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Abstract

The O (ag Tf- CF(Cy)) contributions to the transition matrix element Ag, ( relevant for the variable fla-
vor number scheme at 3-loop order are calculated. The corresponding graphs contain two massive fermion
lines of equal mass leading to terms given by inverse binomially weighted sums beyond the usual harmonic
sums. In x-space two root-valued letters contribute in the iterated integrals in addition to those forming
the harmonic polylogarithms. We outline technical details needed in the calculation of graphs of this type,
which are as well of importance in the case of two different internal massive lines.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The precision determinations of the strong coupling constant o (M%) [1] and the parton den-
sities, cf. e.g. Ref. [2], in deep-inelastic scattering require the knowledge of the heavy flavor
corrections to 3-loop order. The heavy flavor corrections were calculated at NLO in semi-analytic

* Corresponding author.

http://dx.doi.org/10.1016/j.nuclphysb.2014.05.028
0550-3213/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.



J. Ablinger et al. / Nuclear Physics B 885 (2014) 280-317 281

form in [3].! To avoid contributions of higher twist, the analysis has to be restricted to large
enough values of Q2. It has been shown in [5] that for Q2 210 m?, with m the heavy quark mass,
the heavy flavor contributions to the structure function F>(x, Q%) are very precisely described
using the asymptotic representation in which all power corrections o (m?/Q?)*, k € N, are ne-
glected. In this limit the heavy flavor Wilson coefficients can be calculated analytically. They
are given by convolutions of massive operator matrix elements (OMEs) and the massless Wilson
coefficients, cf. Ref. [5,6]. The massless Wilson coefficients are known to 3-loop order [7]. In
the past the asymptotic O(ozf) corrections were calculated in Refs. [5,8—13] in the unpolarized
and polarized case, including the O(ozfa) contributions, and in [14] for transversity. The heavy
flavor corrections for charged current reactions are available at 1-loop and in the asymptotic case
at 2-loops [15].

At 3-loop order, a series of moments has been calculated for all massive OMEs for N =
2,...,10(14) contributing in the fixed and variable flavor scheme [6]. All logarithmic terms to
3-loop order including the contributions to the constant term due to renormalization have been
computed in Ref. [16]. The 3-loop heavy flavor corrections to Fy (x, Q2) in the asymptotic case
were calculated in [16,17]. First results for general values of N have been obtained for all OMEs
for the color factor Ng TI%C F.A [18,19] and 3-loop ladder, Benz-, and V-topologies [20,21].

First oeg’ TI%C F.A-contributions at general N were calculated for the flavor non-singlet and
pure-singlet terms in [22] for two heavy quark lines carrying the same mass. Furthermore, the
moments N = 2, 4, 6 in case of the OMEs contributing to the structure function F>(x, Q%) with
two different heavy quark masses were computed in [22,23]. In all the above cases the massive
OMEs are calculated for external massless partons which are on-shell. Recently, the complete
3-loop OMEs Ag,, A?;,Q and Azsq and the associated Wilson coefficients in the asymptotic
region have been calculated in Refs. [24,25]. Also the case of massive on-shell external lines has
been treated in [26] recently.

In the present paper we calculate the O(af Tﬁ CF,4) corrections to the massive OME Agg o
with local operator insertions on the gluonic lines at general values of N. This matrix element is
of importance to establish the variable flavor number scheme (VFNS) at 3-loop order. The terms
of O(a?’ T%C F.A) derive from graphs with two internal massive fermion lines of equal mass.
Unlike the foregoing 3-loop results for massive OMEs at general values of N [16—18,24,25] new
functions beyond the harmonic sums [27] appear, which belong to the finite nested binomially
weighted harmonic sums [28]. Here they are of the type”

Nk
1 (2N 45 Sz (k
4_N<N)Z [aZl(c)’ (1.1)
k=1 k ( k )
which have been considered in [30] before. Here S; (N) denotes the nested harmonic sum
N . k
(sign(b))
Spa(N) =Y =SS, Sy =1, b.a; € Z\{0}. (1.2)
k=1

More involved sums of this type contribute to the massive V-topologies, cf. Ref. [21]. For
a larger class of diagrams the calculation of the corresponding graphs is performed using
Mellin—Barnes representations and requires cyclotomic harmonic sums and polylogarithms in

I A fast and precise numerical implementation in Mellin space has been given in [4].
2 Infinite binomial sums of this kind have been studied in Ref. [29].
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intermediary steps. The corresponding nested sums are then solved using the summation and
representation techniques encoded in the packages Sigma [31], HarmonicSums [32-34],
EvaluateMultiSums, SumProduction [35], and RhoSum [36]. For a few Feynman dia-
grams, it proved to be efficient to calculate them using integration-by-parts [37]. The correspond-
ing master integrals were computed applying systems of linear differential equations.

The paper is organized as follows. In Section 2 we discuss the structure of the gluonic operator
matrix element. At O(st3 Tlg CF.a) 39 Feynman diagrams contribute. The calculation methods to
obtain the result at general values of the Mellin variable N are outlined in Section 3 in detail. In
Section 4 we present the results for the OME and also obtain the contributions o T% CF, 4 to the
gluonic 3-loop anomalous dimension yg,. Section 5 contains the conclusions. In Appendix A we
present the results for a series of scalar integrals which emerge in the present calculation.

2. The operator matrix element

The massive operator matrix element A, o is the expectation value (g|Og|g), of the gluonic
operator

Ogsﬂl UN = 2iN_ZS SP[FMD!DMZ e DH«N—I F

.....

“M N] — trace terms 2.1)

between massless on-shell external gluon states. We will work in Rg-gauge. Therefore also the
corresponding ghost graphs have to be considered. In Eq. (2.1), S and Sp denote the symmetriza-
tion of the Lorentz indices and color trace, respectively; F),, is the field strength tensor of QCD
and D, denotes the covariant derivative. The OME has been calculated to O(af) in [9] and
including also terms linear in ¢ in [10] correcting the previous result.

The renormalized expression of Ag, o to O () was derived in [6] and the contributions to
0(0:53 T I%N FCF ) were calculated in [19]. The OME A, o obeys the expansion

1 oo
Agg.o(Na) = - [1+ (—1)N]{1 + ZafA;’;{Q(N)}, 2.2)
k=1

with ag (,u,z) =y (,u,z) /(4m). In the MS scheme with the heavy quark mass m on-shell? it is given
by

VIS 1
(3),MS 0).~(0 0 0
Agelo = _{V;q)yq(g) (Vq(q) - V;g) — 60 —4n¢Po.o — 10po.0)

48
2
m
—4(y Q1280 + 7Po.0] + 483 + 14Bo.0Po + 1283 o) Po.o } In® (7)
1, . R A
+ IO + 0 =) G RY +4r g

451 0) 2 m?
— 494 1Bo + 2Bo.01 + 4181 + B1.01Bo.0 + 2v¢4 B1.o} In P

1
[R5 _ @) 50 _ (2) ) ,(2)
+ 16{8ygg 8nyag, oVqe —16dg, o (2P0 +3Po.0) +8v,gag,

1 ~
+ 830 Bl + vay Pag €2 vy — va9 + 6Bo +4n 1 Bo.0 + 660.0)

3 For the representation in the MS-scheme for the heavy quark mass, see Section 4.
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0 m’
+4B0.002(vsy +2B0)(2B0 + 3B0.0)} 1n( 2 )
2 2 2
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Vel Pag 43
+ g (g — e — 2217+ 11B0.0 — 660)

.30 Bo. 083

5 (1Bo.0 — 2Boly) +20Bo+ 6B0.01o.0 — 4B;)

488 1y L san L Bl L) y
— g eg + 7))+ =5 (P — —2p1-2B1.0)

Sm( b ) (1) 2
+ —(Sa ot 243m ﬂo,Q +88m, " Bo,o + ¢280,0P0 + 9§2ﬁo,Q)

4
0 0 1
+8m( )(,3() Q(Sm( ) + 7/(1)) + (Sm( )()/(0))/;2) +2,30’ng(2)

+4B0.0B0 + 8683 o) — 26my" o.g +ale o 2.3)

Here SmEk) are expansion coefficients of the renormalization constants for the mass, B;, i o

are coefficients of the B-functions (including mass effects), i is the Riemann ¢-function with
k e N\{0, 1}, ai(jz), Ezi(jg) are two loop contributions to order £ and &', respectively, and y; iy Vij
are the anomalous dimensions. Quantities with a hat in Eq. (2.3) are defined by

f=fny+1)—f@np), 2.4)
see Ref. [6]. The unrenormalized OME Ag; 0 also receives contributions from the vacuum po-
larization insertions on the external lines

o0

A (p? 2, 1?,62) = i8 [~ guwp® + Pup Z KI® (p2om?, 1), (2.5)

% =11®(0,m?, u?) (2.6)
such that

2(3) 2(3),1PI (B FOJIPLAE1) A (D) /@ L A A A

Agg’Q _A 2.0 -1 Agg,Q I 2Agg’Q17 +Agg’Q17 I7 2.7

(3 05 a(3,1é a(3,2é
88 88 88 3)
=—3 t—g Tt Tage (2.8)

All contributions to Eq. (2.3) but the constant terms a(3) are known [5,8—10,13,38]. In particular,
all the logarithmic contributions have already been obtained for general values of the Mellin
variable N [16,39].

In the following we calculate the O(af T%C F.A)-contributions to the massive gluonic OME.
Before presenting the results, we give a detailed outline of the calculation methods used.

3. The methods of calculation

The TIEC F,A-contributions to A(Sg) o are given by Feynman graphs with external on-shell glu-
ons (ghosts), a local operator insertion on gluon lines and vertices, and two closed massive quark
lines of the same mass m. A calculation along the lines of Refs. [18,20] leads to infinite series
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which diverge polynomially with degree N. The way to cure this issue will be to separate the
variable N from the infinite series by leaving one integral unintegrated. This last integral will
then be solved after summation in the space of cyclotomic harmonic polylogarithms [33]. Most
of the graphs have been calculated in this way. For a few graphs, we have applied integration by
parts and differential equations, see Section 3.5. Throughout the calculation, the results at general
values of N are mutually compared to the corresponding moments calculated using MATAD [40].

3.1. Feynman parameterization

The list of graphs was generated with QGRAF [41] and written as momentum integrals using
the Feynman rules of [6,42].* The color-algebra was performed using the code Color [44].
The momenta were integrated at the cost of introducing a Feynman parameterization, treating
each independent loop separately and introducing for each one of them a family of Feynman
parameters. This makes each diagram a linear combination of integrals of the form

operator polynomial
n
_ _ . - Po(x1,...,xp; N)
dxi...dx ( éf)xvl b=t x%(1 = xp)bi ,
f " 1_[ ;,LJ llj[ ! l [PD(Xl,...,xn)]y
N ——

. denominator
non-monomial prefactor polynomial

families =
[0,1]" amilies f monomial prefactor

3.1

where for each Feynman parameter family f we used the short-hand notation

st 55(1 —Zx), (3.2)

xef
and v; are integers denoting the propagator powers. The exponents «;, f;, y are of the form
(a+be/2) witha,b € Z, and N is the Mellin variable. The operator polynomial is not strictly a
polynomial, but in all following cases the §-distributions and Heaviside functions being present
in addition can be removed in such a way that the misnomer is corrected, and the operator poly-
nomial is indeed a polynomial of maximum degree N € N.
The §-distributions can be integrated using the relations

1

/de(l—x—Y)f(x):@(Y)G(l—Y)f(l—Y), 3.3)
0

and
1 1
/dx@(l—x—Y)f(x):fdx@(l—Y)(I—Y)f(x(l—Y)), (3.4
0 0

where Y is either a sum of Feynman parameters or a single one. The Heaviside 6-function is
defined as

0(x) ={

1, x>0,

0, x<0O. 3.5)

4 For the scalar Feynman rules used for the calculation of scalar prototype graphs, see [43].
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These relations are applied in such a way as to keep the operator polynomial as simple as possi-
ble. It is indeed possible in all following cases, to map the operator polynomial into one single
Feynman parameter, if one uses the following trick: In some cases it is useful to reconstruct a
§-distribution by

1

6(X)0(1 —X) f(1 —X)Z/dyf?(l —X-yfl-=X)
0
1

=/dy3(1 —X=nf, (3.6)
0

where X represents a sum of Feynman parameters. Of course the order for the elimination of
the Feynman parameters from the 6-functions has to be chosen such that the left hand side of
the above equation matches. In this way, an argument (1 — X) consisting of several Feynman
parameters is exchanged for only one Feynman parameter. This trick is equivalent to a set of
coordinate transformations mentioned in [45] and also used in the calculation of the 2-loop OMEs
in [10,13,18,19,46,47]. The above trick has the advantage of giving a clear guideline for how to
simplify the polynomial in the N-bracket of the Feynman integrals under consideration.

It is worth noting that there are two Feynman parameters, which only occur in the monomial
prefactors of the integrand as well as in the operator polynomial. These are due to the fact that
the incoming and outgoing momenta are massless. The integral over these Feynman parameters
can thus be performed easily, giving simpler N -brackets.

The above methods are applied in order to avoid the proliferation of N. In fact, in all diagrams
one can achieve that N only occurs in the exponent of one of the Feynman parameters, allowing
to effectively decouple N from the solution of infinite sums. This property of the calculation is
of crucial importance, and also carries over to the case of two lines of unequal masses which,
however, will be the subject of a future publication.

3.2. Mellin—Barnes representation

The remaining parameters still occur in the denominator polynomial. It has the form (A + B)
where A and B are products of elements x; or (I — x;), for Feynman parameters x;. Only in
the cases of graphs with a massive line that runs through four edges of the graph, e.g. graphs in
Figs. 5 and 6 in Appendix A, a factor (1 — x(1 — y)) in either A or B occurs. A Mellin—Barnes
(MB) integral [48,49] is then introduced by the substitution, see e.g. [50,51],

1 1 " Aé
Y = — [
A+B)T = s /dm OF(y+8) 7. (3.7

This procedure is equivalent to splitting the mass-term off the propagator-like part that occurs
in the Feynman parameter representation of a massive vacuum polarization diagram, before pro-
ceeding with successive parameterization and momentum integration.

In the cases that the products A, B from above factorize completely, all integrals can be
performed in terms of Euler’s Beta-functions. In the remaining two cases, in which a factor
(1 — x(1 — y)) remains, the integrals represent a generalized hypergeometric function 3 F, [52,
53], which in the scalar diagrams is already given in a form such that it reduces to a ratio of
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I'-functions. In the corresponding physical cases, these functions lead to double sums, which
can be constructed such that they converge, still keeping N separated from the sums in the way
described above.

At this point in all the diagrams only one Beta-function remains that contains both N and &.
This function is rewritten in terms of a Feynman parameter integral, i.e. for corresponding o
and 8

1
B(N +& +a, —s+ﬂ)=/dxxN+5+“—l(1—x)f‘—f—l. (3.8)
0

The reason is that the contour of the Mellin—Barnes integral cannot be closed to a single side.
One can see this from two representations. On the one hand, the Beta-function which contains N
and & has the form

I'(N+é&+a)(=&+B)

B(N+&+oa,—£+B)= RETEY)) ) (3.9

so that the denominator drops out of the MB-integral. Hence, if the contour is closed to one side
and written as the sum of residues, then, due to its convergence condition, for every set of values
of the propagator powers there is an Ny so that for N > Ny the sum is divergent.

On the other hand, if the Beta-function is written as a Feynman parameter integral over x,
then the factor

1—x\*
( r ), (3.10)

occurs in the integrand. Here a distinction is necessary between values x < % for which the

contour may be closed towards £ — oo, and values x > % for which £ — —o0 is the convergent
choice. For simplicity, we change the order of the £-integration such that the contour can be
closed to the right in all cases.

After that the quantity raised to the power £ is mapped onto a single integration variable T

T 1
T = 0,1 =— 0, -
1_xe[,] < X 1+T6[’J’
r="Ycn & x=—_elln
= ’ Tirr 2 )
1
with dx = ———— dT. 3.11)
(1+7)2

Now it is obvious that all contours have to be closed to the right before applying the residue
theorem.

It is worthwhile having a look onto convergence issues of the procedure described so far. First,
the Mellin—Barnes integral is introduced in the integrand of the multiple Feynman parameter
integral. Employing the nomenclature of [51], the contour follows the usual requirement that
left-poles (poles of functions I'(--- — z)) are to the left of the contour, and right-poles (poles of
I'(---+ z)) are to the right of the contour. If left- and right-poles are interleaved on the real axis,
the contour winds around them separating the two types of poles.

Of course, contours of the above kind can only be found, if the right-poles are separated
from left-poles. In cases where this is not obviously the case, we enforce such a separation by



J. Ablinger et al. / Nuclear Physics B 885 (2014) 280-317 287

introducing a regularization parameter in a consistent manner throughout the Feynman diagram.
So it is most convenient to keep symbolic propagator powers from the beginning, and to use
substitutions of these symbolic quantities for the introduction of regulators. We will see later
at which point the expansion into a Laurent series in these parameters can be performed most
conveniently.

The classical procedure for calculating Mellin—Barnes integrals in particle physics proceeds
by deforming the contour and subtracting a finite number of residues, such that the remaining
contour integral represents a regular function in ¢ [51,54-56]. In that case, the expansion can
be performed on the integrand level, which simplifies the integrand such that Barnes lemmas
are applicable. However, since factors of 7% occur in the arguments of the contour integrals, cf.
Egs. (3.8), (3.11), no Barnes lemmas [49] can be applied.5

In the present calculation, it appears more suitable to write down the sums of residues and
generate the necessary simplifications and algebraic relations by symbolic summation methods
implemented in the package Sigma [31], equipped with suitable limit procedures for infinite
sums.

When residues are calculated and the corresponding sums are written down, one has to per-
form a Laurent expansion in the regularization parameters. Here it is important to observe the
singularity structure.

One therefore brings the I"-function arguments to a standard form, such that all of them are
positive for vanishing regulators

RNy ACHINEE)

'l —x)
Here (x) and |x] represent the fractional and integer parts of the variable x, respectively. The
regulators are assumed to be small enough, such that they only contribute to the fractional part.
The Heaviside functions are removed by commuting them with summation operators. This can
be done using the following operator relations

Ix)=60(lx] —1)I'x)+6(—[x])(-1

(3.12)

b

Socran=o([-5]-a)o(o-[5]) & wo(o-[-5] )5

i=[c/d] i=a

b c c /) c b
O(c—d-i)=0(|=|—al)o|lb—|=|—1 ol = |—b . 3.13
e FI R G P RO DR (I DD M
l=a 1=a 1=a
Once the 6-functions are free of any summation parameters, they can be evaluated. Note that they
are also free of the Mellin variable N, since it had been separated from the sums by construction.

Once the I'-functions have been reflected such that the integer parts of their arguments are
positive using the relation [53]

Y. I'(x)I'(1 —x)
I'(N+1-x)
their expansion in the artificial regulators is straightforward.
Yet one additional preparation is necessary for the expansion in the dimensional regulator ¢,

since the Feynman parameter integrals may not be well defined in the Lebesgue sense for 0 <
& < 1, but rather as an analytic continuation in € — 0. The expressions are of the form

I'(—N +x) = (-1 , xeR, NeN, (3.14)

5 For a list of corollaries see [51]. For an automated use of Barnes’ lemmas see the Mathematica package
barnesroutines [57].
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1
fle)= /dx xF g (x), (3.15)
0
which only converges if ¢ > a — 1. Nevertheless, using integration by parts, one can shift this
integrand such that it is integrable for 0 < ¢ < 1. For the form above with a > 1, the relation

1 1

_ g(l) 1 / 1
d e—a = — d e-atlyl 316
/ xxTe(x) e—a+1 e—a+1 A g ( )
0 0

has to be iterated (a — 1)-times. Here the function g(x) must have sufficiently many regular
derivatives on [0, 1], which is indeed the case for the integrals in question. Then the integral
represents a regular function in ¢, the integrand is measurable for 0 < e < 1 and thus the Taylor
expansion commutes with the integration.

Finally, the expansion of the sums in the dimensional regulator ¢ can be done using the pack-
age EvaluateMultiSums. It also manages the call of Sigma routines and performs limits
of many expressions. In particular, the package SumProduction was used to condense the
huge expressions into a tractable number of compact but large sums and automatically apply the
summation technologies to obtain the final results.

The result of expansion and summation yields an expression which still depends on one in-
tegration variable 7, and which contains S-sums [34,58] and cyclotomic S-sums [33] of this
variable. They can be converted into (cyclotomic) harmonic polylogarithms (HPL) [33], e.g.

_ Huo(VT) n How0(WT)  Han.woWT)
VT VT VT '

The conversions to iterated integrals are performed using ideas of Ref. [33] and applying auto-
mated routines of the package HarmonicSums [32-34].

The conversion returns iterated integrals evaluated at 1, but with letters that depend on the
remaining integration variable. They will be denoted by

So,1,1,2.1,)(=T, 1;00) = (3.17)

Jlo.1(x) == fo(xy), (3.18)
where f, is a letter from a cyclotomic alphabet
{fo(x) , i) = s [0 = ——, fuok) = gL
Janx) = T x } (3.19)

Therefore a procedure is needed that maps the class of iterated integrals appearing here onto (cy-
clotomic) HPLs with the integration variable in the argument. There is such a procedure which
was used for deriving properties of two-dimensional HPLs [59] and in the method of hyperloga-
rithms [20,21,60]. It makes use of the fact that differentiation of a certain type of iterated integrals
with respect to variables appearing in the index leads to a drop in the weight of the function, e.g.

1

9 9 CH.() 2
—H_, ()= = — , 0. 3.20
ax v (= Bxfx—i—y,/l—i—z I—x -1 7 (3.20)

0
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In this way the problem can be traced back to properties of rational functions, solving the problem
recursively at a lower weight and integrating again over x, where in each recursive call a constant
has to be determined.

However, in the case of letters containing polynomials of degree 2 or more, this procedure is
not applicable directly, since in general the weight does not drop due to differentiation, e.g.

0 1 X
— H, _1(1)=——H, _1(1) = =——H, 1
oy Hi4.0.x) 1(D pRCICXURS] 1(D 21 [@1),x (D)
H (1) 4 2@ (3.21)
X2+ ) @ORYT ATy '

Here the following procedure will be useful. Let us distinguish the letters using indices o and
denote the corresponding rational functions with f,(x). One can form new letters by scaling the
argument of the rational functions with a variable y, cf. Eq. (3.18). If one such letter is built into
a cyclotomic HPL with argument x = 1, there is an algorithm for removing the parameter y from
the index, such that it occurs in the argument.

At first, by virtue of the shuffle algebra, the weighted letter is brought to the right-most posi-

tion. Then indexing general rational letters with «i;, i =1, ..., n, we find the algorithm
1 Xn—2 Xn—1
Hal,...,a,,,l,[an,y](l) = /dxl foq (x1)... / dxn_1 fan,I (Xn-1) / dxp foz,, (yxn)
0 0 0
y 1
1
= | dx [ dxifu G
0 0
Xn—2
X / dxn—lxn—lfccn_l (xn—l)f(x,l(xn—lxn)
0
1 r
= “eyel. HPL" + = [ iy fo, () Hoy..oy atirt D 322)
0

where a partial fraction decomposition is performed in the last step. After that the formula may
be recursively applied where the final step is obviously

1
Hio, xy1(1) = x—zHan (x2). (3.23)

So the result is a multivariate polynomial in iterated integrals of arguments 1, y. This procedure
produces also letters 1/(1 — x), which introduce branch points at y = 1. However, considering
the integration contour of the iterated integrals infinitesimally away from the real axis does not
affect the algorithm introduced above. In this sense, the iterated integrals may be analytically
continued, as described in [61] and implemented in HarmonicSums [32-34]. Thus they can
always be expressed as iterated integrals with arguments in [0, 1].

3.3. The final integral

Once the sums are performed, i.e. written in terms of iterated integrals, the remaining task
is to perform the last integration, which carries the nontrivial dependence on N. However, the
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integral does not just represent a Mellin-transform, but it contains rational functions R(T) €
{1/(1 + T?%),T?/(1 + T?)}, which are raised to the power N. It therefore seems most natural
to consider the generating function of the sequence in N, and to introduce the corresponding
tracing parameter « in the following way

o]

N _ 1

N=0

The integral over T from O to 1 is performed in two steps: First a primitive is calculated for
the integral in terms of iterated integrals. Then the limits 7 — 1 and T — 0 are computed. This
procedure introduces additional letters into the otherwise cyclotomic alphabet of HPLs, namely

1 B T o
T guor = oD o = s e (VaoT)

with g(x) € {(1 —«), (1 —«)~'}. Obviously this leads again to re-scaled letters, and one can use
the algorithm from above to transform the emerging cyclotomic HPLs at 1 with weighted letters
into cyclotomic HPLs with unweighted letters and a function of « in the argument. It is not hard
to see that the functions occurring in the arguments of these HPLs are the functions g(«) from
above.

The limit 7 — 0 has to be taken carefully to cancel factors of 1/7T. Therefore a Taylor ex-
pansion is performed. In many cases, relations similar to Eq. (3.17) are used, reading them from
right to left in order to obtain the Taylor series. However, such relations are not implemented in
HarmonicSums for the additional (weighted) letters of Eq. (3.25). This is due to the require-
ment of special assumptions on the values of g(x). We rather use an easy trick to obtain the
Taylor series of cyclotomic HPLs extended by the above letter, using the fact that the above letter
can be factorized over the complex numbers

(3.25)

1+;@ﬂ:%<LH;ﬁ0T+I—AZWW)' (3:26)
Then these linear letters are treated like the letter
! (3.27)
a+T

from the alphabet of multiple polylogarithms [34], treating a as real and positive. For the cy-
clotomic HPLs extended by one such letter, the Taylor series expansions can be derived [33,34].
Finally, the imaginary factors i /g (k) are re-substituted. The results are checked to be regular at
T = 0 and thus the limit can be taken.

Once the last Feynman parameter integral is performed, we need to find the Nth coefficient
of the Taylor expansion in k. For this we would like to make use of methods applicable to
HPLs and cyclotomic HPLs which are implemented in the package HarmonicSums [32-34].
It is therefore necessary to make sure that the dependence on In(x) cancels. These terms can
be eliminated using argument transformations and algebraic relations [62] of the (cyclotomic)
HPLs.

At first, the arguments are mapped back into the interval [0, 1]

6 Note that recently methods for the automatic extractions of logarithmic parts were implemented in HarmonicSums.
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Ha< 1—K) Zaﬁ Hz(VT—x), (3.28)

where the length of the list ﬂ is bounded by the length of @, and the a; are integer coefficients.
Relations of this kind can be obtained algorithmically and are implemented for all cyclotomic
HPLs in the package HarmonicSums.

Then the square roots are removed from the arguments, as far as possible. For this step one
makes use of the fact that all cyclotomic HPLs with arguments x> can be rewritten in terms of
cyclotomic HPLs with arguments x. These transformations can be inverted, so that (cyclotomic)
HPLs which contain the letter f(1 0)(x) = ﬁ and the argument /1 — x are mapped onto (cy-
clotomic) HPLs with argument 1 — « and (cyclotomic) HPLs without the letter f(j ), i.e.

Hy(WT—k) = bsHz(1 —k) + Y ci Hy (V1 —x), (3.29)
B 7

where in the vector @ there is an index (1, 0). The length of B is again bounded by the length
of &, and y is free of the index (1, 0).

This reduction is, however, not complete so it is introduced by constructing a basis of HPLs
w.r.t. the shuffle relations as well as the relations of squared arguments. It is a sign of a proper
Laurent-series that after the reduction to such a basis the remaining (cyclotomic) HPLs involving
the letter f{1,0) and with argument +/1 — « will cancel.

The last step to properly cancel logarithmic parts is to write all In(x) parts explicitly, using
the flip relation

Ho(1—K) =) d;Hj (). (3.30)
i
In the present case, this relation has to be applied only to HPLs with letters from the alphabet

1
{fo(X) i) = » fo1() = — } (3.3

This subset is not closed under the ﬂip x — (1 — x), so the property

1
f-1(l—x) = T i Ja(x) (3.32)
—X

will lead to multiple polylogarithms [34] in the result.
Nevertheless, the representation is standardized so that indeed all dependencies on In(x) can-
cel. The remaining HPLs fit into the alphabet

{fo(X) f1(X)— s fo1x) = fz(X)— » Juo(x) = T

Sanx) = } (3.33)

X
14 x2
where the letters fo, f_1, f(4,0), f(4,1) occur in HPLs with arguments /1 — «, and letters f7,
f=1, f4,0)» f4,1) lead to HPLs with argument k.

7 For another algorithm to deal with polynomial denominators based on the co-product of the associated Hopf-algebra,
see Ref. [63].
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The result thus obtained has a Taylor expansion in « around 0. The remaining step to obtain
the all-N result is to extract the Nth coefficient of the corresponding Taylor series. This can
be done analytically term by term, using expansions of individual factors and calculating their
Cauchy products, as well as by deriving difference equations which are solved in terms of indef-
inite nested sums. Also these methods are available through the packages HarmonicSums and
Sigma.

As a result of this procedure one obtains a large expression in terms of sums of higher depth,
involving definite and indefinite sums and products. To obtain a minimal representation, the
package EvaluateMultiSums and Sigma can be applied, in order to represent these objects
in terms of indefinite nested sums, and in order to eliminate all relations among these indefinite
nested sums and products to obtain a basis-representation.

3.4. Operator insertions on external vertices

The class of graphs with two massive fermion lines of the same mass also includes graphs
with operator insertions on external gluon vertices. In the scalar case these graphs are directly
related to graphs with operator insertions on a line, see [20] for similar properties used in the
calculation of ladder graphs.

The idea carries over to the physical case, but there are no simple relations among graphs.
Instead if a method is known for the calculation of certain graphs with operator insertions on
lines, then the same methods apply for the graphs with operator insertions on external gluon
vertices.

The reason lies in the structure of the Feynman rule for the operator insertion of a gluon
vertex, which can be taken from [6,42]

V(a1 q2. g3)

14+ (=N
=—ig (=D fabc|:

2
N-3
3 — 3 i —3—
L (@1, 42,4 (A )V T8 (@192, 93) Y (—Aq) ()Y
j=0
N-3
3 — 3 i —3—j
+tvfﬂ(612,613,611)(A-qz)N 2—i—vaM(Clz,tB,C]l)2:(—A~612)J(A.£13)N 3=
Jj=0

N-3
3 _ 3 . A
+ 150,03, 91, ) (A gDV T8 (g3, 91,92 Y (—A.g3) (AqN T f},
j=0
(3.34)

with
3
15501, 92,43) = (Avgap — Digu) A.pi + Au(prvAs — prady),

3
T (@1.92,q3) = A [A P12 uAy + A.paprvAy — AprA.paguy — pr-paAu Ayl
(3.35)
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In this notation, the summands in the left column of Eq. (3.34) all behave like operator insertions
on lines. Furthermore, if g; = p is the external momentum then the first and last summands in
the second column behave like insertions on lines too, but here in addition the result is subject to
a finite sum of the form

N-3 N-=3
D AP AN TN =3 ==Y (D FIN=3-))
Jj=0 j=0
N-3 '
=(=ApN Y (=D FG). (3.36)
j=0

The remaining summand (second term, right column) can be summed on the level of Feynman
rules, and using g» + g3 = —g1 = — p one finds

N-3

Y (—Ag) (Ag)N T =

j=0

1
N-2 N-2
—[(=A.g)¥ 2= (Agn)V 2. (3.37)
A.p
In this way, the operator insertion on an external vertex is related to operator insertions on internal
lines. However, a direct relation between a graph with a vertex insertion and the corresponding

graphs with line insertions does not follow from this consideration, due to the presence of the
38
T

3g
tensors 7, and oA

3.5. Integration by parts and differential equations

The diagrams shown in Fig. | turned out to be too cumbersome to be calculated with the
methods described before. For this reason, these diagrams were computed using a different ap-
proach. For each diagram, a Form program [64] was written in order to replace the propagators
and vertices from the output of QGRAF [41] by the corresponding Feynman rules. Further it in-
troduces the corresponding projector for the Green’s function under consideration and performs
the Dirac-algebra in the numerator. After this, each diagram ends up being expressed as a linear
combination of scalar integrals, which were then reduced using integration by parts to master in-
tegrals using the program Reduze2 [65].% This is a C++ program based on Laporta’s algorithm
[68], and has been adapted to the case were we have operator insertions in the integrals.

In total, sixteen master integrals were needed in order to calculate these diagrams. Eleven of
them have the general form

(A k3)N

D o

T2 (N = / dk

where we use the shorthand notation

dPk; dPky dPks
dk — (3.39)
and

@m)P 2mP )P’

8 The package Reduze? uses the packages Fermat [66] and Ginac [67].
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he he

(c) (d)

Fig. 1. Diagrams calculated using differential (difference) equations. Here the masses for both fermion loops are equal.

Dy =k¥ —m?, D) = (ki — p)*> — m?, D3y =k —m?,
Dy=(ka—p)* —m?,  Ds=k3,  Dg=(ks —k1)> —m?,
Dr=(ks—ka)> =m?, ~ Dg=(ki —k2)®,  Do= (ks — p)*. (3.40)

The superscript D has been included in Jvlimw (N) in order to make explicit the dependence
on the dimension D. The eleven integrals of this type are then

JPN)Y =51 10.0.1.1.000V), (3.41)
I N = T35 1001100, (3.42)
I N =J351.00.1.1.00), (3.43)
JPWN) =T 10011000, (3.44)
JLWN) =131 100.1.1,000), (3.45)
JEWNY =P 01011000, (3.46)
PN =9 0.1.0.1.1.000); (3.47)
J$ N =Jg)10.1.1.1.1,00), (3.48)
I N =J{%1.00.1.1,01 (), (3.49)
Jll())(N) = J1?1,0,1,1,1,1,0,0(N)’ (3.50)
JHWN) =T 1 00,1101 (V) (3.51)

vvvvvvvv

The other five master integrals are
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1B = / dk (ak)" , (3.52)
(ki — p)2 (k3 — m2)[(k3 — k1) — m2][(k3 — k2)? — m?]
N
i = / o kil (ks — k1)? — mZ][(kg( A—Z;Z —m?][(k3 — p)> —m?]’ >3
N
Tia= / a (k3 — m2)[ (k3 — k)% — mz]([?li 3—) ko) —m?][(k3 — p)*> —m?]’ 354
is = f a (k3 — m?)[ (k3 — k1)? —1 m2][(k3 — k2)? = m?]’ (3:53)
io = / a* (k§ —m?) (k3 —m?)[ (k3 — 1:1>2 —m2)[(k3 — k2)*> —m?]’ (3:56)

Notice that integrals J 1D5 and J 1D6 are just constants w.r.t. N. The integrals J 1D2’ J 1D3 and J 3 yield
Feynman parameter integrals that can be performed in terms of Beta-functions. We obtain

I'Q—D/2)*Tr(D/2— DI (N+1)

D _ _ _
JB(Ny=—ir(1-D/2)r 3 - D) TG=D) EY (3.57)
J2(Ny=—ir(1—=Dp/2)rQ DF(2—D/2)2 ! 3.58
BN ==l (1= D/)I3 = D) o= (3.58)
Doy T=D/2?
JE(N) =—i T r'2-D)2), (3.59)

where we have set the mass m, A.p and spherical factors to 1 for simplicity.

Any given scalar integral will be written as a linear combination of these master integrals.
Since the coefficients of these linear combinations may contain poles in ¢ = D — 4, the master
integrals may need to be expanded to higher orders in ¢ accordingly, in order to get the corre-
sponding scalar integrals up to order &°.

The integrals JID (N), ..., J ﬁ (N) were calculated using the differential equations method
[69]. This method has been applied successfully to many problems where Feynman integrals de-
pending on one or more invariants appear. The idea is to take derivatives of the master integrals
with respect to these invariants and re-express the result in terms of the master integrals them-
selves. This leads to a system of differential equations that can then be solved. In the present case,
the integrals depend on the invariants m? and A.p. However, the dependence of the integrals on

3 .
these invariants is trivial. They are just proportional to (A.p)"N and (m?)~"T2P. Here v is the
sum of powers of propagators. Therefore, taking derivatives with respect to these invariants does
not lead to any new information. The integrals have the form

—v+3D N
(AT,

and it is actually the calculation of the function F(N) expanded in ¢ = D — 4 that is non-trivial.

One might think about taking derivatives with respect to N, but this changes the structure of the

integrals in a way that does not allow the application of the differential equations method. In

view of this, we introduce a new parameter x and rewrite the operator insertion in the following

way

F(N)(m?)

1

o0
A k)N NAak)Y N = ——
(A k)N =N (A k) T

N=0

(3.60)
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By doing this, we trade the dependence of the integrals on N by a dependence on x, and the op-
erator insertion becomes a denominator that can be treated as an additional artificial propagator.
In fact, it is in this x-representation of the integrals in which all the reductions to master integrals
are performed using Reduze2. Laporta’s algorithm requires integrals to have definite powers
of propagators, and although it may be possible to express A.k3 in terms of inverse powers of
propagators (by taking A as an external momentum), one faces the problem that the power N
in the operator insertion (A.k3)" is arbitrary. By turning the operator insertion into an artificial
propagator as in Eq. (3.60), we circumvent this difficulty.
Let us define

Pw=3 NP = [ak s - (3.61)
N=0

D{"---Dg’(1 — xA k3)

We can now take derivatives with respect to x.” This will raise the power of the artificial propaga-
tor, leading to integrals that can then be reduced, and as usual, a system of differential equations
is generated. For example, the first three integrals in Egs. (3.41)—(3.43), namely, JID s JQD and J3D
form the following closed system together with the constant integrals J @ and J 1D6

d 4 8.x+8+2 4 2 4 +2 4
—Jite 71 te ——J To(x) — ————J 3.62
! (x) = 20— (x) (x) 20— 1)x 16 (3.62)
d 262x% +26%x — 9ex —2¢ +2x2 +2
—J24+8(x): e2x? +26%x — &2 4+ 9ex &+ 2x"+ xJ4+8()
dx 2(x = Dx(e +x)
+ 123 +4), 4e +2)3
4x —D(E+x ) e+x 8(x — 1)(e +x)
B (38+4)(8+2)(€x+8+2x)J146+87 (3.63)
16(x — l)x(s ~|—x)
d 26%x% + &%x — 267 — —3x%+2
—J34+g(x)= E°X°+¢e°x e ex? 4 ex xX° + xJ4+8()
dx 2(x — Dx(e +x)
(e+1)2CBe+d(ex+e—x+1) 4.,
Jl (x)
16(x — Dx(e +x)
e32x?+5x) — 2 (x2 —5x —9) —e(x? +5x —12) —4x +4 .
_ Jy (%)

8(x — Dx(e +x)
(e +2)%2ex + 362 —ex —2x) 4.,
64e(x — Dx(e + x) 15
(e +4)(e +2)(2e3x + 563 +32x + 362 — 3ex — 2x)
1288 (x — 1)x(e + x)

JiFE (3.64)

where we have set m? and A.p to 1 for simplicity. This system can now be solved, provided the
constant integrals J;5 D and Jis D are previously computed, and a few initial conditions are provided.
These initial COIldlthIlS w111 be the values of the integrals and some of their derivatives at x = 0.
Since the Nth derivative of a given integral Jl.D (x) at x =01is equal to N !JI.D (N), we see that
giving these initial conditions is equivalent to giving a few initial values for JZ.D (N).

9 1In the following we will drop the hat in Eq. (3.61) again, as it is clear when we refer to a function depending on the
parameter x or the Mellin variable N by the respective argument.
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When we take the derivatives of the remaining integrals in Egs. (3.44)—(3.51), the integrals
J lD , JZD and J3D will also appear on the right hand side of the equations. For example

%Jf(x) = —%Jf(x) + %JZD(x). (3.65)
So, once we solve the system of Egs. (3.62)—(3.64), we can substitute the result for JZD (x) in
Eq. (3.65) and solve this equation for J, 4D (x). Likewise, J, 4D (x) will appear on the right hand
side of the differential equations of the next integrals, etc. We can see that we must solve
the system of differential equations starting with the simplest integrals, and gradually incor-
porate the results to solve the more complicated ones. This is all done with the help of the
Mathematica packages Sigma [31], HarmonicSums [32-34], EvaluateMultiSums,
SumProduction [35], and OreSysG [70]. These packages construct a system of difference
equations from the differential equations, and then solve for Jl.D (N) directly, instead of JiD (x).
For example, one may transform the system (3.62)—(3.64) using Eq. (3.61) into difference equa-
tions. For large enough values of N > Ny, N € N one obtains

—(e+2N +2)J1(N) + (—e + 2N — 2)J{(N — 1) +4J,(N — 1) =0, (3.66)
16e(s — N)J3(N) — 8(2e% —& — 2N + 1) J3(N —2)

—8(? —2Ne +3e +2N)J3(N — 1) — Be +4) (e + D> J1(N)

+2(e — Dee 4+ 1)Jr(N —2) +2Be 4+ 2)>Jr(N) =0, (3.67)
4(e* + N — 1)a(N —2) +2(26* + 2Ne + Te — 2N +4) L(N — 1)

+2(5¢% +56* — 56 —4) L(N — D+ (1 — &) (e + D*Be + 4 J1 (N = 1)

—28(e +2N +2)J2(N) — Be +4)(e + 1)> Ty (N — 1)

—166J3(N —2) + 16eJ3(N — 1) =0. (3.68)

Here we left out the explicit dependence on the dimension D =4 4 ¢ in the functions J;.

Let us discuss now the calculation of the initial values required in order to solve the differential
(difference) equations discussed above. These are basically the values of the integrals for a few
fixed values of the Mellin variable N. In some cases, these values are needed only up to order &°,
which can therefore be obtained using MATAD [40]. More often, the initial values are needed up
to higher orders in ¢, and a different method to obtain them must be used. In the following, we
describe the method we used in such cases based on the «-parameterization of the integrals. In
the present calculation, five initial values starting from N = 1 were needed up to order &2 for the
master integral

N
D_ /D (A k3)
ST =1911,00.1,1,00N) = f dk DaDsDeD7’ (3.69)
and two initial values up to order ¢ starting from N = 1 were needed for
(A k3)N
7P =P N =/dk—. 3.70
7 2,1,0,1,0,1,1,0,0( ) DfD2D4D6D7 ( )

In what follows, the masses appearing in some of the propagators do not play any role, so we
will omit them for the time being. Let us consider the general integral in Eq. (3.38). Removing
the operator insertion (i.e., taking N = 0) the o representation of this integral is given by
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1) z .
ijwvg(O):/dk]_[ (F(v)l) /doqoz,l ]exp<ZaiDi>
! i

(="
f l—[ o) / 0510511 eXP(ZAi,jki-kj+ZZQi~ki>
iJ i

oo
(=DH" 1 D)2
o] mon | o'~ det(A)"P P exp( Y Af lgiq (3.71)
) 0 1]
with
Bi+ B2+ Bs + Bs —Bs —Bs
A= —Bs B3+ Ba+ P71+ Bs —p7 ) (3.72)
—Ps —p7 Bs + Bs + P71+ Po
and
q1=—p2p, q2=—Pap and g3=—Pop, (3.73)
where the §;’s are defined using the 8-function as
1
Bi = 9<Vi - E)ai- (3.74)

The product of integrals in the o parameters, and the sum in the exponential in the first and
second lines of Eq. (3.71), run over the values of [, i and j corresponding to the propagators that
are actually present in the integral under consideration.

We can now introduce the operator insertion in our integrals in the following way, cf. also
(511,

1a\" " [ |
D _ V= .N.
Jvl,...,vo(N)—<§3—r) fdk]:[—r(w) day o) exp(lZOl,D,-l-%A.kg)
0

)

r=0

19 Nl-[( n Z
—1)Y v—1 D/2
* <§ 5) / F(vz) daoy det(4)™ " exp A, J% q] ’

r=0
(3.75)
and now
gi=—Fap.  gy=—Pap and gi=—Pop+rA. (3.76)
In the case of integral J ID (), we get
o + g 0 —ag
A= ( 0 o3 +ay —ay ) , 3.77)
—0g -7 ag + a7
and
gy =—ap, ¢,=0 and g5=rA, (3.78)

and one has
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1 306 + 706 + 307 [ 7% 306 + o706
-1 m ae07 a6 + a0 + o7 ara7 + agoy
¢ 3o + 7o 07 + a60ry (o2 + a6) (@3 + a7)
(3.79)
If we apply Eq. (3.75) in this case, we obtain
=" [
1
D - -1 N N
JiP(N) 1_[ oD /daz o' (aa06)” (a3 + a7)
! 0
x det(A)~PT2N/2 exp (Z Aijaiq j>, (3.80)
i,J
which leads to
IP(N) = (2764)V 3+ + 7)Y PN (0). (3.81)

Here the operator i™ shifts the power of the ith propagator by one, and also multiplies the integral
by —vj, i.e.

it =P (3.82)

The fixed moments for this integral can then be written in terms of scalar integrals with no
operator insertion and shifted values of the dimension and powers of propagators. For example,
for N=1, N=2and N =3 we get

TP =~10570021.000 = 6570022000 (3-83)

TP @ =8[15570035.000 + 40520052000 + 40330,03.1.00 0] (3-84)

IPG3) = _216[J0[,)4+,16,0,0,4,4,0,0(0) + Jo[,)zf,rzé,o,o,4,3,o,o(0) + 90430042000
+J0L,)zt+f004100(0)]7 (3.85)

,,,,,,,

and similar relations for higher values of N.
Similarly, it can be shown that

JP(N)=(2T4T6" +27617T +17477T 127477+ 4 4+6+7+)N JPEIN ). (3.86)
For N =1 and N =2 we have

D _ D+2 D+2 D+2
‘17 = _]2,1,(),2,0,2,2,0,0(0) - ‘12,2,0,],0,2,2,0,0(0) - J2 ,0,2,0‘1,2,0,0(0)

)

D+2 D+2
- ‘]2,2,0,2,0,2,1,0,0(0) - 2‘]3,1,0,2,0,1,2,0,0(0)’ (3.87)

Dy _ of 7D+4 D+4 D+4
J77(2) = 8[J2,1,0,3,0,3,3,0,0(0) +952.0,2,0.33.000) 2503023000

ssssssss

D+4 D+4 D+4
+ 302032000+ 303013000 + 12503022000

ssssssssssssssss

D+4 D+4 D+4
+‘12,30303 1,00(0)+2J3,10302300(0)+‘]3,20202300(0)

,,,,,,,,,,,,,,,,,,,,,

D+4 D+4 D+4
+2J35703.01.3.000 + 95505022000 + 37170301300 0] (3.88)

qqqqqqqqqqqqqqqqqqqqq

The integrals on the right hand side of Egs. (3.83)—(3.85) and Egs. (3.87)—(3.88) can all be
reduced in terms of the two constant master integrals J ][5) and J 1D6. For example
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3220021000 = I 1.0,022.000)
_3(D =3 -2)BD - 103D -8) ,
- 512(D — 4) 16
(D—-2)°(11D-38) |
 256(D—4) 15

(3.89)

From Eq. (3.83) we get

3(D—1)DBD -4)(3D=2) ., D(IID=16) .,

D
)= gy VY=
S 256(D —2) 16 128D —2) 15

(3.90)
The integral J 1[5’ is pretty simple and can be obtained for general values of the dimension D

JR =i DY’
g=ir(1-=) . (3.91)

One can therefore perform without problems the shifts in D for this integral as required from
Egs. (3.83)—(3.85) and Eqgs. (3.87)—(3.88).
The integral J 1D6 is more complicated. After Feynman parameterization we obtain

1 1 1
- —y)]2tD/2 _ \1-D/2
Jlgz—i/dx/dy/dzf<4—%D> [x(1 —x)y(1 —y)] [z(1 —2)] -
0 0 0

z l—z 4-32D
i T yn ! 2

(3.92)

We can now obtain a Mellin—Barnes representation for this integral by splitting the denominator
in the equation above using

y+ioo o
1 1 r(=o)l'(c+v) A
—_— = d 3.93
(A+ B)Y 2mi / r'(v) Bo+v ( )
y—i00

which leads to

y+ioco
! 3 \I'(—o —1+D/2)*Tr 3_ D)2
I=—+ / doI'(-o)T'(o+4—-=D (—o +D/2)°I'(0 + )
o 27 ) I'(=20 =2+ D)I'(20 +6 —2D)
y—ioo
r 2—D/DI'(—0 —2+ D
« (o + /2T (—0 —2+ )' o

r'(D/2)

In this representation, the integral can be calculated with the help of the Mathematica package
MB [56]. This package finds a value for y and ¢ = D — 4 such that the integral in Eq. (3.94) is
well defined. Then it performs an analytic continuation to ¢ — 0 and expands in €. After this, we
can close the contour to the right or to the left and take residues. This leads to sums that can be
performed with the package Sigma. For the different shifts in D, we obtain

16 92 65,+35 230
dte _
e =g ratT e T P

275 (10542 89¢3 57 189>

12 8 6 16 16
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1 81n*(2) 353 275
2 . 2
—64Liy( = ) — 161n%(2) + =2 — ==
+8|: 6 14<2> 3 +§2<6n()+ 1 32>
783¢7  525¢3  3¢s . 14917 ;
2 "8 Tt e [TOF) (3-95)
gore_ 8 o1 1 ! 158771\ | 911 & | 19406231
16 3¢3  135¢2 ¢ 16200 360 3 1944000
158771¢c,  881¢3  19¢4 N 1415455691
43200 1080 ' 32 233280000
e 256 Lis(}) N 321n*(2) B 1744153 _641n2(2) & 19406231
45 135 9600 45 8 ' 5184000
8107013 &5 87955543249 3
_ 23 2O L 0(ed), 3.96
129600 20 27993600000}4_ (%) (3.96)
psbe_ 29 432113 129 400656889
16 727063 1360800s2 ¢\ 720 = 762048000
4321135, 2973 2399678021033
3628800 2160 3840721920000
 (400656889¢ 2663923 55124 N 390635303718683
2032128000 = 10886400 = 23040 = 716934758400000
o[ 2048Lis(;)  256In*(2) 5121n%(2) Eals
14175 42525 14175 5760
2399678021033 71227¢7  98969999¢3 N 29¢5
10241925120000 ) * 2150400 677376000 ' 14400
2591632410097226753
-~ o(%), (3.97)
10840053547008000000
g0 _ 8 N 727007 +1 L 24274289111
16 4725¢3 ' 130977000e2 ' e\ 1575 2420454960000

727007, €] 16658646415909 . 24274289111¢,
349272000 4725 © 1278000218880000 6454546560000

53651¢3 19¢4 10820372717621142407 )

209563200 50400  826610541571584000000
,[8192Lis(3)  10241n*(2) B 101187 _20481n2(2) R
5457375 16372125 7040000 5457375 12600

16658646415909 21627059753¢3 s
3408000583680000 19363639680000 31500

143655436584318407615807 5
15275762808242872320000000] 0(7), (3.98)

where we have omitted an overall factor of i, and set m, A.p and the spherical factor to 1. We
have now all the ingredients required to obtain the initial values. For J lD (N) they are
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8 46 3p+3% 28 205

3 — —

&3 3e2 e 2 8Ty
57 4 105 89 189
+8<%§2 + ?Q + 54'3 - 3—2)
5 (1) 4 275

783 , 525 3 14917 X
—y = — — —_— o0 , 3.99
4§2 16§3+20C5+ 384]+ (%) (3.99)

56 298 1/7 1873 149 7 11009
07 "2 Te\3% e ) T 362798 Tom

J]4+8(]) —

J4+8 2 —
@ 3 162 36 ¢ 9 1944

16 . (1) 2 1873 4 137
“Lig( = )+ Zm*@ ———122 -2
+e[3 14<2>+9 n()+<432 ())4“2 20 22
1013 2119917 L[ 332 . /1 (12
- — 2 Lig( = ) = 16Lis( = ) + =2
108 2~ 23328 } te [ 9 1“(2) 15(2) T i@
83 40645 83 7 11009
— In* —— 1’2 In?Q2) — —
§3+§2< n()+ n*(2) 244“3 5184)

2
~ 5™ 0
14107 34 391 10107775 3
— s —— 1
( 960 In(2 ))cz 305 379936 }+0(s ), (3.100)

16 80 1 232\ 10 5 224
33 0g2 | ¢ 3273873
373 10379}

2+ 77
1\ In*Q) ) 117
+8|:L14(2>+ +<9 —2In (2)>§2—_§2 ¥§3—97—2

3
5
p [_ﬁm( ) 24L15< ) 1“5(2) 591 42)

637 In2 21032 In2(2 28
()i eo( o-30-2)

1323523 25324
e SN 0 3.101

432 40 0 729 ]+ (). (3.101)
24 566 1 (9 1697) 283 11 15557

563 7582 52% 7550 58

Jl4+£‘ (3) =

10027 3 15000

48 (1 sy, (300 12 5
+8|:?Ll4<5> —1 ()+(2000 ())

1461 5 | 26093 324544
200 2 T 2400 87 28125

PR S A A oA AN Sy 4051 ‘o)
e ———Liu| = ) — —
H2) "5 25 2400

@) =

100
960149 1 32y 2051 0y BB 15557
32000 22 T4 400 0%~ 20000

132357 306 1167 3638953021 5
102
( 8000 In2 )>§2 50 >+ 708000000 } +0(). G102
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40 892 1/5 22541 223 23 25879
JHEs) = ( ) -

963 13522 2 \3%2T Z050 WQ ~ 9% 243000

32L_ 1 4142 22541
+8?14§+§n()+ m—— Q))&

31, 96317 350972423) o[ 14779 . (1
80 %2 T 8620 ©* T 29160000 360

2
1\, 4 5 14779, 311
= 32Lis( 5 ) + S’ Q) - oot )+ o

15 8640
8 14779 23 25879
—~1n*(2 In?(Q2) — =
HZ( @+ oo W@ -5 3+648000>
80923 68 , 30502069 114818388451 3
—— — —In(2) )& - &+ ().
4800 5 1036800 3499200000
(3.103)
The initial values for J.°(N) read
16 49 77 1 In*(2)
4+8
— 40— -0+ — L
) = 2 13 Cz §3+24+8[6 14<2)+ 1
51 529 995
In?(2 P ——|40(? 3.104
( n*(2) + )cz RIS 288}+ (%), (3.104)
11 65 11 35 233 15 1 5
Q)= — — — 4+~ -+ — Lis( = |+ = In*2
7D =57 " 36 T §3Jr108+8[4 4<z)+32 o
43 15 65 6035
2 2
-= —In%2 1
i+ e (PO + o e 2]+ 06). (.105)

The solution of Eqgs. (3.66)—(3.68) is now obtained in the following way. We uncouple the

recurrence system using Ziiricher’s algorithm; here we used the package OreSys [70]. More
precisely we obtain a linear recurrence in J1(N) with polynomial coefficients in N and & of
order 5. Then activating the recurrency solver of Sigma [71] and using the above initial values
yields the desired solution expanded in the dimensional parameter &

JI(N):S(N—i—S)i [_2(91\73 +40N? 4+ 41N +2) 4(N—1)Slj|i
3(N+1)& 3N(N +1)2 3(N+1)
47N> +219N* +35IN3 +205N2 +6N —4 (N—-1)S} (1—-N)S$,
* [ 6N2(N + 1)3 3(N+1) N+1
(—9N3 —4N2 4+ 13N +4)S; (N+50]1
3AN(N +1)2 N+1 }E

N —1436N* — 609N> +2N2? + 4N — 8 — 133N7 — 678N°® — 1414N?
24N3(N + 1)*
N [471\75 +75N* —39N3 —95N2 — 12N +8 (1 —N)Sz]
12N2(N + 1)3 2(N + 1)
(N—=1DS}  (ON?>+4N? — 13N —4)S,  2(N—1)S21 1IN —1)S;

18(N + 1) AN(N +1)2 N+1 9(N +1)
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—9N3 —40N2 —4IN -2 (N-1)S;
[ 4N(N + 1)2 + 2(N+1)] ?
(=9N? —4N2+ 13N +4)S7 (19— 13N)¢;3
12N (N + 1)2 3(N +1)
8(N +3) 1 4(3N24+8N +7) 4NS; 71
3(N+1)&3 [_ 3(N +1)2 3(N+1)]8_2
2(5N3 +15N2 + 17N +9) NS? NS, (N+3)o
[ 3(N +1)3 3N+1) N+1 ' N+1
23N> +5N+1)S; 1 N*+12N34+30N? +26N +5
3N+ 1)? }Z 3(N 4 1)*
5N+ 18N2 +20N +6 NS, S
[ 3N + 1) - 2(N+1)] :
(BN24+5N+1)S, 2NS,; 1INS; NS}
2(N +1)2 N+1 O9N+1) 18N +1)
—3N%2—-8N -7 NS
[ 2(N +1)2 +2(N+1)}§2
(=3N2—=5N-1S? (3 -13N);
6(N + 1)2 3(N+1)
22N +5) 1 |:—8N2—20N—15 (2N—1)51}1 (1=2N)S$,

+0(e), (3.106)

S(N) =

+ 0(e), (3.107)

BN =50 3V D)2 3V HD e

e AN+
24N3 +76N? 4+ 84N + 35 N (—8N?% — 8N +3)S; N (2N —1)S$?

6(N + 1)3 6(N + 1)2 12(N + 1)
22NN D) & 22 27N + () & 22810

N+l o G N+l i GO

eN+50 27V TeN + D)6
4N+1) N+1
which holds for values of N > Ny. Usually for values of N < Ny additional constants appear.

Eq. (3.106) is valid for N > 1 and Egs. (3.107), (3.108) for N > 0. For the analytic continuation
to N e C the additional terms are not relevant.

+ O(e), (3.108)

4. The O(af Tf) contributions to Az, o

The contributions of O(a’T?CF 4) to the operator matrix element Ag, o are obtained as
respective color-projections from Eq. (2.3). We first consider the contribution to the constant part

) " of the unrenormalized OME (2.8). Defining

Aeg.0

2+ N +N?2)?2

FN) = N DM T 1208 1 2)

F, 4.1)

it is given by
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(3
a T[% (N)

88,05
—err2| s 10P s+ |-Lps
TR 7 LT (NS N3N + D3N +2) ! 372
32P s
8L(N — DN*(N + D*(N +2)2N —=3)eN — 1) |
16 P4
_ S>
9(N —1)N3(N + 1)3(N +2)
2P13 352 64
- —F| —8——%,
243(N — )NS(N + 1)3(N +2)(2N —3)(2N — 1) 27 37

P

6 8 Pg 3
+ [?FS‘ ~ 9N — h)N3(N + 1)3(N + 2)}“2 TSN DN N+ PN 128

- (21\/) 16Ps
N )3(N = DN(N + D2(N +2)(2N —3)(2N — 1)

1 (& 4isi—1) )}
X — R Tt
w55
) I 4P, )
+ CATF{ 350V — DNZN + 2N +2) 1
16(4N3 +4N2 —7N + 1) s g
ISN—DN(N 1) 2%
n P2
3645(N — DHN4(N + D*(N +2)2N —3)2N — 1)
8P
T 345N — DN (N 13N+ DN —3) 2N — 1)

4P, S
135(N — DN2(N + )2(N +2)*

+

_ <2N) 4Py
N J45(N — )N(N + D2(N +2)(2N —3)(2N — 1)

N ; .
1 481 —1)
(2 )
I —
N-DN N+ 12N+ 270

TP 1120 s
i [_270(N— DN(N +1)(N+2) 27 1}“3 g 2)

with the polynomials P;
P = 1287N* 4+ 3726N3 — 3047N? — 7214N — 2624, 4.3)

Py =7T0N% +95N* — 223N3 — 751N? — 629N — 142, (4.4)
Py =—63N® — 189N> — 431N* — 547N3 — 1714N? — 1472N — 1472, (4.5)
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Py =4NS +3N> —50N* — 129N3 — 100N? — 56N — 24, (4.6)
Ps=9NS +9N> —53N* + 47N? + 44N? — 104N — 80, (4.7)
Ps =99N® +297N° 4+ 631N* +767N> + 1118N? + 784N + 168, (4.8)
P; =220N°® 4+ 550N° — 135N* — 883N> — 1621N? — 1329N — 462, (4.9)
Py =33N% 4+ 132N7 + 106 N® — 108N — 74N* + 282N
+245N? + 148N + 84, (4.10)
Po = 100N® + 539N7 + 283N% — 2094N° + 452N* + 219N3 — 1495N?
+ 712N + 996, (4.11)
Pio=23N"'"+136N° — 221N® 4 388N + 1470N°® + 2206 N + 2192N*
+2564N> +2082N? + 1008N + 216, (4.12)
P11 =96020N 10 + 180403N° — 293651 N® — 563492N7 + 196513 N6 + 478087 N
— 194200N* — 207066 N> — 7470N? — 38880N — 12960, (4.13)

Piy = 149796N'? + 481788 N +4037555N 10 + 6431215N° — 710852N8
— 14957774N7 — 21164117N® — 11167685N° + 2360450N* + 2452488 N>
— 1225440N?% — 518400N + 181440, (4.14)
P13 =8868N'* +35472N"13 — 9409N % — 152862N """ + 61883N 10 4 593774 N°
—379547N% — 1672874N7 — 807075N% + 89818 N> — 325576 N*
—407328N°> — 167688N? — 21600N + 18144, (4.15)

Here we use the short-hand notation S;(N) = §; for the harmonic sums [27]. The polynomial
denominators in Eq. (4.2) show evanescent poles at N = 1/2,3/2. However, the function is
continuous at these points, as the expansion around these values shows. This also confirms that
the rightmost pole is located at N = 1 as expected for a gluonic quantity in QCD. This also
applies to the OME, Eq. (4.26).

In Eq. (4.2) the new sum

N

_ 1 (2N 4i51(i—1)_
w5 e

occurs. While all other quantities emerging are known to obey regular asymptotic expansions, it

has to be investigated whether this is also the case for the term (4.16). Using HarmonicSums
we obtain

re b 779 97 853 61807
N T ON2  450N3 ' 22050N* ' 132300N5  3201660N©
887287 2650559 419100421 845167596619
T 2705402700N7 | 128828700N°  223388965800N7  22580156663064N 10
2 2 2 2 2 2 54 6
* [_N 3N T T5N® T 105NF T 105N5 T 231N6  S005N7 715N

. 466 + 13646
36465N°  969969N 10

} In(N) + O (% 1n(N)>, 4.17)
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with N = Nexpyr and yg denotes the Euler—Mascheroni constant. A regular asymptotic rep-
resentation is obtained for Eq. (4.17), which is even free of 1/ VN terms due to the balanced
occurrence of the binomials (2!' ) Since all other terms of 0(053’ TﬁC F,A) of Agg o contain har-
monic sums and rational factors only [16] the OME behaves the same way, cf. [73].

It is an interesting question, as to whether new structures, like those in Eq. (4.16) compared
to the usual harmonic sums, can be recognized in studying the minimal difference equations'”
they obey. For this purpose we consider the equation for the harmonic sum S 1(N) at one side
and Eq. (4.16) on the other side. The former obeys the difference equation

—(N 4+ D*(N +2) fx + (N +2)(3N? + 1IN + 11) fy41
+ (=3N? —22N? = 55N — 47) fy 12 + (N +3)° fy43 =0, (4.18)

with the initial values

11 341 2953
=1, h=—, =, fa=— 1}
{fl 2 8’ f3 216" ¢ 1728}

The term T without the {3-contribution obeys

(4.19)

—QN + DN+ D% fy + BN +4)(2N? + 6N +5) fy+1
— (N +2)(6N? +25N +27) fy42 + 2(N +2)(N +3)? fn43 =0, (4.20)

with the initial values

_0 1 3 85 @21)
fi= ,f2—4, f3_8’f4_192 . -
Both difference equations are of degree and order three and are of quite similar structure. The
different type of the solutions are therefore hardly recognized ab initio.

The Mellin inversion of the binomial terms yield [28]

Y ogisii—1) [ xN—1 ] 1
o 4 d In(1 —y) —In(y) +2In@2)], (422
; &) Ofx — f s =) ~hG) +2m@).  @22)
L(zN)_lM[ ! _] (4.23)
N\N) 7 Sxd=x] '
with the Mellin transform
1
M[f(x)](N):/dx N oo, (4.24)
0

Therefore the two new letters [28]

1
Sy (X) = ———=, Jws (X) = (4.25)

1
x(1 —x) x/1=x
appear in the x-space representation beyond those forming the usual harmonic polyloga-
rithms [61].

10 Difference equations of this kind can be generated using the packages Guess [72].
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4.1. The operator matrix element

The O(Tg CF,4) contribution to the operator matrix AS; 0 is given by

3)
A
£8.0.T? (N)

80 448(N2+ N + 1) 224 5 m?
=T2{{Cr—F+C Sl N NI
FH rg A[27(N—1)N(N+1)(N+2) 27 ‘”n 2
e 2rs + 8P
F1 37T T 9N N3N + 1)3(N +2)

ic 8 P19 640 . 1], 2 m?
27N - DNEN+ DX(N +2) 27! 112

+{C [1—6[52—35 = 8P
Flg o= 27(N — DN*(N + D¥(N +2)
n 32P, S]i| e [_ 2P
9(N — )N3(N + 1)3(N +2) 27(N — N3 (N + 1)3(N +2)
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o L2V 16Ps
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N 4is(j -1

j=1 ])jZ

L(ZN) 4Py
A4N N J45(N —DNN + D2(N +2)2N —3)(2N — 1)

N 4isi(—1) }
X —— =7
[Z o
144 P, 5
Sl
(N —1DN3(N 4+ 1D3(N +2)
96 Py s
(N—DNHN+DHN+DQN—$QN—D]I
189 P16
TN DN+ 2N+
8Py
T NS DNSINF 1SN 122N — 32N — 1)
432P,
T (N-DN3(N+ 13N +2)

1
—Cp|144FS3
+ 243 F|: 1 +

+ |:—1296FS2 —

8> —3168F 83 +5184F 831 — 1036852:|

+Ca|216 Fis s2
472007 (N = DNZ(N + DE(N +2)° !
8P 896
24 i|Sl
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Py

— 189 &3
(N—=1N(N+1D(N+2)
n 2P>s
(N — 1)N4(N—|— 1)4(N+2)(2N —3)2N -1)
Py7

N T DM s e

TTT6(AN3 +4N% — TN + 1)
- [S3— 8211 ¢,

(4.26)
(N—DN(N +1)

using Eqgs. (2.3), (4.2) and the corresponding expressions implied by renormalization from
Ref. [16]. The polynomials P; read

P14 = 1287N* + 3726 N> — 2407N? — 6574N — 1984, (4.27)
P15 =20N> + 85N* + 133N3 + 571N? 4+ 629N + 142, (4.28)
Pig =9N® + 27N> + 73N* + 101 N> + 302N? + 256N + 256, (4.29)
P17 =40N% + 100N° — 135N* — 433N3 — 1441N% — 1329N — 462, (4.30)
Pig =40NS + 114N° + 19N* — 132N3 — 147N? — 70N — 32, (4.31)
P19 = 63N® 4+ 189N° +367N* + 419N3 + 626 N> + 448N + 96, (4.32)

Py = 15N8 + 60N + 76N — 18N> — 275N* — 546N3 — 400N? — 224N — 96, (4.33)
P =27N® + 108N7 — 1440N® — 4554N° — 5931N* — 3762N> — 256 N>

+ 1184N + 480, (4.34)
Py =100N8 + 539N7 + 283N® — 2094N° + 452N* + 219N3 — 1495 N2

+ 712N + 996, (4.35)
Pr3 =219N'0 + 1095N° + 1640N® — 82N7 — 2467N® — 2947N> — 3242N*

— 4326N> — 3466N> — 1488N — 360, (4.36)
Py =22060N'0 +29837N° — 86869N® — 94588 N7 + 64757 N°® + 39953N°

+ 107890N* + 78546 N> + 36630N? + 38880N + 12960, 4.37)

Pys = 145476N "2 + 468828 N1 — 697525N 10 — 2435225 N° — 540932N8
+3047266N" 4 2170723N° — 1077965N> — 2704030N* — 1889112N°
— 674640N? — 207360N — 51840, (4.38)
Py = 8340N ' 4+ 33360N '3 + 13051 N2 — 98742N"" — 127865N 10 4 59578 N°
+195617N8 + 147746 N7 + 91089N® + 112370N° + 98404N* + 59064 N*

+27828N? 4 7344N + 1296. (4.39)
The analytic continuation of the OME Eq. (4.26) from the even moments N = 2n,n € N to the

complex plane is obtained using the asymptotic representation for the harmonic sums [73,74]
and Eq. (4.16) supplemented by the recursion relations for N — (N — 1) of Eq. (4.26).
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The OME in the MS scheme is obtained by the following transformation

A(]),MS _ A(l),OMS -0

88,0 88,0 T
_ 2
@.M5 ,(2.0MS _ 8 m
ADMS 420 _CFTF§[4—31n<F)],

(3),MS (3),0MS
Agg,Q o Agg,Q

2
(™ 4Py
=In (M2>{CF|:CATF|:3(N— DN(N + DN +2) +3251:|

16
-3 e+ 5)T§:| - C%TF48F}

2
+ln<m—){CF|:CATF|:251— 4Pas ]
w2 3 9(N — DN2(N + DH2(N +2)
4P3; }
(N — N3N + D3(N +2)

+ 64[ln(2) - ﬂg

+ 5 IBNp +29)T7 |+ Ci T

Pag
9(N — 1)N2(N 4+ D2(N +2)

+CF{CATF|:

640 ,[64 4
= S1 = 1663 | = T7| == (NF =222+ § (TINF + 143)

P
(N — DN3(N + D3(N +2)

+ C4Tr [ + (80 — 1281n(2)) ¢ + 3243],

with the polynomials

Py7 = 11N*+22N3 —59N% — 70N — 48,
Pyg =25TN® +771N> + 521N* — 243N3 4 230N? + 480N + 144,
Pyo = 1495 N 4 4485N° 4 3927N* 4+ 379N3 + 3026 N> + 3584 N + 768,
P3o=—13N% — 52N7 + 76 N + 282N> + 129N* — 614N — 320N?
— 256N — 256,

P31 =5N8 +20N7 + 12N® — 10N> + 75N* +254N3 + 188N? + 112N + 48.

(4.40)

(4.41)

(4.42)

(4.43)
(4.44)
(4.45)

(4.46)
(4.47)

Here we have set the masses in both schemes equal symbolically, to obtain a more compact

expression.

4.2. Anomalous dimension

As a by-product of the calculation we obtain the corresponding contributions to the anoma-
lous dimensions from the single pole term 1/¢ or the corresponding linear logarithmic term, cf.

Eq. (2.3),
~(2),TECF,
J/gg FLYFA
4 4
=—CATI%— . ) . + - 01 . S|
27| (N = DN>(N+1)°(N+2) (N—1DN*(N+1)*(N+2)
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4 CpT? 805 + 04 P4 s
PRI 210V = DNA N+ DAV +2) T 9N — DN3(N + D3N +2)
32 F
n——— i ¥ 4.48
TN DL 2]} 49
where
01 =8N%+ 24N> — 19N* — 78N> — 253N% — 210N — 96, (4.49)
0> =87N® +348N7 4 848N°® + 1326N> + 2609N* + 3414N> + 2632N?
+ 1088N + 192, (4.50)
03=33N""+165N° + 256 N® — 542N7 — 3287N® — 8783N> — 11074N*
—9624N3 — 5960N2 — 2112N — 288. 4.51)

Eq. (4.48) confirms previous results in [38] by a first direct diagrammatic calculation, here for
massive graphs containing two fermion lines of equal mass. In Ref. [19] the anomalous dimen-
sion has been confirmed for 3-loop graphs containing one massless and a massive fermion line.

5. Conclusions

The contribution of O(T[% CF,a) to the massive operator matrix element Age o (N) at 3-loop
order has been calculated. It receives contributions from diagrams with two internal massive
quark lines of equal mass. The OME can be expressed in terms of harmonic sums, supplemented
by a single new binomially weighted harmonic sum. The analytic continuation to N € C is given
by the recurrence relation of the expressions and the asymptotic representation. The OME has
poles for N € Z, N < 1. The results have been given for both the on-shell and MS-scheme for
the heavy quark mass. In the latter scheme, terms o ¢, are not present, cf. also Ref. [6]. As a
by-product the corresponding contribution to the 3-loop anomalous dimension yg, has been ob-
tained in an independent calculation ab initio. The calculation of the diagrams with two massive
fermion lines need more special techniques than in the case of a single fermion line. Here the
use of Mellin—Barnes representations and generating functions based on cyclotomic harmonic
polylogarithms and S-sums is essential. In some of the diagrams we applied the method the in-
tegration by parts method and applied differential equations to calculate the associated master
integrals. The technologies described can be generalized to the case of two different masses.
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Fig. 2. Graph 1.

Fig. 3. Graph 2.

Fig. 4. Graph 3.

Fig. 5. Graph 4.

Appendix A. Results for the scalar graphs

In the following, the results for the scalar prototypes of the graphs contributing to the
O(TI%CF, A) part of the operator matrix element A(s)’ are summarized. These diagrams are
much simpler to calculate than the corresponding complete diagrams. However, they show the
principal structures of the full diagrams and share a common calculational scheme. The large
amount of numerator terms and their variation, however, increases the complexity of the QCD
diagrams significantly.

All diagrams are normalized such that the factor

2 3¢-3
. m 2
mgsg(ﬁ) (A.p)N (A.1)

is omitted. The results for the diagrams in Figs. 2-9, calculated as explained before, are given by

Res =DV +1 2 1 S N 57N + 127
) 105¢2(N +1) e[ 105(N+1) ' 7350(N + 1)2
1 STN + 127
——  (§24+s e S M
+420(N+1)( s 2+§2)+14700(N+1)2 !

(A.2)

75253N?% + 78686N — 84767
18522000(N + 1)3 ’

— A7n 1

105¢2 ¢ 44100(N — )N(N + 1) 210

DN +1]| 1 1[74N3 —455N2 + 381N —210 1
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Fig. 6. Graph 5.
Fig. 7. Graph 6.
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Fig. 8. Graph 7. Fig. 9. Graph 8.
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1

+

Res; =

DV +1(1 1 57N2+ 197N + 70
DY + { + + } (AS)

2 e 105N(N+1)  14700N2(N + 1)2

2 " e5(N=1DN(N + D2(N +2)

B (BN2 = N +56)
192(N + D2(N +2)(2N —=3)(2N — 1)

-DV¥+1] 1 1
ReS4=( )+ {

S

(N -3) N[ 4
~ 128(N + 1)(2N — 3)(2N — 1)4N<N)[Z (ZJJ)J-zSI(J -D _753}

J=1

P33
_ , (A.6)
7200(N — 1)2N2(N + 1)3(N +2)2N —3)(2N — 1) }

P33 =225N7 —325N% — 10398N° + 6806 N* + 23517N3 — 18721N?
— 1824N + 2160, (A7)



314 J. Ablinger et al. / Nuclear Physics B 885 (2014) 280-317

=DV +1| 1 4
2 " e 15(N — DN(N + DX(N +2)

N?—3N +6 N[ 4
TSN F DN+ DN — 32N — Dav < N ) [; (2]./')]-25‘ =D= 743]
(N —5)(3N +8)
+ S
96(N + D2(N +2)(2N — 3)(2N — 1)

Ress =

Py
+ 3600(N — ])2N2(N + 1)3(N +2)2N —3)(2N — 1) }v (A.8)
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P35 = —257476 N® + 682667N7 — 144175N° — 586654N° + 615368 N*
— 948403N> + 592683N2 + 71190N — 75600, (A.11)
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15IN% + 1678N +2072 . TN>+2IN?+ 14N -3 ,
100800(N + 1)2 ! 2520N (N + 1)2 1
TN3 +2IN2 + 14N +3 N+2
T S2+ &
2520N (N + 1) 120(N + 1)
N 16091 N5 4 37499N* + 46885N3 — 4133N% — 67410N — 12600
2268000N2(N + 1)3

(A.13)

In some of the graphs, the denominator structure show evanescent poles at N = 1/2,3/2,5/2.
The expansion of the whole function around these values shows continuity.
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