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X-ray reciprocal space mapping was used for quantitative investigation of

porous layers in indium phosphide. A new theoretical model in the frame of the

statistical dynamical theory for cylindrical pores was developed and applied for

numerical data evaluation. The analysis of reciprocal space maps provided

comprehensive information on a wide range of the porous layer parameters, for

example, layer thickness and porosity, orientation, and correlation length of

segmented pore structures. The results are in a good agreement with scanning

electron microscopy data.

1. Introduction
Future advancement in micro- and optoelectronics is directly

dependent on progress in the technology of defect-free

semiconductor heterostructures, which demonstrate very high

values of charge concentration and mobility in the active

layers (Landolt–Börnstein, 1982; Adachi, 1992). The range of

attainable properties and compositional design of hetero-

structures is strongly limited by the mismatch of lattice para-

meters in the used materials. The mechanical strains caused by

this mismatch trigger the formation of dislocations on the

layer boundaries and threading dislocations inside the layers,

which leads to degradation of electrophysical and optical

properties. To avoid this problem, buffer layers are often used.

The buffer layers can be of different types, including gradient

(Katcki et al., 1999; Choi et al., 2009), metamorphous (Zeng et

al., 2001; Hoke et al., 2003) or porous (Soldatenkov et al., 1999;

Arsentyev et al., 2002, 2005; Sitnikova et al., 2005). The char-

acterization of the morphology, structure and properties in the

latter type of layer is particularly complicated because of their

strong three-dimensional local inhomogeneity and is normally

carried out by electron microscopy, electrophysical and optical

methods (Arsentyev et al., 2002, 2005; Nohavica, Gladkov,

Jarchovský & Zelinka, 2008; Nohavica, Gladkov, Jarchovský,

Zelinka et al., 2008; Domashevskaya et al., 2008; Liu & Duan,

2001; Tiginyanu et al., 2003; Föll et al., 2003).

X-ray analysis of porous buffer layers has been limited so

far, mostly because of the difficulty of data interpretation.

Nevertheless, X-ray diffraction methods have been used

successfully, but in the main for analysis of porous silicon

layers (Barla et al., 1984; Goudeau et al., 1989; Bensaid et al.,

1991). It has been shown that crystalline quality and defor-

mation of the porous layers depend on a lot of parameters, and

in some cases the silicon skeleton persists as a result of the

high quality of the bulk material and voids have various kinds

and ordering. A numerical analysis of the specific features in

the Bragg scattering from such structures was made by Lomov

et al. (1995, 2009) and Buttard et al. (1998). It was shown that

in a porous material with a high degree of crystal lattice

coherence one can use the intensity of X-ray diffraction to

obtain information on the thickness, deformation and statis-

tical Debye–Waller factor, and on the degree of porosity in the

layers. For the parameters of the pores and for crystallites that

are displaced from coherent positions, only the form and

angular spread of the diffuse scattering has been analyzed so

far (Faivre & Bellet, 1999). A quantitative analysis of pores,

their geometrical form, fractality, ordering and space distri-

bution was never implemented owing to the vast number of

free parameters in the model.

2. Diffuse X-ray scattering from porous crystalline
layers

The method of diffuse X-ray scattering has proved to be very

effective for structural defect investigation (Huang, 1947;

Dederichs, 1973; Krivoglaz, 1996). In the case of perfect

crystals, the theory normally considers defects with non-

overlapping displacement fields, and the defects themselves

are presented as point defects, spherical clusters or dislocation
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loops. In this case the total scattering is composed of two

contributions: coherent Bragg scattering from the mean lattice

and diffuse scattering from the defects. High-resolution X-ray

diffraction (HRXD) allows one to study these components

separately for different defect types (Iida & Kohra, 1979;

Kyutt et al., 1985; Lomov et al., 1985, 1999; Charniy et al., 1992).

The diffuse scattering is of integral nature and provides an

averaged scattering pattern, which makes the investigation of

pores cumbersome owing to their variable size and form. A

model taking into account the statistical variation of pore sizes

in the kinematical approximation was presented by Punegov

(2009). Meanwhile, the porous layers contain coherent crys-

tallites (pore walls), so that the effects of multiple scattering

must be also taken into account. In the case of porous layers,

both the pores in the crystal lattice volume and the crystallites

that have left the coherent positions belong to the structural

defects. For a full description of scattering effects in such

objects, one requires a statistical dynamical diffraction theory

based on the approach described by Kato (1980).

In this paper, we present an investigation of porous layers

on an InP(001) substrate by a reciprocal space mapping

method. The data evaluation was carried out by reciprocal

space map (RSM) data fitting in the frame of the statistical

dynamical diffraction model. The first systematic analysis of

diffuse scattering from porous layers in InP was presented by

Lomov et al. (2006, 2010) and Punegov et al. (2007). It was

shown that high-resolution X-ray diffraction allows determi-

nation of the pore parameters, averaged over the sample

volume. Lomov et al. (2010) used the X-ray diffraction method

to investigate multilayer InP structures formed by pores of two

different types. Punegov & Lomov (2008) applied a model in

the frame of the statistical dynamical diffraction theory to

describe the diffuse scattering from cylindrical pores forming

an angle � to the surface. Such porous structures, called

crystallographically oriented, are typical for AIIIBV materials

and are formed under galvanostatic mode (Claussen et al.,

2003; Delimitis et al., 2008; Tsuchiya et al., 2004; Ulin &

Konnikov, 2007). The basic crystallographic direction for the

pore formation in indium phosphate by electrochemical

etching is h111Bi. Depending on the applied voltage, lattice

polarity and substrate doping type one can achieve pore

formation in the directions h221i, h322i and h111Ai, as well as

along the surface normal. The inner surface of the pore is

usually faceted along the {112} and {111A} crystallographic

planes, in accordance with the symmetry of the pore propa-

gation direction (Claussen et al., 2003).

Diffraction and diffuse scattering from porous InP layers is

clearly revealed as a two-dimensional intensity distribution in

RSMs. However, in the RSMs published so far (Faivre &

Bellet, 1999; Punegov et al., 2007), only the basic features of

scattering from the porous structures can be seen. This is

primarily because of the low signal intensity from thin layers

and insufficient data range. For investigation of scattering

characteristics and recovery of detailed information on the

pores and their layers, large data sets in a wide angular range

with microradian resolution are required.

3. Experimental

Model porous layers were grown by electrochemical etching in

galvanostatic mode on standard single-crystalline InP(001)

substrates doped with Sn to the carried concentration �5 �

1017 cm�3. The anodizing process was carried out in a four-

electrode configuration at 4 V electrode potential and 16 mA

current, in the dark. HCl aqueous solution at 296 K was used

as electrolyte.

Scanning electron microscopy (SEM) was used to control

the thickness and structure of the porous layers. Samples were

prepared by cleavage of the crystals parallel to the (110) and

(110) planes. A JSM 7401F (JEOL, Japan) electron micro-

scope operated at 2–5 kVwas used for specimen analysis. Fig. 1

shows the surface (a) and two cleavage planes (b), (c) of a

sample with a�6 mm porous layer obtained by anodizing for a

period of 100 s. The surface image shows the etching pits as

having an elongated faceted hexagonal shape. In the pitches,

entrance openings of one or two pinholes predominantly
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Figure 1
SEM images of the surface (a) and the cleavage (b), (c) of an InP(001)
porous layer with pores oriented along the h111Bi direction.
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oriented along preferred crystallographic directions can be

observed. This is also confirmed by the images at cleavage

planes. The porous layer looks sufficiently uniform over the

whole thickness and anisotropic in pore orientation. On

cleavage parallel to the (110) crystallographic plane (Fig. 1b),

the pore exits have a triangular shape with the base oriented

along the sample surface. On cleavage parallel to (110), which

runs perpendicular to (110), the pores form branched patterns

with a long central pore (‘stem’) and short side pores (‘bran-

ches’). It is important to mention that the density of pores is

higher than that of etch pitches. The mean values for the pore

parameters are given in Table 1.

The X-ray diffraction measurements were carried out at the

bending magnet beamline E2 at DESY. The layout of the

experiment and the positions of the crystallographic planes

relative to the scattering plane are shown in Figs. 2(a) and

2(b), respectively. The 10 keV (� = 0.124 nm) incident beam

from the bending magnet was formed by a double-crystal

Si(111) monochromator and a slit system. The exit slits of the

collimator were set to 0.05 mm in the scattering plane and

2 mm the direction normal to it. The beam divergence in the

scattering plane was �� ’ 0.002�. The sample was adjusted to

the 004 symmetric Bragg reflection. The scattered X-ray

intensity I(!, �) was registered by a MYTHEN linear position

sensitive detector as a function of incidence angle ! and exit

angle �, with scanning step �! = 0.125� and detector angular

resolution �� = 0.003�/channel. A beam stop was introduced

in front of the detector at the incidence angles in the vicinity of

the Bragg angle �B. The data acquisition time per point was set

to 120 s. The obtained data were used to build two-dimen-

sional intensity maps I(q = Q � h). Here, Q = kh � k0 is the

scattering vector, h is the reciprocal lattice vector, and k0,h are

the wavevectors of the incident and scattered beams. The

measurements were carried out at different azimuthal sample

positions ’ = 0, 45 and 90�, with ’ = 0 corresponding to qx ||

[110]. The projections of the scattering vector q are given by

qx ¼ k0ð2�!���Þ sin �B;

qz ¼ k0�� cos#B: ð1Þ

X-ray mirror reflection curves were taken from the samples

prior to diffraction measurements to control both surface

corruption and the top surface layer density value. The

reflectivity data show that the mean density of the 0.1 mm top

surface layers in porous samples is equal to that of the bulk

InP. This is in good agreement with the SEM results (Fig. 1b),

which show a dense �0.15 mm layer in the surface area.

Experimental RSMs around the 004 reciprocal lattice node

for the original InP substrate and for the InP sample with

inclined pores are shown in Figs. 3 and 4. The reciprocal space

maps allow the different components of the integral scattering

to be separated, with some of them being well isolated and the

others overlapping. In Fig. 3 one can distinguish the diffuse

scattering structural imperfections in the bulk crystal, seen as

smooth contours, and a number of sharper streaks (1–5) which

arise as a result of the Bragg diffraction and the used

experimental scheme: Bragg rod 1, pseudo-streak (Iida &

Kohra, 1979) 2, dispersive pseudo-streak 3 at qz/qx =

2cot�Bm � cot�Bs (�Bs and �Bm being the Bragg angles of the

sample and monochromator, respectively), dynamical

diffraction of diffuse scattering 4, instrumental streak 5. The

angles between these streaks are connected to the experiment

geometry. The parallelogram in the center of Figs. 3(a) and

3(b) comes from the beam stopper. The large variety of

observed scattering components confirms the high quality of

the original substrate material. It also proves that the multiple

scattering effects must be taken into account both for the
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Table 1
Characteristics of a porous buffer InP(001) layer with ‘Christmas tree
branch’ architecture, recovered by mathematical fitting of experimental
RSMs on the basis of the statistic dynamical theory for different
azimuthal sample positions.

Reflection 004, Debye–Waller factor f = 0.6 and porosity P � 0.4. ‘No’
indicates the absence of the correlation length for corresponding pores in the
used model (HRXD) or the absence of visible correlation of corresponding
pores in SEM images (although the pores are visible in the image).

HRXD SEM

Model of cylindrical pore Long Short Stem Branch
Length of pore l (�) (nm) 200 (50) 60 (15) �700 �150
Cross section of pore 2Reff (�) (nm) 50 (20) 30 (10) �40 �30
Lateral correlation length Lc[110] (�) (nm) No 140 (35) No �150
Lateral correlation length Lc[110] (�) (nm) No No – –
Inclination angle of pores � (�)† 56 (2) 48–54
Layer thickness Lz (�m) 5.3 (3) 5.8 (2)
Porosity (%)‡ 0.4 –

† Corresponding pores were not observed in SEM images. ‡ Porosity was not
calculated from SEM data.

Figure 2
Experimental setup for high-resolution X-ray diffraction (a) and
positioning of scattering plane relative to the crystallographic axes of
the sample at different azimuthal angles ’ (b). ! and � are angular
deviations from the exact Bragg positions for incident and reflected
beams, respectively. SR: synchrotron radiation; M1,2: silicon single-
crystal monochromators; S: sample; PD: position sensitive detector; BS:
beam stopper.
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native InP bulk material and for the porous layer. Remark-

ably, the experimental data reveal not only the dynamical

diffuse scattering of the incident and Bragg diffracted wave

(Olekhnovich & Olekhnovichi, 1981) but also interference

effects on the strain fields caused by lattice defects (Alek-

sandrov & Afanas’ev, 1984). At the same time, the inter-

ference effects are sensitive to anisotropy of strain fields near

to the structural defects, as shown experimentally on porous

GaAs structures (Lomov et al., 2012).

Experimental RSMs and I(qx) cross sections from the

porous layer sample for different azimuthal angles are shown

in Fig. 4 and in Figs. 7(a), 7(c) and 7(e) below. Two zones

marked N and E can be outlined in the maps (Fig. 4). The

diffuse scattering is dominated by the porous layer, which

completely masks the component coming from point defects in

the bulk. The diffuse scattering has a pronounced dependence

on both the azimuthal angle ’ and scattering vector q. A

quantitative analysis of the maps shows the presence of all of
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Figure 4
Original experimental RSMs of total scattering from an InP(001) porous
layer near the 004 node with pores oriented along the h111Bi direction at
different azimuthal angles ’ = 0� (a) and 90� (b). The equi-intensity
contours are shown in logarithmic scale, with step 0.506. Different parts of
the diffuse scattering are denoted by E and N. For other details see text.

Figure 3
Original experimental RSM of an InP(001) substrate of total scattering
from the 004 node on a small (a) and large (b) scale. The equi-intensity
contours are shown in logarithmic scale, with step 0.786. Numbers 1–5
show features of the total scattering effects (for details see text). X-ray
energy E = 10 keV, double-crystal Si(111) monochromator, position
sensitive detector. The black band (6) in the RSM center comes from the
beam stopper.
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the specific features discussed above, and these features are

directly dependent on the form, dimensions and spatial

ordering of the pores. With ’ variation, the form of the

contour lines in the zone N gradually changes from ellipsoidal

to cross formed. The two smooth maxima at the abscissa

around qx ’ �38 mm�1 correspond to correlation length Lc =

165 nm, L = 2�/qx. The maxima get less pronounced or

completely disappear depending on the anisotropy of the

pore’s orientation and the contribution of the correlation term

to the scattering intensity. A similar effect is well known in

Bragg diffraction and mirror reflectivity on surfaces with

correlated profiles. The correlation length value obtained from

the data is defined along the line formed by the diffraction

plane and the sample surface and in the case of ordered

defects depends directly on the azimuthal angle ’. Fig. 5(a)

and 5(c) show the qx cross sections with different correlation

distances for ’ = 0� and ’ = 45�. The maxima disappear

completely for ’ = 90� (Fig. 5e), which matches the direction of

pore ordering along [110].

The most pronounced features of the maps (Fig. 4) are the

areas with elevated intensity, forming ridges at an angle � ’

35� to the qx direction. These ridges are the projections of the

Fourier image of the scattering object, i.e. the pores, onto the

scattering plane. The inclination angle of the ridges to the

abscissae is directly related to the inclination of the pore walls

to the sample surface, � = 90� � �. Our experimental data

show that the pores in the sample have formed predominantly

along the [111] direction, as the value of � corresponds well to

the known angle 54.7� between the [111] and [001] directions.

An azimuthal turn from ’ = 90� to ’ = 0� leads to the ridges

vanishing from the N area. This indicates the presence of

inclined pores and the breaking of fourfold lattice symmetry in

the porous layer.

The azimuthal dependence changes take place at the

boundary between the N and E zones at |qx| ’ 100 mm�1.

From this, one can estimate the characteristic length of the

pores, giving the main contribution to the scattering to be

equal to 60 nm. In zone E, the form of the contour lines and

ridges does not display any pronounced azimuthal angle

dependence. This change indicates a very important alteration

both in the ordering of long and short pore segments and in

their space orientation.

Careful consideration of the RSMs permits us to draw a full

model of the porous layer. First, let us consider the short

segments that give the main contribution to the scattering and

provide a strong azimuthal angle dependence. From Fig. 4(a),

in zone N one can assume the presence of short segments

formed along the [111] crystallographic direction and ordered
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Figure 5
Examples of fitting scattering intensity cross sections near the 004 InP reflection for a sample with a porous 6 mm-thick layer in different azimuthal
positions: ’ = 0� (a), (b); ’ = 45� (c), (d); ’ = 90� (e), ( f ).
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along the surface in the [110] direction. This ordering is

anisotropic and a rotation of the sample to ’ = 90� (Fig. 4b)

leads to the disappearance of the correlation maximum. For

this azimuthal position, the ridges both in the N zone and the

E zone come from one and the same short segment type.

These ridges disappear in Fig. 4(a), as can be seen in the N

zone. Meanwhile, the ridges in the E zone indicate the

presence of another type of short segment oriented along the

[111] direction. The number of pores with this second orien-

tation is too low to provide any visible anisotropic features in

the RSMs but must be still taken into account for correct

numerical simulation. The same is true for any pores that are

ordered along the surface normal and cannot produce clear

and understood features in the RSMs. A thorough analysis of

SEM images supports the presence two different directions for

the short pore segments in the sample. Diffuse scattering from

the long central pores (Fig. 1c) is focused near a reciprocal

lattice node and contributes only a small fraction of the total

scattering since their density is considerably less than that

from the short pores.

The general analysis and estimates of pore dimension made

above give a quantitative description of the porous layer

structure. As already mentioned the SEM images show that

the pores have a nonuniform distribution in space. We shall

use this description to stress the possible differences in the

parameters of pores defined by different methods. It will be

necessary to take into account the form of the pores and the

differences in size and direction for both groups.

4. Dynamical diffraction on porous layers

The statistical dynamical theory formalism developed by Kato

(1980) allows simultaneous treatment of both coherent and

diffuse scattering in crystals with broken translational crystal

lattice order. In the frame of this approach, we shall first

consider in detail the coherent Bragg scattering in a porous

single-crystalline material and then identify the features of the

diffuse scattering. The developed theory is applied to our

numerical simulation and quantitative analysis of the struc-

tural characteristics of the investigated porous layer using

experimental data.

4.1. Coherent scattering

Let us consider dynamical X-ray diffraction from a single-

crystalline sample with a homogeneous porous surface layer of

thickness Lz, the coordinate axis z along the inward normal to

the surface and axis x directed along the surface. The main

structural parameters of the porous crystalline layer are the

period of the diffracting planes d, the Debye–Waller factor f

and the layer porosity P = 1 � 	/	0, where 	0 and 	 are the

density of the bulk and porous material. In the presence of

pores, the volume of the scattering medium decreases.

Therefore, the factor f in a general case can be presented as a

product f ¼ fs fP, where fs corresponds to the defects of the

skeleton crystalline structure of the porous layer, i.e. the

defects of the crystal lattice and crystallites that have left their

coherent positions, and fP = (1 � P) to the porosity due to the

formation processing and interaction with air. The porous

layer normally has a lattice constant different from that in the

bulk, �d = d � dhkl, where dhkl is the interplanar distance in

the bulk. Thus, in our analysis it is generally necessary to take

into account the relative strain " = �d/dhkl.

For simplicity, let us consider symmetric two-wave Bragg

diffraction. The plane wave is incident on a porous layer under

an angle � = �B + !, where �B is the Bragg angle and ! is the

deviation from the exact Bragg condition. X-ray scattering on

crystals is commonly treated in reciprocal space, as the

diffraction takes place on lattice planes that are normal to the

reciprocal lattice vector h, where h = 2�/dhkl. The scattering

intensity is defined by the susceptibility of the medium. For a

perfect crystalline lattice, the Fourier component of the X-ray

dielectric susceptibility is equal to 
h ¼ �r0�
2Fh=ð�VcÞ, where

Fh is the structure factor, Vc is the unit-cell volume, r0 = e2/

(mc2) is the classical electron radius, and e and m are the

charge and mass of an electron.

We should transform a system of Takagi (1969) equations

for the case of Bragg diffraction geometry and our experi-

mental scheme – the so-called triple-crystal diffractometry.

This was discussed in detail by Punegov et al. (2010). For

porous crystalline systems, the diffraction equations for the

amplitude of the transmitted wave E0 and diffracted wave Eh

take the form

@E0ðzÞ

@z
¼ i a0E0ðzÞ þ ia�h f EhðzÞ;

�
@EhðzÞ

@z
¼ iða0 þ �þ "hÞEhðzÞ þ iah f E0ðzÞ:

8

>

>

<

>

>

:

ð2Þ

Here we take into account the fact that the function uðrÞ,

describing the atomic displacements in the distorted crystal,

can be represented as a sum of the mean and fluctuation

components: uðrÞ ¼ huðrÞi þ �uðrÞ. The mean value of the

phase function ’ðrÞ ¼ exp½ðih 	 uðrÞ
 can be then written as

h’ðrÞi ¼ ’ðrÞf ðrÞ, where ’ðrÞ ¼ exp½ih 	 huðrÞi
 ¼ expðih"zÞ

describes the nonrandom long-range deformations in the bulk

and f ðrÞ ¼ hexp½ih 	 �uðrÞ
i is the Debye–Waller factor. The

angular distribution of the coherent component in equation

(1) depends on the parameter � ¼ ð2�=�
hÞ sin 2�B!, which is

connected to the projections of the vector q ¼ ðqx; qy; qzÞ by

qz ¼ qx cot �B � �. 
0;h are the cosines of the angles between

the normal to the crystal surface and the incident (0) and

reflection (h) direction, respectively. In symmetric Bragg

geometry 
0;h ¼ jsin �Bj.

We shall further assume symmetric Bragg diffraction

geometry and uniform pore distribution, as well as the absence

of strain in the layer thickness Lz. For a freestanding porous

film these conditions are E0ðz ¼ 0Þ ¼ 1 at the upper and

Ehðz ¼ LzÞ ¼ 0 at the lower boundary. In that case, the solu-

tion for X-ray fields inside a porous film can be written as

E0ðzÞ ¼ exp½iða0 þ �2Þz
½�1 expði�LzÞ � �2 expði� zÞ
=Q; ð3Þ

EhðzÞ ¼ ah f exp½iða0 þ �2Þz
½expði�LzÞ � expði� zÞ
=Q; ð4Þ

where
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�1;2 ¼ ð��� �Þ=2; � ¼ ð�Þ
2
� 4aha�h f

2
� �1=2

; ð5Þ

Q ¼ �1 expði�LzÞ � �2; ð6Þ

ah;�h ¼ C�
h;�h=ð�
h;0Þ ð7Þ

and C is the polarization factor. The electromagnetic field

amplitudes in the porous medium, taking into account the

absorption and refraction effects, will depend on the angular

variable � ¼ 2a0 þ �, where

a0 ¼ ð1� PÞ�
0=ð�
0Þ þ iaha�hð1� f 2Þ�: ð8Þ

Here, 
0 ¼ �r0�
2F0=ð�VcÞ is the Fourier component of the

X-ray dielectric susceptibility and � ¼ �ð�Þ is a complex

correlation length, describing the integral angular distribution

of diffuse scattering in a double-crystal diffraction layout with

wide detector aperture (Punegov, 1993). The first term of the

coefficient a0 takes into account the reduction of charge

density due to pores. The second term describes the additional

refraction and absorption of X-rays due to local disruption of

the exact translation periodicity of the crystalline lattice,

caused by voids (statistically distributed pores) inside the

medium, as well as structural distortions of the crystalline

matter. One must note that, in Bragg geometry, the influence

of that term is much lower than in Laue geometry.

For the amplitude reflection coefficient rh ¼ Ehðz ¼ 0Þ one

can directly derive from equation (4)

rhð�Þ ¼ ah f ½expði�LzÞ � 1
=Q: ð9Þ

Contrary to the situation for diffraction on an ideal crystal, the

dynamical coefficients ah and a�h in single-crystalline porous

media are always multiplied by f. One should mention that the

crystal porosity and the static Debye–Waller factor are linked,

as the growth of pore concentration and/or their size lead to

an increase of lattice imperfection. An analysis of this problem

is given below.

If the porous layer is put on a substrate, at their interface

the boundary condition is written as

Ehðz ¼ LzÞ ¼ E
ðsubÞ
h : ð10Þ

The solution of equation (9) allows us to calculate the

diffraction curves in �–2� scanning mode with a wide detector

aperture for the case of an unlimited plane wave incident on a

porous layer. In that case, the coherent component of the

diffracted intensity will form in reciprocal space a �-function-

like line along qz. For the description of coherent scattering in

triple-crystal diffractometry, a Fourier transformation of

coherent fields in the lateral direction must be carried out

(Punegov et al., 2010). Besides that, in a real experiment the

incident beam is always limited in space. Therefore, the

expression for the reflection coefficient amplitude will include

a parameter dependent on the size of the beam footprint on

the crystal surface Lx. In a real experiment, the incident beam

is limited in space, has a final spectral range and a final angular

divergence. Along with dispersion corrections, one must also

take into account artifacts coming from the monochromator

and the resolution of the linear detector. The full angular

width of the intensity distribution in the reciprocal space is

defined by the convolution of the incident radiation diver-

gence with the reflections from the crystals in the optical

layout; the intensity distribution can be described, for

instance, by a Voigt or pseudo-Voigt profile �(qx) (Ida et al.,

2000).

To build an RSM, both coherent and diffuse components

must be calculated. The intensity of coherent scattering in

Bragg geometry is calculated according to

I
ðcÞ
h ðqx; qzÞ ¼ rhðqzÞ

�

�

�

�

2
�ðqxÞ; ð11Þ

where rhðqzÞ is determined by formula (9) with � ¼ �qz.

4.2. Diffuse scattering. Model of cylindrical pores

For the analysis of diffuse scattering, the pores can be

considered as a specific type of structural defect. Therefore,

X-ray diffraction on porous crystals is always accompanied by

a noticeable diffuse scattering (Bensaid et al., 1991; Lomov et

al., 1995; Faivre & Bellet, 1999; Punegov et al., 2007). In the

Bragg geometry, the dynamical interaction of scattered diffuse

X-ray waves may be neglected (Punegov & Kharchenko,

1998).

The expression for the intensity of diffuse scattering in the

presence of spatially correlated pores has the form

I
ðdÞ
h ðqÞ ¼ ah

�

�

�

�

2
1� f 2
� �

TðqÞ
R

V0

dr exp �2�zð Þ I
ðcÞ
0 ðr; qÞ; ð12Þ

where � is the linear absorption coefficient and I
ðcÞ
0 ðr; qÞ the

X-ray beam intensity in the crystal volume with coordinate r.

We consider that diffuse scattering arises from a uniform

porous crystalline layer with thickness Lz and V0 ¼ S0Lz is the

full volume of the X-ray scattering, where S0 ¼ LxLy is the

incident beam footprint.

TðqÞ ¼
R

þ1

�1

dqGðqÞ exp iq 	 qð Þ ð13Þ

is a parameter describing the angular distribution of the

intensity, resulting from the form and space distribution of the

pores, and GðqÞ is the corresponding correlation function

(Nesterets & Punegov, 2000). One must note that the corre-

lation function can be described by models involving the long-

or the short-range order. In the case of long-range order, the

pores are fixed at equilibrium positions that have a strict

translational order. For the short-range order, there exists a

law defining the distribution of neighbors, without any peri-

odicity rules. This was observed in experiments on porous

silicon (Goudeau et al., 1989), porous germanium (Lomov et

al., 2003) and porous indium phosphate (Punegov et al., 2007).

If the distribution law for the nearest neighbors can be found,

it will also allow definition of the full distribution function. The

short-range order can be presented in the form of a radial

distribution (Bushuev, 2007) or as a paracrystalline model

(Hosemann, 1950; Punegov & Lomov, 2008; Punegov, 2011).

The pores in a crystalline medium disturb in a random

manner the strict translational order of the atom arrangement.
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This disorder can be described by random atomic displace-

ments �uðqÞ. Moreover, the elastic displacements �uðqÞ depend

on the local coordinate r. The elastic displacements caused by

a single pore are included in the fluctuation phase factor

exp½ih 	 �uð�Þ
. In the frame of Kato’s statistical diffraction

formalism a specific model of the pores is given by a corre-

lation function, analogous to the form factor:

gðqÞ ¼
exp ih 	 �uðqÞ � �uð0Þ½ 


� �	 


� f 2

1� f 2
: ð14Þ

As the angular distribution of the diffuse scattering intensity

depends not only on the type of pores but also on their spatial

distribution, the correlation function in equation (13) can be

represented as a convolution of the pore distribution function

WðqÞ and the intrinsic correlation function gðqÞ:

GðqÞ ¼
R

1

�1

dq0 Wðq0Þgðq0 þ qÞ: ð15Þ

For randomly distributed pores, the correlation function GðqÞ

is directly transformed into the intrinsic correlation function

gðqÞ.

Taking equation (13) into account and making use of the

well known properties of Fourier transform convolution, the

correlation volume can be represented by

TðqÞ ¼ �ðqÞFðqÞ; ð16Þ

where

�ðqÞ ¼
R

þ1

�1

dq gðqÞ exp iq 	 qð Þ ð17Þ

is the Fourier transform of the self-correlation function for a

single pore (pore correlation volume) and

FðqÞ ¼
R

1

�1

dq expðiq 	 qÞWðqÞ ð18Þ

is the Fourier transform of the pore spatial distribution func-

tion (diffuse scattering interference structure factor). The

correlation volume was introduced (Nesterets & Punegov,

2000; Pavlov & Punegov, 2000) in analogy to the common

correlation length. At a reciprocal lattice node (q ¼ 0), the

correlation volume becomes equal to the pore volume:

�ð0Þ ¼
R

þ1

�1

dq gðqÞ ¼ Vpor: ð19Þ

Let us consider now a model medium with its crystalline

order disturbed by randomly distributed cylindrical voids of

radius R and cylinder height lz (Fig. 6). The self-correlation

function of such pores can be represented as

gðqÞ ¼ g0ð�x; �y;RÞgzð�z; lzÞ: ð20Þ

Here the vertical correlation function along the surface

normal has the form

gzð�z; lzÞ ¼
1� �z

�

�

�

�=lz; �z

�

�

�

� � lz;

0; �z

�

�

�

�> lz:

�

ð21Þ

The two-dimensional lateral correlation function is given by

g0ð�0;RÞ ¼
2

�
arcsin 1�

�2
0

4R2

� 
1=2

�
�0

�R
1�

�2
0

4R2

� 
1=2

for �0 � 2R ð22Þ

and

g0ð�0;RÞ ¼ 0 for �0 > 2R: ð23Þ

The statistical Debye–Waller factor

fP ¼ exp �cp�R
2lz

� �

ð24Þ

depends on the pore size and concentration cp. Substituting

(20) into (17) one obtains the expression for cylindrical pore

correlation volume:

�ðqÞ ¼ VpNðq;R; lzÞ; ð25Þ

where

Nðq;R; lzÞ ¼
2 J1ðq0RÞ

q0R

� �2

sinc
qzlz

2

� 
� �2

; sincðxÞ ¼
sinðxÞ

x
;

ð26Þ

and J1 is the first-order Bessel function. In our experiment the

diffuse scattering is registered in reciprocal space. In this case,

for numerical calculations one can use the correlation area

�ðqx; qzÞ ¼
R

1

�1

�ðqÞ dqy: ð27Þ

Theoretical calculations of the diffuse scattering angular

distribution show that the intensity distribution along the

projections qx and qz of the vector q in reciprocal space have

an oscillatory structure. It is caused by the fast oscillatory

behavior of the angular distribution function Nðq;R; lzÞ. As a

rule, experimental measurements of diffuse scattering carried

out on porous single-crystal layers do not reveal any such

oscillations. The absence of oscillation may be due to two

factors: the presence of pores of different cross section and

drawbacks of the experimental technique, mostly insufficient

statistics.
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Figure 6
The model of cylinder pores with length lz and circular cross section with
radius R. A geometric representation of the intersection of two cylinders
(a) and the view from the cylinder top of the intersection (gray shading)
of two circles (b).
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Here, following the formalism of Punegov (2009), let us

take a statistical averaging over the pore size L, estimating the

lognormal distribution

pLN Lð Þ ¼
1

ð2�Þ1=2L �LN
exp �

ln L=hLið Þ þ �2
LN=2

� �2

2 �2
LN

( )

ðL � 0Þ; ð28Þ

where hLi ¼
R1

0 LpLNðLÞ dL is the mean pore size in the

vertical or lateral directions. The dispersion of the pore size

�2
L ¼

R1

0 ðL� hLiÞ
2
pLNðLÞ dL and the maximum position of

the size distribution Lmax convert to �2
L ¼ ½expð�2

LNÞ � 1
hLi2,

Lmax ¼ expð�3�2
LN=2ÞhLi. For small size variations, the

distribution will become normal: �2
L ffi �2

LNhLi
2, Lmax ffi hLi.

Ordered pores are characterized by short-range structural

order, which can be described by a paracrystalline model

(Hosemann, 1950; Eads & Millane, 2001). For crystalline

media without large-scale distortions and homogeneous in the

lateral direction, the interference structure factor (18) will be

written as

Fðqx; qyÞ ¼ 1

þ
2

N
Re

Zðqx; qyÞ ½1� Zðqx; qyÞ
N � ½1� Zðqx; qyÞ
N



� �

½1� Zðqx; qyÞ

2

 !

;

ð29Þ

where

Zðqx; qyÞ ¼
R

þ1

�1

d�x

R

þ1

�1

d�y exp½iðqx�x þ qy�yÞ
H1ð�x; �yÞ;

ð30Þ

N is the number of pores in a selected lateral direction and

H1ð�x; �yÞ is a function of the probabilistic location of the first

neighbor pores in the lateral plane.

As the experimental data are recorded in the plane qxqz, the

structure factor for the calculations should be taken as

FðqxÞ ¼
R

1

�1

Fðqx; qyÞ dqy: ð31Þ

The intensity of diffuse scattering near a reciprocal lattice

node can be calculated with the help of

I
ðdÞ
h qx; qz
� �

¼ ah
�

�

�

�

2
1� f 2
� �

�ðqx; qzÞFðqxÞ�ðqx; qzÞ: ð32Þ

The term

�ðqx; qzÞ ¼
R

Lx=2

�Lx=2

dx
R

Lz

0

dz exp �2�zð Þ I
ðcÞ
0 ðqx; qz; x; zÞ ð33Þ

takes into account the lateral size of the incident beam and the

influence of primary extinction on the recorded signal through

the angular and spatial variation of the transmitted beam

I
ðcÞ
0 ðqx; qz; x; zÞ.

One should mention that the self-correlation volume

�ðqx; qzÞ describes the diffuse scattering by single pores,

whereas the interference structure factor FðqxÞ represents the

short-range order. For randomly distributed pores there is no

interference diffuse scattering and FðqxÞ ¼ 1.

5. Data evaluation and discussion

The numerical modelling of the experimental RSMs from

investigated samples is a complex task owing to the large

number of observed scattering effects and to the great volume

of experimental data. However, the accurate interpretation of

experimental data allowed us to significantly simplify the

calculations. Firstly, the dynamical scattering components are

concentrated in narrow angular bands and have virtually no

overlap with the diffuse scattering from pores. Secondly, the

diffuse scattering from structural defects in the bulk is weak

compared to that from pores and can be neglected. Finally,

one can obviously discriminate the dynamical effects in the

diffuse scattering from pores as the former have a very weak

influence on the general form of the maps. This allows the

reduction of the quantity of data that must be treated by map

fitting.

The diffraction curve was calculated in a recurrent proce-

dure, taking into account the diffraction on the layer and

substrate with equation (11). The expression for X-ray diffuse

scattering I
ðdÞ
h ðqx; qzÞ is given in equation (32). The total

intensity, including coherent and diffuse components, can be

found by direct summation:

I
ðtÞ
h ðqx; qzÞ ¼ I

ðcÞ
h ðqx; qzÞ þ I

ðdÞ
h ðqx; qzÞ: ð34Þ

The approach described above was used by us for numerical

simulation of X-ray scattering from porous crystals.

The fitting procedure was implemented by least-squares

minimization of

� ¼
1

M

X

M

m¼1

Iexpðq
ðmÞ
x;z Þ � Icalcðq

ðmÞ
x;z Þ

Iexpðq
ðmÞ
x;z Þ

" #2

: ð35Þ

Here Iexpðq
ðmÞ
x;z Þ and Icalcðq

ðmÞ
x;z Þ are the experimental and theo-

retical RSM intensity, Iexp;calcðq
ðmÞ
x ; qziÞ and Iexp;calcðq

ðmÞ
z ; qxiÞ are

cross sections of the RSMs over qðmÞ
x and qðmÞ

z for ! and !–2�

scanning. M is the dimension of the data array. To reduce the

calculation time, we have rendered the intensity maps to 200�

200 arrays with equal angular steps. As a first step, the

coherent component IðqðmÞ
z ; x ¼ 0Þ with static Debye–Waller

factor was calculated. Further on, the full (coherent and

diffuse) scattering was fitted simultaneously for nine I(qx) and

seven I(qz) sections of RSMs. The iterations were stopped

when the residual � became lower than 5–7% for all sections.

The main variables were the porous layer thickness Lz, the

statistical factor f, the pore concentration N, the radius Reff,

the branch length l, the correlation length Lc for all pore

groups and the degree of spatial anisotropy. The scattering

from long and short branches was assumed to be independent.

The calculation of RSMs was carried out for the 004 InP

reflection of �-polarized X-ray radiation with wavelength

0.124 nm. The Fourier component values of dielectric sus-

ceptibility were taken to be equal to 
InP
0 ¼ ð�2:68þ i0:024Þ�

10�5 and 
InP
h ¼ ð�1:46þ i0:02Þ � 10�5 (Stepanov & Forrest,

2008, http://sergey.gmca.aps.anl.gov/).

The fitted cross sections and maps for different azimuthal

angles are shown in Figs. 5 and 7, respectively. The fits were
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made taking into account the presence of two groups of pores.

Every group contained short and long pores. Among the short

pores, 93% of them were directed along [111] and were

correlated, while the 7% directed along [111] were distributed

randomly. Long pores of both groups were not correlated and

were distributed along the [111] and [111] directions in the

same proportion as short pores. The total volume of the

subsurface layer occupied by pores was divided between short

and long pores in a ratio of nine to one.

The calculated cross sections along qx (Figs. 5a, 5c and 5e)

show a very good agreement with experiment. The qz sections

partially deviate from experiment. Most notably, this deviation

is in the range�40 mm�1 around the reciprocal space node for

’ = 0 and 90�. In contrast, at the angle ’ = 45� theory coincides

well with experiment. We assume that our model of porous

layers is not sufficiently correct, because the diffuse scattering

from short segments of inclined pores partly ordered along the

surface normal is not included, and the deformations in the

crystalline skeleton of the porous layer are also ignored. In the

RSMs (Fig. 7), these inconsistencies are less visible owing to

the dynamical range of the intensities.

The fitted RSMs at ’ = 0 and 90� show a very good coin-

cidence within the areas free of dynamical effects and

experimental artifacts (Figs. 7a, 7b, 7e and 7f)

The model calculations show that the ‘short branches’ give

the main contribution to the diffuse scattering. An explanation

for that can be found in the electron microscopy results

(Fig. 1b). The long branches are in reality formed by chains of

segments with variable form and size, while the diffuse scat-

tering is especially sensitive to any form variation. Therefore,

the signal from correlated objects comes mainly from the more

stable short pores.

Scattering from inclined pores is seen as ridges in the RSMs

over the whole angular range. The inclination of the ridges to

the coordinate axes for ’ = 0 and 90� coincides, which confirms

the pore orientation along the h111i direction. However, at the

azimuthal position ’ = 45� the inclination angle � between the

ridge and the qx axis increases to 48�, while a model for a pore
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Figure 7
Experimental (a), (c), (e) and theoretical (b), (d), ( f ) reciprocal scattering maps for a sample with a porous 6 mm-thick layer in different azimuthal
positions: ’ = 0� (a), (b); ’ = 45� (c), (d); ’ = 90� (e), ( f ). 004 InP reflection, energy E = 10 keV.
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with negligible radius predicts the decrease of this angle to

�26�. This feature clearly indicates that the form of the pores

must necessarily be included in the model. The calculated map

for ’ = 45�, shown in Fig. 7(d), has two types of ridges with

angles � ’ 25 and 65�. The emergence of additional ridges has

a simple geometrical explanation. In our model the projection

of a pore onto the diffraction plane is approximated by a

rectangle of length lz with base 2Reff. The diffuse scattering,

depending directly on the Fourier transform, would produce

two types of ridges, which will vanish for ’ = 0 and 90�

correspondingly. In the case of inclined pores, the intersection

of a pore with the scattering plane will form an ellipse or a

truncated ellipse. In a real sample, the pores cylinders have a

significantly fractionary form and contain all sorts of voids,

which makes the RSM more complex.

Table 1 shows the main structural parameters defined from

the X-ray scattering data and independently from the electron

microscopy images. The best agreement is achieved for the

thickness of the porous InP layer Lz = 5.3 � 0.3 mm, porosity

P = 0.4, Debye–Waller factor f = 0.60 � 0.05 and negligible

lattice deformation. The Lz value obtained from X-ray data is

about 0.5 mm lower than that from SEM. This could be due to

effects at the interface between the porous layer and the

substrate. The obtained Reff values for the effective radii of

long and short branches demonstrate a good agreement with

the SEM results. A more detailed analysis for the ’ = 0

position also shows that the lateral correlation length L[110] of

the short branches is in very good agreement with the SEM

images. The X-ray data provide, in addition, a quantitative

value for the degree of pore anisotropy. This also proves that

there is no ordering in the pore distribution at ’ = 90�, i.e.

along the [110] direction. The significant discrepancy in the

pore length values obtained by different methods is caused by

the difference in the underlying structure description. The

SEM values are obtained by measuring the lengths of the pore

slices visible in the images. The X-ray model, in contrast, takes

into account the real segmented structure of single pore

branches and considers the mean segment dimension as the

basic parameter of the pore length.

6. Conclusion

To summarize, in this work we have used X-ray high-resolu-

tion reciprocal space mapping for the investigation of X-ray

scattering from porous buffer InP layers with inclined pores. A

theoretical model in the frame of the statistical dynamical

theory for cylindrical pores was developed and applied for

quantitative data evaluation. The comprehensive analysis of

experimental data allowed us to investigate and describe

theoretically the main dynamical and interference effects in

diffuse X-ray scattering. The theoretical RSMs were fitted to

experimental ones for different azimuthal positions of the

sample. Mathematical treatment of the experimental data

allowed us to extract the mean values for the main porous

layer parameters such as porosity, form and pore orientation.

It is shown that the RSM method can provide quantitative

information in the case of nondeformed and buried porous

layers that is not attainable with conventional diffraction and

reflectometry methods. The results are in a good agreement

with scanning electron microscopy data.
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Delimitis, A., Kehagias, T. & Karakostas, T. (2008). Phys. Status
Solidi A, 205, 2577–2580.

Olekhnovich, N. M. & Olekhnovichi, A. I. (1981). Phys. Status Solidi
A, 67, 427–433.

Pavlov, K. M. & Punegov, V. I. (2000). Acta Cryst. A56, 227–234.
Punegov, V. I. (1993). Phys. Status Solidi A, 136, 9–19.
Punegov, V. I. (2009). Crystallogr. Rep. 54, 391–398.
Punegov, V. I. (2011). Tech. Phys. Lett. 37, 696–699.
Punegov, V. I. & Kharchenko, A. V. (1998). Crystallogr. Rep. 43,
1020–1025.

Punegov, V. I. & Lomov, A. A. (2008). Tech. Phys. Lett. 34, 238–
240.

Punegov, V. I., Lomov, A. A. & Shcherbachev, K. D. (2007). Phys.
Status Solidi A, 204, 2620–2625.

Punegov, V. I., Nesterets, Y. I. & Roshchupkin, D. V. (2010). J. Appl.
Cryst. 43, 520–530.

Sitnikova, A. A., Bobyl, A. V., Konnikov, S. G. & Ulin, V. P. (2005).
Semiconductors, 39, 523–527.

Soldatenkov, F. U., Ulin, V. P., Yakovenko, A. A., Fedorova, O. M.,
Konnikov, S. G. & Korolkov, V. I. (1999). Tech. Phys. Lett. 25, 852–
854.

Stepanov, S. & Forrest, R. (2008). J. Appl. Cryst. 41, 958–962.
Takagi, S. (1969). J. Phys. Soc. Jpn, 26, 1239–1253.
Tiginyanu, I. M., Kravetsky, I. V., Langa, S., Marowsky, G., Monecke,
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