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Goals of our study
Statistical survey of two models for MHOU

Scale variation

◮ Revisit the SV procedure and analyze statistically its
performance on a wide set of observables to improve our
knowledge/control on what is currently used in the
experimental analysis

The Bayesian approach

◮ Improve the Bayesian approach first proposed by Cacciari
and Houdeau1 to work around some of its imperfections

◮ Analyze the performance of the newly improved model
on a wide set of observables

1Cacciari-Houdeau JHEP 1109 (2011) 039 arXiv:1105.5152 [hep-ph]
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Perturbative QCD and MHOUs

Baseline

◮ The perturbative expansion of an observable known up to order k is

Ok(Q,µ) =
k
∑

n=l

αn
s (µ)cn(Q,µ) (known)

◮ Q is the hard scale of the process, µ represents the unphysical scale(s)
(e.g. the renormalization scale) from which the truncated
perturbative expansion depends. We assume it set at the value Q

◮ The remainder of the series expansion is unknown and it is our
MHOU

∆k =
∞
∑

n=k+1

αn
s (Q)cn(Q)≃ αk+1

s ck+1 = ?= ?= ?
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Scale variation

Procedure

◮ Vary the unphysical scale(s) µ around the central scale Q by an
arbitrary factor r

◮ Different prescriptions used in the literature. We will use the

following ones:

1. Scan: vary µ between Q/r and r×Q and use the
maximum/minimum value of the observable to define the
uncertainty

2. Extrema: Use the maximum/minimum of the value of
the observable obtained for µ= r×Q,Q/r

◮ Caveat: the factor r is arbitrary and the interval obtained has no
statistical meaning
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The CH model

Bayesian framework
◮ Suppose there is an upper bound on the coefficients magnitude and call it c̄
◮ The priors for the model are then given by

fε(ln c̄) =
1

2| lnε|
χ| ln c̄|≤| lnε|

f (cn |̄c) =
1

2c̄

¨

1 if |cn| ≤ c̄

0 if |cn|> c̄

f ({ci, i ∈ I}|̄c) =
∏

i∈I

f (ci |̄c)

◮ Bayesian inference gives then the uncertainty interval posterior

f (∆k|cl , . . . , ck)≃
�

nc

nc + 1

�

1

2αk+1
s c̄k

(

1 if |∆k| ≤ αk+1
s c̄k

1

(|∆k |/(αk+1
s c̄k)

nc+1
if |∆k|> αk+1

s c̄k

where nc = k− l+ 1 and c̄k =max(cl , . . . , ck)
◮ Intervals have a statistical meaning in term of Degree of Belief (DoB)
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The CH model

Recent developments

◮ Issue: the uncertainty estimate depends on the expansion
parameter of the series

◮ Approach: rewrite the observable as

Ok(Q) =
k
∑

n=l

�

αs(Q)

λ

�n

(n− 1)! bn(Q)

◮ Apply the same prior to bn
◮ The (n− 1)! factor is suggested by renormalon based

analysis
◮ λ estimated empirically from the performance of the

model
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Methodology
To study the behavior of the models we define the following performance
parameter

Success rate

◮ Call θ the external free parameter of the model (λ for the CH and r
for SV)

1. Fix θ and the order n; for the Bayesian model, fix also the requested
DoB of the interval

2. Compute the interval at the order n with the fixed θ for every
observable in the set

3. Define the success rate of the model as the ratio of the number of
observables whose order n+ 1 is contained in the uncertainty
interval of the order n over the total number of observables in
the set
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Non-hadronic survey

We first study observables without initial state hadrons.

Observable Available accuracy Reference

R(e+e−→ hadr) NNLO-QCD Baikov et al., 2008

Bjorken sum rule NNLO-QCD Larin et al, 1991
GLS sum rule NNLO-QCD Larin et al, 1991

Γ (b→ ceν̄e) NLO-QCD Biswas & Melnikov, 2010

Γ (Z→ hadr) N3LO-QCD Baikov et al., 2012

Γ (Z→ bb̄) NNLO-QCD Chetyrkin et al., 1994

Event shape variables (6) NNLO-QCD Weinzierl, 2009
e.g. thrust, heavy jet mass

Splitting kernels γ
(+)
ns , γqq , γqg NNLO-QCD Larin et al., 1996

H → bb̄|mb=0 N3LO-QCD Baikov et al., 2005

H → gg N3LO-QCD Baikov et al., 2006
H → γγ NNLO-QCD Maierhöefer et al, 2013

List of all the non-hadronic observables used in the survey
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Scale variation performance
Success rate for SV for different values of r
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We can assign a heuristic a posteriori 68% Confidence Level
(CL) for r = 2∼ 3
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CH performance and tuning

Procedure

◮ Vary λ between 0.1 and 2 for a
given DoB

◮ Find the optimal value for
which
success rate = input DoB

◮ Repeat for all DoBs between
0.05 and 0.95 in steps of 0.01
and histogram the results 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Λ

0.05

0.10

0.15

0.20

0.25

Success Rate

CH

LO

NLO

◮ LO: optimal value λ∼ 0.7− 1.0

◮ NLO: optimal value λ∼ 0.9− 1.1

Estimation of uncertainties from missing higher orders in perturbative calculations Emanuele A. Bagnaschi (DESY) 11 / 22



Introduction and motivations The models Methodology Non-hadronic observables Hadronic observables Conclusions

CH performance and tuning

Complementary
Procedure

◮ Consider a fixed list of values
for λ= 0.7 . . . 1.2

◮ Plot the
success rate vs the requested
DoB

◮ The optimal value of λ should
produce a curve close to the
straight line defined by
success rate = DoB
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◮ All orders: optimal value λ∼ 0.9− 1.1
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Benchmarks
e+e−→ hadrons: CH vs scale variation
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Where we have defined σ
′
k
≡ σk
σ0
− 1.
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Application to hadronic observables

Issues

◮ The model was formulated originally for observables without initial
state hadrons

◮ A hadronic observable can be written as

Ok(τ,Q) =L (Q)⊗
k
∑

n=l

αn
s Cn(Q)

◮ To what should we apply the CH Bayesian model?
Short-scale “coefficients” Cn are distributions

◮ How to account for the convolution of the partonic cross-section
with the PDFs? Non-perturbative physics is involved
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Plan A: convolution

Algorithm

◮ After the PDFs integration we can write the observable
in the same form as in the non-hadronic case

Ok(τ,Q) =
k
∑

n=l

�

αs(Q)

λh

�n

(n− 1)! Hn(Q,τ)

The coefficients Hn will include a non-perturbative content from the convolution with the

PDFs. In first approximation we assume that this content is equal at all orders and that therefore

is just a global rescaling factor

The λ value is retuned using the same procedure as in the
non-hadronic case.
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Plan A: convolution

Observables used for the estimation of λh

Observable Available accuracy Reference

gg→H at
p

s= 8 TeV NNLO HIGLU, Spira et al, 1995

bb̄→H associated production at
p

s= 8 TeV NNLO bbh@nnlo, Harlander et al, 2003
gg→ t̄t at

p
s= 8 TeV NNLO Czakon et al, 2013

on-shell pp→ Z+X→ e+e− +X at
p

s= 8 TeV NNLO DYNNLO, Catani et al, 2009
on-shell pp̄→W± +X→ l±νl +X at

p
s= 8 TeV (2× 3) NNLO DYNNLO, Catani et al, 2009

Higgs strahlung production at
p

s= 8 TeV NNLO Brein et al, 2003

bb̄ at
p

s= 8 TeV NLO MCFM, Campbell et al
Z+ j at

p
s= 8 TeV NLO MCFM, Campbell et al

Z+ 2j at
p

s= 8 TeV NLO MCFM, Campbell et al
W± + j at

p
s= 8 TeV NLO MCFM, Campbell et al

W± + 2j at
p

s= 8 TeV NLO MCFM, Campbell et al
ZZ at
p

s= 8 TeV NLO MCFM, Campbell et al
WW at

p
s= 8 TeV NLO MCFM, Campbell et al
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Plan A: convolution

Global tuning of the λ value

Λ

Best λ value for 0.05<DoB< 0.95
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The estimated value of λ is 0.6± 0.2
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Plan B: Mellin moment

Algorithm

◮ In Mellin space we can rewrite the convolution as a
simple product

Ok(N ,Q) =L (N + 1,Q)
k
∑

n=l

αn
s

λn
h

(n− 1)! Bn(N ,Q)

◮ Find the dominant Mellin moment N∗

◮ Apply the CH method to Bn(N
∗) to get an uncertainty

band for the coefficient function

◮ Calculate the uncertainty band on the full cross-section
by proportionally rescaling the value obtained in Mellin
space
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Uncertainty on the total cross section in the SM
pp(gg)→H at the LHC 8 TeV (coefficient)

Error bars: CH vs scale variation
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Uncertainty on the total cross section in the SM
pp(gg)→H at the LHC 8 TeV (Mellin)

Error bars: CH vs scale variation
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Scales variation for hadronic observables

Frequentist evaluation of the scales variation procedure in the
hadronic case
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Conclusions

Final thoughts and comments
◮ The study of the SV performances seems to imply that a slightly bigger r than 2

correspond to an heuristic 68% CL

◮ The extension of the CH model to hadronic observables has been accomplished in two
ways.

◮ We have parameterized the dependence of the CH model on the expansion parameter
with the use of a specific parameter λ.

Potential future developments
◮ Replace the λ value estimation procedure by introducing another prior in the Bayesian

model.

◮ Analyze different classes of observables and possibly define more refined models for
each of them.

◮ Investigate how the CH model depend on the chosen central value for the unphysical
scales.
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Backup slides
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Characterization of MHOUs
Experimental

◮ Lack of of clear signals from LHC data. New physics, if it exists at
the EW scale, will appear as a deviation in precision measurements

◮ In some cases, experimental uncertainties start to be comparable to
theoretical ones

Theoretical

◮ One of the most important source of theoretical uncertainties are
Missing Higher Order Uncertainties (MHOU)

◮ The standard method used to account for this, Scale Variation (SV),
does not provide a full statistical framework to treat the problem

How can we improve our handling of MHOUs?
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Features and issues

Posterior distribution for∆k. In red-dashed
the analytic approximation, in black the
numerical result
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Benchmarks
e+e−→ hadrons

Density profile for the posterior distribution

e
+
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-
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Benchmarks
Z production at the LHC 8 TeV

Error bars: CH vs scale variation

æ

æ æ

æ

æ æ

à

à à

à

à à

®

æ H Λ = = L

æ H Λ = = L

à H = L

à H = L

= = =

Σ @ D

Estimation of uncertainties from missing higher orders in perturbative calculations Emanuele A. Bagnaschi (DESY) 5 / 16



MHOUs characterization CH Benchmarks Saddle point approximation Other approaches

Benchmarks
Z production at the LHC 8 TeV

Density profile for the posterior distribution at NNLO
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Benchmarks
t̄t production at the LHC 8 TeV

Error bars: CH vs scale variation
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Benchmarks
t̄t production at the LHC 8 TeV

Density profile for the posterior distribution at NNLO
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Benchmarks
pp(gg)→ h at the LHC 8 TeV (coefficient)

Density profile for the posterior distribution at NNLO
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Benchmarks

pp(gg)→ h at the LHC 8 TeV (Mellin)
Density profile for the posterior distribution at NNLO
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Benchmarks

Comments

◮ The uncertainty intervals given by CH for a 68% DoB
tend to be larger than the intervals obtained with scales
variation with r = 2

◮ A separate study of the scale variation intervals shows
that an heuristic 68% CL is obtained by taking a range of
scales in the interval 3 . . . 4
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Saddle point approximation1

for pp(gg)→H (1)

We can write in x-space

σ(τ,m2
h) =

∫ 1

τ

dzL
�τ

z
,m2

H

�

σ̂(z,αs(m
2
H ))

with

σ̂(z,αs) = σ0 z C(z,αs)

C(z,αs) = δ(1− z)+αsC
(1)(z)+α2

s C(2)(z)+O (α3
s )

1Bonvini,Forte,Ridolfi Phys. Rev. Lett. 109, 102002 (2012) arXiv:1204.5473v2 [hep-ph]
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Saddle point approximation
for pp(gg)→H (2)

After a Mellin transform we have

σ(N ,m2
H ) =

∫ 1

0

dτ τN−1σ(τ,m2
H )

C(N ,αs) =

∫ 1

0

dz zN−1C(z,αs)

L (N) =
∫ 1

0

dz zN−1L (z)

We have then

σ(N ,m2
H ) = σ0L (N ,m2

H )C(N ,αs)
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Saddle point approximation
for pp(gg)→H (3)

The Mellin inversion integral is given by

σ(τ,m2
H ) =

1

2πi

∫ c+i∞

c−i∞
dN τ−Nσ(N ,m2

H )

With the definition of

E(N ,τ,m2
H )≡N ln

1

τ
+ lnσ(N ,m2

H )

We can rewrite the integral as

σ(τ,m2
H ) =

1

2πi

∫ c+i∞

c−i∞
dN eE(N ,τ,m2

H )
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Saddle point approximation
for pp(gg)→ h (4)

The inversion integral is then

σ(τ,m2
H ) =

1

2πi

∫ c+i∞

c−i∞
dN eE(N ,τ,m2

H )

This integral can be computed with the saddle-point
approximation, where it is assumed to be dominated by the
value of the exponent E for the dominant moment N0 which
satisfy

∂ E(N ,τ,m2
H )

∂ N

�

�

�

�

N=N0

= 0
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David-Passarino prescription1

An alternative approach

◮ Direct estimation of the theoretical uncertainty by using
sequence transformation on the known perturbative
expansion

◮ The uncertainty does not depend on the expansion
parameter of the series

1David,Passarino Phys. Lett. B 726 (2013) 266 arXiv:1307.1843 [hep-ph]
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