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We present a detailed theoretical characterization of the two fundamental collective resonances underlying the

xenon giant dipole resonance (GDR). This is achieved consistently by two complementary methods implemented

within the framework of the configuration-interaction singles (CIS) theory. The first method accesses the

resonance states by diagonalizing the many-electron Hamiltonian using the smooth exterior complex scaling

technique. The second method involves a different application of the Gabor analysis to wave-packet dynamics.

We identify one resonance at an excitation energy of 74 eV with a lifetime of 27 as and the second at 107 eV

with a lifetime of 11 as. Our work provides a deeper understanding of the nature of the resonances associated

with the GDR: a group of close-lying intrachannel resonances splits into two far-separated resonances through

interchannel couplings involving the 4d electrons. The CIS approach allows a transparent interpretation of the

two resonances as new collective modes. Due to the strong entanglement between the excited electron and the

ionic core, the resonance wave functions are not dominated by any single particle-hole state. This gives rise to

plasma-like collective oscillations of the 4d shell as a whole.
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I. INTRODUCTION

The atomic xenon giant dipole resonance (GDR) has

attracted much research interest since its discovery in 1964

[1,2], for it is one of the most prominent cases in atomic physics

where many-body correlations play a conspicuous role. The

GDR appears in the photoabsorption cross section of xenon

as a pronounced and nearly symmetric hump centered around

100 eV, with a width of about 40 eV. The GDR lies in the

electronic continuum above the 4d ionization threshold.

While the occurrence of the xenon GDR can be qualitatively

explained by the independent-particle model [3], where a

centrifugal barrier suppresses 4d → ǫf transitions near the

4d threshold, satisfactory agreement with experiments requires

the inclusion of many-body correlations beyond the mean-field

(MF) level [4–8]. Nowadays it is commonly accepted that the

xenon GDR must be described as the result of the collective

excitations of at least all 4d electrons, forming short-lived

plasma-like cooperative oscillations [9,10]. Because the GDR

is a property of inner-shell electrons, it is found in other atoms

close to xenon in the periodic table and survives in molecules

and solids [9,10]. Similar giant resonances also prevail in

nuclei, metallic clusters, fullerences, etc. [9,10].

A considerable number of measurements have been per-

formed for a precise characterization of the xenon pho-

toabsorption spectrum in the XUV with perturbative light

sources [11–14]. However, with the birth of various new

source technologies, the old spectroscopic feature of the xenon

GDR continues to enthrall state-of-the-art experimenters. For

example, high-harmonic generation spectra of xenon driven by

an intense midinfrared laser display a striking enhancement of

the plateau [15], which reflects the partial cross section of the

5p valence shell strongly modified by the GDR [16]. Also,
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the GDR lies at the heart of the behavior of xenon exposed

to free-electron lasers with ultrahigh XUV irradiance [17–19].

Hence, it is important to fully understand the nature of the

xenon GDR.

Following the earliest independent-particle model [3],

various advanced many-body theories have succeeded in

reproducing the experimental cross section associated with the

xenon GDR remarkably well [8,20–23]. Nevertheless, a funda-

mental question frequently overlooked is what exactly are the

basic collective modes that give rise to the spectral properties

of the xenon GDR. A work by Wendin in 1971 [24] (see

Ref. [8] for details) using the random-phase approximation

with exchange (RPAE) identifies two collective resonances

in this energy range. Another calculation, by Lundqvist in

1980 [25], utilizing a hydrodynamic treatment of electron

density oscillations also finds two collective modes, but one

of them sits at an energy incompatible with experimental

observations. In addition to the very limited theoretical

predictions of the resonance positions, neither of these studies

explicitly specifies the resonance widths. Consequently, the

nature of the inherent collective resonances hidden in the

broad spectral blur of the xenon GDR still remains an unsolved

question.

The purpose of this paper is to provide a thorough

characterization of the resonance substructures underlying

the xenon GDR within the framework of the configuration-

interaction singles (CIS) approach [26,27], an ab initio theory

that can capture essential many-body effects in light-matter

interactions [28] including the xenon GDR [29]. We resolve

two collective dipolar resonances residing in the spectral range

of the GDR, with one position differing from that given by

Wendin [8] by 15 eV. Whereas Wendin resorted to an approxi-

mate condition only applicable to weakly damped plasma [30]

to estimate the positions of the collective excitations, this work

provides quantitative results for the resonance positions and

lifetimes. In contrast to the conventional view that many-body

correlations only quantitatively shift and flatten the resonance
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as seen in the photoabsorption spectra [3–7,23], we clearly

demonstrate that many-body correlations qualitatively change

the nature of the xenon GDR: a group of intrachannel

resonances splits into two far-separated resonances as soon

as we switch on interchannel interactions involving the 4d

electrons. Since the resonance lifetimes are very short, the

resonances strongly overlap and appear as one big hump in the

photoabsorption cross section [8]. In contrast to the plasma-

type treatments used in Refs. [8,25], the full many-body wave

functions are directly obtained through our CIS approach. As

the wave functions of the two resonances cannot be expressed

by any single particle-hole state, we concretely show that they

are indeed new collective modes [8–10].

In this work, the isolation of the resonance substructures

is consistently accomplished by means of two complementary

and general methods implemented using CIS. The first, time-

independent approach provides a comprehensive characteriza-

tion of all the resonance properties by directly diagonalizing

the many-body Hamiltonian using the smooth exterior com-

plex scaling (SES) technique [31–33]. Complex scaling [34]

has been used to solve the electronic resonance problem for

few-electron atoms [35–38] and molecules [39]. However,

it has not yet been used to address collective resonances in

many-electron atoms. The second, time-dependent approach

involves a different application of the time-frequency Gabor

analysis [40,41] to the autocorrelation function of a wave

packet. It is a common routine in molecular dynamics to

look for resonance energies in the Fourier domain [42–44].

Nonetheless, our analysis in the combined time-frequency

domain not only shows improved performance in disentan-

gling strongly overlapping resonances, but also supplies an

appealingly intuitive view on the time evolutions of various

wave-packet components.

The remainder of this article is structured as follows:

Sec. II presents the theoretical tools. Section II A first lays

the foundation of our many-body CIS scheme. Section II B

and Sec. II C explain, respectively, the time-independent SES

and time-dependent Gabor procedures to access multiple

resonances. In Sec. III we apply the methods to the xenon

GDR, with the computational details given in Sec. III A.

The results of the SES and Gabor approaches are discussed

separately in Secs. III B and III C. Restrictions imposed on

the electronic-configuration space in Secs. III B and III C are

justified in Sec. III D. Finally, Sec. IV concludes the study with

a future outlook. Further numerical evidence indicating the

consequence of finding resonance poles with the approximate

condition used by Wendin [8] is provided in the Appendix.

Atomic units (a.u.) are used throughout the paper (|e| =
me = � = 4πǫ0 = 1) unless otherwise stated.

II. THEORETICAL METHODS

A. CIS theory

In this work, the many-electron Schrödinger equation is

treated within the CIS framework, an ab initio theory that

allows one to encapsulate essential many-body physics beyond

the MF Hartree-Fock (HF) picture [28,45]. Our implemen-

tation of the CIS method has been successfully applied to

a wealth of physical phenomena of many-electron atomic

systems interacting with light fields [28], including pertur-

bative [29,46,47] and nonperturbative [16,48,49] multiphoton

processes with photon energies from the x-ray regime down

to the near-infrared regime. Particularly, the ability of CIS to

reproduce important features of the experimentally observed

xenon GDR is demonstrated in Ref. [29]. In the following, we

outline the formulation of our CIS approach. Further details

can be found in previous publications [26,27,50].

The nonrelativistic Hamiltonian for an N -electron atom in

the absence of external fields can be generally written as

Ĥ =
N

∑

n=1

(

p̂2
n

2
−

Z

|r̂n|
+ V̂ MF(r̂n)

)

− EMF
0

+











1

2

N
∑

n,n′ = 1

n �= n′

1

|r̂n − r̂n′ |
−

N
∑

n=1

V̂ MF(r̂n)











=: Ĥ0 + Ĥ1, (1)

where p̂n and r̂n are the momentum and coordinate operators

for individual electrons, Z is the nuclear charge, and V̂ MF is the

MF potential contributing to the standard Fock operator [45].

The HF ground-state energy EMF
0 is introduced to shift the

entire energy spectrum for cosmetic purposes. The total

Hamiltonian is divided such that Ĥ0 is merely a one-body

operator and that all the residual two-body electron-electron

Coulomb interactions beyond the description of the MF

potential are contained in Ĥ1.

The N -electron Hamiltonian is represented in the N -

electron CIS configuration space:

VCIS =:
{∣

∣�MF
0

〉

,
∣

∣�a
i

〉}

, (2)

which gives an ansatz for an N -electron wave function:

|�〉 = α0

∣

∣�MF
0

〉

+
∑

i,a

αa
i

∣

∣�a
i

〉

. (3)

Thus, the Hilbert space is truncated and consists only of the

HF ground state |�MF
0 〉 plus its singly excited configurations

|�a
i 〉 = ĉ

†
a ĉi |�MF

0 〉, with ĉi annihilating an electron from an

initially occupied orbital i and ĉ
†
a putting it into an initially

unoccupied orbital a [45]. The range of the index i selects the

active occupied orbitals from which an electron can be excited

or ionized, i.e., the accessible channels [51], thus enabling

one to test the multichannel character of the overall physical

process [16,47,50].

The matrix of the N -electron Hamiltonian is then ei-

ther diagonalized (Sec. II B) or used in the time-dependent

Schrödinger equation (Sec. II C). In CIS, the only matrix

elements that can lead to two-body effects are 〈�a
i | Ĥ1 |�b

j 〉.
Specifically, it is the type of matrix elements with the indices

a �= b and i �= j , called interchannel-coupling terms [51], that

permits the simultaneous change of the state of the excited

electron and that of the ionic core; i.e., interchannel coupling

leads to the formation of a correlated particle-hole pair [46].

Numerically, we can tailor the two-body nature of Ĥ1 and

study its influences by enforcing all interchannel-coupling

matrix elements to be 0 and considering only the matrix

elements 〈�a
i | Ĥ1 |�b

j 〉 with i = j . In this scenario, called the
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intrachannel-coupling model [51], Ĥ1 effectively acts as a

one-body operator: once the electron is excited, it can sense

the potential produced by the parent ion but cannot modify

the ionic state, which is therefore forbidden to partake in

many-body correlations [16,29,46,47].

B. Time-independent approach to resonances: SES method

A conventional procedure to access eigenstates is the

direct diagonalization of a general Hamiltonian. Nevertheless,

being exponentially divergent in the asymptotic region renders

resonance states, also known as Siegert [52] or Gamow [53]

vectors, inadmissible elements of the Hilbert space of a

Hermitian Hamiltonian. Standard techniques such as complex

scaling [34,54,55] and the use of complex absorbing potentials

(CAPs) [56–58] were thus developed to transform the wave

function of a resonance state into a single square-integrable

function. In this paper, we adopt the SES method [31–34], a

variant of the complex scaling technique.

Our use of SES [33,59] relies on an analytic continuation

of the radial part of the electron coordinate into the complex

plane r → ρ(r) following the path of Moiseyev [31] in the

form of Karlsson [32] adapted to the purely radial problem

presented here:

ρ(r) = r + (eiθ − 1)

[

r + λ ln

(

1 + e(r0−r)/λ

1 + er0/λ

)]

. (4)

This path smoothly (depending on the parameter λ) rotates the

electron radial coordinate for r > r0 about an angle θ into the

upper complex plane.

Solving the eigenvalue problem of the complex-scaled

Hamiltonian with the basis set VCIS, the resonance states

can be uniquely identified as the exposed poles situated

above the rotated continua in the complex-valued energy

spectrum [34,54,55]. It is then straightforward to obtain the

complex resonance energy or the Siegert energy [34,52,56]

En = 
n − iŴn/2, 
n,Ŵn ∈ R
+ (5)

as well as the wave function |�n〉 associated with the nth

resonance state. In Eq. (5), 
n is the resonance position,

and Ŵn gives the inverse lifetime for the quasibound state

to escape to the continuum. The detailed implementation of

SES within CIS using a generalized finite-element discrete

variable representation will be addressed in a forthcoming

publication [59].

The SES method shares with CAPs [56] the merit that it

leaves the interior r < r0 untouched and does not perturb the

HF ground state (if r0 and λ are chosen suitably) [32,34].

At the same time, it eliminates many drawbacks of CAPs:

no optimization with respect to a parameter is required in

order to identify the resonance energies, and the whole

transformation rests on the rigorous mathematical theory of

complex scaling [32–34].

Note that the complex-scaled Hamiltonian is no longer a

Hermitian but a complex symmetric matrix [33]. As a result,

the symmetric inner product (·| , |·) must be used instead of

the Hermitian inner product 〈·| , |·〉 to ensure orthogonality

relations [27,34,56].

C. Time-dependent approach to resonances: Gabor analysis

of autocorrelation functions

Decoding the resonance substructures for a general quan-

tum system can also be done through wave-packet propagation.

The key physical quantity employed throughout our analysis

is the time-dependent autocorrelation function, defined as

C(t) =: (�(0)|�(t)), (6)

where |�(0)) is an initial state and |�(t)) is the freely evolved

wave packet at a later time t . Note that the symmetric inner

product is adopted here. This is because in the time-dependent

case we continue using SES, which effectively functions as

a CAP and absorbs the outgoing flux reaching the end of

the numerical grid [31,32,58]. For an initial state |�(0))

orthogonal to |�MF
0 ), the time evolution of |�(t)) is governed

by the CIS coefficients αa
i (t) [cf. Eq. (3)]. Inserting Eq. (3) into

the time-dependent Schrödinger equation with the complex-

scaled Hamiltonian, one can derive and numerically integrate

the equations of motion for αa
i (t) [27]:

i α̇a
i (t) =

(

�a
i

∣

∣Ĥ0

∣

∣�a
i

)

αa
i (t) +

∑

j,b

(

�a
i

∣

∣Ĥ1

∣

∣�b
j

)

αb
j (t). (7)

For a quantitative determination of the resonance energies,

we assume that, by proper preparation, the initial state is

essentially composed of the resonance states of interest and

all the contributions from the bound states and the continuum

can be ignored. Expanding |�(0)) in terms of the orthonormal

resonance wave functions |�(0)) =
∑

n an |�n), Eq. (6) then

bears the following structure:

C(t) =
∑

n

a2
ne

−i
nt− Ŵn
2

t . (8)

The validity of Eq. (8) and the resonances that can be extracted

evidently depend on the quality of |�(0)). How we prepare the

wave packet ideal for studying the xenon GDR is discussed in

Sec. III C.

A common strategy to infer Siegert energies from wave-

packet propagation is to conduct a Fourier analysis and study

the autocorrelation function in the frequency domain [42–44].

Performing a one-sided Fourier transformation on Eq. (8)

[assuming C(t) = 0 for t < 0] yields

C(ω) =
1

√
2π

∫ +∞

0

dteiωtC(t)

=
∑

n

a2
n√
2π

Ŵn

2
+ i(ω − 
n)

Ŵ2
n

4
+ (ω − 
n)2

, (9)

i.e., a superposition of Lorentzian functions and dispersive

curves parametrized by the Siegert energies [60].

For a single resonance, the spectral distribution of the

autocorrelation function reads

|C(1)(ω)|2 =
∣

∣a2
1

∣

∣

2

2π

1

Ŵ2
1

4
+ (ω − 
1)2

, (10)

which is a Lorentzian with a peak at 
1 and a width of

Ŵ1. If more than one resonance exists, |C(ω)|2 comprises

several Lorentzians and their interferences. Upon empirically

specifying the number of resonance states, it is possible to
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retrieve the Siegert energies by numerically fitting |C(ω)|2
based on Eq. (9).

Next, we extend the standard spectral analysis to a

time-frequency analysis [40,41,61] of the autocorrelation

function and examine its information content in the com-

bined time-frequency domain. Applying a Gabor transforma-

tion [41,62,63] to Eq. (8), we can derive

Ct (ω) =
1

σ
√

2π

∫ +∞

0

dt ′eiωt ′e
− (t ′−t)2

2σ2 C(t ′) (11)

≈
∑

n

a2
ne

σ2Ŵ2
n

8
− Ŵn

2
t− σ2

2
(ω−
n)2+iσ 2( t

σ2 − Ŵn
2

)(ω−
n)
. (12)

Equation (11) can be interpreted as gating the time-dependent

signal by a Gaussian window function of width σ centered at

t . Due to the finite size of the window function and the sudden

turn-on of the autocorrelation function at t = 0, the analytical

expression in Eq. (12) works as a reasonable approximation to

Ct (ω) when t ≫ σ .

For a single resonance, the transient spectral distribution

of the autocorrelation function at time t can be simply

approximated by

∣

∣C
(1)
t (ω)

∣

∣

2 ≈
∣

∣a2
1

∣

∣

2
e

σ2Ŵ2
1

4 e−Ŵ1te−σ 2(ω−
1)2

, (13)

i.e., a Gaussian with a peak at 
1 and a width determined by

σ . From the decay rate of the amplitude, Ŵ1 can be extracted.

The advantage of the Gabor analysis over the Fourier anal-

ysis becomes apparent when multiple resonances come into

play. In this situation, |C(ω)|2 comprises several Gaussians

and their interferences. Consider the example where there

are overlapping broad resonances yet with different lifetimes.

Compared to the static information conveyed by the Fourier

spectrum, it is more likely to detect the resonances through the

time evolution of the Gabor profile, where their competition

causes dynamics in the frequency distribution. Quantification

of the resonance energies can be done by fitting |Ct (ω)|2 with

the help of Eq. (12) at different time steps.

It is worthwhile to note that C(ω) is related to a mea-

surable physical quantity—the photoabsorption cross sec-

tion [29,64]—although we usually consider its modulus

squared to reduce the number of irrelevant fitting parameters

(e.g., the phase of a2
n). Also, a real physical observable—the

dipole moment—can be used in the time-frequency analysis

as well [65]. In this case, its frequency distribution is

associated with the spectrum of electromagnetic radiation

emitted by the system [66]. Finally, it is tempting to point out

the conceptual similarity between the Gabor transformation

and the spectrogram measured in a pump-probe experiment

[67–69], albeit there is no real probe pulse involved in the

current theory.

III. RESULTS AND DISCUSSION

A. Computational details

The theoretical methods described in Sec. II are now applied

to the detailed resonance structure of the xenon GDR that is

probed by linear spectroscopy using linearly polarized XUV

light [1,2,11–14]. The calculations are done using our XCID

package [70]. A single set of numerical parameters is employed

throughout our calculations to compare consistently the results

obtained by the two approaches.

Exploiting symmetries, nl±m is counted as one ionization

channel [26,50]. In the energy range of concern, it is adequate

to assume that electron depopulations only happen from the

4d, 5s, and 5p orbitals [71]. However, for a meaningful

comparison with the work by Wendin [8], the calculations

presented in Secs. III B and III C are performed without

activating the outer 5s and 5p shells. As we see in Sec. III D,

these channels only cause minor quantitative modifications.

The HF orbital energies are slightly adjusted to match the

experimental binding energies. Also, the orbitals with an

energy higher than 15 a.u. are discarded to enhance the stability

of the time propagation.

The numerical box radially extends to a size of 150 a.u.

and is discretized with 1800 nonuniformly distributed grid

points with a mapping parameter of ζ = 1 [27], from which

we construct our finite-element discrete variable representation

basis functions [59]. The SES parameters are chosen as

r0 = 20 a.u., θ = 40◦, and λ = 1 a.u. such that the HF MF

potential remains unscaled and the continuum is rotated

enough to expose the resonances. The maximum orbital

angular momentum is 3. For the time-dependent study, an

initial state is propagated [27] at a time step of 0.05 a.u. for a

duration of 500 a.u. to give a sufficient frequency resolution.

In the Gabor transformation, we use σ = 2 a.u., which we

select based on the spacing of the excitation energies for the

two collective resonances. This choice represents an optimal

trade-off between the spectral and the temporal resolutions.

B. Time-independent approach to Xe GDR: SES method

The diagonalization of the complex-scaled many-body

Hamiltonian is achieved numerically by the iterative Arnoldi

algorithm implemented in the ARPACK library [59,72,73].

An initial random vector is used to launch the iteration.

Since we concentrate on the resonance modes in the linear-

response regime, the eigenstates shown below are required

to have a minimum overlap with the ground state through a

dipole transition: | (�| D̂z|�HF
0 )| > 10−6, where D̂z denotes

the z component of the dipole operator [74] relative to the

polarization direction of the electric field in a measurement.

Figure 1 shows the complex spectra of the energy eigenval-

ues for the case with only intrachannel couplings and the case

with both inter- and intrachannel couplings, i.e., the full-model

calculation within CIS. Ideally, the energy spectra in both cases

should follow the structure predicted by the Balslev-Combes

theorem [34,54,55,75]: the bound states remain on the real

axis, the continuum is rotated clockwise by 2θ with respect to

the 4d ionization threshold at 67.5 eV [76], and the resonances

are isolated above the continuum. However, the use of an

incomplete basis set results in numerical artifacts such as

branching of the continuum away from the threshold [57] and

a rotation angle deviating from 2θ [77].

First, we focus on the result of the intrachannel-coupling

model in Fig. 1. In this case, each eigenstate possesses a unique

hole index i and the contributions from different 4d ionization

channels can be easily set apart. Three resonances are found,

one for each 4d±m channel. They lie fairly close to each other,

forming a group of resonances around an energy with a real part
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FIG. 1. (Color online) Complex energy spectra of the complex-

scaled many-body Hamiltonian for the intrachannel (“intra”) and full

CIS (“inter + intra”) models. Horizontal and vertical axes represent

the real and imaginary parts of the energy eigenvalues, respectively.

Three close-lying resonances are found in the intrachannel calculation

(indicated by open polygons); two far-separated resonances (labeled

R1 and R2) are found in the full CIS calculation (indicated by filled

circles).

≈ 77 eV and an imaginary part ≈−5.4 eV, which corresponds

to a lifetime of ≈ 60 as. The resonance positions and widths

are detailed in Table I.

In order to elucidate the origin of the small splitting among

the intrachannel resonances, we perform another intrachannel

calculation by approximating Ĥ1 with its monopole term [50].

When so doing, the resonances associated with the 4d0,

4d±1, and 4d±2 channels have exactly the same resonance

energy. Therefore, even without many-body effects, the elec-

tron excited from the different 4d±m orbitals experiences

different potentials owing to the shape of the nonspherical

ionic core. This qualitative effect, although small, clearly

exemplifies the impact of the ionic structure beyond the

description of a simple spherically symmetric potential (e.g.,

the Herman-Skillman [78] or HF [45] potentials) or even

an angular-momentum-dependent pseudopotential [79] widely

used to model multielectron atoms in perturbative [3,80] or

nonperturbative [81–83] light fields.

Activating interchannel coupling, the group of intrachannel

resonances splits into two resonance states distantly located in

the complex energy plane in Fig. 1. We have checked carefully

that their positions do not vary with the scaling parameters,

so they are not numerical artifacts. In comparison with the

intrachannel resonances, resonance R1 in Fig. 1 has almost the

same excitation energy but a larger decay width; resonance R2

is pushed away much farther into the lower half of the complex

energy plane. The splitting of the resonances highlights that

many-body correlations not only are required for a quantitative

agreement between theory and experiment [3–7,23], but in fact

give rise to fundamentally different resonance substructures

underlying the GDR. Since Ref. [8] does not show calculations

without many-body correlations, our study is the first to reveal

the emergence of the collective resonances in the GDR from

the intrachannel resonances.

With the interchannel interactions, each resonance cannot

be attributed to a single ionization pathway. For both R1

and R2, the 4d−1
0 , 4d−1

±1 , and 4d−1
±2 hole populations [27]

have a rough ratio of 1:2:1, which can be explained by

an angular momentum analysis. Because the interchannel

interactions strongly couple the various 4d−1
±m hole states,

it is crucial to consider the orbitals in addition to the one

aligned along the polarization axis (i.e., 4d−1
0 ) for the physical

processes involving the GDR, e.g., the giant enhancement in

the high-harmonic generation spectrum of xenon [16]. We also

compute the angular momentum composition of the excited

electron, which shows a prominent f -wave character for both

resonances. This is true in our intrachannel calculation too.

Indeed, the xenon GDR is dominated by 4d → ǫf transitions

with roots in the independent-particle picture [3,4].

Our CIS approach gives the total many-body resonance

wave functions, which are not attainable using plasma-type

treatments including RPAE [5,24,25]. We analyze |�1) and

|�2) by decomposing them in terms of the orthonormal

TABLE I. Siegert energies of the resonances in the intrachannel model and the full CIS model. Results are listed for the SES method and

for the Gabor analysis. For comparison, the predictions given by Wendin [8] are included.

SESa Gaborb Wendin [8]


n (eV) Ŵn (eV) 
n (eV) Ŵn (eV) 
n (eV) Ŵn (eV)

Intrachannel

4d0 76.3 8.3 76.5 ± 0.3c 8.2 ± 0.4c – –

4d±1 77.6 13.8 77.9 ± 0.7c 13.5 ± 0.4c – –

4d±2 77.2 10.6 77.4 ± 0.3c 10.6 ± 0.1c – –

Full ClS

R1 74.3 24.6 80.4 ± 0.7,d 73 ± 2e 32 ± 1,d 17.8 ± 0.4e 74.3 –

R2 107.2 59.9 112 ± 1d 47 ± 9d 92.3 –

aAll SES values have an error bar of 0.1 eV. This is calculated by varying over a reasonable range the numerical parameters such as the number

of radial grid points, the maximum radial coordinate, and the SES parameters θ and λ.
bIn each calculation, the Gabor spectra are fitted numerically in a time interval [ti,tf ] at a time step of 3 as. This gives the fitting parameters


n, Ŵn as a function of time. Error bars are then defined as the standard deviations of 
n, Ŵn over the time sequence.
cUsing Eq. (13) for one resonance in [ti,tf ] = [145 as, 363 as].
dUsing Eq. (16) for two resonances in [ti,tf ] = [145 as, 169 as].
eUsing Eq. (13) for one resonance in [ti,tf ] = [242 as, 363 as].
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TABLE II. Complex weights a2
±m with respect to the intrachannel

resonance states |�4d±m
) for the collective resonances |�1) and |�2)

in SES calculations.

R1 R2

a2
0 0.175 − 0.033i 0.075 + 0.042i

a2
±1 0.345 + 0.009i 0.106 + 0.003i

a2
±2 0.198 − 0.018i 0.081 + 0.028i

∑

m a2
m 0.719 − 0.042i 0.262 + 0.073i

intrachannel basis set:

|�n) =
∑

a±m|�4d±m
) + |��n), n = 1,2. (14)

The first term in Eq. (14) contains the projections onto the

intrachannel resonance functions |�4d±m
), and the second

term symbolizes the remaining part with respect to the other

intrachannel states. The complex weights a2
±m defined through

the symmetric inner product are listed in Table II. For both R1

and R2, a2
0 , a2

±1, and a2
±2 have the same order of magnitude.

For R1, the intrachannel resonances account for a weight of
∑

m a2
m ≈ 0.7 out of a total norm of 1; for R2, they contribute

a weight ≈0.3. This means that the interchannel interactions

not only mix all the intrachannel resonance states, but also mix

in continuum states to form new resonances. At this stage, we

clearly see in our configuration-interaction language why we

can refer to R1 and R2 as new collective dipolar modes: they

are entangled particle-hole states involving the various 4d−1
±m

hole states and do not resemble any single intrachannel

resonance wave function. In RPAE, collective excitations

are not directly defined by the many-body wave functions

themselves, but by a coherent sum over different particle-hole

states in evaluating the dipole [9] or dielectric function [8,30]

matrix elements. Note that both collective states have a

significant overlap with the HF ground state via a dipole

transition, with (�1| D̂z|�HF
0 ) ≈ 1.1 and (�2| D̂z|�HF

0 ) ≈ 1.9

for R1 and R2, respectively.

The positions and widths of the resonances in the full model

are listed in Table I. The resonance positions calculated by

Wendin [8] are also listed for comparison. The resonance

position of R1 agrees perfectly with that given by Wendin.

The position for R2 differs from his number by 15 eV, but

both positions are compatible with the spectral blur observed

in the experimental cross section.

The most likely reason for the discrepancy of 
2 predicted

by Wendin and our result is the approximate condition Wendin

used to find collective excitations from his effective dielectric

function. In principle, a collective resonance corresponds to a

complex frequency where both the real and the imaginary parts

of the many-body dielectric function simultaneously become

0 [30,84]. An estimated resonance position can be found by

determining along the real energy axis a root for the real part

of the dielectric function, provided that the damping of the

true resonance is sufficiently small [30]. As one is dealing

with two rather broad resonances in the case of the xenon

GDR (particularly for R2), this approximate condition, which

is adopted by Wendin [8], is not strictly applicable. In the

Appendix, we demonstrate how this simplified condition of

finding the zeros of the dielectric function can result in Siegert

energies that deviate substantially from the true resonance

poles. Based on this argument, the Siegert energies provided

by the present study are most likely to be more reliable.

C. Time-dependent approach to Xe GDR: Gabor analysis

of autocorrelation functions

To probe the resonances associated with one-photon

absorption, the initial wave packet can be conveniently

set as

|�(0)) = D̂z

∣

∣�HF
0

)

. (15)

This is equivalent to creating a wave packet via a δ-kick pulse

polarized along the z axis. Since it is well known that the xenon

GDR exhausts all the oscillator strength in the XUV [9,10],

the wave packet prepared in this way is largely composed of

the relevant resonances, and its autocorrelation function C(t)

is expected to take the form assumed in Eq. (8).

The wave packet subsequently undergoes field-free relax-

ation. Figure 2 plots the time evolution of the complex-valued

autocorrelation function for both the intrachannel and the full

CIS models. The raw data in both cases look like a simple

damped oscillator without much structure apart from some

spikes in the beginning. This suggests that there are some

dynamics that rapidly disappear. Including the interchannel

interactions causes the autocorrelation function to attenuate

more rapidly and to ring at a higher frequency.

The above features are more pronounced if we look at

the autocorrelation functions in the frequency domain as

illustrated in Fig. 3 [85]. The Fourier transform |C(ω)|2 in

each calculation shows one smooth peak, accompanied by

Rydberg series preceding the 4d ionization energy [29]. The

linewidth of the Rydberg states is narrow, since a 4d−1
±m hole

decays on the femtosecond time scale [86]. Although the SES

method yields three intrachannel resonances, they cannot be

distinguished and really act as a group here. Switching on the

interchannel couplings broadens and weakens the peak as well

as displacing it to a higher frequency, similar to what is seen

in the photoabsorption spectra [29]. In the full model, the two
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FIG. 2. (Color online) Autocorrelation functions C(t) as a func-

tion of time for (a) the intrachannel model (“intra”) and (b) the full

CIS model (“inter + intra”). Solid curves represent the real part, and

dashed curves the imaginary part, of C(t).
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FIG. 3. (Color online) Autocorrelation functions |C(ω)|2 in the

frequency domain for (a) the intrachannel model (“intra”) and

(b) the full CIS model (“inter + intra”). Solid curves represent the

data; dashed curves, the fit with Eq. (10).

resonances given by the SES analysis also cannot be resolved

in the Fourier domain.

We can extract the effective Siegert energy for the single

peak in Figs. 3(a) and 3(b). The data are fitted numerically

with Eq. (10) utilizing the nonlinear least-squares Marquardt-

Levenberg algorithm. This yields (
,Ŵ) = (79.0 eV,12.9 eV)

for the intrachannel model and (96.3 eV,38.9 eV) for the full

CIS model. Note that |C(ω)|2 in the full CIS model is relatively

poorly described by its Lorentzian fit and is more asymmetric,

a hint to the multiple resonances behind the huge spectral hump

of the xenon GDR.

Now we are in a position to go beyond the standard spectral

method and to investigate the xenon GDR in the combined

time-frequency domain. Figure 4 depicts the Gabor transform

|Ct (ω)|2 for both the intrachannel and the full CIS models
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FIG. 4. (Color online) Autocorrelation functions |Ct (ω)|2 in the

combined time-frequency domain for (a) the intrachannel model

(“intra”) and (b) the full CIS model (“inter + intra”).
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FIG. 5. (Color online) Decay dynamics of the Gabor spectra

|Ct (ω)|2 at consecutive time intervals. (a)–(c) Intrachannel model

(“intra”); (d)–(f) full CIS model (“inter + intra”). In each panel, the

time step between two neighboring lines is about 3 as.

[87]. In addition to the information that is already revealed

by C(t) and |C(ω)|2, one salient new feature emerges: the

spectral distribution in the intrachannel case dies out almost

symmetrically over time, whereas the spectral distribution in

the full CIS model decays asymmetrically, with the maximum

shifting to a lower energy. In the vicinity of 150 as, one can

clearly recognize two frequency components in Fig. 4(b) and

can deduce that the higher-energy one has a shorter lifetime.

Figure 5 presents snapshots of the frequency distributions

|Ct (ω)|2 in Fig. 4 at consecutive time steps, where the

characteristics we allude to can be even better visualized. In

the intrachannel model, Figs. 5(a)–5(c) exhibit one single,

decaying peak around 80 eV, which arises from the group of

three intrachannel resonances in the SES calculation. Upon

closer examination, we find that the peak position gradually

moves to a slightly lower frequency. This is in accordance

with the SES study reporting that the lowest-lying intrachannal

resonance has the smallest decay width (see Table I).

In the full CIS model, the time evolution of the transient

spectral distribution is fundamentally different. In Fig. 5(d), the

initial spectrum displays a broad and nearly symmetric peak

located around 90 eV. However, the spectrum soon becomes

highly asymmetric, with the maximum shifting to a lower

energy, and decays more rapidly than the intrachannel case.
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The successive dynamics in Fig. 5(e) vividly illustrate how the

substructures in the GDR develop: two peaks can be identified,

and the higher-lying one fades away much more quickly. This

is followed by Fig. 5(f), where the higher-lying mode has

completely vanished and only the lower-lying one remains,

with a position similar to that of the intrachannel resonance.

Just based on simple observations, the Gabor analysis intu-

itively illuminates how the interchannel interactions result in

the damping and fragmentation of the resonances, as well as a

rough idea of the resonance positions and widths. Benefiting

from the fact that different spectral components have different

lifetimes, the Gabor analysis successfully disentangles the two

fundamental collective modes that cannot be separated by the

Fourier analysis.

Next, the Siegert energies are quantitatively determined

following the logic presented in Sec. II C. Based on the a

priori input from the SES study, we perform the analysis in

the intrachannel case for each 4d±m ionization channel. One

peak in the Gabor profiles at subsequent time steps is then fitted

numerically with Eq. (13). The outcomes are listed in Table I

and are in excellent agreement with the SES results within the

error bars. Particularly, the Gabor analysis captures the minute

splitting trend of the resonance energies, i.e., 
4d±1
> 
4d±2

>


4d0
and Ŵ4d±1

> Ŵ4d±2
> Ŵ4d0

.

For the full CIS model, the fitting process is dissected into

two stages. In the first stage, roughly corresponding to the

time interval shown in Fig. 5(e), two resonances are singled

out. Resorting to Eq. (12) with n = 2, the Gabor spectrum has

the approximate analytical expression

∣

∣C
(2)
t (ω)

∣

∣

2 ≈ f1,t (ω) + f2,t (ω)

+ 2[f1,t (ω)f2,t (ω)]
1
2 f1−2,t (ω), (16)

where

fn,t (ω) :=
∣

∣a2
n

∣

∣

2
e

σ2Ŵ2
n

4 e−Ŵnte−σ 2(ω−
n)2

, n = 1,2;

f1−2,t (ω) := cos

[

σ 2(Ŵ2 − Ŵ1)ω

2
+ (Ŵ2 − Ŵ1)t

−
σ 2(Ŵ2
2 − Ŵ1
1)

2
+ (φ2 − φ1)

]

. (17)

In Eq. (16), the first two terms are the individual contributions

from R1 and R2, and the third one is their interference. In

Eq. (17), φn denotes the phase of a2
n. The data are fitted with the

above formulas, and the Siegert energies are listed in Table I.

The error bars here are bigger than those in the intrachannel

case, and the extracted Siegert energies deviate from the SES

ones, especially for the decay width of the faster-decaying

R2. This is possibly due to the increasing difficulties in the

nonlinear fitting procedure (particularly from the interference

term). Also, in order to arrive at the analytical expression for

|Ct (ω)|2, Eq. (8) assumes that all the contributions to C(t) from

the bound states and the continuum can be neglected, which

does not work as well if the resonances decay relatively rapidly.

In the second stage, which nearly coincides with the time

interval shown in Fig. 5(f), only one resonance is seen. Using

Eq. (13), we produce another Siegert energy for R1 in Table I.

It does not fully agree with that retrieved at the former stage,

especially in terms of the resonance width. The two-resonance

model used at the first stage is only applicable in a short period

of time, where the resonance parameters certainly cannot

fluctuate too much. Hence, this discrepancy reflects further

numerical instability in the fitting parameters that cannot be

entirely represented by the previously calculated uncertainties.

The Siegert energy acquired at this second stage seems closer

to the SES one. Nevertheless, as the Gabor spectrum in this

time interval has a fairly weak amplitude, the contribution

from the Rydberg series (after the filtering) inevitably kicks

in, which lowers the effective energy position and width for R1.

The most appealing feature of the Gabor analysis is that

it provides an intuitive dynamical view on the competition

between various spectral components, which may be con-

nected to what is measured in a pump-probe experiment

[67–69]. However, it is apparent that the Gabor method cannot

quantify Siegert energies as accurately as the SES approach.

Considering the deviations from the SES results, the energy

uncertainties, and the discrepancy between the resonance

energies for R1 extracted at two stages, the Gabor analysis

gives an overall energy resolution of ≈10 eV.

D. Influence of 5s and 5 p orbitals

In Secs. III B and III C, the active ionization channels lie in

the 4d shell; the outer 5s and 5p shells are frozen. This is an

assumption made in Ref. [8] as well.

Our SES calculations show that including the 5s and 5p±m

channels leads to no qualitative but only minor quantitative

modifications to the previous discussion. Hence, the xenon

GDR mainly stems from the many-body correlations involving

the ten 4d electrons [9], and the 5s and 5p electrons are

only small admixtures. The Siegert energies for the three

intrachannel resonances remain the same as in Table I. In the

full CIS model with active 4d, 5s, and 5p shells, the Siegert

energies are slightly revised, to (
1,Ŵ1) = (73.4 eV,24.7 eV)

and (
2,Ŵ2) = (111.8 eV,58.2 eV). Note that the higher-lying

R2 is more sensitive to the effects of the outer shells.

IV. CONCLUSION

In this paper, we disentangle two fundamental collective

dipolar resonances that cannot be resolved in the photoabsorp-

tion cross sections associated with the xenon GDR. In exten-

sion of Wendin’s pioneering work [24], we achieve a complete

theoretical characterization of the resonance substructures by

two complementary methods within the framework of the CIS

theory. It is very likely that the Siegert energies obtained in the

current study are more accurate than those given by Wendin, as

our methodology for finding the resonance poles is not limited

to weakly damped oscillations. The time-independent SES

approach demonstrated here is the first example of treating

collective resonances in multielectron atoms with the complex

scaling technique. The time-dependent Gabor analysis extends

the standard Fourier analysis to the combined time-frequency

domain, such that strongly overlapping resonances living on

different time scales can be more easily separated.

Our work provides a deeper insight into the nature of the

GDR: the group of three close-lying intrachannel resonances

splits into two far-separated resonances upon the inclusion of
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interchannel couplings primarily involving the 4d electrons.

The two resonances are new collective modes in the sense that

they must be written as a superposition of various particle-hole

wave functions. When the excited electron is still near the ion,

a strongly entangled particle-hole pair is formed. This leads to

the strong mixing of the various 4d−1
±m ionic states, the entire

4d shell thus exhibiting collective plasma-like oscillations as

a whole.

We specify the Siegert energies for the two collective

resonances. However, the exact values need further theoretical

refinement. The CIS theory only contains one-particle–one-

hole configurations (in addition to the HF ground state). Hence,

real and virtual double excitations [8,9,51] are among the

physical processes outside the scope of the current study.

Nonetheless, since TDCIS (in the velocity gauge) produces

a peak position in good agreement with the experimental pho-

toabsorption cross section [29], we expect that the inclusion of

double excitations would not affect the resonance parameters

substantially.

Finally, we note that a recent experiment at the free-

electron laser FLASH, using an XUV nonlinear spectroscopy

technique, has provided the first direct evidence of the two

collective dipolar resonance states associated with the xenon

GDR [90]. Thus, it may be expected that experiments of

this type will provide an opportunity to test the predictions

presented in this paper.
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APPENDIX: CONSEQUENCE OF USING THE

APPROXIMATE CONDITION TO FIND ZEROS OF

DIELECTRIC FUNCTIONS

As briefly explained at the end of Sec. III B, the approximate

condition invoked by Wendin [8] to find zeros of the many-

body dielectric function can result in Siegert energies that

substantially deviate from the true resonance poles. In this

section, we provide numerical evidence in support of the above

statement.

A collective resonance obtained from diagonalizing the

complex-scaled many-body Hamiltonian corresponds to an

energy En = 
n − iŴn/2 in the complex energy plane where

both the real and the imaginary parts of the many-body

dielectric function ǫ(E) simultaneously vanish [30,84]. In the

limit of Ŵn → 0, this exact condition is reduced to finding

the roots of the real part of ǫ(
) along the real energy axis


, Ŵ = 0 [30].
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FIG. 6. (Color online) Real part of the many-body dielectric

function Re(ǫ) along the real energy axis 
. Solid curve, Wendin’s

data [8]; dashed curve, fit with Eq. (A1). The two resonance positions

determined in the spirit of Wendin’s work are labeled 
′
1 and 
′

2.

For a dielectric function with two poles in the energy range

of interest, it must follow the simple analytical structure [84],

ǫ(E) =
1

1 −
(

a1

E−E1
+ b2

E−E2

) , (A1)

where a1 and a2 are two complex numbers.

To extract Wendin’s dielectric function for the xenon GDR,

we fit the real part of his data with Re(ǫ(
)) in Eq. (A1).

The an are treated as fitting parameters, and the En as known

constants with the values given by the SES method in Table I

(as mentioned in Sec. III B, we believe that our Siegert

energies are closer to the true ones). The real part of the

reconstructed dielectric function (with a1 = −10.0 − 19.7i

and a2 = −1.6 + 6.4i) is shown in Fig. 6 and nicely describes

Wendin’s result.

The real part of ǫ(
) we retrieve passes through the

real energy axis at 
′
1 = 74.5 eV and 
′

2 = 91.0 eV, which

do not coincide with the excitation energies of the true

collective poles, 
1 = 74.3 eV and 
2 = 107.2 eV. This

strongly indicates that the approximate condition of finding

the roots of Re(ǫ(
)) as Wendin did does not suffice to provide

accurate predictions for the short-lived collective resonances.

In particular, the estimated 
2 for the shorter-lived R2 amounts

to an error of 16.2 eV. In our opinion, the most consequential

approximation Wendin made lies not in the way he constructed

the dielectric function, but in the way he searched for the

collective poles, which is suitable only for weakly damped

oscillations [30].
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