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Introduction and motivations

Goals of our study

Statistical survey of two models for MHOU

Scale variation

» Revisit the SV procedure and analyze statistically its
performance on a wide set of observables to improve our
knowledge/control on what is currently used in the
experimental analysis

The Bayesian approach

» Improve the Bayesian approach first proposed by Cacciari
and Houdeau' to work around some of its imperfections

» Analyze the performance of the newly improved model
on a wide set of observables

! Cacciari-Houdeau JHEP 1109 (2011) 039
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Introduction and motivations

Perturbative QCD and MHOUs

Baseline

> The perturbative expansion of an observable known up to order & is
k
0UQ 1) =D (12)e,(Qupz)  (known)
n=l

> Qs the hard scale of the process, u represents the unphysical scale(s)
(e.g. the renormalization scale) from which the truncated
perturbative expansion depends. We assume it set at the value Q

> The remainder of the series expansion is unknown and it is our

MHOU
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The models

Scale variation

Procedure

> Vary the unphysical scale(s) u around the central scale Q by an
arbitrary factor »

» Different prescriptions used in the literature. We will use the
following ones:

1. Scan: vary u between Q/r and » x Q and use the
maximum/minimum value of the observable to define the
uncertainty

2. Extrema: Use the maximum/minimum of the value of

the observable obtained for u =7 x Q, Q/r

> Caveat: the factor 7 is arbitrary and the interval obtained has no
statistical meaning
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The CH model

Bayesian framework

» Suppose there is an upper bound on the coefficients magnitude and call it ¢
» The priors for the model are then given by

11 iflgl<é
f(c”|c)_2z{o if |c,| > ¢

_ 1
fno)= 2| Alinélslind - .
flenien) =] Al

iel
» Bayesian inference gives then the uncertainty interval posterior
| ) < n, > 1 1 if |0y < aft'e,
EICIs s Ch) = Y 1 . Ft1-
5 5 n, +1 2&?+1Ck 7(‘Ak‘/(af+1i‘k)"f+l if |A/€| > aime

where n, =k—1[+1and ¢, = max(c,...,c;)
» Intervals have a statistical meaning in term of Degree of Belief (DoB)
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The CH model

Recent developments

» Issue: the uncertainty estimate depends on the expansion
parameter of the series
Approach: rewrite the observable as

A\

k o n
0@ =3(*2) =118,

n=I[

\{

Apply the same prior to b,

The (n— 1)! factor is suggested by renormalon based
analysis

A estimated empirically from the performance of the
model

A\

v
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Methodology

To study the behavior of the models we define the following performance
parameter

Success rate

> Call 0 the external free parameter of the model (A for the CH and »
for SV)

1. Fix 0 and the order #; for the Bayesian model, fix also the requested
DoB of the interval

2. Compute the interval at the order 7 with the fixed 0 for every
observable in the set

3. Define the success rate of the model as the ratio of the number of
observables whose order 7+ 1 is contained in the uncertainty
interval of the order 7 over the total number of observables in
the set
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Non-hadronic obs

Non-hadronic survey

We first study observables without initial state hadrons.

Observable Available accuracy Reference
R(eTe™ — hadr) NNLO-QCD Baikov et al., 2008
Bjorken sum rule NNLO-QCD Larin et al, 1991

GLS sum rule NNLO-QCD Larin et al, 1991

T(b— cev,) NLO-QCD Biswas & Melnikov, 2010

[(Z — hadr) N3LO-QCD Baikov et al., 2012

T(Z— bb) NNLO-QCD Chetyrkin et al., 1994

Event shape variables (6) NNLO-QCD Weinzierl, 2009

e.g. thrust, heavy jet mass

Splitting kernels y,(,;r), Yag» Yag NNLO-QCD Larin et al., 1996
H — bb),, =0 N3LO-QCD Baikov et al., 2005
H—gg N3LO-QCD Baikov et al., 2006

H—yy NNLO-QCD Maierhdefer et al, 2013

List of all the non-hadronic observables used in the survey

in perturbati
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Non-hadronic observa

Scale variation performance

Success rate for SV for different values of »

Success rate
1.0¢

0.8
0.6
0.41

0.21

- LO
- NLO

2 3 4 5

6

- T

7 8

SV with just the three finite choices

{Q/r,QrxQ}

We can assign a heuristic a posteriori 68% Confidence Level

(CL)forr=2~3
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Success rate
1.0¢

0.8L
0.6
0.47 L0
-= NLO
0.2f
2 3 4 5 6 71 8

SV with the full scan in the interval

[Q/r,7x Q]
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Non-hadronic observables

CH performance and tuning

Procedure Success Rate

» Vary A between 0.1 and 2 for a 0.25F
given DoB

0.20f
» Find the optimal value for g
. 0.15
which
success rate = input DoB 0.10¢

> Repeat for all DoBs between 0.05
0.05 and 0.95 in steps of 0.01 :
and histogram the results

02 04 0.6 08 1.0 1.2 14

» LO: optimal value A ~0.7—1.0
» NLO: optimal value A ~0.9—1.1
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Non-hadronic observables

CH performance and tuning

Complementary o
CH LO+NLO
Procedure 08
» Consider a fixed list of values £ 06
for A=0.7...1.2 2
S 04
> Plot the Z #1=07 2 1=08
success rate vs the requested 0.2 =09 v =1
DoB ) wA=Llgpd=12
%0 02 0.4 0.6 038 1.0

» The optimal value of A should
produce a curve close to the
straight line defined by
success rate = DoB

DoB

> All orders: optimal value A ~0.9—1.1
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Non-hadronic observa

Benchmarks
ete~ — hadrons: CH vs scale variation
oy’
0.055¢
et +e~ — hadrons
0.050r o CH (A =1, DoB = 0.95)
w CH (A =1, DoB = 0.68)
0.045¢ - Scale Variation (r=4)
== Scale Variation (r=2)
0.040¢
! L
0.035¢
0.030 - . . k
LO NLO NNLO
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Hadronic observa

Application to hadronic observables

Issues

> The model was formulated originally for observables without initial
state hadrons

» A hadronic observable can be written as

k

Ou(r, Q) =Z(Q®> a’'C,(Q)

n=Il

» To what should we apply the CH Bayesian model?
Short-scale “coefficients” C, are distributions

» How to account for the convolution of the partonic cross-section
with the PDFs? Non-perturbative physics is involved
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Hadronic observables

Plan A: convolution

Algorithm

» After the PDFs integration we can write the observable
in the same form as in the non-hadronic case

k a n
0= =3(22) -1rr @

n=[

The coefficients H,, will include a non-perturbative content from the convolution with the
PDFs. In first approximation we assume that this content is equal at all orders and that therefore

is just a global rescaling factor

The A value is retuned using the same procedure as in the
non-hadronic case.
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Hadronic observa

Plan A: convolution

Observables used for the estimation of A,

Observable Available accuracy Reference
gg— Hat /s=8TeV NNLO HIGLU, Spira et al, 1995
bb — H associated production at /s =8 TeV NNLO bbh@nnlo, Harlander et al, 2003
gg—ttat /s=8TeV NNLO Czakon et al, 2013
onshell pp— Z+X —ete™ +Xat /s=8 TeV NNLO DYNNLO, Catani et al, 2009
on-shell pp— WE + X — IFy + X at //5=8TeV 2 x3) NNLO DYNNLO, Catani et al, 2009
Higgs strahlung production at 4/s =8 TeV NNLO Brein et al, 2003
bbat \/s=8 TeV NLO MCEM, Campbell et al
Z+jat /s=8TeV NLO MCFM, Campbell et al
Z+2jat y/s=8TeV NLO MCEFM, Campbell et al
WE +jat /5=8TeV NLO MCEM, Campbell et al
WE +2jat /5=8TeV NLO MCFM, Campbell et al
ZZat /s=8TeV NLO MCFM, Campbell et al
WW at /s=8TeV NLO MCFM, Campbell et al
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Hadronic observables

Plan A: convolution

Global tuning of the A value

Frequency ‘I cLo+NLO

0.4 _
CH .
03 ®LO g
NLO 8
0.2 u 2
2]

0.1
An
02 04 06 08 1.0 1.2 14
Best A value for 0.05 < DoB < 0.95 Fraction vs requested DoB for A=0.4...1

The estimated value of Ais 0.6+0.2
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Hadronic observables

Plan B: Mellin moment
Algorithm

» In Mellin space we can rewrite the convolution as a
simple product

k a”
OUN,Q=2(N+1,Q >, A (n—DLB,(N, Q)
n=l "h

» Find the dominant Mellin moment N*

» Apply the CH method to B,(N*) to get an uncertainty
band for the coefficient function

» Calculate the uncertainty band on the full cross-section
by proportionally rescaling the value obtained in Mellin
space
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Hadronic observables

Uncertainty on the total cross section in the SM
pp(gg) — H at the LHC 8 TeV (coefficient)

Error bars: CH vs scale variation

o [pb]
20F
15¢
10F pp ~>H
# CH (A, =0.6, DoB =0.95)
w= CH (1, =0.6, DoB = 0.68)
5r - Scale Variation (r=4)
= Scale Variation (r=2)
k

k=2 k=3 k=4
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Hadronic observables

Uncertainty on the total cross section in the SM
pp(gg) — H at the LHC 8 TeV (Mellin)

Error bars: CH vs scale variation

oy [pb]
25¢
pp - H
20p CHMellin (4, = 0.6, DoB = 0.95)
[ ] __
«o= CHMellin (A, = 0.6, DoB = 0.68)
15¢ - CH (A, =0.6, DoB =0.95)
[ ] _
= CH (1, =0.6, DoB = 0.68)
10 -m Scale Variation (r=4)
wg= Scale Variation (r=2)
5 L
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Hadronic observa

Scales variation for hadronic observables

Frequentist evaluation of the scales variation procedure in the

hadronic case

Success rate
1.0¢

0.81

0.61

045/

0.2/

I Y T
Hadronic scale variation, NNLO
PDF

L
T

Success rate

0.8¢

0.61

0.41

0.21

2 3 4 5 6 7
Hadronic scale variation, order
matched PDF
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Conclusions

Conclusions

Final thoughts and comments

» The study of the SV performances seems to imply that a slightly bigger r than 2
correspond to an heuristic 68% CL

» The extension of the CH model to hadronic observables has been accomplished in two
ways.

> We have parameterized the dependence of the CH model on the expansion parameter
with the use of a specific parameter A.

Potential future developments

» Replace the A value estimation procedure by introducing another prior in the Bayesian
model.

> Analyze different classes of observables and possibly define more refined models for
each of them.

> Investigate how the CH model depend on the chosen central value for the unphysical
scales.
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MHOU s characterization

Characterization of MHQOUSs

Experimental

> Lack of of clear signals from LHC data. New physics, if it exists at
the EW scale, will appear as a deviation in precision measurements

> In some cases, experimental uncertainties start to be comparable to
theoretical ones

Theoretical

> One of the most important source of theoretical uncertainties are

Missing Higher Order Uncertainties MHOU)

» The standard method used to account for this, Scale Variation (SV),
does not provide a full statistical framework to treat the problem

How can we improve our handling of MHOUs?
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CH

Features and 1ssues

~ 200F ]
)

c 150¢ ]
S 100 ]
2 50f ]

0
—-0.010 -0.005 0.000 0.005 0.010
A

Posterior distribution for Ay. In red-dashed
the analytic approximation, in black the
numerical result

in perturbati

0.050,

0.040

0.035

0.030

0.025

et +e¢~ - hadrons

& 1=07, p=0.683
1.0, p = 0.683
3, p=0683

LO

NLO

o
NNLO A

Effect of the rescaling of the expansion

[15

parameter &, — ~ for various values of A




Benchmarks
ete” — hadrons
Density profile for the posterior distribution

f(Alersenncr)
LO

— hadrons
CH@QA=1)
[ ] DoB = 0.68
[ ] DoB = 0.95

Scale Variation (r=2)

Ay
F(AC e

fAler,mco)

-0.001 —0.0005




Benchmarks
Z production at the LHC 8 TeV

Error bars: CH vs scale variation

oy [nb]

0.70¢

0.65¢

0.601

055} , H *

0.501 pp =Z

0.45F o CH (4, = 0.6, DoB = 0.95)
wo= CH (1, = 0.6, DoB = 0.68)

0-40¢ -w Scale Variation (r=4)

0.35¢ = Scale Variation (r=2)
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Benchmarks

Z production at the LHC 8 TeV
Density profile for the posterior distribution at NNLO

f(&olHy)
pp 2 Z
CH (X, =0.6)
| DoB = 0.68
[ ] DoB = 0.95

Scale Variation r=2

Ag[nb]

f(A1|Ho Hy) f(AalHo Hy ,Hy)
5
k=1 k=2
! 4
| 3
20
1
04 02 02 0 Mol 04 02 02 0a Aelnbl
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Benchmarks
tt production at the LHC 8 TeV

Error bars: CH vs scale variation

oy [pb]
300
250¢ l ,
200
150} pp -ttt
- CH (1, = 0.6, DoB = 0.95)
1001 = CH (1, = 0.6, DoB = 0.68)
- Scale Variation (r=4)
50¢ == Scale Variation (r=2)
0 : : : k
k=2 k=3 k=4
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Benchmarks

tt production at the LHC 8 TeV
Density profile for the posterior distribution at NNLO

pp — tt
CH (A, =0.6)
| DoB = 0.68
[ ] DoB = 0.95

Scale Variation r=2

(8] Hy)
0.

£(As|Hy  Hy)

-300 -200 -100

Az[pb]
~300 -200 -100 100 200 300
£(A4lHy Hy Hy)
k=4
Aslpb Aqlpb
300 s 00 200 300!

ainties from missi
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Benchmarks

pp(gg) — b at the LHC 8 TeV (coefficient)
Density profile for the posterior distribution at NNLO

f(A1H>)
pp o H k=2
CH (A, =0.6)
| DoB = 0.68
[ ] DoB = 0.95

Scale Variation r=2

A,
T5Ralpb]

(As|Hy ,H3) (Mg Ho H3 Hy)
0-
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Benchmarks

pp(gg) — b at the LHC 8 TeV (Mellin)
Density profile for the posterior distribution at NNLO

f(Aler,....cr)

pp — H (Mellin)

CH (A = 0.6)

68.%

95.%

Scale Variation (r=2)

Ax/pb
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Benchmarks

Comments

» The uncertainty intervals given by CH for a 68% DoB
tend to be larger than the intervals obtained with scales
variation with r =2

» A separate study of the scale variation intervals shows
that an heuristic 68% CL is obtained by taking a range of
scales in the interval 3...4
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Saddle point approximation

Saddle point approximation’

for pp(gg) — H (1)

We can write in x-space

o(t,m?) = f dz.,se< >5(z, a,(m?))
with

0(z,a,) =04z C(z,a,)
Cloya) = (1—2)+ 0,0 +2C(2) + 0()

!Bonvini,Forte,Ridolfi Phys. Rev. Lett. 109, 102002 (2012)

Estimation of uncertainties from missing higher orders in perturbative calculations Emanuele A. Bagnaschi (DESY) 12/16



Saddle point approximation

Saddle point approximation

for pp(gg) — H (2)

After a Mellin transform we have
2\ (! N—1 2
o(N,my)= | dr " o(r,my)

0
1
C(N,a,) = Jr dz 2" 'C(z,a,)

Z(N)= rldzzN_l.SZ(z)

Jo

We have then

o(N,mpy) = 0oL (N, my)C(N, a,)
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Saddle point approximation

Saddle point approximation

for pp(gg) — H (3)

The Mellin inversion integral is given by

1 c+i00
o(t,my) = f dN t™No(N,m3))

27

With the definition of

1
E(N,7,m3;)=Nln~+Ino(N,m3,)
T

We can rewrite the integral as

2 1 cHies (N,7,m?,)
o(r,my)=— dN "N

271

—100
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Saddle point approximation

Saddle point approximation

for pp(gg) — h (4)

The inversion integral is then

1 c+ico
o(t,mz;) = —J AN EN-mmiy)

271

—100

This integral can be computed with the saddle-point
approximation, where it is assumed to be dominated by the
value of the exponent E for the dominant moment N, which

satisfy

JE(N,t,m3,)

N =0

N=N,
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Other approaches

David-Passarino prescription’

An alternative approach

» Direct estimation of the theoretical uncertainty by using
sequence transformation on the known perturbative
expansion

» The uncertainty does not depend on the expansion
parameter of the series

! David,Passarino Phys. Lett. B 726 (2013) 266
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