentation is not unitarily equivalent to the one studied in [TV13] as the measure defining the
scalar product for ¢ > 25, the Liouville three-point function, can not be analytically continued
to ¢ = 1. It should be interesting to investigate this phenomenon and possible generalisations
further.

7.3 Other relations between isomonodromic deformations and Liouville theory

There are further relations between the isomonodromic deformation problem and Liouville the-
ory: The semiclassical limit of the null-vector decoupling equations in Liouville theory yields
Hamilton-Jacobi - like equations that define the Hamiltonians generating the isomonodromic
deformation flows. This was first pointed out in [T11], a special case was later rediscovered in
[LLNZ].

It seems remarkable that there exist relations between Liouville conformal blocks and isomon-
odromic tau-functions both in the cases ¢ = 1 and ¢ — o00. A good explanation remains to be

found.
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A. Calculation of the trace functions

Let us compute the trace functions L and L] in terms of the parameters m] ,, 0., 7, using the

algorithm developed in Subsection 3.4.2 along with the rules of Subsection 4.3. The reader is
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referred to Figure 2b (with p replaced by o,.) for the labeling of pairs of pants and boundary

components.

The trace functions are determined by the classical monodromies around the punctures 21, 2o,
z3. To find them explicitly, we first note that the corresponding operator-valued monodromy

matrices are given by

RO ~L,1 -1 2 ~R0,~L,1
M1 = [CyCiry - €] (BT)” iy Cry - G, (A.88a)
R—1,L,1 -1 2 ~R,—1,L,1
My = [C[23] C[13] ) q (Bf) C[23] C[13] -G, (A.88b)
M; = [Chy - C] ' (BS)" Cyy - C. (A.88c)

Here the common factor C corresponds to the part of analytic continuation path which relates
the base-point y, to the boundary component 3 of C’ég (the neighborhood of the black dot on
the boundary circle in Figure 1). The factor next to it depends on what one wants to achieve at
the subsequent step: the black circle on the boundary 2 or the empty circle on the boundary 1
of 0&3. In the latter case, for instance, the arc [13], should be preceded by the half-turn b:,’;“.

The observations of Subsection 4.3 allow one to get rid of the shift operators in the computation
of classical monodromies by replacing the operator-valued matrices CL’:] by the ordinary matri-
ces C’[Z;’] defined by (4.47). We may therefore set C = 1 in the calculation of the trace functions.
Also note that the resulting expressions are independent of the parameter 74 associated to the
boundary curve d4: this is a consequence of the factorization

(TB)?V = (Bf)_” ( QTt e 02 i ) ’ B! =i03B!. (A.89)
e27i

(NI

We can now write L, L; as the traces

L = e (] (85" i (0] (B ) =

— ((Bf)‘lF[gg] (BF)’ B, BEFE, (B{%)QF[@O , (A.90a)
Ly =t ([Cfy Clg) 7 (BE) Cly ol (o)~ (BE) ¢ (A.90b)

The first of the equations (2.5) then follows from the easily verified identity

which should be understood as a version of the Moore-Seiberg hexagonal relation. To demon-

strate the second equation, observe that (A.90b) may be rewritten as

Ly =GE Gy e + (GR,GE_+ GE_GL,) + GEL.GE e,
GP = [FE, BE) T (BE) F&BY,  G" = BFFly (BY) [BEFL]

The rest of the computation is straightforward.
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